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ABSTRACT

EVALUATION OF FIND-SIMILAR WITH SIMULATION
AND NETWORK ANALYSIS

SEPTEMBER 2008

MARK D. SMUCKER

B.S. Physics, IOWA STATE UNIVERSITY

B.S. Computer Science, IOWA STATE UNIVERSITY

M.S., UNIVERSITY OF WISCONSIN–MADISON

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

Every day, people use information retrieval (IR) systems to find documents that

satisfy their information needs. Even though IR has revolutionized the way people

find information, IR systems can still fail to satisfy people’s information needs. In

this dissertation, we show how the addition of a simple user interaction mechanism,

find-similar, can improve retrieval quality by making it easier for users to navigate

from relevant documents to other relevant documents. Find-similar allows a user

to request documents similar to a given document. In the first part of the disser-

tation, we measure find-similar’s retrieval potential through simulation of a user’s

behavior with hypothetical user interfaces. We show that find-similar has the po-

tential to improve the retrieval quality of a state-of-the-art IR system by 23% and

ix



match the performance of relevance feedback. As part of a case study that first shows

how find-similar can help PubMed users find relevant documents, we then show how

find-similar responds to varying initial conditions and acts to compensate for poor

retrieval quality. In the second part of the dissertation, we characterize find-similar

in the absence of a particular user interface by measuring the quality of the document

networks formed by find-similar’s document-to-document similarity measure. Find-

similar effectively creates links between documents that allow the user to navigate

documents by similarity. We show that find-similar’s similarity measure affects the

navigability of the document network and how a query-biased similarity measure can

improve find-similar. We develop measures of network navigability and show that

find-similar should make the World Wide Web more navigable. Taken together, the

simulation of find-similar and the measurement of the navigability of document net-

works shows how find-similar as a simple user interaction mechanism can improve a

user’s ability to find relevant documents.
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CHAPTER 1

INTRODUCTION

Search users turn to information retrieval (IR) systems when they have some

information need to satisfy.1 IR systems can be seen as involving three major layers.

The top layer is the interface that provides the means for the user to interact with the

IR system. The middle layer consists of the various algorithms used by the IR system.

Chief among these algorithms is usually an algorithm to rank documents in response

to a user’s queries. Finally, the bottom layer is composed of data structures and

other systems-like components designed to allow retrieval algorithms to be efficient

and scalable.

While we can think of an IR system in terms of these layers, the divisions be-

tween the layers are not sharply defined. The interface depends on the algorithms

which depend on the system level components. Similarly, we only are concerned with

algorithms that can effectively utilize the input gathered from the user.

Understanding the meaning of a text document is an unsolved problem in IR and

artificial intelligence (AI). Humans are the only known entities capable of reading

comprehension. While both IR and AI researchers make continual progress towards

machine intelligence capable of reading comprehension, human intelligence is still

many orders of magnitude greater than machine intelligence and this is likely to be

the case for the foreseeable future.

1Information retrieval research covers a wide range of information seeking and organizing needs.
Text retrieval focuses on helping people find documents that are relevant to their information need.
In this dissertation, all references to IR will be to text retrieval systems.
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In what we might call the “human replacement” view of information retrieval,

the IR system is supposed to act like an automated human that can understand the

needs of the user and also understand all of the documents that the system stores.

This artificially intelligent IR system is able to then quickly discern the documents

that the user will consider relevant.

The human-replacement view stresses the creation of intelligence. In contrast, we

take the position that IR systems should work to utilize the wealth of intelligence

available in the human user. We see this as a tool-centric view of IR.

This perspective is not new in IR. An early example of this sentiment comes

from Doyle (1962) who wrote that “humans should be capable of doing a better job

of searching than machine, if confronted with well-organized material.” Doyle gave

keyword in context (KWIC) indexes an example of a way to better organize material.

KWIC indexes arrange text phrases such that as one scans down a page, the phrases

are all horizontally aligned with the same keyword in the middle of the line of text.

IR has improved and evolved a tremendous amount since 1962. Even so, IR, in

the form of search engines that return a ranked list of documents to the user, is

still primarily a tool that provides sophisticated best-match results given the user’s

natural language query.

An IR system’s user interface can been seen to be composed of many tools. Some

tools are better described as user interface features or interactive elements while other

tools are well described as interaction mechanisms. Interface tools can be divided into

three categories:

1. Tools to help find documents, i.e. search tools.

2. Tools to enable faster comprehension of documents.

3. Tools to help organize documents.
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While users typically use tools for finding and understanding documents during a

search, and organization tools for the saved documents after a search, the various

types of tools can be useful at different times.

Some of these tools are used in concert with each other. For example, the query box

in a standard interface is one tool and it gets used with the results list that displays

the results of the query. There can be many different implementations of each tool.

A few other example tools include the query language, term highlighting, term search

within a document, spelling suggestions, document summaries, and interactive query

expansion.

In this dissertation, we focus our research on one interaction mechanism, find-

similar. We examine both the potential of find-similar as well as show how to improve

its performance. Find-similar is a search tool that allows a user to request documents

similar to a given document. Much in the spirit of tools promoted by Doyle, find-

similar provides an advanced organization of the documents that aims to improve

users’ ability to find relevant documents.

1.1 Find-Similar

The typical search scenario supported by today’s text retrieval systems allows a

user to enter a query and receive a ranked list of documents. The IR system attempts

to understand what the user’s information need is based on the query and likewise

attempts to provide documents that will best satisfy the user’s information need.

In this dissertation, our work is motivated by the many user tasks that require

finding more than one relevant document. Examples include:

• Literature searches: For example, when a scholar needs to fully review the

literature in a research area.

• Legal discovery: Lawyers need to uncover all past relevant cases in order to

make strong arguments.
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Figure 1.1. The traditional scenario for interacting with an information retrieval
system to find relevant documents via relevance feedback.

• Medical conditions / treatments: When someone becomes ill, the doctor, pa-

tient, and family often need to find as much information as possible regarding

the illness.

Within this broad problem of finding multiple relevant documents, we focus on one

specific problem: once a user has found a relevant document, how should the user

proceed to find other relevant documents? The user could find this document via a

typical search or the user could already know of the document. The classic solution

to this problem is what is known as relevance feedback.

Relevance feedback has the user provide feedback on the results to the IR system.

The IR system can collect feedback in many ways, but a typical approach is multiple-

item relevance feedback whereby the user judges the top 5 or 10 documents as relevant

or non-relevant and submits these judgments to the IR system. The IR system uses

the judgments to craft a new query and returns a new set of results. The aim is for

this feedback loop to continue until the user’s information need is satisfied. Figure 1.1

shows this process. Interaction techniques like relevance feedback focus on helping

the user after the initial query rather than on improving the initial retrieval.

While relevance feedback is known to be a powerful technique for improving re-

trieval quality (Ruthven and Lalmas (2003) provide an extensive review of over 30

years of relevance feedback research), it has seen little adoption by search systems. A
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Figure 1.2. The Excite search system (circa 1996) provided a find-similar link next
to each search result labeled “More Like This: Click here for a list of documents like
this one.”

feedback-like technique that has seen adoption is an interaction mechanism we term

find-similar.

Find-similar allows a user to request a list of documents similar to a given docu-

ment. As a user interface feature, find-similar is typically instantiated as a button or

link next to each result in the list of search results. For example, the Excite search

engine (circa 1996) labeled their find-similar link “More Like This: Click here for a

list of documents like this one” as shown in Figure 1.2. As such, find-similar provides

a way for users to navigate from one document to another and supports the search

techniques commonly employed by users (Bates, 1989).

While not all people have experience using find-similar, significant evidence exists

that many users utilize this interaction mechanism. Spink et al. (2000, 2001) analyzed

samples of Excite’s query logs and reported that between 5 and 9.7 percent of the

queries came from the use of the “more like this” find-similar feature. Lin et al.

(2007) have reported that for the U.S. National Library of Medicine’s search engine,

PubMed, 18.5% of non-trivial search sessions involve clicks on articles suggested by

PubMed’s find-similar, which PubMed refers to as related articles.
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Figure 1.3. This figure shows an example of find-similar use. The user starts by
entering a query and getting a ranked list of documents (1). The user examines
the documents and finds the first one to be non-relevant. The second document is
relevant and the user decides to apply find-similar to that document (2). The system
produces a ranked list of documents that are similar to the requested document.
The user continues (3) until reaching a point where the list of documents has few
relevant documents and the user clicks the “back button” in the interface to go back
to the previous ranked list (4). The user continues searching (5) via find-similar until
finished.

This dissertation focuses on find-similar’s use as a search tool. To use find-similar

as a search tool, a user will apply find-similar to a relevant document to find more

relevant documents, and so forth. A user can either start with an initial query and

apply find-similar to individual results, or a user can start with a known relevant

document found via other means and apply find-similar to that document. Figure 1.3

shows an example of find-similar use starting from an initial query.

Find-similar can provide other forms of similarity to the user besides content

similarity. For example, Figure 1.4 shows a page from CiteSeer (Bollacker et al.,

1998), which is a research paper repository and search system. Many of the links

provided by CiteSeer can be considered find-similar links. Some of the links are to

documents with similar content while others are to documents with similar citations.
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Figure 1.4. The CiteSeer research paper search system provides many types of
similarity links besides content similarity, e.g. papers that cite this paper and co-
citation similarity. This web page is also an example of using find-similar to find other
relevant documents when a document, rather than a query is the starting point.

A similar search system, Google Scholar,2 provides links to documents written by

the author of a paper, which allows the user to navigate along another dimension of

similarity.

Using find-similar to navigate via similarity has significant potential to improve

retrieval quality. Figure 1.5 shows an example of the power of navigating via simi-

larity for the TREC ad-hoc query number 334, “export controls cryptography.” This

example uses query likelihood to perform the initial retrieval and regular document-

to-document similarity (details given in Chapter 3). For this query, the initial retrieval

2http://scholar.google.com/
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pulls up three relevant documents into the top of the results at ranks 1, 2, and 4. In

total, there are nine known relevant documents for query 334. The initial query finds

the other relevant documents at ranks 79, 2465, 13564, 23831, 37874, and the last

document is not retrieved at all since it doesn’t contain any of the three query terms.

In the figure, this last document is given a rank of 528,155, which is the number

of documents in the collection. Without find-similar or some other mechanism, the

documents at ranks 2465 and greater are effectively “out of reach” of the user. If the

user uses find-similar to request similar documents for the relevant document at rank

4, the user will then find relevant documents at ranks 3, 6, 8, and 11 that were all at

ranks greater than 1000 for the initial retrieval. Find-similar makes these documents

much easier to reach. For example, document R5 now goes from a distance of 2465

to a distance of 7 (4 + 3). Using find-similar, the hardest to reach relevant document

is 46 documents away from the initial query and the remaining relevant documents

are found within 15 documents. This is a dramatic improvement from only finding 3

relevant documents in the initial retrieval.

In a broad sense, find-similar aims to add links to documents such that the time

for a user to get from relevant document to relevant document is minimized. We next

describe the work in this dissertation that addresses how to measure and improve the

performance of find-similar.

1.2 Dissertation Overview

While find-similar has existed for many years and many search systems have pro-

vided find-similar functionality to users, little research existed regarding find-similar

before the work presented in this dissertation. We add to this existing research and

further fill the gap between practice and research knowledge of find-similar.

The work in this dissertation is best viewed as falling into three categories: mea-

surement, performance improvement, and applicability to different domains.
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Figure 1.5. This figure shows the shortest paths via find-similar from the initial
query to the nine relevant documents for TREC query 334, “export controls cryptog-
raphy.” Non-relevant documents are represented by an “N” or omitted to save space.
The relevant document “R3” at rank 4 in the initial query results makes the majority
of relevant documents much easier to reach.

We look at two ways to measure find-similar. The first, as presented in Chap-

ter 3, performs a simulation of user behavior given an interface that incorporates

find-similar. Here we measure find-similar’s potential to improve retrieval quality

as compared to a state-of-the-art retrieval system as well as compared to relevance

feedback. In Chapter 4, we use this simulation methodology to investigate the ef-

fect of different initial conditions on find-similar’s performance. In Chapter 5, we

present a method that does away with the user interface and focuses its measurement

on the document network formed by find-similar’s document-to-document similarity

measure.

To improve find-similar, we can provide user interface support for find-similar

as well as change the document-to-document similarity measure. In Chapter 3, we

investigate the need for an interface to help the user avoid the reexamination of

documents while using find-similar. In Chapters 3, 4, 5, and 6, we look at various

types of document-to-document similarity. We look at content similarity both with
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and without query-biasing in Chapters 3 and 5. As part of Chapter 4, we compare our

language modeling document-to-document similarity to PubMed’s actual document-

to-document similarity. In Chapter 6 we treat the World Wide Web’s hyperlinks as

a form of document-to-document similarity and measure the Web’s navigability both

with and without additional content similarity links.

To understand if find-similar is applicable across different domains, we investi-

gate its performance with newswire and government documents in Chapters 3 and 5,

abstracts of biomedical texts in Chapter 4, and with Web pages in Chapter 6.

We review related work in Chapter 2 and conclude the dissertation in Chapter 7.

1.3 Contributions

In this dissertation, we make the following contributions:

1. We show that find-similar has the potential to produce a 23% improvement

over a non-interactive state-of-the-art baseline as measured by mean average

precision. This performance matches relevance feedback. (Chapter 3)

2. By simulating simple and plausible user browsing patterns, we show that find-

similar’s performance is significantly affected by the browsing pattern. In par-

ticular, if carelessly used when results are already good and not in need of much

improvement, find-similar can degrade these results. (Chapter 3)

3. We find that find-similar benefits from user interface support to avoid the re-

examination of documents. Without support to avoid the reexamination of

documents, find-similar only benefits the poorest performing topics. (Chap-

ter 3)

4. Poor initial retrievals can come from complex information needs, the retrieval

method, or novice users. As part of a case study of PubMed, we show how
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find-similar compensates for poor initial retrievals. This work also broadens the

applicability of find-similar beyond the newswire and government documents of

Chapter 3 to biomedical abstracts. (Chapter 4)

5. We find that poorer retrieval systems are helped more by find-similar while the

more difficult topics are not helped as much as the easier topics. (Chapter 4)

6. We find that find-similar’s performance can be improved by using a query-

biased, document-to-document content similarity rather than a similarity mea-

sure that simply uses the document as a query. (Chapters 3 and 5)

7. We create a novel and well defined method to evaluate the ability of document-

to-document similarity measures to cluster relevant documents. We show that

both local and global measures of clustering are needed. (Chapter 5)

8. We show that the query-biased similarity that performed better under simula-

tion also clusters relevant documents better than a regular similarity that treats

a document as a query. The query-biased similarity produces a relative gain in

the global measure of clustering by 45% while also producing a relative gain of

38% in a local measure of clustering (precision at rank 5). (Chapter 5)

9. We show that to a limited extent, the cluster hypothesis is true on the web

when the document-to-document similarity measure is the distance to navigate

from one document to another using hyperlinks. We found that the automatic

addition of content similarity hyperlinks to web pages can significantly increase

the number of relevant documents reachable from a given relevant document.

We quantify this increase in navigability using the method of Chapter 5 and

show that find-similar produced an absolute gain in global navigability of 13.8%

while at the same time increasing the local navigability of the web. (Chapter 6)
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CHAPTER 2

RELATED WORK

In this chapter we review related work and describe its relation to the work in the

dissertation. We start by addressing our approach to improving IR performance as

well as giving more evidence for user tasks that require multiple relevant documents.

As discussed in Chapter 1, the well-known technique of relevance feedback is the

classic solution to helping users find multiple relevant documents. The problem faced

by relevance feedback is that it has not seen adoption by search systems. Find-

similar is a feedback-like interaction mechanism that has seen adoption. While there

are likely many reasons for find-similar’s adoption, in Section 2.3, we discuss one

possible reason: find-similar supports existing user behavior.

In Section 2.4 we review other research on find-similar or find-similar like systems.

Since find-similar is a feedback-like search tool, we briefly touch on other attempts to

improve and understand the issues with relevance feedback in Section 2.5.

Inherent in find-similar is that it provides a means for users to navigate from

one document to another. Anytime a system provides such a navigation mechanism,

we can think of the transition from document to document as a link between the

two documents. Hypertext systems explicitly provide links between documents and

most often these links are inline with the text of a document. The web is the most

prevalent example of a hypertext system today. Find-similar automatically creates

links between documents given find-similar’s document-to-document similarity mea-

sure. In Section 2.6 we discuss automatic hypertext construction and the evaluation

of hypertext.
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Hypertext systems and find-similar create networks of documents. In the latter

half of the dissertation, we apply network analysis measures to evaluate find-similar.

We conclude this chapter in Section 2.7 with a look at related network analysis re-

search.

2.1 A Tool-Centric View of Information Retrieval

One of our interests in studying find-similar is that it is an example of simple user

interaction mechanism that has seen adoption by search systems. In this section, we

describe the work of Bates (1990), who provides an alternate and detailed perspective

on the automation of IR that shares much with our belief in a tool-centric view of IR.

Bates defines four levels of search activity: moves, tactics, stratagems, and strate-

gies. Moves are basic operational steps such as entering search terms or examining

a document. Tactics describe a sequence of one or more moves designed to help

the user find relevant material faster. For example, a tactic could be to broaden a

query to increase recall (Bates, 1979). Stratagems include the chaining behaviors of

Ellis (1989), for example. Finally, strategies are broad plans for how a user will find

relevant information.

Bates also defines fives levels of system automation: no system involvement, dis-

plays possible activities, executes actions on command, monitors search and recom-

mends actions, and executes automatically. Bates claims that IR research aims to

execute automatically all levels of search activity. This is similar to our notion of the

AI-view of IR. Bates advocates research on ways to help the user with tactics and

stratagems. Find-similar falls within Bates’ recommended area of research as it helps

the user execute chaining based on content, which would be a stratagem in Bates’

classification.
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2.2 Need for Multiple Relevant Documents

A key motivation for find-similar is that multiple relevant documents are needed

by some users to satisfy their information needs. While we know that some tasks such

as a literature review by default require many relevant documents, there is evidence

that other less obvious tasks have similar requirements.

Bhavnani (2005) has analyzed the distribution of health care facts across relevant

web pages and web sites. In general, Bhavnani found that facts are distributed such

that very few pages contain many facts while many pages contain a few facts. The

result of this is that users must find many relevant pages to collect all the relevant

facts. In an earlier work, Bhavnani et al. (2003) estimated that users on average

would have to visit 25 pages to find a complete set of 12 melanoma risk concepts.

Web search is well known to be a high precision activity for most users. In contrast

to this, Rose and Levinson (2004) found that in a sample of web queries, 22.7% of all

searches are undirected informational, e.g. “color blindness” or “jfk jr.” and another

5.0% are searches for advice. For each of these types of searches, it is reasonable to

expect users to need multiple relevant documents to satisfy their information needs.

2.3 User Behavior in Support of Find-Similar

One possible reason for find-similar’s adoption by search systems is that find-

similar supports existing user behavior. In this section, we review work that has

either studied user behavior directly or work that has created predictive models of

user behavior.

Bates (1989) presents a model of user searching behavior she named berrypicking.

In the berrypicking model, the user’s query is taken to be evolving over the search

and the information that the user needs to find is scattered across many documents.

The berrypicking model is in contrast to iterative relevance feedback where a single

query is refined with positive and negative examples of relevant documents. While
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this dissertation’s experiments involve fixed sets of relevant documents, it is possi-

ble that the TREC assessors’ notion of relevance shifts over the process of judging

documents for relevance. Even with a fixed notions of relevance, a set of documents

may contain many different relevant subtopics or aspects that are difficult for a single

query representation to capture. Find-similar in contrast to relevance feedback is

an appropriate tool to support a berrypicking search model. Find-similar only uses

the current document to determine the other most similar documents and thus allows

users to possibly visit different aspects of a topic with greater ease than does relevance

feedback.

Ellis (1989) in a study of social scientists found that one of their primary search

strategies was what Ellis termed chaining. Ellis broke chaining activities into forward

and backward chaining. Forward chaining involves using a citation index to determine

documents that have cited the current document. Backward chaining involves follow-

ing the citations in the current document’s bibliography. While find-similar as studied

in this dissertation does not explore citations as a notion of similarity, find-similar

does support forward and backward chaining based on the content of a document.

Meho and Tibbo (2003) provide an updated review of Ellis’ work and further refine

the information seeking behaviors Ellis identified. Computer interfaces have been

specifically designed to support the navigation of citations (Mackinlay et al., 1995).

There is other evidence that navigating from document to document is an im-

portant part of the search process for users. Teevan et al. (2004) described a search

technique whereby users take small steps towards their goal without specifying their

entire information need at the beginning of the search. They named this search

technique orienteering. For example, Teevan et al. described the behavior of a user

searching for a professor’s phone number. Rather than try to use a search engine to

find the information, the user navigated to the professor’s departmental homepage

to find a list of faculty. Teevan et al. found that orienteering seemed to be cogni-
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tively easier for users compared to attempting to fully describe their search target as

a query. Orienteering also provided users with a sense of location and gave them a

context to better understand the answers they found. Cutrell et al. (2006) reported

that users searching their personal information collections particularly liked a feature

that allowed them to take a single search result and use it to modify their query.

