
Refining keyword queries for XML retrieval
by combining content and structure

Desislava Petkova
Department of Computer

Science
University of Massachusetts

Amherst
Amherst, MA 01003

petkova@cs.umass.edu

W. Bruce Croft
Department of Computer

Science
University of Massachusetts

Amherst
Amherst, MA 01003

croft@cs.umass.edu

Yanlei Diao
Department of Computer

Science
University of Massachusetts

Amherst
Amherst, MA 01003

yanlei@cs.umass.edu

ABSTRACT

The structural heterogeneity and complexity of XML repos-
itories makes query formulation challenging for the average
user, even when she has an unambiguous information need.
Although finding approximate answers to XML queries is
an active area of research, it is often assumed that the user
will provide some useful and correct structural information
to describe the type or level of target XML elements. How-
ever, in practice the users of an XML retrieval system, such
as the interface to a digital library, have varying levels of
experience and knowledge of XML, and many will have dif-
ficulties in exploiting rich structural information.

Therefore, we believe that a more practical and user-
friendly XML retrieval system would have a keyword-based
or natural language interface and would relegate the task of
combining textual and structural clues to the retrieval algo-
rithm. As one step towards achieving this goal, we propose
an automatic query refinement method to generate a scored
list of well-formed XML queries that capture the original
information need and conform to the underlying XML data.
We formulate query generation as a search problem and this
allows solving it with the A* algorithm. We evaluate our
method on two XML datasets to demonstrate its effective-
ness in integrating query and collection statistics and gen-
erating accurate content-and-structure queries.

1. INTRODUCTION
The functionality to mark up text with user-defined, self-

descriptive tags makes XML a versatile framework for stor-
ing, processing and sharing data. The markup indicates
structure and XML documents can be represented as trees
or graphs of XML elements, where the structure comple-
ments the content and provides additional context, charac-
terization and semantics.

The expressiveness of XML comes at the price of com-
plexity, both in terms of query formulation and query eval-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM ’08 Napa Valley, CA USA
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

uation. The former issue is important because it influences
how easily and successfully users interact with an XML
search engine. Formal XML query languages such as XPath
and XQuery have precise, non-intuitive syntax and offer less
straightforward (from user point of view) means to express
an information need than a natural language or keyword
query. But even if the user is knowledgeable about XML,
she also has to be familiar with the schema underlying the
XML repository in order to write effective queries.

Therefore, we argue that it is desirable to keep XML query
interfaces keyword-based and leave the task of dealing with
the complexity of XML structure to the retrieval system.
This requires an automatic method for extracting structural
clues from the query and integrating them with structural
information from the XML repository in order to infer what
the user is looking for.

In this work, we develop a query refinement technique
that generates content-and-structure queries from plain-text
queries. Our algorithm first uses the relationship between
structural elements and their content to add structural con-
straints to each query term, independently of other terms,
thus creating a set of targets. The algorithm then transforms
the target components iteratively and combines them into
a single target, which can be directly written as a formal
XPath query. For most inputs, there are different ways of
combining the same set of targets into a singleton consistent
with the XML data. Therefore, the algorithm uses infor-
mation gain to score individual transformations and thus
compute a final score for each generated structured query.
The score can be interpreted as a measure of the degree to
which a query represents the original information need.

Our technical contributions include

• Defining query generation as a search problem where
the goal is to find the highest scoring structured query.

• Developing transformation operators to generate suc-
cessors in the search space of query targets.

• Introducing the metric information gain to measure
the probability of query transformations.

Our technique performs automatic rewriting of keywords
queries, a structural version of query expansion with re-
lated content terms [15]. It has two main advantages: the
user is not required to have any special knowledge of XML
nor to specify appropriate structural restrictions of the re-
trieved XML fragments. Automatically generated struc-

tured queries can be used either as hard constraints for prun-
ing results, or in a probabilistic, relevance-based framework
– as hints for improving ranking.

We performed experiments to evaluate the accuracy of au-
tomatically generated content-and-structure queries as well
as their effectiveness for ranked XML retrieval. The results
show that the method can improve precision because it does
not rely on the users to be experts at exploiting XML struc-
ture. The method is entirely data-driven and does not use
heuristic rules for how the information need is specified. It is
also applicable when the XML collection is not homogeneous
and consistent with an existing schema.

2. BACKGROUND AND RELATED WORK
Although structure is integral to how information is en-

coded in XML documents, there is evidence that users are
not familiar enough with the structural aspect of XML data
and are not able to take advantage of it. Trotman et al. [17]
report that even experienced users do a poor job at giving
structural hints, as shown by comparing the performance of
an XML system across two retrieval scenarios on the same
topic, one with structural constraints and the other without.
Trotman et al. conclude that helpful structural hints are a
function of the collection and not the query.

To assist the user in exploring an XML collection and re-
duce the complexity of query formulation, automatic meth-
ods for visualizing XML schemas have been developed [6,
19]. There have also been attempts to develop extensions
for integrating user preferences as ranking functions via soft
constraints [10], or to define simpler, more intuitive XML
query languages [2].

Even if an XML retrieval system provides support for
query formulation, interaction or data exploration through
the use of visualization techniques such as drop-down menus
could be time-intensive and therefore impractical. Many
users are familiar with performing simple keyword search
due to the popularity of web search engines, and might prefer
to use a structure-free query interface even when searching
a semi-structured database such as a digital library.

