
Joke Retrieval: Recognizing the Same Joke Told
Differently

Lisa Friedland and James Allan
lfriedl@cs.umass.edu, allan@cs.umass.edu

Department of Computer Science, University of Massachusetts Amherst
140 Governors Drive, Amherst, MA 01003-9264

ABSTRACT
In a corpus of jokes, a human might judge two documents to be
the "same joke" even if characters, locations, and other details are
varied. A given joke could be retold with an entirely different
vocabulary, while still maintaining its identity. Since most
retrieval systems consider documents to be related only when
their word content is similar, we propose joke retrieval as a
domain where standard language models may fail. In particular,
we consider the task of identifying the "same joke" to be a
necessary component of any joke retrieval system, and we
examine it in both ranking and classification settings. We exploit
the structure of jokes to develop two domain-specific alternatives
to the "bag of words" document model. In one, only the punch
lines, or final sentences, are compared; in the second, certain
categories of words (e.g., professions and countries) are marked
up and treated as interchangeable. Each technique works well for
certain jokes. By combining the methods using machine learning,
we create a hybrid that achieves higher performance than any
individual approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]

General Terms
Algorithms.

Keywords
Humor, document similarity, domain-specific retrieval.

1. INTRODUCTION
Humor is famously difficult for machines to comprehend. It
brings into play ambiguities, implications, and exaggerations, all
in the service of violating expectations—which requires one to
have expectations in the first place. If you believe Hollywood
writers, humor will be the last skill for artificial intelligences to
acquire. If you believe linguistic and computational researchers,
jokes are a domain where “the question of semantics can no
longer avoided” [15]; and worse, they contain “language that
requires deep conceptual knowledge about the details of human
experience” [4].

One concept that humor brings into focus is an alternative notion
of document similarity. Even more than is true for the news
stories and other informative documents typically used in
information retrieval, jokes can be similar without having many

words in common. What we would consider “one joke” can be
retold in vastly different ways. 1 For instance, Figure 1 shows a
joke, and Figure 2 outlines how its elements change in other
documents in our collection.

Characters can change, the setting can change; it is difficult to
describe, at the word level, what it is that stays constant in a
joke’s structure, or meaning. One way to evoke this challenge is
to try to formulate a search query for a joke—say, to determine if
any version of it is present in a given corpus. For instance, with
the example above, we might begin with “priest rabbi accident
wine,” but then pause, realizing the joke could really be about any
two people, so it would be better to remove them from the query.
Next, “accident” could be “crash or collision,” and “wine” could
be “whiskey” or “champagne.” What is left? Perhaps a few
variations on “drink police accident,” a query which is less precise
and would still fail to retrieve the version in Figure 3. It is not just
the problem of synonymy here, but also that of knowing which
aspects of a joke are likely to vary and capturing the wide range of
possible alternatives.

Jokes illustrate this structural similarity well, but they are just one
of many domains where it is important. A closely related genre is
logic and math puzzles: having solved how to use a five-gallon
bucket and a three-gallon bucket to measure out exactly four
gallons of water [16] shows one immediately, for example, how to
use a 70 mL test tube and a 40 mL test tube to measure exactly 60
mL of hydrochloric acid. In fact, every grade school “story
problem” probably fits into a small number of templates; it is easy
to generate new problems of a given type [18], but fortunately for
teachers, no reverse tool (automatic recognition and solution of
homework problems) is yet known to us. Unfortunately for
researchers, neither is there a system to refer one to “the same
research problem” that may have been studied using different
terminology in another field—although a few projects have been
aimed at this idea [10][13].

Another situation where it is difficult to formulate queries to
describe a particular meaning is in searching for famous
quotations. When one is asked, “Can you find that quote where
Einstein said …,” sometimes all one can do is verify that Einstein
didn’t say it, and that in fact no one said exactly that, even though
the quote we wanted is likely out there. Song lyrics have the same
property: one must remember them exactly to find them on the
web. A similar domain is that of proverbs: a given saying may be

1 See, for example, the recent documentary “The Aristocrats,”

which explores the variations of a single joke [17].

expressed in numerous ways, particularly across cultures, and it
would be interesting to find versions of the same message.

