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ABSTRACT 
In a corpus of jokes, a human might judge two documents to be 
the "same joke" even if characters, locations, and other details are 
varied. A given joke could be retold with an entirely different 
vocabulary, while still maintaining its identity. Since most 
retrieval systems consider documents to be related only when 
their word content is similar, we propose joke retrieval as a 
domain where standard language models may fail. In particular, 
we consider the task of identifying the "same joke" to be a 
necessary component of any joke retrieval system, and we 
examine it in both ranking and classification settings. We exploit 
the structure of jokes to develop two domain-specific alternatives 
to the "bag of words" document model. In one, only the punch 
lines, or final sentences, are compared; in the second, certain 
categories of words (e.g., professions and countries) are marked 
up and treated as interchangeable. Each technique works well for 
certain jokes. By combining the methods using machine learning, 
we create a hybrid that achieves higher performance than any 
individual approach.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval] 

General Terms 
Algorithms. 

Keywords 
Humor, document similarity, domain-specific retrieval. 

1. INTRODUCTION 
Humor is famously difficult for machines to comprehend. It 
brings into play ambiguities, implications, and exaggerations, all 
in the service of violating expectations—which requires one to 
have expectations in the first place. If you believe Hollywood 
writers, humor will be the last skill for artificial intelligences to 
acquire.  If you believe linguistic and computational researchers, 
jokes are a domain where “the question of semantics can no 
longer avoided” [15]; and worse, they contain “language that 
requires deep conceptual knowledge about the details of human 
experience” [4]. 

One concept that humor brings into focus is an alternative notion 
of document similarity.  Even more than is true for the news 
stories and other informative documents typically used in 
information retrieval, jokes can be similar without having many 

words in common. What we would consider “one joke” can be 
retold in vastly different ways. 1 For instance, Figure 1 shows a 
joke, and Figure 2 outlines how its elements change in other 
documents in our collection.  

Characters can change, the setting can change; it is difficult to 
describe, at the word level, what it is that stays constant in a 
joke’s structure, or meaning. One way to evoke this challenge is 
to try to formulate a search query for a joke—say, to determine if 
any version of it is present in a given corpus. For instance, with 
the example above, we might begin with “priest rabbi accident 
wine,” but then pause, realizing the joke could really be about any 
two people, so it would be better to remove them from the query. 
Next, “accident” could be “crash or collision,” and “wine” could 
be “whiskey” or “champagne.” What is left? Perhaps a few 
variations on “drink police accident,” a query which is less precise 
and would still fail to retrieve the version in Figure 3. It is not just 
the problem of synonymy here, but also that of knowing which 
aspects of a joke are likely to vary and capturing the wide range of 
possible alternatives.  

Jokes illustrate this structural similarity well, but they are just one 
of many domains where it is important. A closely related genre is 
logic and math puzzles: having solved how to use a five-gallon 
bucket and a three-gallon bucket to measure out exactly four 
gallons of water [16] shows one immediately, for example, how to 
use a 70 mL test tube and a 40 mL test tube to measure exactly 60 
mL of hydrochloric acid.  In fact, every grade school “story 
problem” probably fits into a small number of templates; it is easy 
to generate new problems of a given type [18], but fortunately for 
teachers, no reverse tool (automatic recognition and solution of 
homework problems) is yet known to us. Unfortunately for 
researchers, neither is there a system to refer one to “the same 
research problem” that may have been studied using different 
terminology in another field—although a few projects have been 
aimed at this idea [10][13]. 

Another situation where it is difficult to formulate queries to 
describe a particular meaning is in searching for famous 
quotations. When one is asked, “Can you find that quote where 
Einstein said …,” sometimes all one can do is verify that Einstein 
didn’t say it, and that in fact no one said exactly that, even though 
the quote we wanted is likely out there. Song lyrics have the same 
property: one must remember them exactly to find them on the 
web. A similar domain is that of proverbs: a given saying may be 

                                                                    
1 See, for example, the recent documentary “The Aristocrats,” 

which explores the variations of a single joke [17].  



expressed in numerous ways, particularly across cultures, and it 
would be interesting to find versions of the same message. 