Pirolli (1997) has proposed a model of search behavior called information foraging.

The model basically posits that as humans evolved, we became very skilled in forag-

ing for food and other resources. When foraging, one wants to maximize total gain

over time even though resources are not found uniformly in nature but instead are

often found in clumps. Given the distribution of resources, foraging theory addresses

when should an individual stay and consume the current patch of resources and when

should an individual begin searching for the next patch of resources. Information for-

aging models have been shown to effectively model user behavior in many information

seeking environments (Pirolli and Card, 1998, 1999; Pirolli, 2007). While we do not

explicitly utilize information foraging theory, the breadth-like browsing pattern intro-

duced in Chapter 3 shares key attributes with information foraging theory. Namely,

the breadth-like browser delays exploration until the results’ quality degrades beyond

a certain point and the browser always selects links given the highest information

scent (they are links to relevant documents).

2.3.1 Relevance Feedback as Find-Similar

It appears that some users attempt to use relevance feedback systems designed for

judgments on multiple documents in a manner resembling find-similar. Croft reports

that users will often use a single document, which may be unrelated to the query,

for relevance feedback and effectively be “browsing using feedback” (Croft, 1995).

Hancock-Beaulieu et al. studied 58 user sessions that used interactive query expansion

(IQE) via a relevance feedback interface (Hancock-Beaulieu et al., 1995). Of the
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58 sessions, 17 used only a single document for feedback. Algorithms designed for

multiple-document feedback may not always work well for single document feedback.

Only 3 of the 17 sessions were successful at finding additional relevant material.

Hancock-Beaulieu et al. hypothesized that IQE with too few relevant items may not

work correctly. Similarly, Harper and Kelly (2006) created an IR system that allowed

users to place documents into virtual piles. For each pile, the user could ask the IR

system to produce a list of documents similar to the documents in the pile. As part of

a user study, Harper and Kelly found that over 80% the similarity searches involved

piles with 3 or fewer documents. From Figure 4 of Harper and Kelly’s paper, we

estimate that over 50% of the similarity searches involved piles containing a single

document. While Harper and Kelly did not find that users performed better with the

piles, they did find that users preferred the piles system.

2.4 Other Studies of Find-Similar or Find-Similar Like Tools

In this section we review work that has examined find-similar or has studied tools

very closely related to find-similar. All of these systems provide a means for the user

to go from an existing document to other similar documents.

The I3R system worked by a “quality-in quality-out” principle that strove to help

users build queries that more accurately reflected their information needs (Croft and

Thompson, 1987; Croft et al., 1989; Thompson and Croft, 1989). I3R was a rich

IR system that had as one of its many components a browsing expert that allowed

a user to browse by following links from a document, author, or index term. I3R

supported many different types of similarity. For example, the nearest neighbors

of a document could be based on citations or content or other information from a

knowledge base. Two aspects of I3R’s browsing expert are significantly different than

our study of find-similar. First, I3R acquires knowledge as the user browses and can

use this knowledge to update the query or suggest a search strategy. Our version of
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find-similar makes no attempt to utilize knowledge about seen documents. A second

difference is that I3R makes browsing suggestions to the user. For us, find-similar

merely returns a ranked list of similar documents with no recommendation of which

documents may be relevant or not to the user. Another more minor difference is that

I3R the system draws a display showing nodes and links indicating browsing choices.

One of the functions of the display is as a map to prevent users from becoming lost in

their browsing. Such a display may be of use to interfaces incorporating find-similar,

but find-similar does not require such a display. Find-similar offers a subset of the

richer browsing capabilities of I3R, and our study of find-similar can be seen as giving

support for the utility of the browsing capabilities in I3R.

Wilbur and Coffee (1994) studied several aspects of find-similar and their research

is the most similar to our work in Chapter 3. They found that on average, a single

relevant document used as a query does not perform as well as the original query, but

that relevant documents similar to the query will do better than the query. They also

used a set of browsing patterns and found that a method they called parallel neigh-

borhood searching performed better than the other patterns. This method attempts

to search the find-similar lists of all discovered relevant documents to the same depth.

This browsing pattern is likely too complex for a user to follow. They suggested that

a system could hide the complexity by showing the user one document at a time to

judge, but such a system no longer supports similarity browsing or traditional lists

of results.

Melucci (1999) provides another evaluation of find-similar. Melucci’s evaluation

sees find-similar as a subpart of a larger hypertext retrieval system. The evaluation

does not make mention of hypothetical interfaces as we do in Chapter 3, but like us

and Wilbur and Coffee (1994), Melucci does investigate different browsing patterns,

which he calls search tactics. Melucci’s search tactics address comparisons to relevance

feedback and the combination of find-similar and the initially retrieved list. Unlike
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our work, Melucci appears to only perform a single iteration of relevance feedback and

appears to only apply find-similar to a single document. In the find-similar search

tactic employed by Melucci, if no relevant documents are found in the top ranked

documents, find-similar may be applied to a non-relevant document. Melucci does

not make mention of handling the reexamination of documents problem, which we

address in Chapter 3. Melucci finds that browsing via his find-similar implementation

was worse than relevance feedback, which is not surprising since his implementation

only applies find-similar once. Melucci’s results do suggest that find-similar may be

of help to the user when the initial results are poor, which is something we confirm

in Chapters 3 and 4.

As described in Chapter 1, the Excite search engine at one time contained a feature

that allowed a user to click on a link that read “More Like This: Click here for a list of

documents like this one.” for each result in the ranked list. Spink et al. (2000, 2001)

have analyzed samples of Excite’s query logs and reported that between 5 and 9.7

percent of the queries came from the use of the “more like this” find-similar feature.

There is little evidence that users repeatedly used the find-similar feature to browse

by similarity. Even though some web users may need multiple relevant documents

(see Section 2.2), most web users are precision oriented and thus it is not surprising

that find-similar found limited use by Excite web users.

Campbell (2000) investigated a system that allowed users to search for relevant

objects by browsing to similar objects. Campbell described his system as an ostensive

browsing system. Campbell’s system was unique in that the path a user took to

reach an object influenced what objects were considered to be similar to that object.

Campbell found some evidence that the document in context (DIC) model performed

better than other models. The DIC model weights the more recently examined objects

higher than objects further back on the user’s exploratory path. In our work, find-

similar allows ostensive browsing and implements the DIC model in the extreme.
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Only the immediate document and possibly the user’s query is used for determining

the similar documents. Campbell’s system also utilized a display to show the path

taken by the user through the similarity space (cf. I3R).

Strasberg et al. (2000) investigated different document-to-document similarity

measures for biomedical articles. They built a collection of 186 articles. From these

186 articles, one was chosen at random as a “seed” article. Then 90 articles were

chosen at random, and for each of these articles, an expert judged if the article would

be one he would like to see in a list of “related articles.” The various similarity mea-

sures were judged based on their ability to rank the 90 judged articles. They found

little difference among their similarity measures although techniques using only ti-

tle words or MESH terms performed worse at higher levels of recall. In a second

experiment, they had an expert collect 20 related documents. They then selected

80 unrelated documents. Performance was measured for each of the 20 documents

to rank the other 19 documents highly. This type of performance measurement is

similar to the precision at rank 5 (P5) measure of the cluster hypothesis (Voorhees,

1985) but ignores the importance of a global measure of the cluster hypothesis as we

discuss in Chapter 5. On this second collection, they found that tf-idf vector space

ranking outperformed a simpler binary weighted Dice coefficient of similarity. Our

studies involve much large document collections (on the order of 500,000 documents

or more) and large numbers of user search topics (50 to 150).

Haveliwala et al. (2002) studied find-similar on the web. Their work looked at

measuring the quality of document-to-document similarity measures, the develop-

ment of better performing similarity measures, and the fast calculation of the similar

documents. They first developed a methodology using the Open Directory Project

(ODP)1 hierarchy of websites to measure the quality of their document-to-document

1http://www.dmoz.org/
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similarity methods. While all of our measures of document-to-document similarity

involve either the improvement of search effectiveness or looking at the resulting nav-

igability of document networks where navigability is concerned with getting from one

relevant document to other relevant documents, Haveliwala et al. use the ODP as

a surrogate or oracle of what is similar to what. Menczer (2005) created a similar

method to determine what he calls the semantic similarity of two web pages. They

also investigated several document-to-document similarity methods. They found us-

ing anchor text (the text surrounding links to a given page) very useful and weighting

the text based on distance from the anchor the best. Our investigations focus on the

value of query-biasing the similarity method as well as on comparing content similar-

ity to existing web hyperlinks. To compute similarity quickly, they used very simple

term weighting with the Jaccard coefficient and a hashing mechanism.

Several approaches to find-similar utilize the link structure of the web to determine

similar pages (Dean and Henzinger, 1999a,b; Jeh and Widom, 2002; Thelwall and

Wilkinson, 2004; Lin et al., 2006). These approaches are related to the link prediction

problem in social networks (Liben-Nowell and Kleinberg, 2003). Dean and Henzinger

(1999b) evaluated their methods by asking users to judge the usefulness of the pages

found similar to a given page. This notion of usefulness is separate from any given

search task that a user may have. Our focus in this dissertation is on helping users find

relevant documents given an information need. Additionally, many of the pages used

by Dean and Henzinger were top-level or homepages of large websites, e.g. www.ebay.

com, www.babynames.com, and www.rei-outlet.com. Searching for similar websites

will tend to be a different task than finding other relevant content, which is our focus.

Takaki et al. (2004) use a patent application document as a query to find existing

patents for the purpose of being able to invalidate the patent application. In an

attempt to improve the document-to-document similarity measure, they break up the

document into subtopics rather than use the whole document. For their application,

21



the subtopics were the various sections of the patent application. By down-weighting

the preamble of the application, they were able to improve performance. While like

find-similar, in their study there is no notion of navigating from one relevant document

to another. The patent application is the only query issued and the resulting ranked

list of documents is judged for quality.

Perhaps the best known form of find-similar is Amazon.com’s item-to-item col-

laborative filtering (Linden et al., 2003). In this application, users can navigate by

a similarity that has been computed based on the sets of items purchased by users

and other data. Linden et al. (2003) do not report any evaluation of Amazon.com’s

ability to help users find relevant content.

Some systems provide a list of similar documents based on what the user is cur-

rently viewing or doing (Rhodes and Starner, 1996; Dumais et al., 2004). These

systems are effectively versions of find-similar, for if a user selects a document from

the list of similar documents, the user’s context will shift to that new document and

the list of similar documents will change automatically.

While Campbell (2000) looked at annotated images, Birbeck et al. (2006) and Joho

et al. (2007) have continued in the ostensive framework and have studied an interface

that allows ostensive browsing of the top ranking sentences from a query’s top 30

results. The interface allows the browsing to be conducted by hovering the mouse

pointer over a set of sentences and this then pulls up a cascaded menu of three more

top ranking sentences similar to the selection under the mouse. This is an innovative

interaction technique similar to the technique of fluid links of Zellweger et al. (1998).

They found evidence that such a system would benefit the user searching for relevant

documents. Our work differs from their work in that we allow the user to find similar

documents across the entire collection, which is necessary for increased recall. We do

not restrict the user to the top ranked documents.
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Lin et al. (2007) took a preliminary look at the properties of the document network

formed by the find-similar feature of PubMed and analyzed logs of PubMed’s find-

similar feature. They took 46 topics from the 2005 Genomics track and looked at

the precision at 5. They found that topics that had more relevant documents tended

to have higher precision at 5. One variant of the related articles feature in PubMed

shows 5 articles in a panel on the same page as a currently viewed document. Another

analysis they performed was to take the network formed by looking at the relevant

documents and the 5 related articles and measure how many connected components

existed in this network. They again found that as the number of relevant documents

increased so did the number of components in a linear fashion. From their preliminary

investigation, they saw no reason to conclude that the related articles feature should

not be helpful.

In the next piece of analysis, they looked at a week of PubMed’s log files. They

first eliminated sessions of only a single page view since those are presumed to be

bots and systems that provide direct access to MEDLINE. They ended up with 1.9M

sessions. 18.5% of these sessions also had a click on a link to a related article. Ignoring

short sessions, they found that approximately 5% of the page views were a result of

clicks on related articles. They also found that users’ most likely next action after

using the related articles feature is to use the related articles feature again.

Huggett and Lanir (2007) conducted a user study in which users found more

relevant documents using an interface that provided find-similar over an interface

without find-similar. Huggett and Lanir’s study used small newswire collections of

2000 documents and limited test subjects to two minutes for each search. In this

dissertation, we use much larger document collections and utilize batch experiments.

23



2.4.1 Other Approaches Related to Find-Similar

Lieberman (1995) created a software agent named Letizia that watches the user

browse the web and tries to infer the user’s information need. Letizia actively crawls

the web from the user’s current location. When the user does not know where next

to browse, the user can ask Letizia for suggestions. Olston and Chi (2003) created

ScentTrails to bridge the gap between searching and browsing. ScentTrails highlights

links on a web page that lead to pages containing a user’s search terms. This high-

lighting allows the user to combine the visible browsing cues on the current page

and the search information hidden on the following pages. In a user study, subjects

completed tasks faster using ScentTrails than with browsing or searching alone.

Another set of research has focused on helping the user better process ranked

retrieval results. This work is related to but different from relevance feedback and

find-similar, both of which are applied to the entire collection of documents and

not restricted to the set of top ranked results. For example, Leuski (2000) created a

software agent to guide users in their exploration of the top results. Other approaches

involve presenting the results grouped by an online clustering of the results or by

predetermined categories (Hearst and Pedersen, 1996; Eguchi, 1999; Iwayama, 2000;

Chen and Dumais, 2000). These approaches are different from find-similar in that

while the user gets to see documents grouped by similarity, the user does not get to

request more documents similar to a document.

2.5 Making Relevance Feedback Work

One possible reason for search systems’ adoption of find-similar is its appear-

ance as an easily understood and simple to use form of relevance feedback. Of the

large body of relevance feedback research (Ruthven and Lalmas, 2003), Aalbersberg’s

incremental feedback is an illustrative example of simplifying relevance feedback (Aal-

bersberg, 1992). With incremental feedback, the user is shown one result at a time
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(cf. Wilbur and Coffee). To see more results, the user must judge the relevance of the

presented item. In batch experiments, Aalbersberg found that incremental feedback

worked better than Rocchio, Ide Regular, and Ide Dec-Hi. For these other approaches,

Aalbersberg used an iteration size of 15 documents. Incremental feedback improved

a 3-point2 average precision by an average of 32% across four test collections while

the other methods improved by 18% over retrieval without feedback. Aalbersberg

found that as the iteration size decreased to the limit of 1 (incremental feedback), the

performance of Ide Regular improved. While incremental feedback builds a model of

relevant documents one document at a time, each use of find-similar involves a single

document without any accumulation of documents or model of relevance.

Designing good interface support for relevance feedback takes a considerable amount

of work (Belkin et al., 2001). Koenemann and Belkin (1996) studied the use of

relevance feedback for a filtering task. Users were most successful using relevance

feedback when the feedback interface was penetrable as compared to transparent or

opaque. The penetrable interface showed the user what terms were added to a query

based on feedback and also allowed the user to add or subtract terms from those

suggested via relevance feedback. The transparent interface showed the terms but

did not allow them to be directly manipulated. The opaque version completely hid

how the relevance feedback mechanism worked. Of note is that users much preferred

the penetrable interface. Users of the opaque interface wanted to “see and control”

the process. Find-similar leans towards giving the user direct control although our

use of query-biased similarity is opaque.

Beaulieu (1997) describes a VT100 character-based interface and two graphical

users interfaces (GUIs) for Okapi. The VT100 interface supported automatic query

expansion. Similar to Koenemann and Belkin, Beaulieu found that for the VT100

2For a 3-point average, the standard recall points are 25%, 50%, and 75%.
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interface, users would have preferred to know what terms were added to their queries.

Without knowing the added terms, users had to restart a search session to redirect

the search. The first GUI created supported interactive query expansion and allowed

users to select terms suggested by the relevance feedback component for addition to

their queries. As opposed to Koenemann and Belkin’s results, take-up of relevance

feedback and its effectiveness dropped from 31% and 50% respectively to 11% and

31%. With a redesign, a new GUI raised the take-up and effectiveness to 21% and

56%. The design of an interface can greatly affect the utility of a retrieval feature.

2.5.1 Implicit Relevance Feedback

Implicit feedback describes systems that attempt to watch the user and infer what

the user is interested in without obtaining explicit relevance judgments from the user

as relevance feedback would traditionally do. A goal of implicit feedback is to obtain

retrieval quality improvements from relevance feedback without the user’s need to do

anything except search for documents. Kelly and Teevan (2003) provide an overview

and bibliography of implicit feedback research. As studied here, find-similar has no

component of implicit relevance feedback. In all variants that we concern ourselves

with, find-similar simply provides a list of documents similar to a given document.

Previously viewed documents, and documents that have previously been the query

document for find-similar, do not change the list of similar documents that find-similar

produces.

2.5.2 Poison Pills

A series of relevance feedback experiments were conducted during the Reliable

Information Access (RIA) workshop organized by NIST in 2003. One of the striking

results was that some relevant documents hurt relevance feedback when added to the

set of documents judged relevant by the user (Warren and Liu, 2004). A further

analysis identified that for TREC 6, 7, and 8 ad-hoc retrieval, 5.3% of the relevant
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documents perform poorly for single document feedback; Terra and Warren (2005)

called these document “poison pills.” Find-similar can be viewed as a way of allow-

ing the user to easily correct for mistakes made by the retrieval system with single

document feedback. If the resulting list is poor, the user simply returns to the pre-

vious list and continues the search. With more traditional multi-document relevance

feedback, the user would have to be very careful to notice that retrieval results have

suffered because of the addition of a relevant document to the set of judged relevant

documents.

2.6 Automatic Hypertext

In many systems, users can browse documents via hyperlinks. If a collection

lacks hyperlinks, they can be automatically generated (Allan, 1997). Find-similar

effectively adds a hyperlink from a document to those most similar to it. For hypertext

systems like the web, researchers have created programs to assist the user with finding

relevant pages via browsing (Lieberman, 1995; Olston and Chi, 2003). In contrast to

these approaches, find-similar does not observe the user to determine what the user

considers relevant, and find-similar does not offer any assistance in choosing where

to browse. Wilkinson and Smeaton (1999) provides a nice short survey of automatic

hyperlink creation research.

Bodner et al. (2001) provide an overview of a large body of their work that looks

at various ways to augment text retrieval systems with automatic hyperlinks and

other browsing interaction mechanisms. A significant finding from this research was

that hypertext enabled IR systems tended to increase the recall performance of the

IR system for users. In general they found that the increased recall came as a result

of users viewing more documents in the hypertext enabled systems. The details of

their work most relevant to find-similar can be found the papers of Golovchinsky and

Chignell (1993); Golovchinsky (1997); Bodner and Chignell (1998, 1999).
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2.6.1 Evaluation of Hypertext Quality

Botafogo et al. (1992) detail a property of hypertext they term compactness as

a measure of the quality of a hypertext. Compactness is basically a normalized

all pairs shortest paths measure, much like the efficiency measure of Latora and

Marchiori (2001) that we use in Chapter 5 to measure the global navigability of a

document network. In contrast to Latora and Marchiori’s measure, the compactness

measure requires a maximum possible distance between nodes in the network for

the normalization. This requirement makes compactness unable to handle hypertext

networks that have documents with no path between them (an infinite distance). In

this dissertation, we concern ourselves with the distribution of relevant documents

and the ease of navigating between them. Botafogo et al.’s work does not consider

relevance.

Blustein et al. (1997) present methods for evaluating the quality of hypertext

links. They construct hyperlinks via tf-idf measures of similarity. They only place

links between the top 1, 2, . . . , 5 most similar documents. Then they evaluate the

shortest path distance between nodes. Whereas they make the link weight 1 for all

links, we set the link weight equal to the rank of the target document in the ranked list

of similar documents as an approximation of the cost for a user to find and traverse

a link. They then measure the correlation between the distance between documents

on the hypertext graph and the tf-idf measure. Of note, they only compute the

correlation for documents that have a path between them in the hypertext.

2.7 Related Network Analysis Work

In Chapter 5, our focus shifts to measuring the document networks formed by dif-

ferent document-to-document similarity measures. Newman (2003) provides a review

of the large body of research on networks and various graph theoretic measures of
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network properties. Costa et al. (2007) provides a survey of many of these network

measures.

Chapter 5 discusses the well-known cluster hypothesis, which essentially says that

relevant documents will tend to be more similar to each other than to non-relevant

documents. Given a document-to-document similarity measure, we can view the

similarity relationships between documents in a graph theoretic sense. Documents

are nodes and links are placed between nodes based on the given similarity measure.