One final example where structure can matter more than word
content is cooking. Websites with recipes can suggest other
recipes that have “chicken” or “green beans.” But in the process
of learning to cook, it often takes seeing a few examples before
we begin to recognize a general technique, e.g., that one can roast
pork with peppers using exactly the same steps and the same
seasonings as for the chicken with green beans. Retrieving other
recipes with the same structure would make it easier to learn
which aspects one can vary.

In this paper, we limit ourselves to (studying) jokes, and we
consider the question of recognizing whether two documents are
“the same joke,” or as we will term it, when they belong to the
same “joke cluster.” This would be a critical component of a joke
search engine that incorporates meaning. In response to a query, a
results page could list several clusters; for each cluster, it would
display one joke, and a link to “other versions of this.” Creating
that list of other versions is the task we address here.

We consider the task of pairwise classification in Section 4: given
two jokes, decide if they match. Next, in Section 5 we move to a
ranking setting, which is closer to our eventual goal: given one
joke, retrieve a ranked list of matches. Finally, in Section 5.3 we
incorporate a classifier into our ranking function. We begin now
by introducing our data and document models.

2. CORPUS
The corpus consists of approximately 11,000 jokes. These were
downloaded from 13 joke archive sites on the web. It was
important for the corpus to contain multiple versions of a number
of jokes; to increase the odds of such repetitions, several
specialized collections were included, such as music jokes and
profession jokes, that seemed likely to include repeats.

A large number of the documents contained humor that fell
outside our definition of jokes. We manually removed items like
one-liners (which included “yo mama” jokes), quotes, funny but
true stories, sarcastic commentaries, “top ten ways to . . .,” and
lists. The remainder consists of things like narrative stories (like
in Figure 1), light bulb jokes, and Q/A jokes (e.g., “Q: What do
you call 5000 dead lawyers at the bottom of the ocean? A: A good
start!” or “Q: What do you call a snail on a ship? A: A snailor!”).
Duplicate and near-duplicate documents were also removed.

Sixty clusters of jokes were labeled manually. This was done by
creatively constructing queries to find matches for particular
jokes. (For humans, this was not difficult, but recall was
imperfect: in several cases, the retrieval systems found matches
that the authors had missed.) Most jokes do not appear to have
matches, but the corpus certainly contains more clusters than
these. The clusters range in size from 2 to 13 jokes, and they
include a total of 217 jokes. Judging whether two jokes match can
be subjective; as a rule of thumb, we labeled them as matching if
one might easily say, “I know that joke, except in my version
[something varies].”

In the corpus as a whole, almost half the jokes are just two
sentences long. Those jokes we labeled tended to be longer
stories, averaging about 12 sentences. This was probably a bias in
labeling, and it could imply that the results most representative of
future performance will be those on the short jokes. However, it
is also possible that the same bias—perhaps, that longer jokes
were more interesting to look for, and that shorter jokes were

Figure 1. One version of a joke.

A Rabbi and a Priest are driving one day and, by a freak
accident, have a head-on collision with tremendous force.
Both cars are totally demolished, but amazingly, neither of the
clerics has a scratch on him. After they crawl out of their
cars, the rabbi sees the priest's collar and says, "So you're a
priest. I'm a rabbi. Just look at our cars. There is nothing left,
yet we are here, unhurt. This must be a sign from God!"
Pointing to the sky, he continues, "God must have meant that
we should meet and share our lives in peace and friendship
for the rest of our days on earth." The priest replies, "I agree
with you completely. This must surely be a sign from God!"
The rabbi is looking at his car and exclaims, "And look at this!
Here's another miracle! My car is completely demolished, but
this bottle of Mogen David wine did not break. Surely, God
wants us to drink this wine and to celebrate our good fortune."
The priest nods in agreement. The rabbi hands the bottle to
the priest, who drinks half the bottle and hands the bottle
back to the rabbi. The rabbi takes the bottle and immediately
puts the cap on, then hands it back to the priest. The priest,
baffled, asks, "Aren't you having any, Rabbi?" The rabbi
replies, "Nah... I think I'll wait for the police."

Figure 2. Variations of the same joke (excerpts).

An Irish priest and a Rabbi get into a car accident … The
priest asks him, "Are you all right, Rabbi?" The Rabbi
responds, "Just a little shaken." The priest pulls a flask of
whiskey from his coat and says, "Here, drink some of this it
will calm your nerves." … "Well, what are we going to tell the
police?" "Well," the priest says, "I don't know what your aft' to
be tellin' them. But I'll be tellin' them I wasn't the one drinkin'."