However, the complexity and ambiguity of natural lan-
guage makes the task of ranking answers in the context of
keyword queries extremely challenging. For example, Li et
al. [12] have created a generic interactive query interface for
translating free-text queries into XQuery. It uses the output
of a dependency parser to map the proximity of word tokens
into semantic relationships but the technique relies heavily
on heuristic rules.

Another heuristic framework for structure-free XML re-
trieval is based on the concept of a lowest common ancestor
(LCA). By definition, an LCA elements for a given query is
the root of an XML subtree which contains all keywords but
has no descendans which also contain the query terms. In
this case, the descendant is assumed to be a better, more spe-
cific answer. Many LCA variations have been proposed [20,
13, 11] but they are designed to find XML fragments that
certain conditions of non-redundancy rather than a particu-
lar query. Therefore the result of LCA-based XML retrieval
is not a ranked list of answers but a set of XML elements that
all satisfy the heuristic condition equally well though possi-
bly they satisfy different information needs. An alternative
solution for supporting keyword search for XML retrieval is
to expand a keyword query with structural constraints, and
then retrieve answers for the expanded query.

For example, Hsu et al. [8] propose a method which adds
structural constraints derived from the context of a keyword
query, where context is defined as the set of XML elements
which contain all input query terms. Path expressions de-
rived from the context set are assumed to capture the con-
textual meaning of a keyword query. To improve accuracy,
paths are weighted according to their relevance estimated
as a function of node proximity and number of descendants.
However, this technique does not consider structure and
term distribution statistics that can be automatically gath-
ered from the XML corpus.

Most similar to our work is the top-k keyword search over
a relational database approach proposed by Hristidis et al.
[7]. Since the search is performed over structured data, this
requires converting the query into a formal SQL expression.
Hristidis et al. propose a rank-aggregation algorithm that
generates trees of joined relations which contain all query
terms and assigns them relevance scores as a combination
of TF×IDF-like scores estimated for individual text values.
The first step is to run the query against all relations in
the database to find a set of tuples that partially match the
query. These are joined using the database schema to gen-
erate parametrized SQL queries, which are then evaluated
by a DBMS with support for text-search functionality to
retrieve top-k results.

3. XML QUERY REFINEMENT
We define the process of XML query refinement as au-

tomatic generation of content-and-structure queries from a
given content-only query. We assume that the user has pro-
vided sufficient description of her information need in the
form of a keyword query. Our goal is to construct XML
queries that the user might have written if she knew XML,
the schema of the data and an XML query language. To
achieve this, our algorithm uses the measure of information
gain to construct queries that are likely structured formula-
tions of the input query given the available collection infor-
mation. Here ‘collection information’ is broadly defined to
include content information such as statistics of term occur-
rences and co-occurrences, as well as structure information
such as a schema summary or a thesaurus for the names of
XML elements and their attributes.

We use the following notation in the rest of the paper.
We use the term target component or simply target to de-
scribe a piece of query information. There are two types
of target components – bound and unbound. An unbound
target, written as //a, describes an XML element of type a,
i.e. a segment enclosed between an opening tag <a> and
a closing tag . A bound target, written as //a[∼‘t’],
describes an XML element of type a that (approximately)
satisfies the condition given in the square brackets. The fil-
tering condition ∼‘t’ says that the content of a is topically
relevant to ‘t’. The semantics of ∼ is similar to that of the
about filter in the NEXI language [18]. Two targets can
also be linked together by designating one target as an ad-
ditional condition on the other. For example, //a//b adds
a restriction on the ancestors of target //b, while //a[.//b]
adds a restriction on the descendants of //a.

The generation process proceeds as follows:

1. Break up the query into units (terms or phrases of
related terms) since keywords are not necessarily in-
tended to appear all in the same element. For each

unit, find what types of elements are likely to contain
it, and create one target component for each possible
binding of content term and structural element.

2. Generate initial target sets as combinations of input
target components. For most inputs, multiple initial
sets are created because of the uncertainty to what
type elements the user is actually interested in.

3. Generate queries by modifying a target component or
combing two components until a target set is reduced
to a singleton. A single target describes the set of
relevant elements by specifying the type of elements
to retrieve as well as structural or content conditions.

In this XML query generation framework, a query is not
treated as a single semantic unit. Instead, the algorithm
divides the intput into targets and searches for the “best”
way to combine them. A sequence of transformations is
applied to reach of the goal of a single target component, and
each transformation is assigned a score based on the metric
information gain. The scores of consecutive transformation
are multiplied to compute a final score for the generated
query, which can be interpreted as the probability that it
expresses the original information need.

We point out that query refinement is a bottom-up process
that can be considered the reverse of query relaxation frame-
work for XML retrieval. Relaxation is designed to modify
user queries when they are too restrictive and none or only a
few tuples are retrieved initially. The method can be applied
to rank elements in semi-structured top-k retrieval with a
relevance about operator, as a way of finding approximate
answers to a query by finding exact answers to approximate
queries.