IR similarity measures tend to produce a numeric measure of similarity and some

measures are asymmetric. Given this nature of IR similarity measures, an obvious

document network for IR would be a directed network with weights for each link

between nodes.

Given the hypothesis’ name, the cluster hypothesis, the clustering coefficient net-

work measures appear to be obvious choices for measuring the cluster hypothesis.

These measures exist to characterize the extent to which the nodes in a network

are clustered. Many of these measures are designed only for undirected, unweighted

networks. Cluster measures typically average over all nodes in the network a measure-

ment that captures the extent to which a node’s neighbors are themselves neighbors.

In the world of undirected, unweighted networks, one can see that these cluster mea-

sures may say a network is perfectly clustered even if some nodes cannot be reached

from other nodes. In other words, a network can be clustered in groups of fully con-

nected subgraphs and be perfectly clustered. Even when these measures are extended

to weighted networks (but not to directed networks) (Barthélemya et al., 2005; Kalna

and Higham, 2006), these measures still aim to capture the same characteristic of

networks, which is different from the notion of clustering in the cluster hypothesis.

The cluster hypothesis says that for various subsets of the graph, where each subset

is a set of relevant documents, that the nodes in these subsets are closer to each other

than to the other nodes in the network. As we will explain in Chapter 5, we need
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a measure that captures a sense of the distance between these relevant documents

as well as a measure that captures the local or neighborhood quality of a relevant

document.

In a similar fashion to our analysis in Chapter 5, Lawrie (2003) performed a

shortest-paths and reachability analysis of hierarchical summaries of search results to

compare the quality of various summarization methods.

Since users of find-similar navigate a document network formed by find-similar’s

document-to-document similarity measure, this dissertation would seem to hold many

connections to work that has looked at the navigation of social networks. Perhaps the

most famous of the social network navigation works is that of Travers and Milgram

(1969) that measured the number of people needed to reach a known target person

via personal “first name” relationships only. An important difference between this

work and ours is that for the IR tasks we concern ourselves with, our users do not

know a priori their destination. Travers and Milgram (1969) gave participants a

description of the target that included “his name, address, occupation and place

of employment,” . . . “his college and year of graduation, his military service dates,

and his wife’s maiden name and hometown.” In network terms, participants had to

forward the research packet (message) to a neighboring node where the network was

people and the links represented knowing someone on a first-name basis. Participants

picked a neighboring node that they thought would most likely get the message to

the target. When we know the destination in IR, we call this known item search,

which we do not examine in this dissertation. We and our retrieval system users do

not know what the set of relevant documents is for a given information need until the

documents have been found as part of search. To design our IR systems, we collect

known sets of relevant documents and measure the quality of IR system using these

test sets, but in operation these sets are unknown.
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Another way in which social network navigation research differs from our work

is that we are interested in constructing inherently navigable networks rather than

in only studying navigation on an existing network. We want to create similarity

measures and interfaces that combined make the cluster hypothesis true. If a user

has found a relevant document, we want it to be trivial for the user to find the other

relevant documents. We do not create algorithms to guide the user’s navigation of a

network as has been done for other networks (Şimşek and Jensen, 2005). If we knew

how best to guide the user through the network, we would utilize this information to

improve the initial ranking of documents for the user. For our work in Chapter 3,

we assume that the state-of-the-art baseline retrieval system has already exploited all

reasonable information in its ranking of documents.
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CHAPTER 3

USING SIMULATION TO EVALUATE THE POTENTIAL
OF FIND-SIMILAR

In this chapter, we investigate the potential of find-similar to improve retrieval

quality. Our investigation utilizes hypothetical user interfaces and a simulation of

user behavior over these interfaces. We vary find-similar by examining two slightly

different hypothetical user interfaces, two simulated user browsing patterns, and two

methods for defining document-to-document similarity. We compare find-similar to

a traditionally styled relevance feedback system and to a state-of-the-art baseline

non-interactive retrieval.

Find-similar with a query-biased similarity, an interface that helps the user avoid

reexamining documents, and a breadth-like browsing pattern achieved a 23% increase

in the arithmetic mean average precision and a 66% increase in the geometric mean

average precision over our baseline retrieval. This performance matched that of the

traditionally styled iterative relevance feedback technique.

3.1 Introduction

At a very high level, information retrieval (IR) is about satisfying a user’s informa-

tion needs. IR systems help people better find, understand, and organize information.

We cast the broad problem of satisfying a user’s information needs, into the narrower

but still difficult problem of improving the order in which a user examines documents

while using a specific retrieval system. Only some documents are relevant to a user’s

information needs and our goal is to help the user find the relevant documents while

minimizing the number of non-relevant documents that are examined.
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The Cranfield experiments (Cleverdon, 1967) established the dominant IR ex-

perimental paradigm. The Cranfield methodology involves the creation of a test

collection, which consists of:

• A set of documents. The documents can be anything but are typically newswire,

government documents, or web pages.

• A set of topics, queries, or other statements of users’ information needs.

• For each topic, a set of relevance judgments. These judgments, typically made

by the user who created the topic, record whether the user considers a document

to be relevant or non-relevant.

More recently, the Text Retrieval Conference (TREC) (Voorhees and Harman,

2005) has come to epitomize the Cranfield style of IR evaluation. TREC is organized

around many different tracks. Each track looks at different retrieval tasks. Like

the Cranfield experiments, the ad-hoc track studied the ability of systems to rank

documents in response to a wide variety of topics. All of the experiments in this

dissertation use TREC test collections.

A TREC topic typically consists of a title, description, and narrative. Figure 3.1

shows an example of a typical TREC topic for the TREC 6 ad-hoc track. The title

is a few word summary of the topic. The description is often a one or two sentences

describing the information need. The narrative is a paragraph length explanation

that often notes specifics of what will and will not be considered relevant by the user.

In this dissertation, we use the title of a topic as representative the short keyword

queries typically entered by users of search engines (Spink et al., 2001).

A retrieval system must convert the user’s topic into a representation suitable for

retrieval by the system. Then the retrieval system ranks document from most likely

to be relevant to least likely. This ranked list is then scored by various metrics based

on the known relevance judgments.
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TREC Topic 334

Title: Export Controls Cryptography

Description: Determine the usefulness and effectiveness of continuing to
maintain export controls on encryption software.

Narrative: Relevant documents will argue for or against continuing to make
encryption software subject to export controls. Since 1993 quality encryption
software to ensure the secrecy of communications has been available, but the
U.S. Government has considered such software to be subject to the same export
controls as munitions, and has sought to restrict the export of encryption
software unless it contains a device which could allow the U.S. to read the
underlying messages. Business interests say that this will make it impossible
for U.S. producers to compete in the international market.

Figure 3.1. Example topic.

3.1.1 Information Retrieval Metrics

Many metrics exist to evaluate the quality of ranked retrievals, but we will focus

our discussion on three: precision, recall, and average precision.

Precision at rank N is the fraction of documents that are relevant in the top N

documents of a ranked retrieval:

Prec(N) =
1

N

N∑
i=1

Relevant(Di) (3.1)

where Di is the document at rank i and the binary function Relevant has a value of

1 when Di is relevant and 0 when Di is non-relevant.

Recall at rank N is the fraction of all known relevant documents seen at rank N .

In other words, if there are known to be 100 relevant documents and at rank 20 we’ve

seen 4 relevant documents, the recall at rank 20 is 4/100 = 0.04.

We compute the average precision (AP) by averaging the precision at rank N

given all the ranks at which relevant documents occur.
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AP =
1

|R|
∑
d∈R

Prec(Rank(d)) (3.2)

where R is the set of relevant documents, Rank returns the rank of document d, and

Prec is as given in Equation 3.1.

Average precision captures both a notion of precision and recall. A high average

precision is not obtainable unless most relevant documents are retrieved. Unretrieved

relevant documents contribute a precision of 0 to the average precision.

3.1.2 Cranfield-Style Evaluation and Interactive IR

A huge advantage of the Cranfield-style of IR evaluation is that it allows for rapid,

low-cost evaluation of different ranking methods. To obtain statistically significant

measurements with user studies would be time consuming and cost-prohibitive given

the added noise of human subjects experimentation.

At first glance, the Cranfield-style of IR evaluation would appear to be unable to

accommodate interactive IR systems such as an IR system that makes find-similar

available to the user. In fact, Cranfield-style evaluation can be seen as a form of

automated usability testing (Ivory and Hearst, 2001) that simulates user behavior

given a hypothetical user interface.

A Cranfield-style evaluation presupposes a hypothetical user interface consisting

of some sort of search box that accepts a query and when submitted by the user

produces a ranked listing of results. This hypothetical interface is in abstract form

the predominant interface used today by IR systems.

The simulated user behavior results from a simple model of the user. The Cranfield

“user model” has the simulated user enter a query and then has the simulated user

examine each search result in rank order at some constant rate. The data that results

from this simulation is the order in which the simulated user examines documents.

To evaluate the quality of a system, IR metrics such as average precision are applied

to the ordered list of examined documents.
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Seen as automated usability testing, the Cranfield-style of IR evaluation can be

applied to interactive IR systems with the definition of two components:

1. Hypothetical user interface.

2. User model / Simulated user behavior.

The hypothetical user interface defines the operations that the simulated user can

take. The user model determines which operations to take given the current state of

the user interface.

The simulated user examines documents in some given order. As these documents

are examined, they are added to a ranked list. This ranked list can be evaluated in

the same manner as the traditional ranked lists of a Cranfield-style evaluation.

We are not the first to evaluate interactive IR systems in this manner. Simula-

tion of user behavior has been part of IR research since at least the work of Oddy

(1977) who used, like us, prerecorded relevance judgments to simulate users of an IR

system. Our evaluation methodology directly follows the example set by Aalbersberg

(1992), who defined a hypothetical user interface for his incremental feedback and

then simulated user behavior with this interface. The order in which the simulated

user examined documents determined the order of the documents in the ranked lists

used for evaluation. Dunlop (1997) presented an evaluation of various interfaces and

advocated the measurement of time to find relevant documents. More recently, White

et al. (2004) have argued that simulation studies can be used to find better ways to

implement the algorithms behind interface features before investing in user studies.

Other discussions of our simulation methodology can be found in Smucker and Allan

(2006) and Lin and Smucker (2008).

To evaluate find-similar, we will define two hypothetical user interfaces and two

models of user behavior as well as investigate two measures of document-to-document
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similarity. To compare find-similar to relevance feedback, we also define a hypothetical

user interface for relevance feedback and simulate user behavior over this interface.

3.2 Methods and materials

We first give an overview of our experimental design. Next we describe how we

retrieved documents for find-similar, the baseline, and an implementation of iterative

relevance feedback. We then explain how we created a query model for a document to

which a user has applied find-similar. We then discuss our hypothetical user interfaces

and two models of user behavior (browsing patterns) used for evaluation of find-

similar. We finish by describing the test collection and the evaluation methodology.

3.2.1 Experimental Design

Our basic experiment design involves the test of two treatments to a baseline re-

trieval. The first treatment is find-similar and the second treatment is relevance feed-

back. For our investigation of find-similar, we utilize a factorial design to understand

the impact of three variables on find-similar’s performance. The three variables are

the reexamination of documents, the browsing pattern, and document-to-document

similarity. We examine 2 settings for each of these variables. Table 3.1 shows the

2× 2× 2 factorial design for the find-similar runs. As is common for IR experiments,

our experiment blocks are the set of 150 topics from our test collection.

3.2.2 Retrieval methods

We used both the language modeling approach to information retrieval (Ponte

and Croft, 1998) and its combination with the inference network approach (Metzler

and Croft, 2004) as implemented in the Lemur (Lemur, 2003) and Indri (Strohman

et al., 2005) retrieval systems.

Language modeling represents documents and queries as probabilistic models. We

used multinomials as our probabilistic models of text. A multinomial has a probability
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Browsing Pattern Reex. Docs. Similarity
greedy allow regular
greedy allow query-biased
greedy avoid regular
greedy avoid query-biased

breadth-like allow regular
breadth-like allow query-biased
breadth-like avoid regular
breadth-like avoid query-biased

Table 3.1. Factorial design for find-similar runs. “Reex. Docs.” stands for “reex-
amination of documents” (see Section 3.2.4). Not shown are the 150 experimental
blocks (150 topics).

for each word in the collection and these probabilities sum to 1. For a given piece

of text T , we write the probability of the word w given the model MT of the text as

P (w|MT ).

The maximum likelihood estimated (MLE) model of text estimates the probability

of a word as the count of that word divided by the total number of words in the text.

As such, the probability of a word w given a text T is: P (w|MT ) = T (w)/|T |, where

T (w) is the count of word w in the text T and |T | =
∑

w T (w) is the text’s length.

For find-similar, we ranked documents using the Kullback-Leibler divergence of

the query model MQ with the document model MD:

DKL(MQ||MD) =
∑

w

P (w|MQ) log
P (w|MQ)

P (w|MD)
(3.3)

where 0 log 0 = 0, and the query model is a model of the document to which find-

similar is being applied. We detail the two ways we constructed query models for

find-similar in section 3.2.3.

To avoid zero probabilities and better estimate the document models, we calcu-

lated the document models using Dirichlet prior smoothing (Zhai and Lafferty, 2001):

P (w|MD) =
D(w) + mP (w|C)

|D| + m
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where P (w|C) is the MLE model of the collection, and m is the Dirichlet prior

smoothing parameter.

The inference network approach by Metzler and Croft (2004) takes the probability

estimates from language modeling and uses them as part of the Bayesian inference

network model of Turtle and Croft (1991). The inference network provides a formal

method for combination of evidence, and is easily accessed by users via a structured

query language.

For our baseline, we used Metzler et al.’s method (2005) that combines Metzler

and Croft’s (2005) dependence models with Lavrenko and Croft’s (2001) relevance

models. This method can be seen as using a precision enhancing retrieval method

(dependence models) with a pseudo-relevance feedback technique (relevance models).

Unlike Metzler et al., we used only the existing collection for query expansion with

relevance models and did not use any external collections for expansion.

The dependence model uses the Indri query language to combine three types of

evidence. The first is the standard bag-of-words unigram model as used by language

modeling. The second type captures the sequential ordering of the terms in the query.

The third uses the close proximity of query terms as evidence. Figure 3.2 shows the

Indri query produced by Metzler and Croft’s dependence models for TREC topic 301,

“international organized crime.”

To perform the baseline retrieval, first the dependence model Q of the query is run.

Then a relevance model is created from the top k ranked documents. The relevance

model MR is calculated as:

P (w|MR) =
k∑

i=1

P (Di|Q)P (w|Di)

where P (Di|Q) = P (Q|Di)/
∑k

j=1 P (Q|Dj), and P (Q|Di) is the Indri belief that

document model Di is relevant to the query Q. Finally, the dependence model and
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#weight(

0.8 #combine( international organized crime )

0.1 #combine(

#1( organized crime )

#1( international organized )

#1( international organized crime ) )

0.1 #combine(

#uw8( organized crime )

#uw8( international crime )

#uw8( international organized )

#uw12( international organized crime ) ) )

Figure 3.2. TREC topic 301, “international organized crime,” converted to an Indri
query by Metzler and Croft’s dependence models. This query gives a weight of 0.8
to the unigram model of the topic. The ordered phrases, #1, have a weight of 0.1
as well as the unordered windows, #uwN. Not shown here is the unigram relevance
model that provides a pseudo-relevance feedback component when combined with
the dependence model query for our baseline run.

the relevance model are combined to create the final baseline query using Indri’s

#weight operator.

The baseline is also used as the initial retrieval for both find-similar and iterative

relevance feedback.

Our implementation of iterative relevance feedback is akin to that used by Rocchio

(1971). We mix in a model of the relevant documents with the original baseline query

model using Indri’s #weight operator. We tried weights of 0.0, 0.3, 0.5, and 0.7 for

the original query and found 0.3 to work best. The model of relevant documents is

calculated as:

P (w|MR) =
1

k

k∑
i=1

P (w|Di)

where k is the number of documents the user has judged to be relevant. An alternative

is for us to replace the pseudo feedback component of the baseline query model with
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Parameter Value
Dirichlet smoothing for unigram terms, m 1500
Dirichlet smoothing for ordered and unordered windows, m 2000
Weight of unigram model in dependence model 0.8
Weight of ordered windows model in dependence model 0.1
Weight of unordered windows model in dependence model 0.1
Number of pseudo feedback documents for relevance model 10
Weight of dependence model when mixed with pseudo relevance model 0.3
Max. terms in pseudo feedback relevance model 25
Max. terms in find-similar document models 50
Max. terms in iterative feedback relevance model 50
Weight of initial query when mixed with iterative feedback relevance model 0.3

Table 3.2. Retrieval parameters.

the real relevance model as provided by the user’s judgments, but we have not yet

investigated this variant.

We used the same parameter settings that Metzler et al. derived from training

on the TREC 2004 Robust track data and that they used for the 2005 Robust track

(Metzler et al., 2005). The 2004 Robust track includes the same 150 topics we used for

evaluation (topics 301-450) in its 250 topics. Table 3.2 shows the retrieval parameters’

settings for all runs. We used the same smoothing parameters for all experiments.

3.2.3 Document-to-document similarity

An obvious way to implement find-similar for documents is to treat the document

as a very long query. A problem with this approach is that each document will often

be about several topics of which only one is the user’s search topic. A document may

well be about “organized crime” but it may also be about the prosecution of criminals.

Not all stories about criminal prosecution are about organized crime. Rather than

finding documents that are similar to all the topics mentioned in a story, we think a

user will want to find documents that are similar with respect to the current search

topic.
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We examined two types of similarity for find-similar: regular and query-biased.

Regular similarity treats the document as a query to find other similar documents.

Query-biased similarity aims to find similar documents given the context of the user’s

search and avoid extraneous topics. For both regular and query-biased similarity, we

construct a unigram model of the find-similar document that is then used as a query

to find similar documents (see equation 3.3). Regular similarity uses the maximum

likelihood estimated (MLE) model of the document as the query. For query-biased

similarity, we create a MLE model of the document text that consists of all words

within a certain distance W of all query terms in the document. For our experiments,

we set W to 5. Thus the 5 preceding words, the query term, and the 5 words following

a query term are used. Should a document not contain any query terms, the whole

document is used. For both types of similarity, we truncate the document model to

the 50 most probable terms.

Our notion of query-biased similarity is more akin to query-biased summaries

(Tombros and Sanderson, 1998; Sanderson, 1998) than to query-biased clustering

(Eguchi, 1999; Iwayama, 2000) or query sensitive similarity (Tombros, 2002). The na-

ture of query-biased summaries is to extract the sentences or text surrounding query

terms in a document and use this extracted text as a summary of the document. In

contrast to query-biased summaries, both Eguchi (1999) and Iwayama (2000) increase

the weight of query terms in the documents before clustering. Tombros’ query sen-

sitive similarity modifies the cosine similarity measure to place more weight on the

query terms (Tombros, 2002).

3.2.4 Hypothetical user interfaces

We ran all of our experiments in a batch style without user involvement. As-

sumptions about the interface affect the batch evaluation of retrieval features. In

particular, we only consider browsing patterns that could be reasonably executed by
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a user with our hypothetical user interface. We next describe our hypothetical user

interfaces for find-similar and iterative relevance feedback.

The find-similar interface we envision is similar to the web-based PubMed search

system.1 Our hypothetical interface has “back button” support like a web browser.

If a user has performed find-similar on a document, the user can decide to stop

examining the documents presented as similar to that document and hit the back

button. The back button returns the user to the previous list at the position in the

list where they had applied find-similar.

Results are presented in rank order with query-biased summaries for both the

initial query and the find-similar lists. Sanderson (1998) demonstrated that users

are able to judge the relevance of documents from simple query-biased summaries

with 75% of the accuracy of full documents. Thus, we assume users will examine

most documents by reading the already visible summaries. When a user applies find-

similar to a document, they will be presented with a new page listing the similar

documents. The find-similar lists will contain some documents that the user has

already examined on previous pages. The user will have to reexamine documents

unless there is a visual marker to designate already examined documents.

In our evaluation, we compared two conceptual variations of our imagined find-

similar interface. In one variation non-relevant documents are reexamined and in the

other they are not. Both variations prevent the reexamination of relevant documents.

The hypothetical iterative relevance feedback interface displays the top N docu-

ments of the ranked results. The user judges each of the displayed documents and

then submits the feedback to retrieve the next N documents. In our experiments, we

set the iteration size N to 10. The previously displayed documents are not shown

again for the current topic. This process repeats until 1000 documents have been

1http://www.pubmed.gov
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examined. This interface does not provide for use of a back button like find-similar.

The system only allows forward iteration.

3.2.5 Find-similar browsing patterns

To evaluate find-similar in an automatic fashion without a user study requires

some assumed user behavior. We chose to examine two related and plausible browsing

patterns.