A woman and a man got into a really bad car accident. Both
cars are totaled …

There's a guy from ARMY driving from West Point to the
Meadowlands, a guy from the NAVY was driving from
Annapolis to the Meadowlands, and an Air Force guy who's
driving from McGwire in South Jerz to the Meadowlands just
to watch the Jets. In the middle of the night with no other cars
on the road they hit each other and all cars go flying off in
different directions. … The Air Force guy says "Let me see
what else survived this wreck." So he pops open his trunk
and finds a full unopened bottle of Jack Daniels. …

Figure 3. Fifth variation, with diverging vocabulary.

An English man and an Irish man are driving head on, at
night, on a twisty, dark road. Both are driving too fast for the
conditions and collide on a sharp bend in the road. To the
amazement of both, they are unscathed, though their cars are
both destroyed. In celebration of their luck, both agree to put
aside their dislike for the other from that moment on. At this
point, the Irish man goes to the boot and fetches a 12 year
old bottle of Jameson whiskey. He hands the bottle to the
English man, whom exclaims,'' may the English and the Irish
live together forever, in peace, and harmony.'' The English
man then tips the bottle and lashes half of it down. Still
flabbergasted over the whole thing, he goes to hand the
bottle to the Irish man, whom replies: '' no tanks, I'll just wait
till the Garda get here!''

harder to vary, often just word puns like the “snailor”—would
affect the queries of future users.

3. METHODS
We use a language modeling approach. The document models and
similarity measures described next are employed in both the
classification and ranking tasks.

3.1 Document Models
3.1.1 Baseline
The baseline is a standard unigram (bag of words) model. With
this, for a word w and a document d, the initial probability of a
word given the document model is the maximum likelihood
estimate:

!

P(w |Md)MLE =
tfw,d

Ld
 .

Then, linear interpolation smoothing is used to combine the above
value with the probability of the word in the general corpus:

!

P(w |M
d
) = "P(w |M

d
)
MLE

+ (1# ")P(w |M
c
)
MLE

.
We determine λ through a parameter sweep, separately for each
model and task. In the ranking setting, the value of λ = 0.99 is
optimal for all models; for classification, the value λ = 0.4 is near-
optimal for all models.

Throughout this paper, the query is also a document from our
collection. However, we do not smooth the query model:

!

P(w |Mq) = P(w |Mq)MLE =
tfw,q

Lq
.

3.1.2 Punch Line
The first alternative to the baseline captures the intuition that the
ending of a joke is crucial to its identity and is likely to remain
constant despite the rest changing. For this punch line model, we
simply identify the last sentence and throw away everything
before it. The same equations above are used, only every
document in the corpus is truncated.

3.1.3 Annotations
The second alternative addresses the idea of interchangeable
elements in a joke. For example, if one can generally vary
characters and locations in jokes, then it may be a helpful
abstraction to introduce the tokens “#person” and “#location.”
And so on with other common categories. In place of plain text,
we then have a higher-level representation, like this (this example
is shown after stopping and stemming):

 “Q: What's the difference between a dead snake in the road and a
dead lawyer in the road?

A: There are skid marks in front of the snake.”

“differ dead #animal[snake] #location[road] dead #person[lawyer]
#location[road] skid mark front #animal[snake]”

In the best case, the words not annotated would be verbs and other
words that convey the generic meaning of the joke. As one might
imagine, when using these annotations (and ignoring the words
inside the brackets), the above joke matches identically to another
that begins: “Q: What's the difference between a dead dog in the
road and a dead lawyer …”

To implement the annotations, there are two aspects to decide: (a)
how to mark up the text with annotations, and (b) how to use
them. For the first question, we created word lists for each
category (see Table 1). During preprocessing, any document word
that matches a list word is marked up. This is a coarse method and
yields obvious markup errors, for example with homonyms and
irregular plurals, but such problems are present already in the bag
of words model.

Table 1. Categories of annotations.

animal number
color organization
currency person
location timeDate
music vehicle

Once the documents are annotated, there are a number of options
for how to treat the new tokens. A model could be used that treats
“#animal[dog]” as similar but not identical to “#animal[snake].”
This would be similar to a translation model, as we will discuss in
Section 8. Instead, we choose to treat all “#animal[]” tokens as
identical. A translation model giving different probabilities for
each substitution would behave midway between treating the
tokens as distinct, as in the baseline, and treating them as
identical, so we place the annotations model at that second
extreme.