For example, Amer-Yahia et al. [1] propose a query relax-
ation method where the initial structured query is modified
by relaxing structural constraints – e.g. by removing leaf
nodes, converting a child to a descendant or moving a sub-
tree a level higher in the query tree. This results in a set of
modified queries that are similar to the original query Qo to
a different degree. The relaxed queries are assigned scores
based a modified TF×IDF computation. Elements which
satisfy at least one relaxed query are retrieved and ranked
according to how “close” they are to the original – the more
Qo is relaxed in order to retrieve an element x, the more
uncertain it is that x satisfies the user’s information need.

Relaxation is a top-down process: it starts with an XPath
query that contains both textual and structural constraints
and then iteratively removes or relaxes some of the con-
straints. In terms of the query as a representation of the in-
formation need this process makes the query more ambigu-
ous. Relaxation also requires the user to formulate struc-
tured queries in the first place, and then assumes that the
submitted query is a prefect representation of the need, since
answers to the Qo are always retrieved first.

On the other hand, query refinement starts with a plain-
text query (the ultimate relaxed query) and expand it with
structural hints. Following the example of Amer-Yahia et
al. [1], in the following section we define a set of transfor-
mation operators, adapt widely-used IR measures and tech-
niques to assign scores to transformations, and we propose
an algorithm that modifies intermediate results to generate
well-formed XML queries.

4. SEARCHING FOR THE BEST QUERY
Before we describe the query refinement algorithm in de-

tails, we outline two important assumptions that the method
is built upon. These are

1. Keyword query non-ambiguity.

2. Availability of XML thesaurus.

Assumption 1 implies that the user query contains sufficient
specification of the information need. The concept of am-
biguity itself is not clearly defined and is hard to quantify
[4]. For XML data, where the semantics of documents is
captured by both structure and content, we assume that the
user is interested in one type of XML elements and that she
has provided some structural clues to indicate that.

Assumption 2 implies the existence of prior information
about the names of XML elements and their attributes. For
example, in our experiments we use a list of high-precision
synonyms for each unique tag which we have created based
on our knowledge of the XML collection. In general, an XML
schema defines only a small number of entities (very small
compared to the number of documents instantiated accord-
ing to the schema), so we consider the manual construction
of such a thesaurus to be a feasible task.

4.1 Initialization
First, the algorithm breaks up the input query into terms

that refer to structure (XML tags or attributes) and terms
that refer to text (content terms). We also apply the method
described by Jones et al. in [9] to identify consecutive con-
tent terms with high point-wise mutual information and
group them into phrases. Stop words are ignored. For ex-
ample, in the query “papers by jennifer widom”, the term
‘paper’ refers to an XML element that represents a scientific
article (not necessarily tagged as paper); ‘jennifer widom’
is a phrase which refers to the content of the element; and
‘by’ is a stop word.

Using the above terminology, a node label is an unbound
target, and a content term binds a target. Since most terms
appear in different types of elements, we create one bound
target for each possible binding. Let say ‘widom’ can occur
in the author or editor field; then we would create two
bound targets //author[∼‘widom’] and //editor[∼‘widom’].
We score the variants based on the probability of observing
the term in a given XML element, according to unigram lan-
guage models (not smoothed with the collection frequencies)
for elements of each type.

Query term classification (as either a tag or a content
term) and target construction are the basis of initialization.
To continue the example “papers by jennifer widom”, we
present the result of its initialization in Table 1. Note that
the algorithm has“translated” the term ‘paper’ into ‘article’.
The functionality to recognize structural terms such as tags
assumes the availability of prior information provided by the
creator of the database (Assumption 2).

After each query term has been converted into a target (or
several alternative targets), we combine the targets for the
entire query into a target set by multiplying their probabili-
ties (Table 1). Thus one target expresses a piece of relevant
information, and a target set expresses all information pro-
vided by the user query. A target set is not a well-formed
XML query but next we define several operators that will al-
lows us to transform target sets into XML queries compliant
with the data.

papers {//article} 0.5000 {//article} {//author[∼‘jennifer widom’]} 0.3421
{//inproceedings} 0.5000 {//inproceedings} {//author[∼‘jennifer widom’]} 0.3421

{//inproceedings} {//editor[∼‘jennifer widom’]} 0.1577
jennifer {//author[∼‘jennifer widom’]} 0.6842 {//article} {//editor[∼‘jennifer widom’]} 0.1577
widom {//editor[∼‘jennifer widom’]} 0.3154 {//inproceedings} {//title[∼‘jennifer widom’]} 0.0002

{//title[∼‘jennifer widom’]} 0.0004 {//article} {//title[∼‘jennifer widom’]} 0.0002

Table 1: Initial targets (left) and target sets (right) for the input query “papers by jennifer widom”.

4.2 Transformation Operators
Next, the query rewriting process recursively transforms

target sets in order to build structured queries. The algo-
rithm applies a series of operators to modify intermediate
target sets until they contain a single target. The transfor-
mation operators are defined and applied so that a simpleton
corresponds to a well-formed XML query. Some target sets
cannot be reduced to a single target but our goal is to find
the top k automatic queries rather than a complete set of
possible queries.