Klöckner et al. (2004) used an eye tracker to observe how people processed search

results. They used a Google results list containing 25 results for a query. The subjects’

task was to find the relevant documents in the list. Subjects could click on a result to

see the result’s web page. Of the subjects, 65% followed a depth-first strategy. These

users examined the documents in order, from highest to lowest rank, and did not look

ahead. Another 15% used a breadth-first strategy by looking at the entire results list

before opening a single web page. The remaining 20% used a partial breadth-first

strategy by sometimes looking ahead at a few results before opening a web page. In

a second experiment, Klöckner et al. restricted the number of pages the users could

open and rewarded the users for the total number of relevant pages found. This

experiment aimed to create an situation that would encourage breadth-first search

behavior. Nevertheless, 52% of the subject still followed a depth-first strategy, 11%

used an extreme breadth-first strategy, and 37% used a mixed strategy. Aula et al.

(2005) found similar behavior in an eye-tracking study of search results evaluation.

Given the user behavior observed by Klöckner et al., we used two browsing pat-

terns to evaluate find-similar. The greedy pattern represents the depth-first behavior,

and the breadth-like pattern aims to capture the breadth-first search behaviors. Nei-

ther pattern is a true depth-first or breadth-first search pattern. A true depth-first

pattern does not reflect that a user is likely to stop examining a results list if no

relevant documents are found. A true breadth-first pattern is not feasible for a user
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to implement. While inspired by the user behavior observed by Klöckner et al.,

these patterns are at best crude models of user behavior. Users could execute these

patterns, but we have little knowledge of how users actually search with find-similar.

Instead, these patterns give us insight into the potential of find-similar and the degree

to which find-similar’s performance can be affected by different browsing patterns.

Both patterns use the baseline as the initial retrieval.

The greedy browser examines documents in the order that they appear in a results

list. As section 3.2.4 explained, the browser will only examine a relevant document

once. When a relevant document is examined, the greedy browser performs a find-

similar operation on this document. The greedy browser ceases to examine documents

in a results list after examining 5 contiguous non-relevant documents. When the

browser stops examining a list, the browser hits the “back button” and returns to

the previous list and continues examining documents in that list. If the browser is

examining the initially retrieved list of documents, the only stopping criterion is that

the browser stops when 1000 documents have been examined.

The breadth-like browser also examines documents in the order that they ap-

pear in a results list. What differs from the greedy pattern is that the breadth-like

browser only begins to browse via find-similar when the results list’s quality becomes

too poor. As the breadth-like browser examines relevant documents, it places these

documents in a first-in first-out queue local to the current list. When the precision at

N , where N is the rank of the current document, drops below 0.5 or when 5 contigu-

ous non-relevant documents are encountered, the browser applies find-similar to the

first relevant document in the queue. When the browser returns to the current list,

it applies find-similar to the next document in the queue until the queue is empty.

The browser never uses find-similar on a relevant document more than once. Thus

documents in the queue will be ignored if the browser has already performed find-

similar on them. There is not any notion that the breadth-like browser knows which
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relevant documents are the best for find-similar. The breadth-like browser merely

delays exploration until the current list seems to have gone “cold.” The browser

stops examining a results list in the same manner and with the same criterion, i.e. 5

contiguous non-relevant documents, as the greedy browser.

Early experiments with a greedy browsing pattern influenced our design of the

breadth-like browser. We saw that the greedy browser could degrade the performance

of an already good retrieval. Thus, the breadth-like browser uses list quality as its

criterion for delaying use of find-similar. While the breadth-like browsing pattern

could be seen as a “corrected” greedy pattern, we feel that it does capture the goal

of a breadth-first user, that is, to look ahead before acting.

3.2.6 Queries, documents, and retrieval tools

The topics used for the experiments consisted of TREC topics 301-450, which

are the ad-hoc topics for TREC 6, 7, and 8. TREC topics consist of a short ti-

tle, a sentence length description, and a paragraph sized narrative. The titles best

approximate a short keyword query, and we used them as our queries.

We used TREC volumes 4 and 5 minus the Congressional Record for our collec-

tion. This 1.85 GB, heterogeneous collection contains 528,155 documents from the

Financial Times Limited, the Federal Register, the Foreign Broadcast Information

Service, and the Los Angeles Times.

We used the Lemur toolkit (Lemur, 2003) for all of our experiments including its

Indri subsystem (Strohman et al., 2005). In particular, we generated the results for

the find-similar runs using a Lemur index of the collection with stop words removed

at index time. For the baseline and iterative relevance feedback runs we used an Indri

index with stop word removal at query time. We stemmed all words with the Krovetz

stemmer (Krovetz, 1993). We used an in-house stopword list of 418 noise words (see

Appendix A).
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3.2.7 Evaluation methodology

We constructed our runs’ results lists for evaluation in the same manner as de-

scribed in Section 3.1.2. The results lists that we evaluated represent the order in

which the simulated user examines the documents. For the baseline retrieval, the

documents are examined in rank order. For find-similar, the browsing patterns of

section 3.2.5 determine the order in which documents are examined. For iterative

relevance feedback, documents are examined in the same manner they are judged —

one iteration of 10 documents at a time.

All relevance judgments are made using the “true” relevance judgments per NIST.

Depending on the interface support for keeping track of examined documents (Sec-

tion 3.2.4), find-similar may produce a results list in which non-relevant documents

are repeatedly examined. We treat a reexamined non-relevant document the same

as any other non-relevant document found at that position in the results. All of the

retrieval techniques we studied do not reexamine relevant documents.

3.2.7.1 On the need or lack thereof for user errors

A possible complaint about our use of the NIST relevance judgments is that by

doing so, our simulation will not account for user errors. For example, should not

users sometimes apply find-similar mistakenly to non-relevant documents and head

down dead ends?

For two reasons, we do not believe that there is a need for a user error model for

either find-similar or for relevance feedback.

Firstly, the NIST relevance judgments can be thought of as the recorded answers

to asking the user to judge the relevance of a document. When it comes time to

make a decision about relevance in our simulation, we simply go to the recorded

answers of the user as collected by NIST. The probability of a user making an error

has already been captured by NIST’s collection of relevance judgments. While we
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take the NIST judgments to be true in our evaluations, it is entirely possible for

the NIST assessors to make errors given the time pressures and volume of documents

involved in the assessment process. NIST is providing human judgments, and humans

make mistakes. Some documents judged relevant are actually non-relevant and some

documents judged non-relevant are actually relevant. Adding another layer of noise

into the simulation does not tell us much. We already have a noisy simulation by

using the NIST judgments.

Secondly, evaluation of relevance feedback systems have not traditionally incor-

porated a notion of users making errors in relevance judgments. Since find-similar is

being used as a feedback-like search tool, we see no reason to evaluate it differently

than has historically been done for relevance feedback.

3.2.7.2 Metrics and statistical testing

We report metrics using both the arithmetic mean and the geometric mean. The

TREC Robust track has established the geometric mean as a useful tool for analyzing

performance (Voorhees, 2005). As opposed to the usual arithmetic mean, the geo-

metric mean emphasizes the lower performing topics. The arithmetic mean can hide

large changes in performance on poorly performing topics with small changes in the

better performing topics. As with the 2005 TREC Robust track (Voorhees and Dang,

2005), for computing the geometric mean, we set values less than 0.00001 to 0.00001

to avoid zeros. As such, the geometric mean is computed:

(
n∏

i=1

max(xi, 0.00001)

)1/n

We used trec eval to compute per topic metrics (Buckley, 2006). Following Smucker

et al. (2007), we measured statistical significance with a two-sided, paired, random-

ization test with 100, 000 samples. Unless otherwise stated, significance is at the

p < 0.05 level.

48



R
ee

x
am

in
e

n
on

-r
el

ev
an

t
D

o
n
ot

re
ex

am
in

e
n
on

-r
el

ev
an

t
It

er
.

G
re

ed
y

B
re

ad
th

-l
ik

e
G

re
ed

y
B

re
ad

th
-l
ik

e
R

el
.

B
as

el
in

e
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
F
B

.
A

ll
15

0
to

p
ic

s
A

M
A

v
g.

P
re

c.
0.

26
2

0.
17

5�
0.

22
6�

0.
26

0
0.

26
9

0.
22

4�
0.

28
1

0.
30

3�
0.

32
3�

0.
32

2�

P
ct

.
C

h
an

ge
-3

3%
-1

4%
-1

%
3%

-1
4%

7%
16

%
23

%
23

%

G
M

A
v
g.

P
re

c.
0.

13
0

0.
12

2
0.

15
1�

0.
15

7�
0.

16
9�

0.
16

0�
0.

19
3�

0.
19

7�
0.

21
6�

0.
22

0�

P
ct

.
C

h
an

ge
-6

%
16

%
21

%
30

%
23

%
49

%
52

%
66

%
69

%

B
as

el
in

e’
s

50
p
o
or

es
t

p
er

fo
rm

in
g

to
p
ic

s
A

M
A

v
g.

P
re

c.
0.

03
6

0.
07

9�
0.

09
1�

0.
08

3�
0.

10
1�

0.
10

8�
0.

11
9�

0.
11

4�
0.

13
4�

0.
12

9�

P
ct

.
C

h
an

ge
11

9%
15

1%
13

0%
17

9%
19

7%
22

8%
21

5%
27

0%
25

5%
B

as
el

in
e’

s
50

m
id

d
le

p
er

fo
rm

in
g

to
p
ic

s
A

M
A

v
g.

P
re

c.
0.

20
2

0.
16

0�
0.

19
0

0.
19

0
0.

19
6

0.
21

8
0.

26
1�

0.
25

1�
0.

27
5�

0.
25

6�

P
ct

.
C

h
an

ge
-2

1%
-6

%
-6

%
-3

%
8%

29
%

24
%

36
%

27
%

B
as

el
in

e’
s

50
b
es

t
p
er

fo
rm

in
g

to
p
ic

s
A

M
A

v
g.

P
re

c.
0.

54
8

0.
28

5�
0.

39
6�

0.
50

5�
0.

50
9�

0.
34

6�
0.

46
1�

0.
54

4
0.

56
0

0.
58

0�

P
ct

.
C

h
an

ge
-4

8%
-2

8%
-8

%
-7

%
-3

7%
-1

6%
-1

%
2%

6%

T
a
b
le

3
.3

.
A

ri
th

m
et

ic
m

ea
n

(A
M

)
an

d
ge

om
et

ri
c

m
ea

n
(G

M
)

av
er

ag
e

p
re

ci
si

on
fo

r
al

l
15

0
to

p
ic

s
an

d
th

e
ar

it
h
m

et
ic

m
ea

n
av

er
ag

e
p
re

ci
si

on
fo

r
th

e
15

0
to

p
ic

s
gr

ou
p
ed

in
to

th
re

e
d
is

jo
in

t
se

ts
b
as

ed
on

th
e

b
as

el
in

e’
s

av
er

ag
e

p
re

ci
si

on
fo

r
th

at
to

p
ic

.
R

es
u
lt

s
w

it
h

a
�

ar
e

d
iff

er
en

t
fr

om
th

e
b
as

el
in

e
at

a
st

at
is

ti
ca

ll
y

si
gn

ifi
ca

n
t

le
ve

l
(p

<
0.

05
)

as
m

ea
su

re
d

b
y

a
tw

o-
si

d
ed

,
p
ai

re
d
,

ra
n
d
om

iz
at

io
n

te
st

w
it

h
10

0,
00

0
sa

m
p
le

s.

49



R
ee

x
am

in
e

n
on

-r
el

ev
an

t
D

o
n
ot

re
ex

am
in

e
n
on

-r
el

ev
an

t
It

er
.

G
re

ed
y

B
re

ad
th

-l
ik

e
G

re
ed

y
B

re
ad

th
-l
ik

e
R

el
.

B
as

el
in

e
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
F
B

.
P

re
ci

si
on

at
10

d
o
cu

m
en

ts
A

ri
th

.
M

ea
n

0.
42

8
0.

33
5�

0.
39

7�
0.

43
9

0.
44

2
0.

34
5�

0.
40

9
0.

44
6

0.
45

7�
0.

42
8

P
ct

.
C

h
an

ge
-2

2%
-7

%
3%

3%
-1

9%
-4

%
4%

7%
0%

G
eo

.
M

ea
n

0.
09

3
0.

08
1�

0.
09

2
0.

09
8

0.
09

9
0.

08
3�

0.
09

5
0.

10
0�

0.
10

4�
0.

09
3

P
ct

.
C

h
an

ge
-1

3%
-1

%
5%

6%
-1

1%
2%

7%
11

%
0%

P
re

ci
si

on
at

20
d
o
cu

m
en

ts
A

ri
th

.
M

ea
n

0.
37

4
0.

25
4�

0.
33

0�
0.

37
2

0.
38

7
0.

28
2�

0.
35

8
0.

39
5�

0.
41

5�
0.

41
1�

P
ct

.
C

h
an

ge
-3

2%
-1

2%
-1

%
3%

-2
5%

-4
%

6%
11

%
10

%

G
eo

.
M

ea
n

0.
12

0
0.

09
5�

0.
11

6
0.

12
1

0.
13

0
0.

10
4�

0.
12

8
0.

13
2�

0.
14

3�
0.

13
7�

P
ct

.
C

h
an

ge
-2

1%
-3

%
0%

8%
-1

3%
6%

9%
19

%
14

%

P
re

ci
si

on
at

10
0

d
o
cu

m
en

ts
A

ri
th

.
M

ea
n

0.
22

5
0.

16
3�

0.
20

6
0.

21
9

0.
23

6
0.

20
4�

0.
24

6
0.

25
0�

0.
27

4�
0.

27
7�

P
ct

.
C

h
an

ge
-2

8%
-8

%
-3

%
5%

-1
0%

9%
11

%
22

%
23

%

G
eo

.
M

ea
n

0.
12

2
0.

10
6�

0.
12

8
0.

12
5

0.
13

7�
0.

12
9

0.
15

2�
0.

14
5�

0.
16

3�
0.

16
2�

P
ct

.
C

h
an

ge
-1

3%
5%

3%
12

%
6%

25
%

19
%

34
%

33
%

T
a
b
le

3
.4

.
A

ri
th

m
et

ic
m

ea
n

an
d

ge
om

et
ri

c
m

ea
n

of
th

e
p
re

ci
si

on
at

10
,
20

an
d

10
0

d
o
cu

m
en

ts
.

R
es

u
lt

s
w

it
h

a
�

ar
e

d
iff

er
en

t
fr

om
th

e
b
as

el
in

e
at

a
st

at
is

ti
ca

ll
y

si
gn

ifi
ca

n
t

le
ve

l
(p

<
0.

05
)

as
m

ea
su

re
d

b
y

a
tw

o-
si

d
ed

,
p
ai

re
d
,

ra
n
d
om

iz
at

io
n

te
st

w
it

h
10

0,
00

0
sa

m
p
le

s.

50



R
ee

x
am

in
e

n
on

-r
el

ev
an

t
D

o
n
ot

re
ex

am
in

e
n
on

-r
el

ev
an

t
It

er
.

G
re

ed
y

B
re

ad
th

-l
ik

e
G

re
ed

y
B

re
ad

th
-l
ik

e
R

el
.

B
as

el
in

e
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
R

eg
u
la

r
B

ia
se

d
F
B

.
A

ri
th

.
M

ea
n

0.
68

7
0.

74
1�

0.
75

0�
0.

74
7�

0.
74

6�
0.

80
6�

0.
80

9�
0.

80
8�

0.
81

1�
0.

82
3�

P
ct

.
C

h
an

ge
8%

9%
9%

9%
17

%
18

%
18

%
18

%
20

%

G
eo

.
M

ea
n

0.
60

3
0.

68
8�

0.
70

3�
0.

69
5�

0.
70

0�
0.

76
3�

0.
76

5�
0.

76
4�

0.
76

7�
0.

77
9�

P
ct

.
C

h
an

ge
14

%
17

%
15

%
16

%
26

%
27

%
27

%
27

%
29

%

T
a
b
le

3
.5

.
A

ri
th

m
et

ic
m

ea
n

an
d

ge
om

et
ri

c
m

ea
n

of
th

e
re

ca
ll

at
10

00
d
o
cu

m
en

ts
.

R
es

u
lt

s
w

it
h

a
�

ar
e

d
iff

er
en

t
fr

om
th

e
b
as

el
in

e
at

a
st

at
is

ti
ca

ll
y

si
gn

ifi
ca

n
t

le
ve

l
(p

<
0.

05
)

as
m

ea
su

re
d

b
y

a
tw

o-
si

d
ed

,
p
ai

re
d
,

ra
n
d
om

iz
at

io
n

te
st

w
it

h
10

0,
00

0
sa

m
p
le

s.

51



3.3 Results

Table 3.3 shows the arithmetic mean, non-interpolated, average precision (AMAP)

and the geometric mean (GMAP) across the 150 topics of TREC 6, 7, and 8, for

the baseline, find-similar, and iterative relevance feedback runs. The find-similar

runs vary based on whether or not non-relevant documents were reexamined (section

3.2.4), whether a greedy or breadth-like browsing pattern was used (section 3.2.5),

and whether the similarity was regular or query-biased (section 3.2.3).

In general, find-similar and iterative relevance feedback are better able to improve

on a poor initial retrieval than on a good initial retrieval. To highlight this behavior,

Table 3.3 also reports results for the 150 topics divided into three sets of 50 topics. The

topics are ordered by their performance on the baseline and then divided into three

sets (like quartiles except into thirds instead of quarters). These sets are roughly

equivalent to poor, fair, and good retrieval performance with baseline AMAPs of

0.036, 0.202, and 0.548 respectively. With the topics divided up in this manner, the

geometric mean adds little insight and we report only the arithmetic mean of each

topic set.

The average precision results are based on the TREC standard of 1000 results. To

understand the performance when a user examines fewer documents, Table 3.4 shows

the precision at 20 and 100 documents. Feedback techniques can increase recall as

well as precision. Table 3.5 shows the recall at 1000 documents.

3.4 Discussion

The best find-similar run avoids reexamining non-relevant documents, follows a

breadth-like browsing pattern, and uses query-biased similarity. Table 3.3 shows

that this run matches the performance of our implementation of iterative relevance

feedback and achieves a 23% improvement in the arithmetic mean average precision

(AMAP) and a 66% improvement in the geometric mean average precision (GMAP)
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over the baseline. Iterative relevance feedback achieves a 69% improvement in GMAP,

but this is not a statistically significant difference compared to the best find-similar

run.

The use of a high quality baseline retrieval is required to avoid overstating the

performance gains possible with a retrieval technique. We used the state-of-the-art

method developed by Metzler et al. (2005) for our baseline (see section 3.2.2). This

method had the best title run as measured by mean average precision and had the

second best geometric mean average precision for both title and description runs

submitted to TREC’s 2005 Robust track (Voorhees and Dang, 2005). We achieved

larger relative performance improvements during initial experiments with a weaker

baseline (query likelihood without any query expansion).

We also tested iterative relevance feedback with an iteration size of 1, which

is Aalbersberg’s incremental feedback (Aalbersberg, 1992). An iteration size of 1

performed as well as an iteration size of 10, with the larger iteration size yielding

a negligibly larger AMAP (0.322 vs. 0.321). This result runs counter to Iwayama’s

(2000) negative results for incremental feedback.

We performed an analysis of variance for the find-similar 2×2×2 factorial designed

runs (see Table 3.1) with average precision as the dependent variable. We looked at

the three independent variables and their interaction given the blocking by topics. All

three variables resulted in statistically significant outcomes (p < 0.001). The browsing

pattern had the most impact on find-similar, and the user interface’s support for

the avoidance of reexamination of documents had more impact than the document-

to-document similarity measure. Of the 4 possible interactions between variables,

only the interaction of similarity and browsing pattern was statistically significant

(p < 0.001). Figure 3.3 shows an interaction plot of similarity and browsing pattern.

The query-biased similarity aided the greedy browsing pattern more than breadth-like

browsing pattern.
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Figure 3.3. Interaction plot of browsing pattern and document-to-document similar-
ity. The breadth-like and the greedy are the two browsing patterns. The x-axis shows
the two similarity types: query-biased (qb) and regular (reg). The y-axis shows the
mean average precision (ap). The query-biased similarity aids the greedy browsing
pattern more than the breadth-like browsing pattern.

All the find-similar runs that avoid reexamination of non-relevant documents per-

form better than the corresponding runs that do reexamine non-relevant documents.

An interface that supports find-similar may need to provide a mechanism to help the

user avoid reexamination of non-relevant documents. Web interfaces that provide

links to documents already come close to providing this functionality by changing

the color of visited links. If a user has to keep track of judgments, it would seem

that find-similar and traditional multiple item relevance feedback should be able to

co-exist in the same retrieval system.

While both the greedy and breadth-like browsing patterns show significant im-

provements in GMAP over the baseline, following a breadth-like browsing pattern is

superior to the greedy browsing pattern. Table 3.3 shows that the greedy browsing

pattern in particular has difficulty with the better performing topics. As section 3.2.5

noted, the work by Klöckner et al. (2004) motivated the two browsing patterns we

used, but the performance of the greedy pattern influenced our design of the breadth-

54



like browser. A user that follows a greedy browsing pattern will be harmed by the

find-similar feature on better performing topics. The breadth-like browsing pattern

avoids using find-similar while the retrieval quality of a list is high. We leave for

future work the question of whether find-similar can be used to improve an already

high quality retrieval.