Formally, for a normal word under the annotations model,
P(w|Md)MLE is as before, but for a word w annotated from word list
A, the formula changes to this:

!

P(w |Md)MLE =
tfa,d

Lda"A

.

3.1.4 Using the Markup for Other Models
Once the documents have been annotated and subdivided into
punch line and non-punch line portions, it is easy to invent
additional document models that use this same information
differently. For instance, one can use only the punch line, but use
the annotations model within it. Or rather than using the
annotated tokens within the bag of words, one could simply delete
them, in the spirit of treating them like stop words; after all,
almost every joke probably contains a “#person.” In the realm of
possible but probably unhelpful models, one can treat a document
as a bag of just two types of tokens: punch line and non-punch
line words; or, annotated and non-annotated words. Or, to test the
conjecture that only some annotation categories are useful, one
can choose to use some types of labels but not others, for instance
treating all “#animal” tokens as identical, but ignoring “#location”
tags and reverting to the original words.

In our code base, we provided a flexible syntax for specifying
document models along the above lines, and we created 108 such
variations. The scores from these models are given as inputs to
the machine learning classifier introduced below in Section 4.3.

3.2 Similarity Measures
To measure the similarity of a query to a document, we use the
Kullback-Leibler (KL) divergence of the query and document
models. KL divergence is a natural (though asymmetric) measure

of the distance between two probability distributions; it is zero
when the distributions are equal and positive otherwise. When the
query is a constant, as in the retrieval setting, KL divergence is
rank-equivalent to the more familiar cross entropy measure H(p,q)
[6].

!

KL(Md ||Mq) = P(w |Mq)log
P(w |Mq)

P(w |Md)w"q

#

= P(w |Mq)logP(w |Mq)
w"q

#

$ P(w |Mq)logP(w |Md)
w"q

#

= $H(q) + H(p,q)

=
rank

H(p,q)

The summation above is often shown as over all words in the
vocabulary. Since our query model is not smoothed, P(w|Mq)
(and thus the whole term) is zero for words outside the query.

The function above allows different weights (probabilities) for the
query terms. We require a function with this property, since in
our framework the query is always a full document, not just a few
distinct words. When the query weights are all equal, cross
entropy reduces to standard query likelihood.

4. CLASSIFICATION
In the classification task, we are given two documents and need to
determine whether they are variations of the same joke. We set
this up as for a machine learning task—creating separate training
and test sets, and using cross validation—even though most
models are only “learning” a cutoff threshold. There are positive
and negative examples, the positives being joke pairs that match,
and the negatives being joke pairs that do not match.

4.1 Training and Test Sets
The samples are created in ten groups, to allow ten-fold cross
validation. In order that the training and testing barrier be kept
intact, each joke cluster only contributes examples to one group.
We avoided letting any one large cluster dominate the examples,
by using no more than 15 positives and 15 negatives per cluster.

For any cluster, the positive examples are drawn from all pairs of
jokes in the cluster. The negative examples have one joke in the
cluster, and one outside it. If the joke from outside the cluster
were picked uniformly at random, the task would be unfairly easy;
the pair of jokes would not be at all similar. So instead, we
sampled negatives so that they would be comparable in their ranks
to the positives. That is, for each positive pair, we took one joke
as a query, retrieved a ranked list of jokes, and recorded the rank
(in that list) of the second joke. By repeating this with every joke
as the query, we sampled a distribution of ranks of positives.
Then, to generate negatives, we took one joke from the cluster,
retrieved a ranked list of jokes, picked a desired rank from our
distribution, and sampled a non-matching joke from at or near that
rank. This way we created negative examples that were, in theory,
difficult to distinguish from the positives.

4.2 Symmetric Similarity
We described KL divergence above. However, when the example
at hand is a pair of documents a and b, with neither taking the role
of query, it is better to use a symmetric score. We make the score
symmetric by taking the average of both directions, i.e., using
½(KL(Ma || Mb) + KL(Mb || Ma)).