One final example where structure can matter more than word 
content is cooking. Websites with recipes can suggest other 
recipes that have “chicken” or “green beans.” But in the process 
of learning to cook, it often takes seeing a few examples before 
we begin to recognize a general technique, e.g., that one can roast 
pork with peppers using exactly the same steps and the same 
seasonings as for the chicken with green beans. Retrieving other 
recipes with the same structure would make it easier to learn 
which aspects one can vary. 

In this paper, we limit ourselves to (studying) jokes, and we 
consider the question of recognizing whether two documents are 
“the same joke,” or as we will term it, when they belong to the 
same “joke cluster.” This would be a critical component of a joke 
search engine that incorporates meaning. In response to a query, a 
results page could list several clusters; for each cluster, it would 
display one joke, and a link to “other versions of this.” Creating 
that list of other versions is the task we address here. 

We consider the task of pairwise classification in Section  4: given 
two jokes, decide if they match.  Next, in Section 5 we move to a 
ranking setting, which is closer to our eventual goal: given one 
joke, retrieve a ranked list of matches.  Finally, in Section 5.3 we 
incorporate a classifier into our ranking function.  We begin now 
by introducing our data and document models. 

2. CORPUS 
The corpus consists of approximately 11,000 jokes. These were 
downloaded from 13 joke archive sites on the web. It was 
important for the corpus to contain multiple versions of a number 
of jokes; to increase the odds of such repetitions, several 
specialized collections were included, such as music jokes and 
profession jokes, that seemed likely to include repeats. 

A large number of the documents contained humor that fell 
outside our definition of jokes.  We manually removed items like 
one-liners (which included “yo mama” jokes), quotes, funny but 
true stories, sarcastic commentaries, “top ten ways to . . .,” and 
lists.  The remainder consists of things like narrative stories (like 
in Figure 1), light bulb jokes, and Q/A jokes (e.g., “Q: What do 
you call 5000 dead lawyers at the bottom of the ocean? A: A good 
start!” or “Q: What do you call a snail on a ship? A: A snailor!”).  
Duplicate and near-duplicate documents were also removed. 

Sixty clusters of jokes were labeled manually. This was done by 
creatively constructing queries to find matches for particular 
jokes. (For humans, this was not difficult, but recall was 
imperfect: in several cases, the retrieval systems found matches 
that the authors had missed.) Most jokes do not appear to have 
matches, but the corpus certainly contains more clusters than 
these. The clusters range in size from 2 to 13 jokes, and they 
include a total of 217 jokes. Judging whether two jokes match can 
be subjective; as a rule of thumb, we labeled them as matching if 
one might easily say, “I know that joke, except in my version 
[something varies].” 

In the corpus as a whole, almost half the jokes are just two 
sentences long. Those jokes we labeled tended to be longer 
stories, averaging about 12 sentences. This was probably a bias in 
labeling, and it could imply that the results most representative of 
future performance will be those on the short jokes.  However, it 
is also possible that the same bias—perhaps, that longer jokes 
were more interesting to look for, and that shorter jokes were 

Figure 1. One version of a joke. 

A Rabbi and a Priest are driving one day and, by a freak 
accident, have a head-on collision with tremendous force. 
Both cars are totally demolished, but amazingly, neither of the 
clerics has a scratch on him.  After they crawl out of their 
cars, the rabbi sees the priest's collar and says, "So you're a 
priest. I'm a rabbi.  Just look at our cars. There is nothing left, 
yet we are here, unhurt. This must be a sign from God!"  
Pointing to the sky, he continues, "God must have meant that 
we should meet and share our lives in peace and friendship 
for the rest of our days on earth."  The priest replies, "I agree 
with you completely.  This must surely be a sign from God!"   
The rabbi is looking at his car and exclaims, "And look at this!   
Here's another miracle!  My car is completely demolished, but 
this bottle of Mogen David wine did not break.  Surely, God 
wants us to drink this wine and to celebrate our good fortune."  
The priest nods in agreement.  The rabbi hands the bottle to 
the priest, who drinks half the bottle and hands the bottle 
back to the rabbi. The rabbi takes the bottle and immediately 
puts the cap on, then hands it back to the priest.  The priest, 
baffled, asks, "Aren't you having any, Rabbi?"  The rabbi 
replies, "Nah... I think I'll wait for the police." 

 

Figure 2. Variations of the same joke (excerpts). 