We see the breadth-like browser as a more reasonable browsing pattern for a user

to follow than the greedy browsing pattern. The greedy pattern shows us that a user

could hurt already good results, but when the results are already good, why would

a user utilize find-similar? Given this argument, the breadth-like browsing pattern’s

results should be given more weight than the greedy browser’s results.

Query-biased similarity shows consistently better performance than regular sim-

ilarity. The query-biased similarity helps the greedy browsing pattern perform over

20% better than with regular similarity as measured by AMAP and GMAP on all

150 topics. Query-biased similarity also helps the breadth-like browser but to a lesser

degree.

Given a search topic, a perfect document-to-document similarity method for find-

similar makes the topic’s relevant documents most similar to each other. In Chapter 5

we characterize this notion of relevant documents being more similar to each other by

measuring the distance from all relevant documents to all other relevant documents.

We show that query-biased similarity creates a tighter grouping of relevant documents

than does regular similarity.

The find-similar and feedback runs show a much greater improvement in GMAP

than in AMAP. Table 3.3 highlights this difference and shows that the majority of the

improvement comes from improving the poorer performing topics. For the poorest

performing topics, the baseline has an AMAP of 0.036, and on average, 1 document

in 28 is relevant. On these same topics, find-similar raises this ratio to 1 in 7 with

an AMAP of 0.134. Besides having a large relative performance improvement for
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poorly performing topics, find-similar can provide performance gains that should be

noticeable by the end user.

Being able to improve precision early in a ranked list may influence user adoption

of a retrieval tool such as find-similar. Table 3.4 shows that find-similar can achieve

improvements over the baseline in precision at 10, 20, and 100 documents. The

best find-similar run also obtained a statistically significant 7% increase in P@10

(arithmetic mean) over the baseline. Iterative relevance feedback with an iteration

size of 10 documents shows no improvement in P@10 because our run forces the

“user” to judge the first 10 documents before submitting feedback.

For find-similar’s best run, its P@100 arithmetic mean improvement of 22% is

comparable to its AMAP improvement of 23%. For this same run, the P@100 ge-

ometric mean improvement of 34% is nearly half that of the 66% improvement in

GMAP. A fair amount of the GMAP performance may come from improving very

poorly performing topics with feedback on low ranking relevant documents. For some

poor performing topics, if users are unwilling to dig deep into the ranked results, they

may be unable to use feedback to help their search.

Table 3.5 shows that all of the find-similar runs increase recall at 1000 documents

and the best performance is comparable to iterative relevance feedback. Retrieval

techniques that cluster or reorder the top N results cannot increase the recall at N

(Iwayama, 2000; Leuski, 2000). Interestingly, the different similarity and browsing

types do not significantly impact recall at 1000 documents.

Given these results, implementors of search systems with find-similar should look

to ways to encourage good user behavior. For example, an interface that helps the

user keep track of examined documents is very important. Interfaces should also help

the user delay exploration with find-similar, which is the important characteristic of

the breadth-like browsing pattern compared to the greedy browsing pattern. Finally,
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where possible, a query-biased similarity should be used to make relevant documents

easier to reach.

3.5 Conclusion

We found that find-similar, as a feedback-like search tool, has the potential to im-

prove document retrieval. The best performance improvement attained by find-similar

matched that of an implementation of relevance feedback. Find-similar achieved a

23% improvement in the arithmetic mean average precision and a 66% improvement

in the geometric mean average precision. The geometric mean emphasizes the poorer

performing topics.

We found differences in performance for find-similar along the dimensions of

document-to-document similarity, reexamination of documents, and the browsing pat-

tern. First, we discovered that a query-biased similarity performs significantly better

than using a document as a query for find-similar. Secondly, interfaces supporting

find-similar as a search tool will likely need to help the user avoid reexamining already

examined documents. Finally, a user’s browsing pattern can substantially affect the

performance of find-similar. Between two simulated browsing patterns, we found that

a breadth-first like pattern works better than a greedy, depth-first like pattern. Both

patterns show significant improvement in the geometric mean average precision over

a strong baseline retrieval.

We continue our investigation of find-similar in Chapter 4 by utilizing the sim-

ulation developed in this chapter to investigate the effect of a wide range of initial

conditions on find-similar as well as to look at find-similar’s applicability to another

domain: biomedical search.
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CHAPTER 4

CASE STUDY OF PUBMED AND THE EFFECT OF
VARYING INITIAL CONDITIONS ON FIND-SIMILAR

In Chapter 3 we used simulation to evaluate the potential of find-similar compared

to a state-of-the-art, baseline retrieval system as well as to relevance feedback. In

those experiments, the baseline formed the initial conditions for find-similar. In this

chapter, we examine the effect of many different initial conditions on find-similar’s

performance. We conduct these experiments in the context of a biomedical search

engine, PubMed. The work in this chapter offers another, expanded analysis of the

work in Lin and Smucker (2008).

4.1 Introduction

PubMed, the U.S. National Library of Medicine’s search engine, plays an impor-

tant role in providing access to the biomedical research papers. In a 24 hour sample

of PubMed’s logs, Herskovic et al. (2007) found that 627,455 different users issued

2,996,301 queries. While an important resource, PubMed is difficult to use. The un-

derlying search uses Boolean retrieval, which can be very difficult for users to utilize

well (Turtle, 1994). Evidence of PubMed’s difficulty comes from its own query logs.

Long chains of query reformulations have been found, and approximately a fifth of

all PubMed queries result in zero results.1

PubMed is more than its Boolean retrieval engine. As we mentioned in Chap-

ter 1, PubMed provides find-similar functionality to users. PubMed calls find-similar

1Lin and Smucker (2008) cite unpublished results of Jimmy Lin and W. John Wilbur.
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Figure 4.1. PubMed interface. The “related articles” text is a hyperlink that
provides a list of similar documents for the given result, i.e. related articles is find-
similar.

“related articles.” Figure 4.1 shows the PubMed interface. Lin et al. (2007) have

reported that nearly a fifth of all search sessions involve clicks on documents sug-

gested by find-similar. Our hypothesis is that find-similar compensates for the poor

retrievals users obtain from the underlying PubMed search system. In this chapter,

we aim to determine the extent to which find-similar can compensate for poor re-

trievals and in particular, how find-similar can help make the overall PubMed search

experience better.

In Chapter 3, we saw some evidence that find-similar’s biggest gains come from

helping the poorer performing topics. But we only saw that this was the case for one

retrieval algorithm – the state-of-the-art baseline. In this chapter, we investigate how

find-similar performs given a wide range of initial conditions, i.e. initial retrievals or

alternate baseline systems.

Find-similar relies on the user being able to find some relevant documents as

starting points. Assuming the user can find one or more relevant documents, it is

quite likely that some relevant documents are better starting points than others. This
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chapter investigates this issue while at the same time studying how find-similar can

aid PubMed. We are able to do both by utilizing a large collection of actual retrievals

by many different search systems over a subset of the same data that PubMed uses.

Another way to express the problem addressed by this chapter is to talk about

the documents and find-similar’s similarity measure in terms of graph theory. In

Chapter 5, we will define networks where the nodes are documents and the similarity

measure determines the links between documents. On this network, documents are

nearer to other documents that the similarity measure considers to be similar. When

a user issues a query, the retrieval method effectively creates for the user a temporary

document/node and creates links to the other documents. Depending on how a

retrieval algorithm connects a user’s query to the other documents, find-similar may

or may not perform well. Some relevant documents may be well connected to other

relevant documents while some may represent “similarity dead ends” for find-similar.

4.2 Materials and Methods

In this section we describe the set of initial retrievals, document collection, topics,

and find-similar simulation methods used in our experiment.

4.2.1 Initial Retrievals

We used the 62 runs submitted to the TREC 2005 Genomics track as our initial

conditions. 32 groups submitted 58 runs to the pool and one group submitted an

additional 4 runs not included in the judging pool (Hersh et al., 2005; Huang et al.,

2005). These runs can be taken to be representative of the various results that users

could have produced for the 49 topics. As we show in Section 4.3, these runs vary

widely in their quality.
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In our study of PubMed and find-similar, we are concerned with find-similar’s

ability to help improve poor retrieval performance. There are many reasons why the

search results of a user can be poor. Three of these reasons are:

1. The underlying retrieval system may have a low quality ranking algorithm.

2. The user can have a complex information need that is difficult for any ranking

algorithm.

3. Novice users are likely to have difficulty forming good queries.

With the 62 runs and 49 topics, we have potential examples of all three of the

above reasons for poor retrieval quality: retrieval method, complex information needs,

and query formulation. Each submitting group has some underlying retrieval algo-

rithm and some algorithms are better than others. It is well known that most of the

variation in retrieval quality comes from the topics with some topics being harder than

others. The TREC Genomics track gives the participating groups topics, but does

not specify keyword queries or other query formulation requirements. Each group

must furthermore convert the topic into some explicit query usable by their retrieval

system and this task is representative of the task users face in constructing queries.

While these runs can be representative examples of varying levels of retrieval

quality, we do not know the cause of an individual retrieval’s success or failure. What

we can do is study the average performance of the runs and the topics. Treating each

run as a different retrieval system, the average performance of a run relative to the

other runs allows us to examine find-similar’s ability to improve retrieval quality given

the performance of a retrieval system. Similarly, we take the average performance of

a topic to be an indication of the difficulty or complexity of the topic’s information

need. In other words, we define difficult topics to be the topics for which many

systems produce poor retrievals. We do not have a means of looking at the quality

of various queries.
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Information describing standard [methods or protocols] for doing some sort of
experiment or procedure.
methods or protocols: purification of rat IgM

Information describing the role(s) of a [gene] involved in a [disease].
gene: PRNP
disease: Mad Cow Disease

Information describing the role of a [gene] in a specific [biological process].
gene: casein kinase II
biological process: ribosome assembly

Information describing interactions between two or more [genes] in the [function
of an organ] or in a [disease].
genes: Ret and GDNF
function of an organ: kidney development

Information describing one or more [mutations] of a given [gene] and its [biological
impact or role].
gene with mutation: hypocretin receptor 2
biological impact: narcolepsy

Figure 4.2. The five templates used in the TREC 2005 genomics track with sample
topics.

4.2.2 Document Collection

We used the 2004 TREC Genomics document collection (aka MEDLINE04) for our

experiments along with the 2005 TREC Genomics topics. The document collection

is a 10 year subset of MEDLINE (1994–2003) containing 4,591,008 records and was

about one third the size of PubMed’s collection when created. (PubMed indexes all

of MEDLINE as well as some additional materials.) Most records contain a title,

abstract, and associated metadata. We indexed the title and abstract and excluded

other metadata. More details about the collection can be found in the 2004 track

overview (Hersh et al., 2004).

4.2.3 Topics

The 49 TREC 2005 Genomics topics were built around 5 templates. Figure 4.2

shows examples of the topics. For our experiments, we utilized the topics’ relevance
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judgments to evaluate the performance of find-similar. The creators of the dataset

solicited information needs from 25 biologists. Five people with varying biology ex-

perience provided the relevance judgments. More details concerning the topics can

be found in the 2005 Genomics overview (Hersh et al., 2005). We did not use the

topics to influence retrievals or document-to-document similarity.

4.2.4 Find-Similar Simulation

For find-similar, we used the breadth-like browsing pattern (Section 3.2.5). A

variable of the breadth-like browsing pattern is the number of contiguous non-relevant

documents that the browser will examine before beginning its exploration of similar

relevant documents and/or hitting the “back button” of the hypothetical web browser.

In Chapter 3, we set this variable to 5 non-relevant documents and do the same

here, but we also briefly look at setting this variable to 2 non-relevant documents.

There is little difference in the overall results between the choice of 5 or 2 non-

relevant documents, and we report additional results for the browsing pattern with

this variable set to 2 non-relevant documents in another work (Lin and Smucker,

2008).

For document-to-document similarity, we used regular similarity (Section 3.2.3)

to mimic PubMed’s similarity, which is not query-biased (Lin and Wilbur, 2007). As

in Chapter 3, we stemmed with the Krovetz stemmer and removed stopwords based

on our list of 418 stopwords. We set the Dirichlet prior smoothing parameter to 1500.

We used a document’s title and abstract concatenated together as our representation

of a document.

We also used PubMed’s similarity by obtaining the set of “related articles” for the

known relevant document via PubMed’s API. Our comparison to PubMed’s similarity

is more for the purposes of verifying our results rather than for direct comparison of

similarity measures.
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To obtain the related articles we used PubMed’s eLink2 interface and specified the

pubmed database. We restricted results to have completion dates (CDAT) between

1994/1/1 and 2003/12/31, which is what the track did for the collection (Hersh et al.,

2004). All other options are the default options for the interface call. We post-filtered

any results that did not have a PubMed identifier (PMID) within the TREC 2005

Genomics collection. We used the PMIDs that are part of the first “LinkSet.” There

also seemed to be a second linkset returned, but we could not determine its purpose

and did not include the PMIDs it provides. Because of the lack of documentation

for PubMed’s API, it is possible that we did not extract the complete set of related

articles. The first linkset appeared to be the correct related articles. Each related

articles list is approximately 140 results long. We found that there is a relevant PMID,

11706583, in the TREC 2005 Genomics collection that PubMed says does not exist.

Thus, it has no related articles.

For another experiment, we programmatically issued queries against the PubMed

API, which in this case is called the eSearch interface. In this case, we requested 2000

results, and then post-filtered and capped the results at 1000 results.

4.3 Results and Discussion

Figure 4.3 shows the distribution of precision at rank 20 (P20) for the 3038 initial

retrievals (62 runs × 49 topics) and the topmost chart of Figure 4.6 shows the same

for the average precision (AP). In both measures we have a wide range of performance

and a large number of poor performing runs.

Table 4.1 shows overall results for find-similar when applied to the initial retrievals.

These results are in line with those for TREC 6,7,8 in Chapter 3 where we found a 16%

2http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
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Figure 4.3. Distribution of precision at rank 20 (P20) for the 3038 initial retrievals
submitted to the TREC 2005 Genomics track.

Initial With Find-Similar (Breadth-like browser, Max 5 Non-rel)
Results Regular Sim. Improvement PubMed Sim. Improvement

AP 0.200 0.231 15.3% 0.224 11.7%
P20 0.318 0.336 5.5% 0.327 2.7%

Table 4.1. Average precision (AP) and precision at rank 20 (P20). Overall averaged
results for the 62 runs submitted to the TREC 2005 Genomics track both as sub-
mitted and with find-similar. Find-similar was simulated with no reexamination of
documents, a maximum of 5 contiguous non-relevant documents, and a breadth-like
browsing behavior. Shown are results for both regular similarity and PubMed’s sim-
ilarity. All find-similar gains over the initial results are statistically significant gains
(p < 0.05) as measured by a paired, two-sided t-test with pairing done at the run
level.
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gain in mean average precision and a 6% gain in P20 for a breadth-like browser that

avoided the reexamination of documents and used regular similarity (see Table 3.3).

Figure 4.4 shows the average P20 with find-similar vs. P20 without find-similar.

Shown are the results for both the regular similarity implemented with Lemur and

the PubMed similarity downloaded from PubMed. Of note is the gain for the lower

performing P20 values. When the initial retrieval is poor, then find-similar offers the

most value. It is possible for find-similar to hurt results if it is used when the results

are already good. Note that for very high values of P20, the breadth-like browser

will not apply find-similar and thus those results will not be degraded. We think that

even for the P20 values of 0.4 and higher, where find-similar degraded performance,

that in actual use, users are unlikely to use find-similar with such good results.

The top chart of Figure 4.5 shows a closeup of the same results as Figure 4.4.

Here we see the substantial gains that find-similar offers when the initial results are

poor. For initial P20 results of 0.05 to 0.15, find-similar produces over a 50% relative

gain. Note that when P20 is zero, find-similar cannot improve the results since it

relies on the user finding at least one relevant document. When P20 is zero, some

other interaction mechanism would be needed to help the user improve the results.

The PubMed similarity performs worse than regular similarity, but the difference

is relatively small. In particular, when we set the maximum number of contiguous

non-relevant documents parameter to 2 instead of 5, there is effectively no difference

between the two similarity measures. This raises the important point that when using

simulation to evaluate systems, a good practice would be to report results for a range

of parameter values unless those parameter values are supported by other research.

Figure 4.6 shows the results for the average precision (AP). In the top chart, we

see the distribution of AP across the runs and topics. Like P20, the majority of initial

retrievals result in a low AP. The middle chart shows a scatter plot of the AP both

with and within find-similar. Points above the line are improvements while points
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Figure 4.4. The precision at rank 20 (P20) with and without find-similar. The 3038
data points with find-similar are averaged for each of the 21 possible values of P20
without find-similar. Shown are the results for regular similarity and for the PubMed
similarity. Find-similar utilized a breadth-like browsing pattern, a maximum of 5
contiguous non-relevant documents, and avoided the reexamination of documents.
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Figure 4.5. This figure shows a closeup view of Figure 4.4 on the top. On the bottom,
this figure shows the same except the maximum number of contiguous non-relevant
documents parameter has been set to 2 documents.
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Figure 4.6. The top chart shows the distribution of the average precision (AP)
without find-similar. The middle chart shows a scatter plot of the AP with and
without find-similar, and points above the line are improvements. In the bottom
figure we show the average of AP with the data of the middle chart placed into bins
0.05 wide. We have artificially added a point at 0 for the purposes of drawing a
representative line between the bins.
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below the line represent degradations caused by find-similar. The bottom chart shows

the AP results averaged into bins. On average, we see that find-similar provides gains

when the initial retrievals are poor in quality.

Taken together, the results for P20 and AP show that find-similar as an interaction

mechanism works to compensate for poor retrievals. This is significant given that no

matter what retrieval algorithm is used, there will always be cases where the user

has difficulty obtaining high quality results. Find-similar acts to make the overall

retrieval system higher performing and more robust. By more robust we mean the

system can handle a wider range of topics and queries and still offer the user a route

to better results. IR systems can utilize many such interaction mechanisms to provide

higher quality results to the user without having to change the underlying retrieval

algorithm.

Figure 4.7 shows P20 and AP with and without find-similar with the data grouped

and averaged by run. For the TREC 2005 Genomics track, there were 62 submitted

runs. Each run represents a retrieval method and means to convert the topic into a

query. Here we see that find-similar aids the poorer performing systems and is unable

to help the best performing ones.

Figure 4.8 shows P20 and AP with and without find-similar with the data grouped

by topic. For the TREC 2005 Genomics track, there were 49 topics. Here we see

that find-similar is unable to help the worst performing topics and has the most

success with the mid to good performing topics (topics with an AP of 0.2 or higher).

Taken with Figure 4.7, it appears that find-similar helps most when a retrieval system

performs poorly. When the topic is inherently difficult, find-similar appears to be of

little help.
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Figure 4.7. Shown on the top is the precision at rank 20 (P20) and on the bottom the
average precision (AP) both with and without find-similar. Each point is a submitted
run’s average score for the 49 topics of the TREC 2005 Genomics track.

71



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean P20 for 49 TREC 2005 Genomics Topics

Mean P20 without Find−Similar

M
ea

n 
P

20
 w

ith
 F

in
d−

S
im

ila
r

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean AP for 49 TREC 2005 Genomics Topics

Mean AP without Find−Similar

M
ea

n 
A

P
 w

ith
 F

in
d−

S
im

ila
r

Figure 4.8. Shown on the top is the precision at rank 20 (P20) and on the bottom
the average precision (AP) both with and without find-similar. Each point is a topic’s
average score for 62 submitted runs to the TREC 2005 Genomics track.
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4.3.1 Helping PubMed Users

The above results show how find-similar can improve poor initial retrievals, but

does not specifically address the improvement possible for PubMed, which has a

different retrieval algorithm than the submitted systems to the TREC 2005 Genomics

track. To get a sense of how much improvement is possible for PubMed, we took the

49 topics and for each one of them we crafted a sensible but simple Boolean query.

We attempted to modify the original topic description as little as possible. We refined

the queries until at least one relevant document was returned in the top 1000 results.

For many topics, several iterations of query refinement were required and in many

cases we needed to examine known relevant documents to determine how to craft a

working query.

The default Boolean AND of PubMed in many cases leads to high precision, low

recall results, but some topics did get a very good average precision. The number of

results returned by PubMed was highly variable with 264 results on average and the

median number being 58 results.

Across the 49 topics, our queries to PubMed resulted in a mean average precision

(MAP) of 0.096 and a precision at rank 20 (P20) of 0.183. When we simulated find-

similar usage for these results, the MAP jumped to 0.185 and P20 increased to 0.262.