It would have been possible to use the symmetric cross entropy
instead. Since the actual distribution of scores matters to us—the
values, not just the rankings—we chose KL divergence because it
has a minimum of zero. For cross entropy, the minimum score
(occurring for perfectly matching documents) is the entropy of the
query, which varies by query.

4.3 Experiments
In total, we have approximately 600 data points, of which 58%
were negatives. We measure the accuracy—the number of correct
predictions—for each fold, and then compute an average across
the folds. During the training phase, the classifier computes the
score for each pair, and chooses a prediction threshold to
maximize the accuracy on the training data. Table 2 shows the
accuracies achieved by the three main document models described
above.

Table 2. Classification accuracy of individual models.

Document model Accuracy

Baseline 0.749

Annotations 0.773

Punch line 0.801

The first things to notice are that the accuracies are fairly good,
and that the models that use joke structures have some advantage
over the baseline. Also, there is diversity among the models;
Table 3 shows that each has some examples that only it predicts
correctly. We further see that the models are erring on the side of
caution, by not recognizing positives when they appear.

Table 3. Diversity among classification models.

Document
model

Number of pairs
only this model
gets right

Accuracy
on
negatives

Accuracy
on
positives

Baseline 4 0.91 0.52

Annotations 13 0.91 0.59

Punch line 56 0.90 0.66

To take advantage of the diversity among the models, we try
combining them using machine learning. We use the scores from
the models as inputs to a classifier, and allow the classifier to
make the prediction. We use Weka’s logistic regression tool [12];
its other classifiers performed similarly or worse. We test several
combinations of features: first, the three models we have seen
above. Next, with the idea that relative document length would be
predictive, we add two features concerning that. Finally, we use
as our features the scores from all 108 model variations described
in Section 3.1.4.

The results of the classifiers are shown in Table 4. We see that
using the set of three features, the classifier achieves better
performance than any of the models alone. Adding additional
features does not help; if anything, it was useful to manually
select the set of three features. We assessed significance using
paired t-tests on the sets of individual predictions. At the p = 0.02
level, annotations beats baseline, and the best classifier beats
annotations; however, for the punch line versus annotations and
for the classifier versus punch line, they just miss significance,
yielding p-values around 0.06.

Table 4. Classification accuracy of combination models.

Features Number of
features Accuracy

Baseline, annotations, punch line 3 0.818

Above, plus ratio and average of
document lengths 5 0.802

Various 108 0.801

It is surprising in light of Section 5 below, and somewhat
misleading, that the punch line model would perform so well in
classification. Further analysis shows that for the baseline model,
there is not a large separation between the scores of its positive
and negative classes. This is a result of the sampling procedure:
by intent, the two classes were close in baseline scores. The
annotations model has a similar situation. However, the punch
line model tends to score differently than the other two; thus its
positive and negative examples were not pushed together by the
choice of samples, and it could outperform the other models in
this setting.

5. RANKING
We next consider this “same jokes” task in a ranking setting.
Ranking is a more appropriate setting for evaluating the task, if
we anticipate using the system to retrieve “more jokes like this.”

5.1 Setup
In this setting, we use one joke as a query, and perform a retrieval
using one of the document models described earlier. The relevant
documents for this query are those jokes in the same cluster. We
measure average precision, recall at various cutoffs, and R-
precision. We repeat this process for every joke in the cluster, and
calculate the average of the measures for the cluster. We do this
for every cluster, and finally we report the averages across all 60
clusters.

5.2 Results
The results of the ranking experiments are displayed in Table 5.
We see that unlike in classification, here the baseline model
performs best and the punch line model worst. The differences
between the baseline and annotations model are not significant.

Table 5. Ranking performance of individual models.

Document
model MAP R-precision Recall at

10
Recall at
100

Baseline 0.793 0.744 0.860 0.966

Annotations 0.774 0.713 0.847 0.948

Punch line 0.514 0.458 0.587 0.737

One way to compare the performance of the models is with a
scatterplot of their scores, as in Figure 3. The plots show how
closely the annotations and baseline models track each other, as
their scores lie near the diagonal (Pearson correlation = 0.84).
They also show how the baseline model almost always gives
better results than the punch line model. However, we can also
see how each of the alternative models has clusters for which they
soundly beat the baseline. This suggests that again there is
potential for improvement by combining the scores of the three
models.

Figure 3. Mean average precision of each joke cluster (one

data point per cluster). Left, baseline model versus
annotations. Right, baseline versus punch line.