An Irish priest and a Rabbi get into a car accident … The 
priest asks him, "Are you all right, Rabbi?" The Rabbi 
responds, "Just a little shaken." The priest pulls a flask of 
whiskey from his coat and says, "Here, drink some of this it 
will calm your nerves." … "Well, what are we going to tell the 
police?" "Well," the priest says, "I don't know what your aft' to 
be tellin' them. But I'll be tellin' them I wasn't the one drinkin'." 

A woman and a man got into a really bad car accident.  Both 
cars are totaled … 

There's a guy from ARMY driving from West Point to the 
Meadowlands, a guy from the NAVY was driving from 
Annapolis to the Meadowlands, and an Air Force guy who's 
driving from McGwire in South Jerz to the Meadowlands just 
to watch the Jets. In the middle of the night with no other cars 
on the road they hit each other and all cars go flying off in 
different directions. … The Air Force guy says "Let me see 
what else survived this wreck." So he pops open his trunk 
and finds a full unopened bottle of Jack Daniels. … 

Figure 3. Fifth variation, with diverging vocabulary. 

An English man and an Irish man are driving head on, at 
night, on a twisty, dark road. Both are driving too fast for the 
conditions and collide on a sharp bend in the road. To the 
amazement of both, they are unscathed, though their cars are 
both destroyed. In celebration of their luck, both agree to put 
aside their dislike for the other from that moment on. At this 
point, the Irish man goes to the boot and fetches a 12 year 
old bottle of Jameson whiskey. He hands the bottle to the 
English man, whom exclaims,'' may the English and the Irish 
live together forever, in peace, and harmony.'' The English 
man then tips the bottle and lashes half of it down. Still 
flabbergasted over the whole thing, he goes to hand the 
bottle to the Irish man, whom replies: '' no tanks, I'll just wait 
till the Garda get here!'' 



harder to vary, often just word puns like the “snailor”—would 
affect the queries of future users. 

3. METHODS 
We use a language modeling approach. The document models and 
similarity measures described next are employed in both the 
classification and ranking tasks. 

3.1 Document Models 
3.1.1 Baseline 
The baseline is a standard unigram (bag of words) model.  With 
this,  for a word w and a document d, the initial probability of a 
word given the document model is the maximum likelihood 
estimate: 
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Then, linear interpolation smoothing is used to combine the above 
value with the probability of the word in the general corpus: 
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We determine λ through a parameter sweep, separately for each 
model and task. In the ranking setting, the value of λ = 0.99 is 
optimal for all models; for classification, the value λ = 0.4 is near-
optimal for all models. 

Throughout this paper, the query is also a document from our 
collection.  However, we do not smooth the query model: 

! 
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3.1.2 Punch Line 
The first alternative to the baseline captures the intuition that the 
ending of a joke is crucial to its identity and is likely to remain 
constant despite the rest changing.  For this punch line model, we 
simply identify the last sentence and throw away everything 
before it.  The same equations above are used, only every 
document in the corpus is truncated. 

3.1.3 Annotations 
The second alternative addresses the idea of interchangeable 
elements in a joke. For example, if one can generally vary 
characters and locations in jokes, then it may be a helpful 
abstraction to introduce the tokens “#person” and “#location.” 
And so on with other common categories. In place of plain text, 
we then have a higher-level representation, like this (this example 
is shown after stopping and stemming): 

 “Q: What's the difference between a dead snake in the road and a 
dead lawyer in the road?   

A: There are skid marks in front of the snake.” 

“differ dead #animal[snake] #location[road] dead #person[lawyer] 
#location[road] skid mark front #animal[snake]” 

In the best case, the words not annotated would be verbs and other 
words that convey the generic meaning of the joke. As one might 
imagine, when using these annotations (and ignoring the words 
inside the brackets), the above joke matches identically to another 
that begins: “Q: What's the difference between a dead dog in the 
road and a dead lawyer …” 

To implement the annotations, there are two aspects to decide: (a) 
how to mark up the text with annotations, and (b) how to use 
them. For the first question, we created word lists for each 
category (see Table 1). During preprocessing, any document word 
that matches a list word is marked up. This is a coarse method and 
yields obvious markup errors, for example with homonyms and 
irregular plurals, but such problems are present already in the bag 
of words model.   