The nearly 100% increase in MAP performance likely comes from the increased recall

of the find-similar searching. Without find-similar, only 1244 relevant documents are

retrieved across the 49 topics while with find-similar 2979 relevant documents are

found. To simulate find-similar, we used the breadth-like browser, a maximum of 5

contiguous non-relevant documents, no reexamination of documents, and the PubMed

similarity.

While our queries could be considered to be those crafted by an expert searcher

since the searcher is an IR researcher, the searcher had no training in the PubMed

language and has little knowledge of the biomedical topics. While we cannot draw
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any generalizations from this experiment, the results are indicative and in line with

the results of the other experiments in this chapter. Find-similar appears to have

the ability to compensate for poor PubMed retrievals and help the user find relevant

documents.

4.4 Conclusion

In this chapter we saw how find-similar acts to compensate for poor retrievals.

Find-similar appears to offer PubMed users a route to improved retrievals. Find-

similar helped IR systems that performed poorly on the TREC 2005 Genomics track

while it was unable to aid the best performing systems. On a topic level, find-similar

is able to help the less difficult topics while the most difficult topics are beyond

find-similar’s reach.
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CHAPTER 5

MEASURING THE NAVIGABILITY OF DOCUMENT
NETWORKS

Find-similar provides the search user a means to travel from one document to

another. In effect, find-similar links documents into a network, and just as a traveler in

the physical world needs a good road system with direct routes, the search user needs

find-similar to produce links that minimize the travel time to relevant documents.

A find-similar tool embodies some document-to-document similarity method. We

would like to be able to test many variations of document-to-document similarity

in well defined, a low cost manner that is largely independent of the user interface.

While our simulated users in Chapter 3 are very affordable, the results are tied to a

given user interface.

In this chapter, we utilize a combination of simple metrics to measure the naviga-

bility of document networks. These measures provide for low cost evaluation of the

document networks formed by similarity measures and other link creation methods.

5.1 Introduction

Furnas (1997) has developed a theory of effective view navigation that is related to

our goal of efficient navigation from relevant document to relevant document. Furnas

details his theory in terms of two types of graphs: a logical graph and a view graph.1

The logical graph represents how objects, such as documents, are truly connected to

1We will use the terms network and graph interchangeably. In each case, we are referring to
directed graphs, which consist of nodes and directed edges. Each directed edge connects a source
node to a target node.
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each other. Furnas gives the web with its hyperlinks as an example of a logical graph.

The view graph adds directed links to each node in the logical graph and represents

the ways a user who is viewing the current node can immediately get to other nodes

in the view. With find-similar, we are looking at ways to augment the logical graph

and create a view graph that makes it easier for a user to find relevant documents.

To achieve effective view navigation, a system needs to be both efficiently view

traversable (EVT) and view navigable (VN).

To be efficiently view traversable, Furnas requires two things. The first, EVT1, is

that the views should be small, in other words, the out-degree of each node should be

low when considering the view graph. The second, EVT2, is that the distance from

each node to each other node on the view graph be short compared to the size of the

overall structure.

Furnas’ view navigability concerns itself with the “signage” aspects of a system.

Links in the network need to provide good “residue” of the objects reachable via the

link. Furnas’ residue is similar to Pirolli’s information scent (Pirolli, 2007). In other

words, the user needs the link labeled in a manner that provides a form of lookahead.

At the same time, the label must be small. Simply providing a listing of everything

reachable via the link would provide good residue but would result in too large of a

label.

We see Furnas’ use of out-degree as an approximation of the user’s cost to use the

link. As such, while the links in Furnas’ graphs are unweighted, we will weight each

link in the network proportional to the time it takes a user to discover, evaluate, and

travel a link.

One of the two measures of document navigability that we will define is based

on the shortest paths between relevant documents. With regard to EVT2 (shortest

paths), the question for information retrieval is not how easy is it to get from one

document to another, but how easy is it to get from a relevant document to other
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relevant documents. The searcher cares about the time to find relevant documents

and not the time to travel between arbitrary documents. With a weighted document

network, shortest paths now represent the optimal path for a user to follow between

two documents.

A network with paths shorter than another network may actually be less navigable.

For example, a randomly constructed network of low degree can have short paths

between most nodes in the network. No user would be expected to navigate well in a

random network.

Our other measure of network navigability will aim to capture the quality of the

similarity measure given the neighborhood it creates for a node. Hierarchical naviga-

tion networks such as the Yahoo! or DMOZ directories of web sites are examples of the

difficulty of providing good node residue to achieve Furnas’ view navigability for large

document collections. The links at the top of these hierarchies are broad descriptions

of the content available and offer little help in selecting the correct links. While we

agree with the need for good link labels, with respect to the network structure, the

network should be locally navigable. We are interested in document networks linked

primarily at a local level — document to document. A good similarity measure pro-

duces links from relevant documents to other relevant documents. A random network

would do poorly on this measure of navigability.

We will use our two measures in combination to evaluate the navigability of a

document network. When comparing two similarity methods, the better method

should produce a network that is more navigable given both measures. We next

discuss the two measures in detail.

5.1.1 Measures

Given a user’s information need or search topic, a perfect similarity method for

find-similar makes the topic’s relevant documents most similar to each other. This is
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a restatement of the cluster hypothesis (Jardine and van Rijsbergen, 1971). If a user

finds a relevant document, and we have a “cluster hypothesis made true” similarity

method, all a user needs to do is to request similar documents and the user will

retrieve all of the relevant documents.

To measure the cluster hypothesis, Jardine and van Rijsbergen (1971) plotted the

distributions of relevant pairs (R-R) and relevant and non-relevant pairs (R-NR) to

visually determine the extent to which the cluster hypothesis was true. This same

procedure was examined in more detail by van Rijsbergen and Sparck Jones (1973).

Griffiths et al. (1997) replaced the visual inspection of the distributions with a measure

of separation of the two distributions called the overlap coefficient.

Voorhees (1985) pointed out that the relative frequency of very similar R-NR

pairs is reduced by the large number of R-NR pairs in comparison to the number

of R-R pairs. As an alternative, Voorhees proposed the nearest neighbor test, which

counted the number of relevant documents found in the N nearest neighbors of a

relevant document. Voorhees set N = 5. Voorhees’ test is equivalent to examining

the precision at 5 for the ranked lists produced by using relevant documents as queries.

In place of precision at 5, any other retrieval metric such as average precision could be

used in a similar manner. Using average precision would result in the computation of

a mean average precision (MAP) for each given topic where each relevant document

for that topic acts as a query. Voorhees’ methodology has an added benefit that it is

a measure that is more closely mapped to user notions of distance and separation.

Diaz (2008, chap. 3) provides an overview and examination of cluster hypothesis

research. In Section 3.3 of Diaz’s work, he argues for Voorhees’ measure because it

can handle cases when the relevant documents form multiple clusters as opposed to

the method of Jardine and van Rijsbergen (1971).

We use Voorhees’ methodology to measure the local quality of the document

network. For each relevant document, we measure the precision at rank N , where
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N = 5, 10, 20 and also the average precision (AP) given the ranking of the document’s

neighbors formed by taking the weighted links as each neighbor’s retrieval score.

One issue with P5, P10, or P20 compared to AP is that when the number of

documents is less than the rank cutoff N , for precision at rank N , then the local

metric can report a low precision when in fact all documents are easily reached from

all other documents. For example, if there are 6 relevant documents, the maximum

P10 is 0.6. As we will show, this limitation of P5, P10, and P20 does not appear to

be a serious one on average.

The introduction of query-biased similarity makes it much easier to obtain a sim-

ilarity method that performs well using Voorhees’ methodology but which fails to

cluster relevant documents well. For example, assume we have a query that has

many relevant documents and a P5 of 1. If we query-bias the similarity until the

query dominates over the given document, then the rankings for every relevant docu-

ment will be nearly identical and also have a P5 of 1. Using Voorhees’ methodology,

we would declare the clustering performance to be excellent when in fact it could be

very poor. Our imagined query may be high in precision but low in recall. Thus, all

the relevant documents will be close to a few relevant documents but far away from

the majority of relevant documents.

This was not a concern when Voorhees proposed her nearest neighbors measure.

In her study, the documents were the queries. As such, each document was a point in

the vector space and a measure like P5 does give a sense of how close the other relevant

documents are to a given document. When we mix the query with the document, at

some point we are only measuring how close the relevant documents are to a single

point in space, that is, how close the documents are to the query.

Another potential problem with the above mentioned measures of the cluster

hypothesis is that they fail to accommodate the triangle inequalities that make the

cluster hypothesis so appealing. We want to reward a similarity measure for making it
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easy to get from relevant document A to relevant document C by going first from A to

relevant document B and then from B to C even if the similarity measure considers A

and C to be dissimilar. To capture this feature of similarity and the value of navigating

from document to document, we turn to a measure of the distance between documents

measured on the network.

5.1.1.1 Document Networks

In a document network, the nodes represent documents in the collection and the

edges represent a user’s ability to traverse from a given document to another document

via some user interface.

We aim to weight the links between documents in a manner that approximates

the user’s cost to find that link. Given a document-to-document similarity measure

embodied by an implementation of find-similar or other user interface feature, for each

document in a collection, we can compute a ranking of all other documents in that

collection. While at best a crude approximation of user cost, we follow traditional

information retrieval metrics and set a link’s weight equal to its rank.

While the primary goal of the link weight is to represent the user’s cost to navigate

the link, another benefit of weighting links in this manner is similar to the benefit

reaped by Voorhees for going to document ranks and away from the raw similarity

score. The distance from a relevant document to another relevant document in a

ranked list captures the issue with non-relevant documents also being similar to the

relevant document. Just because two relevant documents are very similar given a

similarity measure does not preclude many non-relevant documents being more similar

to the document.

Using document rank as our distance also provides us with another benefit. If

we assume that shortest paths between relevant documents avoid passing through

non-relevant documents, then we can delete the non-relevant documents from the
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Figure 5.1. This figure is the same as Figure 1.5 except that rather than show the
lists of ranked results, the initial query and the documents are shown as nodes. Edges
are drawn between nodes and weighted by the rank of the document in the results
list. The left uppermost node represents the initial query.

graph and obtain the same results for the shortest paths between all pairs of relevant

documents. Deleting the non-relevant documents produces what we term a relevant

document network. Find-similar is closely related to relevant document networks as

shown in Figure 5.1.

Figures 5.2 and 5.3 show examples of relevant document networks. Figure 5.2

shows a representation of the relevant document network for TREC topic 335, “adop-

tive biological parents.” The plotted distance between nodes is relative to how close

they are given their link weights. Figure 5.3 shows an example of how query-biased

similarity can result in a better clustering of relevant documents. Appendix B shows

additional examples of relevant document networks.

We obtain a substantial computational savings by deleting the non-relevant docu-

ments to form a relevant document network. For the relevant document network, we
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Figure 5.2. A simplified depiction of the relevant document network for TREC
topic 335, “adoptive biological parents.” Each node is a relevant document. Links
are drawn between two documents if one the links between them has a link weight
of 5 or less. The actual relevant document network is a weighted, directed graph.
It appears that for this topic there are two or three clusters of relevant documents.
Note that several documents appear unconnected to the larger clusters of documents.
These outliers may be difficult to reach using document feedback techniques such as
find-similar.

only need to calculate similarity information for the relevant documents rather than

for all documents.

Because the cost of calculating the pairwise similarity for all documents is so

expensive, we might be tempted to approximate the full document network by only

considering the top 1000 or so documents found to be similar to a topic’s query. The

assumption here is that all the documents of concern will fall in the top ranked results.

This approximation fails to examine relevant documents found at ranks greater than

rank 1000. For difficult topics, this would mean ignoring most relevant documents.

Also, limiting our analysis to the top 1000 documents prevents us from seeing the

power of similarity information to make relevant documents found at ranks greater

than 1000 easier to find. With the relevant document network we can examine all

relevant documents as past measures of the cluster hypothesis have done.

If non-relevant documents were to be on the shortest paths to relevant documents,

relevant documents should have non-relevant documents as common neighbors. The

cluster hypothesis says that relevant documents share something in common to make

82



(a) (b)

Figure 5.3. Simplified depictions of the relevant document networks for TREC topic
337, “viral hepatitis.” The network on the left (a) uses regular similarity while the
network on the right (b) uses query-biased similarity, which better clusters relevant
documents. The documents are closer in figure (b) because they are higher ranked in
each other’s ranked lists. As with Figure 5.2, links are drawn between two documents
when one of the links between the pair has a weight of 5 or less. The actual relevant
document network is a weighted, directed graph.
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Non-Relevant
10 20 100

Minimum 0.000 0.000 0.003
1st Quartile 0.018 0.024 0.039
Median 0.036 0.044 0.069
Mean 0.057 0.066 0.091
3rd Quartile 0.066 0.080 0.119
Maximum 0.593 0.717 0.543

Table 5.1. The average overlap coefficient among the top N = 10, 20, 100 ranked
non-relevant documents in the nearest neighbors of relevant documents for TREC
topics 301-450. For example, the mean fraction of non-relevant documents in common
is 0.066 or 6.6% for the top 20 highest ranked non-relevant documents.

them more similar to each other. In contrast, there is a limitless set of reasons that

a document is non-relevant.

As a test of the extent to which non-relevant documents are common neighbors of

relevant documents, we took the TREC topics 301-450 and we measured the overlap

of the first N non-relevant documents occurring in the ranked lists produced by

using a relevant document as a query. The document collection for topics 301-450 is

composed of newswire and government documents.

Our measure of overlap was the overlap coefficient:

|A ∩ B|
min(|A|, |B|)

where A is the set of N highest ranked non-relevant documents for relevant document

A and similarly for document B. For each topic we computed the average overlap

over all pairs of non-relevant documents and then computed summary statistics over

all 150 topics. Table 5.1 shows that the amount of overlap is quite small with the

mean overlap for N = 20 being 0.066 or 6.6% and three quarters of the topics have an

overlap of 8% or less. Thus it appears that non-relevant documents play a role more

akin to “noise” than as potentially useful stepping stones between relevant documents.
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The assumption that a user will not navigate through non-relevant documents

does not hold for document networks such as the web. On the web, links have a

mixture of types. Some links go directly to other content rich pages while other links

may go to a navigational page. Many navigation pages are not likely to be considered

relevant pages in and of themselves. Imagine for example a web site that provides

a find-similar link from each content page. The find-similar page is for navigational

purposes and may link to a relevant page, but is not in itself a relevant page. By

requiring paths to only go through relevant pages, for a similarity measure such as

the web graph, we could cut off valid paths.

The relevant document network should only be used in situations where the doc-

ument network is formed using a feedback-like technique such as find-similar. The

relevant document network provides a reasonable upper bound on the shortest path

where there is little sense in a user searching for relevant documents starting from

a non-relevant document. While a non-relevant document may bridge two relevant

documents, how would a user know how to decide between the good non-relevant

documents and the bad ones? In a feedback situation, the user would be forced to

“lie” to the system and judge a non-relevant document relevant.

5.1.1.2 Shortest Paths Measure: Normalized Mean Reciprocal Distance

Given a weighted document network, we can efficiently compute shortest paths

using Dijkstra’s shortest paths algorithm or the Floyd-Warshall all pairs shortest

paths (APSP) algorithm (Cormen et al., 2001). We used the Boost Graph Library’s

implementation of the Floyd-Warshall APSP algorithm (Siek et al., 2001).

Distance on our weighted document networks represents the number of docu-

ments a user would need to examine by reading link labels such as document titles

and summaries before reaching the other document. Other weighting schemes could
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approximate the individual costs of discovering, evaluating, and traversing links more

closely.

For our measure of global navigability, we use the global efficiency measure of

Latora and Marchiori (2001). This metric computes on a per topic basis, for each

relevant document the normalized, mean reciprocal distance (nMRD) of all other

relevant documents. The normalized, mean reciprocal distance of relevant document

Ri is calculated as:

nMRD(Ri) =
1

Z(|R| − 1)

∑
Rj∈R,j �=i

1

S(Ri, Rj)
(5.1)

where R is the topic’s set of relevant documents, |R| is the number of relevant doc-

uments, S(Ri, Rj) is the shortest path distance from Ri to Rj, and Z is the normal-

ization factor. For each topic, we average the nMRD over all the known relevant

documents, and finally we average over all topics to produce a final metric. This

metric varies from 0 to 1 with 1 being the most efficient or navigable network possi-

ble. Figure 5.4 shows examples of relevant document networks with varying nMRD

values.

Figure 5.5 and Figure 5.6 show how to compute the optimal MRD for a given

number of relevant documents. This method works for our definition of document

networks, but would need to be modified for other networks.

5.1.1.3 Previous Shortest Paths Measures

Our proposed shortest paths metric is based on our previous experience using

similar techniques to measure the cluster hypothesis. In our first work (Smucker and

Allan, 2006), we briefly introduced relevant document networks and measured the

average all pairs shortest paths distance for TREC topics 301-450.

The document collection for topics 301-450 consists of TREC volumes 4 and 5

minus the Congressional Record. This is a 1.85 GB, heterogeneous collection that

86



nMRD = 0.06
(Topic 323: Literary/Journalistic Plagiarism, 61 relevant documents)

nMRD = 0.19
(Topic 387: radioactive waste, 85 relevant documents)

nMRD = 0.45
(Topic 351: Falkland petroleum exploration, 48 relevant documents)

Figure 5.4. Examples of relevant document networks with varying nMRD val-
ues. The document-to-document similarity is “regular” with no weight given to the
query/topic.

87



optimalMRD = 0
nodesRemaining = numRelDocs - 1
nodesThisLevel = 1
level = 1
while nodesRemaining > 0 do

if level > 1 then
nodesThisLevel = nodesThisLevel * 2

end if
if nodesThisLevel > nodesRemaining then

nodeThisLevel = nodesRemaining
end if
optimalMRD = optimalMRD + (nodesThisLevel * (1 / level))
nodesRemaining = nodesRemaining - nodesThisLevel
level = level + 1

end while
optimalMRD = optimalMRD / (numRelDocs - 1)

Figure 5.5. This figure accompanies Figure 5.6 and shows how to compute the
optimal mean reciprocal distance (MRD, see Equation 5.1) for a given number of
relevant documents, numRelDocs.

Figure 5.6. This figure accompanies Figure 5.5 and shows graphically the optimal
paths from a source document to 7 other relevant documents (8 relevant documents
in total including the source document). Each link has a weight of 1. One document
can be reached in a distance of 1, two documents can be reached at a distance of
2, and four documents at a distance of 3. Each box represents a list of documents
similar to a given document.
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contains 528,155 documents from the Financial Times Limited, the Federal Register,

the Foreign Broadcast Information Service, and the Los Angeles Times.

For each relevant document, we computed a maximum likelihood estimated model

and truncated this model to the 50 most probable terms. We then used this model as

a query to rank the documents in the collection and construct a relevant document

network for each topic. The mean average all pairs shortest paths (APSP) distance

was 3507 for regular similarity and 381 for query-biased similarity. Here we imple-

mented query-biased similarity using the proximity method discussed in section 3.2.3.

We reported the median distance which was 70.8 for regular similarity and 33.0 for

query-biased similarity. This demonstrated that query-biased similarity can better

cluster relevant documents.

We reported the median because the distribution of distances was highly skewed.

In hindsight, reporting only the median distance was a mistake. The median will re-

port that a similarity measure clusters well when it actually is only making a subset of

documents close to all documents and not producing a good clustering of documents.

The mean distance captures the overall degree of clustering better by giving equal

weight to each relevant document. This is why for our global metric, nMRD, we will

use the average and not the median.

Another mistake we made was to use the distance between relevant documents

directly. At some point, the distance to some documents is so large that they can

be considered to be “out of reach.” What difference does it make if the distance to

a document is ten thousand or ten million? Using the distances directly results in a

cluster metric whereby a similarity measure that moves relevant documents closer but

still keeps them out of reach unfairly gets rewarded. In addition, using the distance

directly prevents good comparison across collections for the same reason. Documents

that are out of reach in a small collection or a large collection are still too far away

and the cluster metric should not be sensitive to the difference. This is why we have
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proposed using the mean reciprocal distance (inverse distance). Even so, we may

want to place a maximum distance past which a document is considered to be at

infinity.

In a previous work, (Smucker and Allan, 2007a), we proposed a variant of Latora

and Marchiori’s measure that was not normalized. While using an unnormalized

metric on the same data set will produce comparable results for different similarity

measures, without normalization one cannot compare across topics or different data

sets.

5.2 Experiments

Building on the work of Chapter 3, we look at 3 types of document-to-document

similarity. The first is regular similarity where we treat the entire document as a

query. The second is the query-biased similarity as presented in Section 3.2.3. The

third is a query-biased similarity where a model of the query is mixed with a model

of the entire document. We next discuss this third form of similarity in more detail.

A possible reason for the better performance of the query-biased similarity in

Chapter 3 is that the query terms are given a significant fraction of the probability

mass in the computed query model. Recall that for each occurrence of a query term

in a document, we place a window over that term. The text that falls within the

various windows makes up our final query. The windows included 5 words before and

after the query terms. Assuming non-overlapping windows, the query terms found in

the document would be given a combined mass of 1/11 = 0.09, and likely more than

10% of the mass with some windows overlapping (words in overlapping windows are

only counted once).