We define the following operators for transforming and
combining targets:

• aggregation: merges two targets with the same tag,
combines any filtering conditions
{//a},{//a[∼‘x’]} 7→ {//a[∼‘x’]}

{//a[∼‘x’]},{//a[∼‘y’]} 7→ {//a[∼‘x y’]}

• prefix expansion: adds an ancestor condition
{//b} 7→ {//a//b}

{//b[∼‘x’]} 7→ {//a//b[∼‘x’]}

where a is an ancestor of b according to the observed
collection structure

• ordering: combines two targets by designating one as
a restriction on the other
{//a},{//b} 7→ {//a//b} or {//a[.//b]}
{//a},{//b[∼‘x’]} 7→ {//a//b[∼‘x’]} or {//a[.//b[∼‘x’]]}
where a can be an ancestor of b according to the ob-
served collection structure

The difference between specification and ordering is that
with specification, we take a target u from the current set
and create an unbound target v based on the schema to
specify it; with ordering, we take two targets u and v from
the current set, bound or not, and join them together.

As an example of ordering transformation, let us order the
targets //article and //author[∼‘jennifer widom’]. There
are two possible orderings, each asks for different type of
XML fragments to be retrieved and therefore expresses very
different information needs:

• //article//author[∼‘jennifer widom’] – This target says
that a relevant element is an author that satisfies two
conditions: 1) its content is related to ‘jennifer widom’
and 2) it has an article ancestor.

• //article[.//author[∼‘jennifer widom’]] – This target
says that a relevant element is an article that sat-
isfies one condition: 1) it has a descendant author

related to ‘jennifer widom’.

To complete the definition, we explain how to compute trans-
formation scores.

Formally, a target u is defined by its schema name (re-
quired) u.tag() as well as restrictions (optional) on its con-
tent u.text() and its structure u.path().

We take care to observe target compatibility to guaran-
tee that the generated queries respect the organization of
the XML data; we write the condition of compatibility as
C(u.path(), v.path()). This implies that when joining two
targets any constraints on their structure or content are in-
tegrated in compliance with the data; we write the result
as I(u.text(), v.text()) and I(u.path(), v.path()) for textual
and structural restrictions respectively.

Applying and scoring aggregations

Let u and v be two targets to aggregate. The aggregation
operator A is applicable if u.tag() = v.tag() and C(u.path(),
v.path()). Then

A(u, v) = {w : w.tag() = u.tag(),

w.text() = I(u.text(), v.text()),

w.path() = I(u.path(), v.path()),

p(w) = p(u)p(v)}

Applying and scoring prefix expansions

Here we introduce a function d that given targets u and v

returns the probability that u is a descendant of v. This
probability can be estimated based on the proportion of u
elements that are descendants of an v element in the data.

Now let u be a target to specify and v be an unbound
target to specify it. The expansion operator E is applicable
if C(u.path(), v). Then

E(u) = {w : w.tag() = u.tag(),

w.text() = u.text(),

w.path() = I(u.path(), v),

p(w) = d(u, v)p(u)}

Applying and scoring orderings

To score orderings, we use the information theoretic measure
information gain (also known as KL-divergence). By defini-
tion, given two probability distributions p(x) and p(x|y) for
the same discrete random variable X, the information gain
of y is

g(y) =
X

x∈X

p(x|y) log
p(x|y)

p(x)

If x and y are two targets to be ordered – for example //a
and //b respectively, then x|y is //a[.//b] and y|x is //a//b
where p(x) is a distribution over all XML segments that
satisfy the first target, and p(y) is a distribution over all
XML segments that satisfy the second target.

Now let u and v be two targets to order. The ordering
operator O is applicable if C(u.path(), v) or C(v.path(), u).

Then

O(u, v) = {w : w.tag() = u.tag(),

w.text() = u.text(),

w.path() = I(u.path(), v),

p(w) = g(v)p(u)p(v)}

∪ {w : w.tag() = v.tag(),

w.text() = v.text(),

w.path() = I(v.path(), u),

p(w) = g(u)p(u)p(v)}

where g(u) and g(v) are normalized to sum up to one by
dividing by their sum. Normalization is necessary since in-
formation gain ranges from 0 to ∞ while we want to inter-
pret scores as the probability that a target set represents the
same information need as the input keyword query.

By using information gain we attempt to choose the order-
ing that is more informative and therefore more plausible.
Under the assumption of query non-ambiguity (Assumption
1), the user has provided the system specific information to
distinguish XML fragments of interest from a much larger
set. To show how information gain works in scoring order-
ings, let us order //article and //author[∼‘jennifer widom’].

First, we consider the ordering //article[.//author[∼‘jen-
nifer widom’]]. In this case, the discrete space is the set
of all article elements. Given only the unbounded target
//article without any further information about the relevant
sets, it is reasonable to assume that the probability distribu-
tion is uniform – each article has the same chance of being
relevant to the user. If we are also given the description
//author[∼‘jennifer widom’], then most articles will become
irrelevant as their authors do contain neither ‘jennifer’ nor
‘widom’. For the rest the probability of relevance can be
estimated in terms of their query likelihood score.

The ordering //article//author[∼‘jennifer widom’] has dif-
ferent interpretation. In this case, the discrete space is the
set of all author elements related to ‘jennifer widom’. The
original probabilities can be estimated as query likelihood
scores, and the conditional distribution assigns probabilities
depending on whether an author has an ancestor article
or it does not.

In this example, the information gain of specifying that
articles to retrieve are written by Jennifer Widom is higher
than the information gain of specifying that authors to re-
trieve have written an article. If most author elements which
contain the phrase ‘jennifer widom’ are descendants of an
article, the second transformation is not very “interesting”.
But if only a small portion of articles have Jennifer Widom
as an author, the first transformation is informative as it in-
dicates that the user is interested in the corresponding small
set of articles.