5.3 Re-ranking
To combine the models, we return to the approach from above:
training a pairwise classifier using scores from the three models.
The classifier actually outputs a probability score, not just a
binary decision, so we can take and use this score for ranking. In
order to bring this classifier into the ranking setting, for which the
query is fixed, we have two immediate possibilities. First, we
could pair the query with every other document in the collection,
one by one, and use these scores to rank all the documents. Or,
we could take some set of top documents from the baseline model
and use the classifier to re-rank them. We take the latter approach,
for efficiency reasons, and also to exploit the fact that the baseline
classifier already has high recall.

To choose the number of documents to re-rank, we plot in Figure
4 the recall curve as a function of the number of documents. The
curve levels off by 500 documents, at recall = 99.8%.

Figure 4. Recall of the baseline model, averaged over all jokes.

In order to train a classifier to re-rank the top 500 documents, we
must create a new training set reflecting the distribution where the
model will now be applied. For the positives, we use all pairs of
jokes in all clusters, for we need all the positive examples we can
get. To generate the negatives, we run the baseline ranking,
identify the top 500 documents, and sample randomly from them.
(We do not expect it to be important to keep constant the ratio of
positives to negatives from training to test sets, since we are using
the model’s output for ranking, as opposed to for classification.
We use a ratio of about 1:2 for positives to negatives, which keeps
the size of the training set reasonable.)

To create training and test splits, we divide the data into 10 groups
of clusters for cross-validation. For each cluster, the training data
are the positives and negatives from queries in the other 9 groups.

Table 6 shows the results of using the classifier to re-rank the top
500 documents. Using the classifier by itself, the scores are in fact
worse than the baseline. Once more, we examine the scatterplot
of scores (Figure 5, left). This time we see that while the classifier
does not perform as well as the baseline overall, it is a toss-up as
to which works better for any particular cluster. This means that
yet once again, we stand to benefit by combining these classifiers.

Since the machine learning classifier has already been given the
baseline score as a feature, we create this final combination by
simply linearly interpolating between the output score of the
classifier and the baseline score, giving them equal weight. This
resulting ranking turns out to be significantly better than any of
the others. The right side of Figure 5 shows how, with the
interpolated classifier, the mean average precision of almost every
joke cluster improves compared to the baseline.

Table 6. Ranking performance using classifier to re-rank.

Document model MAP R-precision Recall
at 10

Recall
at 100

Baseline top 500 re-
ranked with classifier 0.749 0.684 0.841 0.965

Baseline top 500 re-
ranked with (0.5
classifier + 0.5
baseline)

0.822 0.772 0.882 0.977

Figure 5. Mean average precision of each joke cluster (one

data point per cluster). Left, baseline model versus classifier.
Right, baseline versus interpolated classifier.

We performed a few experiments analyzing the contribution of
the classifier, and in particular, whether the improvement in score
could be achieved in some simpler way. These experiments are
shown below, in Table 7. First, one method for improving
retrieval in many situations is to expand the query using pseudo-
relevance feedback. We used linear interpolation between the
original query and the top t documents [14]. We used t = 2, and
weighted the original query and the new terms 0.4 and 0.6,
respectively. Its performance is virtually identical to the baseline.

Next, we investigated whether the boost from the classifier could
be due to it using the symmetric version of KL divergence. For
this run, we use the baseline model but use the symmetric version
of the score. This by itself is clearly not helpful either.

Table 7. Other experiments.

Document model MAP R-precision Recall
at 10

Recall
at 100

Baseline with
pseudo-relevance
feedback

0.795 0.740 0.851 0.974

Baseline using
symmetric score 0.594 0.534 0.711 0.841

6. DISCUSSION
We gain some insight into the utility of the three document
models by looking at specific queries where they performed
differently.

For the most part, it seems that if a joke is sufficiently long,
certain words actually do show up in all its versions. In the
challenging-looking joke cluster from Figures 1-3, for example,
the baseline model gives a reasonable MAP of 0.62; annotations
scores mildly higher.

When a joke is short, the baseline model still performs well if
there are distinctive words that appear in every version. For
instance, the unusual words “trampoline” and “tire gauge” in the
joke versions in Figure 6 allow the baseline model to retrieve
these clusters perfectly.