An alternative way to implement query-biased similarity is to mix the query model

with the document model:
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P (w|MB) = λP (w|Q) + (1 − λ)P (w|D) (5.2)

where P (w|MB) is the probability of the word w in the biased model and P (w|Q) and

P (w|D) are the maximum likelihood estimated models of the query and document

respectively that are linearly combined with λ determining how much influence the

query should have versus the document.

While different than Tombros’ query sensitive similarity measure (QSSM) (Tombros,

2002), which was a measure for vector space retrieval, the above formulation for lan-

guage modeling retrieval captures the nature of QSSM. This similarity measure is

also similar in nature to the measures used in query-biased clustering (Eguchi, 1999;

Iwayama, 2000). Both Eguchi (1999) and Iwayama (2000) increase the weight of

query terms in the documents before clustering.

By comparing the “window” version of query-biased similarity (Section 3.2.3) to

the “mix” version (Equation 5.2), we can see if the context captured by the windows

holds an advantage over simply mixing the query with the document.

When λ in Equation 5.2 is 0, this “mix” version of query-biased similarity becomes

the “regular” similarity of Section 3.2.3. In addition, we can replace the MLE model

of the document in Equation 5.2 with any model of the document, P (w|MD):

P (w|MB) = λP (w|Q) + (1 − λ)P (w|MD) (5.3)

Besides testing the “window” version of query-biased similarity as it was presented

in Section 3.2.3, we will also take the query-biased model of the document that it

produces and mix this model with the MLE model of the query.

We investigated λ with values of 0, 0.1, 0.25, 0.5, 0.75, and 0.9.

We used the same documents and 150 topics from TREC 6, 7, and 8 as in Chap-

ter 3 (see Section 3.2.6).
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For each of the types of similarity, we measured the global measure nMRD as well

as precision at rank 5 (P5), P10, P20, and average precision (AP) as local measures

of clustering.

5.3 Results and Discussion

Table 5.2 shows the results for our experiments. The context represents the num-

ber of words included before and after the presence of a query term. The query-biased

similarity of Chapter 3 has a context size of 5. The λ is the λ of Equation 5.3. Thus,

regular similarity is represented by a context of “wholeDoc” and a λ of 0.

Figure 5.7 shows the data of Table 5.2 with the global measure of navigability,

nMRD, plotted against the four measures of local navigability. As can be seen, when

averaged over the set of queries, there appears to be little difference between the local

measures.

Most significantly, we can see from Figure 5.7 that while in general a higher score

for one of the local measures of navigability implies a higher score for the global

measure (nMRD), this is not always the case. There are numerous runs where the

document-to-document similarity measure produced results with high local measures

but with low nMRD. For example, Voorhees’ P5 measure has a value of 0.53 for the

runs with a context size of 5 words and the λ values of 0.1 and 0.5, but when λ = 0.1,

nMRD = 0.32 and when λ = 0.5, nMRD drops to 0.22.

The local measures of navigability are unable to detect the global navigability of

a network. This lower performance for the high values of λ is likely the result of a

lack of diversity in the similarity lists across documents. In other words, giving the

query too much weight produces a ranking of similar documents that is more or less

the same for all documents.

The original regular similarity from Chapter 3 (context of wholeDoc and λ = 0)

has a nMRD of 0.20. The query-biased similarity of Chapter 3 (context of 5 and
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Context λ P5 P10 P20 AP nMRD

1 0.00 0.42 0.37 0.31 0.19 0.26
2 0.00 0.44 0.38 0.32 0.19 0.29
5 0.00 0.44 0.38 0.31 0.18 0.29
10 0.00 0.42 0.36 0.29 0.16 0.28
15 0.00 0.40 0.34 0.28 0.15 0.27

wholeDoc 0.00 0.32 0.27 0.22 0.11 0.20
1 0.10 0.47 0.41 0.34 0.21 0.27
2 0.10 0.50 0.44 0.37 0.23 0.30
5 0.10 0.53 0.46 0.39 0.24 0.32
10 0.10 0.53 0.47 0.39 0.25 0.32
15 0.10 0.53 0.47 0.39 0.25 0.32

wholeDoc 0.10 0.51 0.45 0.38 0.24 0.30
1 0.25 0.50 0.44 0.37 0.23 0.25
2 0.25 0.54 0.47 0.40 0.25 0.28
5 0.25 0.57 0.50 0.42 0.27 0.29
10 0.25 0.57 0.51 0.43 0.27 0.29
15 0.25 0.58 0.51 0.43 0.27 0.29

wholeDoc 0.25 0.56 0.50 0.42 0.27 0.27
1 0.50 0.50 0.45 0.38 0.24 0.21
2 0.50 0.52 0.46 0.39 0.24 0.22
5 0.50 0.53 0.47 0.40 0.25 0.22
10 0.50 0.52 0.47 0.40 0.25 0.21
15 0.50 0.52 0.47 0.40 0.25 0.21

wholeDoc 0.50 0.51 0.46 0.39 0.24 0.20
1 0.75 0.48 0.43 0.37 0.23 0.18
2 0.75 0.48 0.43 0.37 0.23 0.18
5 0.75 0.47 0.43 0.37 0.23 0.17
10 0.75 0.47 0.43 0.37 0.22 0.17
15 0.75 0.47 0.43 0.37 0.22 0.17

wholeDoc 0.75 0.46 0.42 0.36 0.22 0.17
1 0.90 0.45 0.41 0.36 0.22 0.16
2 0.90 0.45 0.41 0.36 0.22 0.16
5 0.90 0.45 0.41 0.35 0.22 0.16
10 0.90 0.45 0.41 0.35 0.21 0.16
15 0.90 0.45 0.41 0.35 0.21 0.15

wholeDoc 0.90 0.45 0.41 0.35 0.21 0.15

Table 5.2. Global and local measures of navigability. Each row is a different simi-
larity measure. Local measures are precision at rank 5 (P5), P10, P20, and average
precision (AP). The normalized mean reciprocal distance (nMRD) is a global mea-
sure. Context refers to the size of the “window” in Section 5.2. When the context
is wholeDoc, the entire document is used. The λ is the same as in Equation 5.3. In
Chapter 3, regular similarity used the whole document and query-biased similarity
used a context of 5 and both set λ = 0 .
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Figure 5.7. Global navigability versus local navigability. The normalized mean
reciprocal distance (nMRD) is plotted vs. the precision at rank 5 (P5), P20, P10, and
mean average precision (MAP). Each point is the average of 150 topics. There is one
point for each of the similarity measures in Table 5.2.
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Figure 5.8. The normalized mean reciprocal distance (nMRD) vs. average precision
(AP) on the left and precision at rank 5 (P5) on the right. Each point in the charts
is a topic for each of the similarity measures of Table 5.2.

λ = 0) has a nMRD of 0.29. Here we see that the query-biased similarity has an

absolute gain of 9% in navigability and a 45% relative gain. The better navigability

of query-biased similarity mirrors its better find-similar performance.

Setting λ = 0.1 produced the best nMRD scores for all context sizes. Using a

reduced context of 5, 10, or 15 words produced slightly better results than using the

whole document (nMRD of 0.32 versus 0.30). It appears that there is some value

to the window form of query-biased similarity although the majority of the benefit

seems to come from giving the original query enough, but not too much weight.

While Figure 5.7 shows that AP and P5 are very similar when averaged over many

topics, we can see in Figure 5.8 that P5 as a metric can be maxed out by topics. We

would recommend the use of AP over precision at rank N measures since AP performs

similarly to P5 and does not appear to have the same risk of being maxed out by

topics.

Figure 5.9 shows the similarity methods of Chapter 3, regular similarity and query-

biased similarity, compared by plotting nMRD vs. P5 for all 150 topics. There is

95



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Regular Similarity

P5

nM
R

D

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Query−Biased Similarity

P5

nM
R

D

Figure 5.9. Regular similarity (left) navigability compared to query-biased similarity
(right) by plotting the normalized mean reciprocal distance (nMRD) vs. precision at
rank 5 (P5) for each similarity measure. Each point in the charts is a topic. Query-
biased similarity uses a context size of 5 words before and after query terms while
regular similarity uses the entire document as a query. Neither similarity is mixed
with the original query.

clearly a general trend with increasing local navigability resulting in greater global

navigability. Query-biased similarity’s largest benefit appears to be the significant

increase in global navigability for a handful of topics. These topics have increases in

global navigability that go far beyond any increase in local navigability.

Figure 5.10 shows how navigability is affected as the λ in Equation 5.3 is increased

from 0 to 0.9 when the whole document is used as the context. While some topics

maintain high levels of nMRD, most topics’ global navigability (nMRD) suffers as the

query weight becomes too high. As evidenced by the move to the fixed values of P5 (0,

0.2, . . . , 1.0), the documents all begin to look like the query. When the similarity lists

for each document are essentially the same, it is clear that traversing the similarity

space from relevant document will not work well. This also shows why both a global

and local measure of navigability are needed to measure the cluster hypothesis. If
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Figure 5.10. This figure shows how navigability changes as the query weight is
increased for similarity where the whole document is used as the context.
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either measure is used without the other, it is possible to develop similarity measures

that appear to cluster relevant documents well, but do not cluster well in actuality.

Figures 5.11, 5.12, and 5.13 show an example of how too much query-biasing

of the similarity can hurt the global navigability of relevant document networks.

Figure 5.13 shows that with a high λ of 0.5, the majority of documents find the

same one or two documents to be the documents most similar to themselves. Too

much query-biasing produces a similarity with all documents having very similar lists

of similar documents. From each document it becomes easy to navigate to a few

relevant documents, but once at these documents, there is no easy way to navigate

to other relevant documents. While a local measure of similarity can stay high under

these circumstances, the ability to traverse from document to document is hurt. In

cases where the original query performs very poorly, too much query-biasing can hurt

both local and global navigability.

5.4 Conclusion

In this chapter we presented a method of measuring the navigability of a document

network using a global and local measure. The nodes in the network represent the

documents in the collection and the directed links represent the ability of a user to

traverse from a source document to a target document. The weight of a link is set

proportional to the user’s cost to find, evaluate, and traverse the link. One measure

captures a local and the other a global quality of the network. The local quality

of a network can be measured as follows. For each relevant document, we rank a

document’s neighbors by their link weights and measuring the average precision of

this ranking. The measure of local quality is the mean average precision for the

relevant documents. The global measure captures the cost to follow the shortest

path, navigating from a relevant document to another relevant document. For each

relevant document, we measure the normalized mean reciprocal distance (nMRD)
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to all other relevant documents. The overall measure is the average of these mean

reciprocal distances. Together, these two measures give us a good understanding of

the navigability of a document network and allow us to design similarity methods

that construct more navigable networks.

We examined the document-to-document similarity methods of Chapter 3 and

showed that query-biased similarity is better able to cluster relevant documents. Our

result that query-biased similarity better clusters relevant documents echoes the re-

sults of Tombros’ work on query sensitive similarity (Tombros and van Rijsbergen,

2001; Tombros, 2002). We also showed that a local metric of the cluster hypothesis,

such as precision at rank 5 (P5), is not sufficient. A similarity measure can score

well on a local metric but perform poorly on the global measure. To measure the

navigability of document networks both a global and local measure should be used.
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Regular similarity with λ = 0, nMRD = 0.12, P5 = 0.38, AP = 0.05

Figure 5.11. This figure in combination with Figure 5.12 and Figure 5.13 shows
how too much query-biasing of the similarity can hurt the global navigability of
Topic 304: “Endangered Species (Mammals)”. The square, yellow node represents a
query likelihood retrieval using the topic’s title as a query. Nodes represent relevant
documents. A link is drawn from a node to another node if the target node is within
the top 5 most similar documents of the source node. This figure represents regular
similarity with no query-biasing.
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Regular similarity with λ = 0.1, nMRD = 0.17, P5 = 0.48, AP = 0.12

Figure 5.12. This figure in combination with Figure 5.11 and Figure 5.13 shows how
too much query-biasing of the similarity can hurt the global navigability of Topic 304.
Here we see that a little query-biasing (λ = 0.1) can greatly increase both local and
global measures of navigability. The precision at rank 5 (P5) and average precision
(AP) are local measures of navigability. The normalized mean reciprocal distance
(nMRD) is a global measure of navigability.
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Regular similarity with λ = 0.25, nMRD = 0.15, P5 = 0.44, AP = 0.14

Regular similarity with λ = 0.5, nMRD = 0.09, P5 = 0.27, AP = 0.12

Figure 5.13. This figure in combination with Figure 5.11 and Figure 5.12 shows how
too much query-biasing of the similarity can hurt the global navigability of Topic 304.
Once λ = 0.5, the majority of documents place the same one or two documents at
the top of their lists of similar documents. It has become easy to navigate to these
documents that are very similar to the query, but these documents do not provide
good paths to the other relevant documents. While AP with λ = 0.5 stays the same
as with λ = 0.1, the global navigability as measured by nMRD has decreased from
0.17 to 0.09 as λ increased from 0.1 to 0.5.
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CHAPTER 6

USING FIND-SIMILAR ON THE WEB TO CREATE
SHORTCUTS TO RELEVANT WEB PAGES

Browsing by similarity is a search tactic familiar to most people but one that

the web unevenly supports. Successful navigation from a relevant web page to other

relevant pages depends on the page linking to other relevant pages. In this chapter,

we examine the navigability of the web as well as the navigability of the web when

augmented with similarity links provided by find-similar. We find that the addition

of 10 similarity links to a web page will significantly increase the navigability of the

web.

6.1 Introduction

After a long and tiring search, a user finally finds a relevant web page. While the

page is relevant, it does not fully satisfy the user’s need. How should the user proceed?

If the page provides links to other pages, the user can follow those links. Alternatively,

the user could follow links automatically produced by a tool that examines the page’s

content and provides links to similar pages.

A user attempting to navigate from a relevant document to other relevant docu-

ments on the web is faced with at least two challenges. First, the web page’s author

may create hyperlinks with goals other than pointing the reader to related material.

Second, the web is dynamic and many web pages fail to ever link to newer pages.

As applied to the web, find-similar aims to create a more navigable network by

adding additional links to the existing document network that consists of web pages
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Figure 6.1. Mockup of a possible find-similar web browser add-on. Find-similar
provides a list of similar web pages in the left pane given the web page currently
viewed in the right page. The results shown are a subset of the results produced by
Yahoo! for the query “Center for Intelligent Information Retrieval.”

and hyperlinks. The find-similar links are specifically aimed at finding related material

and will also stay up to date as the web grows since they would be most likely be

dynamically produced by a search engine that itself stays up to date with the web.

There are many ways that find-similar could be made available to a user via a

web browser. One possible interface provides find-similar capabilities in a side pane

as shown in Figure 6.1. In this mockup, the user triggers find-similar using a single

button and gets a simple listing of similar web pages. This “single button” interface

could also be created as a toolbar that produces a list of similar web pages either in

the left browser pane, the current web viewing pane, or in a new browser tab.

We are concerned with the navigability of the web both on its own and with the

addition of a find-similar like tool. We first establish the degree to which the web

is navigable, which as we discussed in Chapter 5, is the same as talking about the
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degree to which the well-known cluster hypothesis is true on the web. The web itself

represents a type of document-to-document similarity measure where the similarity

measure is the distance to navigate from one document to another using hyperlinks.

After investigating the extent to which the cluster hypothesis is true on the web

graph, we then attempt to improve the navigability of the web with the automatic

addition of links to similar web documents.

We will show that:

• Relevant documents are either within distance 5 of another relevant page or are

as likely to be reached at greater distances as non-relevant documents.

• The automatic addition of content similarity hyperlinks can significantly in-

crease the number of relevant documents reachable from a given relevant doc-

ument.

• The addition of 10 similarity links produces an absolute gain in global naviga-

bility of 13.8% while at the same time increasing the local navigability of the

web.

6.2 Methods and Materials

In place of working with the actual web, we used the wt10g TREC web collec-

tion. This collection consists of 1,692,096 web pages that were carefully selected

from a larger collection (VLC2 or wt100g) of 18,571,671 documents to “ensure a high

proportion of inter-server links” (Hawking and Craswell, 2005). Soboroff (2002) has

shown the wt10g collection to have structural characteristics similar to the web. No

images or other multimedia content is included in the collection. We constructed

the web graph using the wt10g out links file. We stemmed the collection using the

Krovetz stemmer and used an in-house list of 418 stop words (see Appendix A).
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To compute the document-to-document content similarity, we used the regular

similarity as defined in Section 3.2.3. This method creates a maximum likelihood

estimated model of each document. This method truncates each model to consist of

only the document’s 50 most probable terms. Using this model, the method mea-

sures the similarity of the other documents using KL-divergence and uses Dirichlet

prior smoothing with its parameter set to 1500. We used the Lemur toolkit for our

experiments.

We used the TREC 2001 web ad-hoc topics numbered 501-550. Each topic defines

a set of relevant documents in the wt10g collection. We do not use the topics’ titles

or descriptions in any way.

6.3 Experiments

We conduct two experiments. In the first experiment, we measure the distribution

of the shortest path distance from each relevant document to all other relevant doc-

uments on the web graph and the web graph augmented with similarity links. In the

second experiment, we utilize the navigability metrics of Chapter 5 to characterize

the navigability of the networks.

6.3.1 Distribution of Relevant Documents on the Web Graph

In this experiment, we compared the web graph with two augmented versions of

the graph. For each topic, we augmented the graph by adding 10 out-links to each

relevant document. In the first case, we added links to the 10 most content similar

documents. This case corresponds to our envisioned browser plug-in that provides

a list of the 10 web pages most similar to the current page. In the second case, we

added 10 random links. This case allows us to make sure that the mere addition of

links does not make relevant documents closer to each other on the web graph.
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For each topic, we measured the shortest path distance from each relevant docu-

ment to all other documents. Traversing a link or one “hop” is a distance of 1. This

experiment gives us a simple understanding of the distribution of relevant documents

with a distance metric common to other studies (Albert et al., 1999; Broder et al.,

2000; Menczer, 2004).

We did not add any out-links to the non-relevant documents. We think that users

would only utilize a feature providing these similarity links when they are looking for

pages similar to a current relevant web page. In effect, we say the links do not exist

on non-relevant pages because we do not believe that users will utilize the feature on

non-relevant pages. A result of not adding links to non-relevant documents is that our

measured distance from relevant document to relevant document is an upper bound on

the shortest path length. Augmenting non-relevant documents with additional links

could only have shortened the path lengths. On the other hand, if we had augmented

all documents with additional out-links, the non-relevant documents would be closer

than we report.

We computed overall averages by first averaging the measurements for a topic’s

relevant documents and then averaging all the topics.

6.3.1.1 Results and Discussion

Figure 6.2 shows the distribution of relevant and non-relevant documents as a

function of their web graph distance from relevant documents. The “Web Only”

distribution of relevant documents shows a clear bimodal shape peaking at distances

of 4 and 15. The distribution of non-relevant documents is unimodal peaking around

17. The relevant documents reached at distances greater than 6 are most likely

reached simply as a result of the interconnectedness of the web and are no easier to

reach than non-relevant documents. The peak of relevant documents at distances less
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Figure 6.2. The distance of relevant and non-relevant documents from relevant
documents.
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than 6 demonstrates that the cluster hypothesis is true on the web graph at least for

some relevant documents.

The addition of 10 content similar links brings a significant number of relevant

documents closer to the average relevant document. A similar peaking at a distance

of 4 shows that the relevant documents reached using the similarity links are likely

independent of the ones being found using the existing links. With existing web links,

on average 0.19 relevant documents are within distance 1 from a relevant document.

With the addition of 10 content similarity links, an average of 2.26 relevant documents

are distance 1 from a relevant document. The performance boost continues for the

larger distances. At distance 4, the web-only distribution has an average 1.73 relevant

documents and the web plus similarity links has 3.98.

The addition of 10 random links results in no significant gains at distance 5 or

less. The additional links do bring non-relevant documents closer but do not help at

short distances. Thus, the gains obtained by similarity linking appear to result from

relevant documents being more similar to each other than simply from increasing the

graph connectivity.

Our results are in line with Menczer’s prediction that one would be able to infer

relevance of a page at a maximum of around 4 to 5 hops (Menczer, 2004). Vassilvitskii

and Brill (2006) used distance on the web graph to perform a reranking of search

results given that relevant documents link to other relevant documents. For each top

ranked search result, they performed a limited breadth-first search and found that

searching to a distance of 4 resulted in the best performance. Our results explain

their finding by showing that relevant documents are found within a distance of 5 or

are as likely to be found as non-relevant documents.