4.3 Query generation
The transformation operators are required to preserve cer-

tain compatibility conditions. In the context of XML, com-
patibility implies the algorithm does not create targets that
do not comform to the observed XML data. For example, if
there are no title elements with a descendant article,
the target //title[.//article] does not agree with the data.
Knowledge of the schema is not required (apart from the
XML thesaurus, recall Assumption 2) and thus the process

of joining and transforming targets is guided entirely by the
data.

Maintaining the consistency of transitional targets guar-
antees that target sets consisting of a single target can be
directly written as well-defined, simplified XPath queries.
For a given singleton u, u.tag() specifies the type of XML
elements to be retrieved, u.text() describes relevant content,
and u.path() recursively specifies restrictions on ancestors
and/or descendants.

Therefore we can define query refinement as finding the
highest-probability singletons, and implement the genera-
tion process as an A* search, where successors are generated
by performing applicable transformations. A similar appli-
cation of A* underlines the WHIRL database management
system described by Cohen in [3].

For our particular problem, the general A* algorithm is
modified to search for the target sets with highest proba-
bility rather than the path with shortest length – i.e. we
maximize rather than minimize scores. Maximization im-
plies that an admissible heuristic function must overestimate
rather than underestimate the score of any transformation.
A straightforward upper bound for each transformation is
1 since the scores are probabilities and therefore lie in the
interval [0,1]. The search stops when a target set of size 1 is
selected for expansion, or continues until k such simpletons
are found. Finally, we have an additional stopping condition
since the scores are real numbers that can get very close to
zero; therefore we stop the search when the probability of
target sets in the open list becomes smaller than a specified
lower bound.

Algorithm 1 Query-A*-Search(Initial,k,ǫ)

Require: Initial target sets Initial
Number of queries to generate k ≥ 1
Minimum query probability ǫ ∈ (0, 1)

1: Opened ← Initial
2: Answers ← {}
3: while Opened 6= {} do
4: s : s ∈Opened, f(s) = max f(s′)
5: Opened ← Opened - {s}
6: if f(s) < ǫ then
7: Return Answers
8: end if
9: if s is a goal state then
10: Answers ← Answers ∪ {s}
11: if |Answers| = k then
12: Return Answers
13: end if
14: else
15: Opened ← Opened ∪ Successors(s)
16: end if
17: end while

5. EVALUATION AND DISCUSSION
We evaluated our query generation algorithm on two XML

datasets. The first is the freely available DBLP Records, a
collection of almost one million bibliographic entries.1; the
second is a private collection of resumes owned by the job
search company Monster2, which also contains about a mil-
lion documents.

Both collections have semantically rich XML structure, so
their markup contains useful and discriminative information

1http://dblp.uni-trier.de/xml/
2http://www.monster.com/

Figure 1: The initial stages of the A* execution for
the input query “people who work on query optimiza-

tion” show the consecutive application of ordering
and expansion transformations.

and is not merely layout-oriented. In these collections, the
tags refer to semantic entities and categories, which is indi-
cated by the fact that XML elements of different types have
significantly different term distributions. For example, in
DBLP, p(year) is a distribution over integers, p(author) and
p(editor) are distributions over proper names, p(title) is a
distribution over computer science-related terms. Thus con-
tent implicitly characterizes the semantics of the elements.
We use simple unigram language models to represent ele-
ments but they can be extended with synopses [14] or other
advanced schema-aware summaries [5].

5.1 DBLP
We present several example keyword queries and the cor-

responding automatically generated structured queries in
Table 2 and an illustration of how A* is executed to process
the query“people who work on query optimization” in Figure
1. The input queries contain explicit and implicit structural
clues. For example, terms such as ‘paper’ in Q.1, ‘book’ in
Q.2 and ‘people’ in Q.3 refer directly to XML elements and
thus provide explicit structural information. Content terms
provide also some implicit information about the structure
of relevant elements. For example, the term ‘2000’ in Q.5
indicates that a particular year or range of years is part of
the information need.

When we examine the output of the query refinement pro-
cess in Table 2, we observe that the highest ranked queries
are plausible content-and-structure interpretations of the in-
put query. Although there exist other syntactically correct
formulations, the structured queries generated by our algo-
rithm not only adhere to the XPath language specifications,
but more importantly, they reflect the organization and the
term distributions of the underlying XML documents.

The examples also demonstrate what the notion of query
non-ambiguity implies in the context of XML retrieval. We
have already stressed that our method assumes the original
query is specific, i.e. the user has provided sufficient de-
scription of her information need. This assumption is criti-
cal since query refinement might not provide an advantage

4 5 6 7 8 9

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Number of query terms

N
u

m
b

e
r

o
f

n
o

d
e

s
 e

x
p

a
n

d
e

d

Figure 2: A* search performance on 60 Monster
queries in terms of nodes expanded before finding
the highest scoring structured query.

for very short, ambiguous queries when there is not enough
information to infer what the user is looking for. For exam-
ple, given a query which simply says “jennifer widom”, it is
easy to place the phrase in a target of type author but it
is unlikely that the user is searching for a long list of author
elements that all contain the same name.