There is a mild indication that joke length correlates with the
success of the annotations model. In particular, when the
annotations model works better than the baseline, the joke is
either short (under 50 words) or long (over 120). For jokes of
medium length, either the two models give comparable scores, or
the baseline model wins. We can explain the success of the
annotations model at short jokes by referring back to the example
from Section 3.1.3 involving “skid marks;” in cases like this, there
are not always enough words for the baseline model to latch on to.
In particular, in the example in Figure 7, the annotations model
scored perfectly, whereas the baseline only had a MAP of 0.5.

As for punch lines, when the punch lines match closely, this is a
sufficient condition for the jokes to match. However, this only
happens for some jokes.

Overall, it seems as though every joke has some invariant phrases.
However, it is difficult to describe, without actually looking at the
joke, which phrases those might be. This is why using a
combination of methods makes sense: each deals well with certain
types of jokes.

7. RELATED AND FUTURE WORK
There is a small but growing body of research in computational
humor. This area typically encompasses two tasks: distinguishing
humorous from non-humorous documents, and generating humor.
Binsted et al. [4] collects the work of several groups that publish
in this field, and a recent review by Mihalcea [8] surveys theories
of humor from psychology, philosophy, and other fields. Some
recognition tasks include using text classification to distinguish
humorous one-liners from other sentences like headlines or
proverbs [9], or recognizing short children’s jokes using any of
several theories of humor [11]. In humor generation, there are
systems that generate riddles with puns or humorous acronyms,
and then there are systems that insert humor into emails or
chatbots as a way to improve human-computer interactions [4],

[9]. In addition, there is a jokes search engine called Jester, but it
has been created and studied exclusively as a recommender
system [6]. The models of humor that help computers recognize
or construct it could be valuable to anyone studying jokes, but
none of the above work consider variations of a single joke, the
central idea of this paper.

The work most similar in spirit to this is an article by Zrehen and
Arbib [15]. Critiquing IR techniques as relying too heavily on the
specifc words in a document, they propose an architecture for
neural networks that would infer the implied context of a sentence
and then recognize jokes by the incongruities they contain. This
system was not actually implemented, and its task would have
again been humor recognition; however, the authors do discuss
joke retrieval as a domain where the query words may not be
found in a document, and where one must then include semantics
in search.

In terms of other possible methods for recognizing joke variants,
we considered viewing variants like translations into other
languages, and learning a translation model of common word
substitutions [5]. This is similar to Berger and Lafferty’s use of
translation models between (English-language) queries and
documents, designed to help connect words having the same
meaning or topic [3]. However, those models require a large
amount of training data (matched documents), whereas our set of
labeled documents, on the contrary, is quite small.

The idea that most joke clusters have particular invariant words or
phrases relates to the idea of “key” or “core” concepts, introduced
by Allan et al. [1] and more recently adapted to long queries [2]. It
is not clear that concepts which are key in standard text—e.g.,
proper nouns—would play the same role in jokes; however, it
might be possible to modify techniques such as these to work for
jokes.

In the example domains we have described where search is
difficult because words may change (jokes, puzzles, quotes, etc.),
it was still possible to formulate a query that at least paraphrases
the ideal document. An even harder problem would be situations
where the user can describe what they want, but not in terms that
would appear in the document. For instance, “that popular song
with the catchy rhythm,” or other cases where it is difficult to
imitate the document. This kind of question motivates approaches
that use semantics and ontologies to try to understand the user
[10][13].

8. CONCLUSIONS
We have used knowledge of a particular domain to build a
retrieval system that performs better at ranking and classification
than the standard model in that domain. Along the way, we have
used this domain, humor, to argue for alternative definitions of
similarity between documents: that they exist and that they matter.
In particular, that documents in certain domains are difficult to
search for because one cannot predict the words the item will
contain; only their relationships count. To discern such other types
of connections may require that information retrieval move
beyond the word level and towards understanding meaning,
perhaps via modeling the structure of text in various domains.

9. ACKNOWLEDGMENTS
Our thanks to Mario Di Marzo for collaborating on an early
version of this project. David Jensen provided support for this

Figure 6. Joke clusters easy for the baseline.

What's the difference between a viola and a trampoline? You
take your shoes off to jump on a trampoline.

Q: What's the difference between a viola and a trampoline?
A: You don't have to take your shoes off before you jump on
a viola.