The topmost chart in Figure 6.3 shows the growth of the number of non-relevant

documents as a function of the distance from the average relevant document. This

chart shows the number of documents the user would have to examine via a blind,
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Figure 6.3. These three charts present another look at the value of adding similarity
links to web pages. All three charts show a measure as a function of distance from
the average relevant document. The top chart is a closeup of the bottom chart of
Figure 6.2 showing the rapid growth of non-relevant documents. The middle chart
shows the precision of documents and the bottom chart shows the F measure with
β = 1, which is known as F1.
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breadth-first search that ignores relevant documents. While we believe users will

navigate from relevant document to relevant document and will thus be able avoid

examining this many documents, another way to view the utility of the similarity

links is to look at the fraction of pages that are relevant at different distances from a

relevant document. We define this fraction to be the precision at a distance d. This

precision is the number of relevant documents within distance d divided by the total

number of documents within distance d:

Pd =
|Ri≤d|

|Ri≤d| + |Ni≤d| (6.1)

where |Ri≤d| is defined to be (and likewise for |Ni≤d|):

|Ri≤d| =
d∑

i=1

|Ri| (6.2)

with |Ri| being the number of relevant documents at distance i. We utilize the shortest

path from relevant document to relevant document to determine the distance at which

a relevant document is found.

The middle chart of Figure 6.3 shows the overall Pd for the 50 topics. The overall

Pd is the mean of the 50 topics’ Pd. Each topic’s Pd is the mean of the topic’s relevant

documents’ Pd. Here we see the significant gain that adding similarity links has to

the precision.

We are also interested in the recall of relevant documents. Recall is the fraction

of known relevant documents found. The F measure gives us a single measure that

captures both precision and recall. The F measure is:

F =
(β2 + 1)PR

β2P + R

where P is precision and R is recall.
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The bottom chart of Figure 6.3 shows the F measure with β = 1, which is also

known as F1. F1 places an equal weight on precision and recall. In this chart we

again see the significant gains attainable from adding 10 similarity links to web pages.

While this experiment shows that the cluster hypothesis is true to a limited extent

on the web and that find-similar can enhance the cluster hypothesis, it does not give

us any measure of how much we improved the clustering of relevant documents. Our

next experiment gives us measures of navigability.

6.3.2 Navigability of the Web with and without Find-Similar

In this experiment, we applied the local and global measures of navigability from

Chapter 5 to four document networks: the three networks of the first experiment plus

a truncated relevant document network.

In Chapter 5, we gave links a weight equal to the rank of its target document in

the list of documents similar to the link’s source document. For the web graph, we

take the links on a web page and treat them as a ranking of the other web pages. We

give all links a weight equal to the number of links on a page plus 1 divided by 2, i.e.

the average ranking. For example, each link on a page with 9 links will get a weight

of 5. We do this because it is not easy to determine the within page ranking of the

links given our dataset.

The relevant document network is formed with the same content similarity, regular

similarity, as described in the previous section (and in Section 3.2.3). Rather than

create a complete network, we only included links that had a weight of 10 or less,

where the weight is the rank of the document in the list of documents similar to

the given document. This allows us to measure the navigability of the 10 similarity

links minus the web links. Recall that the relevant document network contains only

relevant documents and thus links to non-relevant documents are not included, but
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Web Web + 10 Rand. Links 10 Sim. Links Web + 10 Sim. Links
nMRD 0.021 0.028 0.134 0.166
AP 0.002 0.001 0.051 0.046
P5 0.027 0.011 0.269 0.225

Table 6.1. Average global and local navigability for 4 document networks. The
four networks are the web alone, the web plus 10 random links added to relevant
documents, the relevant document network constructed with 10 similarity links, and
the web plus 10 similarity links added to the relevant documents. The normalized
mean reciprocal distance (nMRD) is a global measure while the average precision
(AP) and the precision at rank 5 (P5) are local measures. The measures are the
average of the per-topic measures of the 50 topics of the TREC 2001 web track.

the remaining links’ weights reflect the existence of the non-relevant documents in

the similarity ranking.

The combination of the web and random network is the same as in the first

experiment. Here we add ten random outgoing links to each relevant document. We

give the 10 random links weights of 1, 2, . . . , and 10, respectively.

6.3.2.1 Results and Discussion

Table 6.1 shows the results. This table shows the mean of the global and local

measures across the 50 topics for each measure. The normalized mean reciprocal

distance (nMRD) is the global measure while the average precision (AP) and precision

at rank 5 (P5) are local measures. Here AP should be preferred to P5 because the

web pages links were weighted in a way that could fail to allow the P5 measure to

properly measure their contribution or lack thereof to the local navigability.

The web alone does not appear to provide good navigability either locally or

globally. Treating nMRD as a measure of efficiency, the web alone is only 2.1%

efficient while the 10 link similarity network is 13.4% efficient.

Combining the web and the similarity links produces the highest nMRD of 0.166.

The web plus random links has a nMRD of 0.028. Compared to the web plus random

links, adding similarity links to the web increases the web’s global navigability by
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0.138, or a 13.8% absolute gain in efficiency. The local navigability of the web also

increases with similarity links, but the local navigability of the web plus similarity

links is slightly lower than the similarity links alone.

The web plus the random links provides little boost in navigability. As such, the

similarity links help navigability by making relevant documents closer to each other

rather than simply by adding more paths to the web. This matches the findings of

the first experiment where we also found that adding 10 content similarity links to

web pages brings relevant documents closer to each other.

Figure 6.4 shows the per topic nMRD and AP for the 50 topics for the web graph,

the similarity network, and the combination of the web and the similarity links. From

these charts we can see that the web is boosting the global navigability of the topics

that have lower local navigability.

6.4 Conclusion

We conducted two experiments that investigated the ability of find-similar to in-

crease the navigability of the web. With our first experiment, we found a bimodal

distribution for the distance of relevant documents to each other on the web graph.

Relevant documents are within a distance of 5 of each other or as likely to be reached

as non-relevant documents. The automatic addition of 10 content similarity links

brings significantly more relevant documents close to each other. In our second ex-

periment, we utilized the measures of navigability from Chapter 5 to measure the

navigability of the web alone and with the addition of similarity links. We found that

the addition of 10 similarity links produced an absolute gain in global navigability of

13.8% while at the same time increasing the local navigability of the web. Augment-

ing the web with similarity links should aid the searcher attempting to navigate from

a relevant document to other relevant documents.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

It has long been known that user feedback or additional user input can substan-

tially boost search quality. The problem faced by information retrieval researchers

has been to create interaction mechanisms that are both powerful and that users will

adopt. In this dissertation, we have focused on the study and improvement of an

already adopted interaction mechanism: find-similar.

Find-similar is an example of the simple interaction mechanisms that we believe

are the route to continued improvements in retrieval quality. These mechanisms can

be integrated with the existing search interface paradigm of a user entering a text

query and receiving a ranked list of results.

The first part of the dissertation focused on measuring the potential of find-similar

using simulation. By simulating user behavior given hypothetical user interfaces, we

discovered that find-similar has the potential to powerfully improve retrieval qual-

ity for users. In the second part of the dissertation, we used network analysis to

study find-similar. We developed measures of navigability that allowed us to study

find-similar and document-to-document similarity measures in a well-defined manner

that is independent of user interfaces and simulated behavior. In combination, the

simulation and network analysis experiments showed how a simple search tool like

find-similar can help users better find relevant documents.

In summary, our key contributions were:

1. We showed that find-similar has significant potential to improve retrieval perfor-

mance. Using simulation, we found that find-similar can match multiple item
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relevance feedback. While perceived as an easier to use version of relevance

feedback, find-similar can be as powerful as a traditionally styled multiple item

relevance feedback.

2. Find-similar is not without its issues. We showed that if users apply find-similar

to already good results, they are likely to degrade the retrieval performance.

3. We also showed that an interface should help the user avoid reexamining doc-

uments to maximize retrieval quality with find-similar.

4. We showed that find-similar can compensate for poor retrieval quality. In effect,

find-similar can be added to existing systems and make them more robust to

variations in users and queries.

5. Poorer quality retrieval systems are helped more by find-similar, and find-similar

boosts performance more on easier search topics than on difficult topics.

6. We found that a query-biased document-to-document similarity outperforms a

similarity measure that ignores the query.

7. We demonstrated that both a local and global measure of the cluster hypothesis

should be used. Our global measure, borrowed from the field of network analysis,

is new to the field of information retrieval.

8. Our measures of the cluster hypothesis allow us to quantify the value of simi-

larity measures like query-biased similarity without ad-hoc assumptions of user

behavior found in our simulation studies.

9. We found the cluster hypothesis to be true to a limited extent on the graph of the

World Wide Web. Using both local and global measures, we showed that adding

10 content similarity links to web pages should make the web significantly more

navigable.
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7.1 Future Work

In this section, we conclude the dissertation by discussing two avenues of future

work. First, we outline work to extend find-similar to problems requiring the novelty

of information. Second, we discuss the further study of different types of similarity.

7.1.1 Novelty

One aspect of find-similar that we have not examined in this dissertation is the

need for some users to find a set of unique answers or information nuggets. For

example, many different news agencies will report on the same event. In many cases,

there will be several documents that say the same information but simply say it in a

different way. Under our present evaluation methodology, which is standard for the

IR tasks we examined, such repetition of information is ignored. In other words, the

documents or information found by the user for these tasks is not required to be novel

compared to the information already found by the user as part of their search.

The TREC complex, interactive question answering (ciQA) track’s evaluation

does require information to be novel. As part of the TREC 2007 ciQA track, we have

begun studying how best to create an interactive IR system for users searching for

answers to complex questions (Smucker et al., 2008). A good information retrieval

system should inherently be a good question answering system. Our work to date

has been to establish a baseline for human performance with a standard interactive

IR system that only allows the user to reformulate the query. Shown in Figure 7.1 is

the interface we created for our ciQA experiments. Future work will involve adding

additional interaction mechanisms to the interface to boost performance.

Extending find-similar to ciQA would involve two significant changes. The first

would be to have find-similar work at the answer level. Users would be able to ask for

answers similar to a given answer. Answers are typically on the order of one sentence

long compared to the many sentence long documents used in this dissertation. We
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Figure 7.1. A screenshot of the interactive, IR system we used for the TREC ciQA
experiments. At the top of the interface, we presented the question and a search
textbox. The area below the question and search box consisted of three vertically
oriented panes. The left pane showed search results. Clicking on a result showed the
respective document in the middle pane. The right hand pane provided a textbox
allowing the user to enter and save an answer to the question. A list of the user’s
saved answers appeared below the answer entry box.

would likely utilize existing techniques for measuring the similarity of sentences (Mur-

dock and Croft, 2005; Metzler et al., 2005; Murdock, 2006; Balasubramanian et al.,

2007).

The second extension would be to address the novelty requirements of ciQA,

which penalize systems for repeating information nuggets in their list of answers. We

would first aim to test a version of find-similar that performs sentence retrieval and

removes sentences too similar to the given answer. We could apply the techniques of

Chapter 5 with the modification that only the novel answers would be used and not

all answers in the calculation of the navigability metrics. If the filtering is successful,

the navigability of the “answer networks” should be improved.
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7.1.2 Multiple Types of Similarity

As we have seen in this dissertation, different types of similarity have better nav-

igability than other types of similarity. We have measured navigability for one goal:

finding relevant documents. Users may have multiple goals or needs, and for some

goals, different similarity measures will produce more navigable networks. We envi-

sion extending find-similar to allow for multiple types of similarity within a single

button or link. As mentioned in Chapter 1, CiteSeer provides different types of simi-

larity for each document in its repository. Our study would focus on the user interface

and usability issues of presenting multiple types of similarity to the user. For exam-

ple, while there may be better types of similarity to use to find a piece of information,

certain paths can make more sense to users (Teevan et al., 2004). We would be par-

ticularly interested in which types of similarity make the most sense for users. In

this dissertation we have taken the stance that the primary notion of similarity that

matters is the one that makes document networks cluster relevant documents better.

Even though we have a local measure of navigability to capture users’ need to have an

information scent (Pirolli, 2007), some similarity measures may offer a better scent

for users in the field.
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APPENDIX A

STOPWORDS

a, about, above, according, across, after, afterwards, again, against, albeit, all,

almost, alone, along, already, also, although, always, am, among, amongst, an, and,

another, any, anybody, anyhow, anyone, anything, anyway, anywhere, apart, are,

around, as, at, av

be, became, because, become, becomes, becoming, been, before, beforehand, be-

hind, being, below, beside, besides, between, beyond, both, but, by

can, cannot , canst, certain, cf, choose, contrariwise, cos, could, cu

day, do, does, doesn’t, doing, dost, doth, double, down, dual, during

each, either, else, elsewhere, enough, et, etc, even, ever, every, everybody, every-

one, everything, everywhere, except, excepted, excepting, exception, exclude, exclud-

ing, exclusive

far, farther, farthest, few, ff, first, for, formerly, forth, forward, from, front, further,

furthermore, furthest

get, go

had, halves, hardly, has, hast, hath, have, he, hence, henceforth, her, here, here-

abouts, hereafter, hereby, herein, hereto, hereupon, hers, herself, him, himself, hind-

most, his, hither, hitherto, how, however, howsoever

i, ie, if, in, inasmuch, inc, include, included, including, indeed, indoors, inside,

insomuch, instead, into, inward, inwards, is, it, its, itself

just

kind, kg, km
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last, latter, latterly, less, lest, let, like, little, ltd

many, may, maybe, me, meantime, meanwhile, might, moreover, most, mostly,

more, mr, mrs, ms, much, must, my, myself

namely, need, neither, never, nevertheless, next, no, nobody, none, nonetheless,

noone, nope, nor, not, nothing, notwithstanding, now, nowadays, nowhere

of, off, often, ok, on, once, one, only, onto, or, other, others, otherwise, ought, our,

ours, ourselves, out, outside, over, own

per, perhaps, plenty, provide

quite

rather, really, round

said, sake, same, sang, save, saw, see, seeing, seem, seemed, seeming, seems, seen,

seldom, selves, sent, several, shalt, she, should, shown, sideways, since, slept, slew,

slung, slunk, smote, so, some, somebody, somehow, someone, something, sometime,

sometimes, somewhat, somewhere, spake, spat, spoke, spoken, sprang, sprung, stave,

staves, still, such, supposing

than, that, the, thee, their, them, themselves, then, thence, thenceforth, there,

thereabout, thereabouts, thereafter, thereby, therefore, therein, thereof, thereon,

thereto, thereupon, these, they, this, those, thou, though, thrice, through, through-

out, thru, thus, thy, thyself, till, to, together, too, toward, towards

ugh, unable, under, underneath, unless, unlike, until, up, upon, upward, upwards,

us, use, used, using

very, via, vs

want, was, we, week, well, were, what, whatever, whatsoever, when, whence, when-

ever, whensoever, where, whereabouts, whereafter, whereas, whereat, whereby, where-

fore, wherefrom, wherein, whereinto, whereof, whereon, wheresoever, whereto, where-

unto, whereupon, wherever, wherewith, whether, whew, which, whichever, whichso-

ever, while, whilst, whither, who, whoa, whoever, whole, whom, whomever, whomso-
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ever, whose, whosoever, why, will, wilt, with, within, without, worse, worst, would,

wow

ye, yet, year, yippee, you, your, yours, yourself, yourselves
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APPENDIX B

RELEVANT DOCUMENT NETWORKS

This appendix shows 30 examples of relevant document networks randomly se-

lected from the 150 topics of TREC 6, 7, and 8. Included with each figure is the

precision at rank 5 (P5), a local measure of navigability, and the normalized mean

reciprocal distance (nMRD), which is a global measure of navigability. The square

node in yellow represents the initial results as computed with a query likelihood re-

trieval. In each figure, the left network is formed by regular similarity and the right

network is formed by query-biased similarity as described in Chapter 3. The topic

number is given as well as the topic’s title.

To create the drawings, we take the complete, directed relevant document network

and convert it to an undirected network by giving the single link between documents

a weight equal to the lowest of the two links between documents in the directed

network. While all links are used for the layout, the only links drawn are those with

a weight of 5 or less. In other words, a visible edge means that at least one of the

documents in a pair of documents was in the top 5 similar documents for the other

document.
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Regular Query-Biased
nMRD = 0.16, P5 = 0.07 nMRD = 0.16, P5 = 0.07

Figure B.1. Topic 309: Rap and Crime

Regular Query-Biased
nMRD = 0.07, P5 = 0.13 nMRD = 0.07, P5 = 0.14

Figure B.2. Topic 314: Marine Vegetation
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Regular Query-Biased
nMRD = 0.04, P5 = 0.09 nMRD = 0.29, P5 = 0.40

Figure B.3. Topic 316: Polygamy Polyandry Polygyny

Regular Query-Biased
nMRD = 0.49, P5 = 0.40 nMRD = 0.62, P5 = 0.47

Figure B.4. Topic 320: Undersea Fiber Optic Cable
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Regular Query-Biased
nMRD = 0.21, P5 = 0.34 nMRD = 0.20, P5 = 0.36

Figure B.5. Topic 322: International Art Crime

Regular Query-Biased
nMRD = 0.21, P5 = 0.32 nMRD = 0.36, P5 = 0.49

Figure B.6. Topic 325: Cult Lifestyles
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Regular Query-Biased
nMRD = 0.32, P5 = 0.60 nMRD = 0.47, P5 = 0.82

Figure B.7. Topic 326: Ferry Sinkings

Regular Query-Biased
nMRD = 0.16, P5 = 0.21 nMRD = 0.23, P5 = 0.27

Figure B.8. Topic 329: Mexican Air Pollution
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Regular Query-Biased
nMRD = 0.24, P5 = 0.40 nMRD = 0.42, P5 = 0.63

Figure B.9. Topic 333: Antibiotics Bacteria Disease

Regular Query-Biased
nMRD = 0.37, P5 = 0.24 nMRD = 0.55, P5 = 0.44

Figure B.10. Topic 334: Export Controls Cryptography
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Regular Query-Biased
nMRD = 0.00, P5 = 0.00 nMRD = 0.52, P5 = 0.28

Figure B.11. Topic 348: Agoraphobia

Regular Query-Biased
nMRD = 0.33, P5 = 0.49 nMRD = 0.37, P5 = 0.57

Figure B.12. Topic 350: Health and Computer Terminals
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Regular Query-Biased
nMRD = 0.27, P5 = 0.59 nMRD = 0.31, P5 = 0.67

Figure B.13. Topic 370: food/drug laws

Regular Query-Biased
nMRD = 0.09, P5 = 0.08 nMRD = 0.06, P5 = 0.08

Figure B.14. Topic 371: health insurance holistic
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Regular Query-Biased
nMRD = 0.25, P5 = 0.33 nMRD = 0.29, P5 = 0.40

Figure B.15. Topic 384: space station moon

Regular Query-Biased
nMRD = 0.01, P5 = 0.00 nMRD = 0.03, P5 = 0.02

Figure B.16. Topic 394: home schooling
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Regular Query-Biased
nMRD = 0.17, P5 = 0.21 nMRD = 0.19, P5 = 0.25

Figure B.17. Topic 397: automobile recalls

Regular Query-Biased
nMRD = 0.12, P5 = 0.34 nMRD = 0.24, P5 = 0.44

Figure B.18. Topic 399: oceanographic vessels
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Regular Query-Biased
nMRD = 0.21, P5 = 0.39 nMRD = 0.17, P5 = 0.32

Figure B.19. Topic 404: Ireland, peace talks

Regular Query-Biased
nMRD = 0.29, P5 = 0.42 nMRD = 0.30, P5 = 0.45

Figure B.20. Topic 405: cosmic events
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Regular Query-Biased
nMRD = 0.18, P5 = 0.45 nMRD = 0.27, P5 = 0.53

Figure B.21. Topic 408: tropical storms

Regular Query-Biased
nMRD = 0.28, P5 = 0.42 nMRD = 0.52, P5 = 0.83

Figure B.22. Topic 410: Schengen agreement
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Regular Query-Biased
nMRD = 0.20, P5 = 0.38 nMRD = 0.27, P5 = 0.41

Figure B.23. Topic 412: airport security

Regular Query-Biased
nMRD = 0.25, P5 = 0.33 nMRD = 0.31, P5 = 0.37

Figure B.24. Topic 414: Cuba, sugar, exports

136



Regular Query-Biased
nMRD = 0.12, P5 = 0.23 nMRD = 0.23, P5 = 0.39

Figure B.25. Topic 428: declining birth rates

Regular Query-Biased
nMRD = 0.08, P5 = 0.09 nMRD = 0.12, P5 = 0.11

Figure B.26. Topic 433: Greek, philosophy, stoicism
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Regular Query-Biased
nMRD = 0.19, P5 = 0.35 nMRD = 0.26, P5 = 0.48

Figure B.27. Topic 435: curbing population growth

Regular Query-Biased
nMRD = 0.14, P5 = 0.23 nMRD = 0.26, P5 = 0.39

Figure B.28. Topic 440: child labor
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Regular Query-Biased
nMRD = 0.23, P5 = 0.28 nMRD = 0.28, P5 = 0.36

Figure B.29. Topic 441: Lyme disease

Regular Query-Biased
nMRD = 0.20, P5 = 0.42 nMRD = 0.32, P5 = 0.57

Figure B.30. Topic 446: tourists, violence
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