The benefit of XML query refinement as illustrated by the
results in Table 2 is intuitive: the structured queries express
a more obvious information need, and could make finding
relevant XML fragments easier for a retrieval system that is
developed to take advantage of such queries.

Alternative queries can be handled naturally in a proba-
bilistic framework where elements retrieved in response to
a generated query with higher probability are given higher
score. Structured queries can also be used to organize re-
trieval results in clusters, by displaying the query in response
to which a sub-group of elements is retrieved.

The query refinement process finds the most likely ways to
join initial targets given available collection statistics. How-
ever, in its current implementation the method does not have
any knowledge of natural language. This implies a limitation
since the algorithm ignores the order of target components
and could create the same set of structured queries for dif-
ferent information needs in cases where the order of query
terms carries some semantics. This issue can be addressed
by incorporating more sophisticated natural language anal-
ysis during intialization (Section 4.1).

5.2 Monster
The second dataset on which we evaluated the accuracy of

automatic query refinement is a collection of resumes, with
60 queries provided by the owner of the data, Monster.com.
The algorithm successfully generated at least one content-
and-structure query for all input queries. The number of
nodes expanded by A*, as a measure of the efficiency of the
search, is positively correlated with the number of keywords
(Figure 2). Examples of automatically generated structured
queries for the Monster data are given in Table 3.

content-only content-and-structure queries scores

papers on //article[.//title[∼‘query optimization’]] 1.000000
query //inproceedings[.//title[∼‘query optimization’]] 0.912256

Q.1 optimization //article//title[∼‘query optimization’] 0.243833
//inproceedings//title[∼‘query optimization’] 0.087743
//any[∼‘query optimization’]//inproceedings 0.013359

books //book[.//editor[∼‘jennifer widom’]] 1.000000
edited by //book[.//author[∼‘jennifer widom’]]//editor 0.312400

Q.2 jennifer //book//editor[∼‘jennifer widom’] 0.294905
widom //book[.//editor[∼‘jennifer widom’]]//editor 0.225523

//book[.//editor]//author[∼‘jennifer widom’] 0.184321
people //article[.//title[∼‘query optimization’]]//author 1.000000

who work on //inproceedings[.//title[∼‘query optimization’]]//author 0.748677
Q.3 query //inproceedings//author 0.458705

optimization //inproceedings[.//author][.//title[∼‘query optimization’]] 0.229194
//article[.//author][.//title[∼‘query optimization’]] 0.139917

information //inproceedings[.//title[∼‘information retrieval’]]//booktitle 1.000000
retrieval //article[.//title[∼‘information retrieval’]]//journal 0.999613

Q.4 conferences //article[.//booktitle]//title[∼‘information retrieval’] 0.723100
//article//journal[∼‘information retrieval’] 0.362296
//journal[∼‘information retrieval’] 0.362296

the editors of //proceedings[.//booktitle[∼‘vldb’]][.//year[∼‘2000’]]//editor 1.000000
vldb //proceedings[.//booktitle[∼‘vldb’]][.//editor]//year[∼‘2000’] 0.075332

Q.5 2000 //proceedings[∼‘vldb’][.//year[∼‘2000’]]//editor 0.052991
//proceedings[∼‘vldb’]//editor 0.033492
//proceedings[∼‘2000’][.//booktitle[∼‘vldb’]]//editor 0.025473

Table 2: Highest-scoring automatically generated structured queries for DBLP flatqueries. The scores (which are not

comparable across input queries) are normalized so that the top generated query has score of 1.

content-only content-and-structure queries scores

Q.6

underwriter //resume[.//desiredjobtitle[∼‘underwriter’]][.//company[∼‘mortgage’]] 1.000000
mortgage [.//city[∼‘irving’]][.//state[∼‘texas’]]

irving //resume[.//desiredjobtitle[∼‘underwriter’]][.//company[∼‘mortgage’]] 0.922259
texas [.//location[∼‘irving’]][.//state[∼‘texas’]]

//resume[.//title[∼‘underwriter’]][.//company[∼‘mortgage’]] 0.778866
[.//city[∼‘irving’]][.//state[∼‘texas’]]

Q.7

receptionist //resume[.//desiredjobtitle[∼‘receptionist’]][.//skillname[∼‘microsoft office’]] 1.000000
microsoft [.//state[∼‘arizona’]]

office //resume[.//desiredjobtitle[∼‘office receptionist’]][.//skillname[∼‘microsoft’]] 0.691925
arizona [.//state[∼‘arizona’]]

//resume[.//title[∼‘receptionist’]][.//skillname[∼‘microsoft office’]] 0.633407
[.//state[∼‘arizona’]]

Q.8

emergency room //resume[.//resumetitle[∼‘registered nurse’]][.//title[∼‘emergency room’]] 1.000000
registered nurse [.//educationsummary[∼‘license’]]

mesa az [.//city[∼‘mesa’]][.//stateabbrev[∼‘az’]]
with license //resume[.//title[∼‘emergency room’]][.//resumetitle[∼‘registered nurse’]] 0.939304

[.//additionalinfo[∼‘license’]]
[.//city[∼‘mesa’]][.//stateabbrev[∼‘az’]]

Q.9

sales //resume[.//desiredjobtitle[∼‘sales construction’]] 1.000000
construction [.//educationsummary[∼‘bachelor’]][.//location[∼‘corona’]]
bachelors //resume[.//desiredjobtitle[∼‘construction’]][.//title[∼‘sales’]] 0.724707
corona [.//educationsummary[∼‘bachelor’]][.//location[∼‘corona’]]