What's the difference between a bassoon and a trampoline?
You take off your shoes when you jump on a trampoline.

Q: How does a blonde measure his/her IQ? A: With a tire
gauge! (da da dum)

Q: How do you measure a blonde's intelligence? A: Stick a
tire pressure gauge in her ear!

Figure 7. Joke clusters easy for annotations, difficult for
the baseline.

Q: What's black and white and bounces? A: A polar bear on a
pogo stick!

Q: What's striped and bouncy? A: A tiger on a pogo stick!

work, and also suggested the “same research problem” idea.
Thanks also to Mark Smucker for his help indexing the corpus.
This work was supported in part by the Center for Intelligent
Information Retrieval.

10. REFERENCES
[1] James Allan, Jamie Callan, W. Bruce Croft, Lisa Ballesteros,

John Broglio, Jinxi Xu, and Hongmin Shu. INQUERY at
TREC-5. pages 119–132. NIST, 1997.

[2] Bendersky, M. and Croft, W. B. 2008. Discovering key
concepts in verbose queries. In Proceedings of the 33rd
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR '08. ACM
Press, New York, NY.

[3] Berger, A. and Lafferty, J. 1999. Information retrieval as
statistical translation. In Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR '99. ACM
Press, New York, NY, 222-229. DOI=
http://dx.doi.org/10.1145/312624.312681

[4] Binsted, K., Bergen, B., Coulson, S., Nijholt, A., Stock, O.,
Strapparava, C., Ritchie, G., Manurung, R., Pain, H., Waller,
A., and O'Mara, D. 2006. Computational humor. IEEE
Intelligent Systems, 21(2):59-69. DOI=
http://dx.doi.org/10.1109/MIS.2006.22

[5] Brown, P. F., Cocke, J., Della Pietra, S., Della Pietra, V. J.,
Jelinek, F., Lafferty, J. D., Mercer, R. L., and Roossin, P. S.
1990. A statistical approach to machine translation.
Computational Linguistics, 16(2):79-85.

[6] Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. 2001.
Eigentaste: a constant time collaborative filtering algorithm.
Information Retrieval Journal, 4(2), 133-151.

[7] Lafferty, J. and Zhai, C. 2001. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR '01. ACM Press, New York,
NY, 111-119. DOI=http://dx.doi.org/10.1145/383952.383970

[8] Mihalcea, R. 2007. Multidisciplinary Facets of Research on
Humour. In Masulli, F., Mitra, S., and Pasi, G., eds.,
Applications of Fuzzy Sets Theory (Proceedings of the

Workshop on Cross-Language Information Processing),
Lecture Notes in Artificial Intelligence. Springer.

[9] Mihalcea, R. and Strapparava, C. 2006. Technologies that
make you smile: adding humor to text-based applications.
IEEE Intelligent Systems, 21(5):33-39.

[10] Schatz, B. R. 2002. The Interspace: concept navigation
across distributed communities. Computer, 35, 1 (Jan. 2002),
54-62.

[11] Taylor, J. M. and Mazlack, L. J. 2007. Multiple component
computational recognition of children’s jokes. In IEEE
International Conference on Systems, Man and Cybernetics.
(SMC ’07). 1194-1199.

[12] Witten, I. H. and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques, 2nd Edition. Morgan
Kaufmann, San Francisco.

[13] Zeng, J. and Yang, Y. 2003. Information retrieval based on
conceptual network. In Proceedings of the International
Conference on Natural Language Processing and Knowledge
Engineering. 380-387.

[14] Zhai, C. and Lafferty, J. 2001. Model-based feedback in the
language modeling approach to information retrieval. In
Proceedings of the tenth international conference on
Information and knowledge management. CIKM '01. ACM
Press, New York, NY, 403-410. DOI=
http://dx.doi.org/10.1145/502585.502654

[15] Zrehen, S. and Arbib, M. A. 1998. Understanding jokes: a
neural approach to content-based information retrieval. In
Proceedings of the 2nd International Conference on
Autonomous Agents. AGENTS ’98. ACM Press, New York,
NY, 343-349. DOI=http://dx.doi.org/10.1145/280765.280856

[16] http://www.folj.com/puzzles/easy.htm

[17] http://www.imdb.com/title/tt0436078/

[18] http://www.syvum.com/teasers/