//resume[.//desiredjobtitle[∼‘sales construction’]] 0.673541
[.//educationsummary[∼‘bachelor’]][.//city[∼‘corona’]]

Q.10

arabic language //resume[.//skillname[∼‘arabic bilingual language’]][.//city[∼‘los angeles’]] 1.000000
translator [.//additionalinfo[∼‘fluent’]][.//desiredjobtitle[∼‘translate’]]

fluent //resume[.//skillname[∼‘arabic bilingual fluent language’]] 0.986548
bilingual [.//desiredjobtitle[∼‘translate’]][.//city[∼‘los angeles’]]

los angeles //resume[.//skillname[∼‘bilingual’]][.//educationsummary[∼‘arabic language’]] 0.969456
[.//desiredjobtitle[∼‘translate’]][.//additionalinfo[∼‘fluent’]]
[.//city[∼‘los angeles’]]

Q.11

executive assistant //resume[.//desiredjobtitle[∼‘assistant executive’]] 1.000000
with power point [.//skillname[∼‘excel point power’]]

excel [.//city[∼‘torrance’]][.//stateabbrev[∼‘ca’]]
torrance ca //resume[.//desiredjobtitle[∼‘executive’]][.//title[∼‘assistant’]] 0.997919

[.//skillname[∼‘excel point power’]]
[.//city[∼‘torrance’]][.//stateabbrev[∼‘ca’]]

Table 3: Highest-scoring automatically generated structured queries for Monster flat queries.

Query accuracy

To analyze query accuracy, we divided the information con-
tained in the resume queries into three types. Since the
service provided by Monster is job searching, the 60 queries
express a fairly consistent information need: all ask for re-
sumes and specify a position, a location and/or constraints
such as the possession of a certificate or fluency in a partic-
ular language.

The first type of information we consider is geographical
location: 52 of the 60 test queries contain a city name, a
state name or abbreviation, or both. The algorithm is suc-
cessful at identifying and adding location constraints. In
all but 2 queries geographical names are correctly recog-
nized as city, state, stateabbrev, or location. One
of the incorrectly bound targets is //city[∼‘ft’] where ‘ft’ is
an abbreviation for a full-time position. The first error is an
example of how the initial processing (Section 4.1), which
consists only of stop word removal and simple phrase de-
tection, does not incorporate enough knowledge of natural
language.

The second and most common type of input information is
the description of a position or a profession. Terms such as
‘manager’, ‘representative’, ‘engineer’, ‘assistant’, etc. are
very common in the collection and there is enough statistics
to process this type of information very accurately. Relevant
XML elements are desiredjobtitle and resumetitle

(which describe what position the person is looking for) and
title (which describe positions the person has occupied in
the past). The variation in title targets (Table 3) indicates
collection heterogeneity. It is mostly due to inconsistency
among job seekers on how they choose to fill in their career
information. Out of 60 queries, 56 queries contain at least
one title-type target.

The third type of information is experience, skills or ed-
ucation requirements. Structural accuracy for this type of
information is much lower with 44% correct and 56% incor-
rect bindings. For example, “excel power point” is correctly
converted into a bound skillname but “2-5 years of expe-
rience” is split into //yearsexperience[∼‘2’] and //complete-
month[∼‘5’]. Since this additional type of information is pro-
cessed with less accuracy, it could be treated with more un-
certainty when computing relevance scores during retrieval
– for example, by applying more smoothing.

Retrieval performance

The output of the query generation algorithm we have pro-
posed is a ranked list of structured queries that can be used
directly to retrieve XML elements relevant to the user infor-
mation need.

To evaluate the retrieval effectiveness of the refinement
process, we compared the performance of the highest-scoring
structured query to that of the original keyword query on
a test set of 25 topics. We developed two versions of each
topic. One version specifies only a profession (simple infor-
mation need); the second version adds conditions on qualifi-
cations such as years of experience or a degree in particular
field (complex information need). We did not include loca-
tion information because the retrieval system has no notion
of geography and the relative distances between locations.
When a specified geographical place does not occur in a re-
sume, this renders the resume nonrelevant, even if the person
has the required professional qualifications, has willingness
to commute and lives within the preferred distance.

rank simple info need complex info need

k CO CAS CO CAS

1 0.960 0.880 0.600 0.560
2 0.980 0.860 0.580 0.620
3 0.947 0.867 0.520 0.653
4 0.910 0.870 0.480 0.610
5 0.928 0.880 0.464 0.624
6 0.913 0.887 0.467 0.607
7 0.909 0.886 0.474 0.583
8 0.905 0.885 0.465 0.595
9 0.902 0.876 0.449 0.582
10 0.884 0.876 0.456 0.560

Table 4: Precision at rank k for two different formu-

lations of 25 test queries: CO are content-only input

queries, CAS are content-and-structure automatically

generated queries. Bold indicates statistical significance

at level 0.95 with Student’s t-test.

To run the queries we used the Indri search engine [16],
which is part of the language modeling Lemur Toolkit3 and
supports the NEXI query language. Results for precision
at ranks 1 through 10 are presented in Table 4. Automatic
structure slightly hurts precision in the case of a simple in-
formation need, although the difference is not statistically
significant. One query fails almost completely, retrieving
only one relevant document in the top 10; the other queries
result in three or more relevant documents retrieved. That
query is ineffective because it puts an important keyword
in a description target whose semantics is very general
compared to a title target.

The claim that highly accurate automatically generated
structured queries can benefit retrieval is substantiated in
the case of a complex information need, where the refined
queries improves precision at the top ranks, with the differ-
ence being statistically significant at some ranks. The re-
sults shows that by adding structure to the inital keywords,
the algorithm creates a more precise expression of a relevant
document. This then allows the search algorithm to ignore
content matches in non-related fields and perform a more
focused retrieval.

6. CONCLUSION
We presented an algorithm for automatically transform-

ing keyword queries submitted to an XML repository into
content-and-structure queries. The process does not involve
interaction with the user to give structural clues or specify
the type of XML elements to return.

Our technique integrates structured data retrieval with
probabilistic reasoning based on information gain and relies
on analyzing structure and content simultaneously. Given
a sufficiently detailed input query, the algorithm exploits
statistics derived from the XML collection to infer structural
clues and construct probable structured queries. It does not
require the collection to be consistent, or to have an explicit
schema or DTD. As future work, we plan to implement a
topical expansion transformation which adds related terms
to the text predicate of target components, as in query ex-
pansion.

3http://www.lemurproject.org/lemur/

Query refinement could provide an alternative to the tra-
ditional approach of user interaction with an XML retrieval
system, which places much responsibility with the user to
formulate good structured queries. Potential applications
include systems that work with heterogeneous or dynamic
semi-structured collections where variability in the XML
documents or the schema renders the task of manually writ-
ing successful queries especially challenging for users.

7. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intel-

ligent Information Retrieval, in part by NSF grant #CNS-
0454018, and in part by Monster. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are the authors’ and do not necessarily reflect those of
the sponsors.

8. REFERENCES
[1] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava,

and D. Toman. Structure and content scoring for
XML. In Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB), 2005.

[2] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSearch: A semantic search engine for XML. In
VLDB’03: Proceedings of the 29t International
Conference on Very Large Data Bases, 2003.

[3] W. W. Cohen. Data integration using similarity joins
and a word-based information representation
language. ACM Transactions on Information Systems
(TOIS), 18(3), 2000.

[4] S. Cronen-Townsend and W. B. Croft. Quantifying
query ambiguity. In Proceedings of the 2nd
International Conference on Human Language
Technology Research, 2002.

[5] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and
J. Siméon. StatiX: making XML count. In
SIGMOD’02: Proceedings of the 2002 ACM
International Conference on Management of Data,
2002.

[6] R. Goldman and J. Widom. DataGuides: Enabling
query formulation and optimization in semistructured
databases. In VLDB’97: Proceedings of the 23rd
International Conference on Very Large Data Bases,
1997.

[7] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on XML graphs. In
Proceedings of the 19th International Conference on
Data Engineering, 2003.

[8] W. Hsu, M. L. Lee, and X. Wu. Path-augmented
keyword search for XML documents. In ICTAI’04:
Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence, 2004.

[9] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proceedings of the
15th international conference on World Wide Web
(WWW), 2006.

[10] W. Kießling. Foundations of preferences in database
systems. In VLDB’02: Proceedings of the
28thInternational Conference on Very Large Data
Bases, 2002.

[11] G. Li, J. Feng, J. Wang, and L. Zhou. Effective
keyword search for valuable LCAs over XML

documents. In CIKM’07: Proceedings of the 16th
ACM international conference on Information and
knowledge management, 2007.

[12] Y. Li, H. Yang, and H. Jagadish. Constructing a
generic natural language interface for an XML
database. In EDBT’06: Proceedings of the 12
International Conference on Extending Database
Technology, 2006.

[13] Y. Li, C. Yu, and H. V. Jagadish. Schema-free xquery.
In VLDB’04: Proceedings of International Conference
on Very Large Data Bases, 2004.

[14] N. Polyzotis and M. Garofalakis. XSKETCH synopses
for XML data graphs. ACM Transactions on Database
Systems (TODS), 31(3), 2006.

[15] J. J. Rocchio. Relevance feedback in information
retrieval. In G. Salton, editor, The SMART Retrieval
System: Experiments in Automatic Document
Processing, 1971.

[16] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: A language model-based search engine for
complex queries. Technical report, Department of
Computer Science, University of Massachusetts,
Amherst, 2005.

[17] A. Trotman and M. Lalmas. Why structural hints in
queries do not help XML retrieval. In SIGIR’06:
Proceedings of the 29th International ACM Conference
on Research and Development in Information
Retrieval, 2006.

[18] A. Trotman and B. Sigurbjörnsson. Narrowed
Extended XPath I (NEXI). Advances in XML
Information Retrieval. 2005.

[19] R. van Zwol, J. Baas, H. van Oostendorp, and
F. Wiering. Bricks: The building blocks to tackle
query formulation in structured document retrieval. In
ECIR’06: Proceedings of the 28th annual European
Conference on Information Retrieval, 2006.

[20] Y. Xu and Y. Papakonstantinou. Efficient keyword
search for smallest LCAs in XML databases. In
SIGMOD’05: Proceedings of the 2005 ACM
International Conference on Management of Data,
2005.