Table 1. Categories of annotations. 

animal number 
color organization 
currency person 
location timeDate 
music vehicle 

 

Once the documents are annotated, there are a number of options 
for how to treat the new tokens. A model could be used that treats 
“#animal[dog]” as similar but not identical to “#animal[snake].” 
This would be similar to a translation model, as we will discuss in 
Section 8.  Instead, we choose to treat all “#animal[]” tokens as 
identical. A translation model giving different probabilities for 
each substitution would behave midway between treating the 
tokens as distinct, as in the baseline, and treating them as 
identical, so we place the annotations model at that second 
extreme.  

Formally, for a normal word under the annotations model, 
P(w|Md)MLE is as before, but for a word w annotated from word list 
A, the formula changes to this: 
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3.1.4 Using the Markup for Other Models 
Once the documents have been annotated and subdivided into 
punch line and non-punch line portions, it is easy to invent 
additional document models that use this same information 
differently.  For instance, one can use only the punch line, but use 
the annotations model within it.  Or rather than using the 
annotated tokens within the bag of words, one could simply delete 
them, in the spirit of treating them like stop words; after all, 
almost every joke probably contains a “#person.” In the realm of 
possible but probably unhelpful models, one can treat a document 
as a bag of just two types of tokens: punch line and non-punch 
line words; or, annotated and non-annotated words. Or, to test the 
conjecture that only some annotation categories are useful, one 
can choose to use some types of labels but not others, for instance 
treating all “#animal” tokens as identical, but ignoring “#location” 
tags and reverting to the original words. 

In our code base, we provided a flexible syntax for specifying 
document models along the above lines, and we created 108 such 
variations.  The scores from these models are given as inputs to 
the machine learning classifier introduced below in Section 4.3. 

3.2 Similarity Measures 
To measure the similarity of a query to a document, we use the  
Kullback-Leibler (KL) divergence of the query and document 
models. KL divergence is a natural (though asymmetric) measure 



of the distance between two probability distributions; it is zero 
when the distributions are equal and positive otherwise. When the 
query is a constant, as in the retrieval setting, KL divergence is 
rank-equivalent to the more familiar cross entropy measure H(p,q) 
[6]. 
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The summation above is often shown as over all words in the 
vocabulary.  Since our query model is not smoothed, P(w|Mq) 
(and thus the whole term) is zero for words outside the query. 

The function above allows different weights (probabilities) for the 
query terms.  We require a function with this property, since in 
our framework the query is always a full document, not just a few 
distinct words. When the query weights are all equal, cross 
entropy reduces to standard query likelihood. 

4. CLASSIFICATION 
In the classification task, we are given two documents and need to 
determine whether they are variations of the same joke. We set 
this up as for a machine learning task—creating separate training 
and test sets, and using cross validation—even though most 
models are only “learning” a cutoff threshold.  There are positive 
and negative examples, the positives being joke pairs that match, 
and the negatives being joke pairs that do not match.  

4.1 Training and Test Sets 
The samples are created in ten groups, to allow ten-fold cross 
validation.  In order that the training and testing barrier be kept 
intact, each joke cluster only contributes examples to one group. 
We avoided letting any one large cluster dominate the examples, 
by using no more than 15 positives and 15 negatives per cluster.  

For any cluster, the positive examples are drawn from all pairs of 
jokes in the cluster. The negative examples have one joke in the 
cluster, and one outside it.  If the joke from outside the cluster 
were picked uniformly at random, the task would be unfairly easy; 
the pair of jokes would not be at all similar. So instead, we 
sampled negatives so that they would be comparable in their ranks 
to the positives.  That is, for each positive pair, we took one joke 
as a query, retrieved a ranked list of jokes, and recorded the rank 
(in that list) of the second joke.  By repeating this with every joke 
as the query, we sampled a distribution of ranks of positives. 
Then, to generate negatives, we took one joke from the cluster, 
retrieved a ranked list of jokes, picked a desired rank from our 
distribution, and sampled a non-matching joke from at or near that 
rank. This way we created negative examples that were, in theory, 
difficult to distinguish from the positives.  

4.2 Symmetric Similarity 
We described KL divergence above.  However, when the example 
at hand is a pair of documents a and b, with neither taking the role 
of query, it is better to use a symmetric score.  We make the score 
symmetric by taking the average of both directions, i.e., using 
½(KL(Ma || Mb) + KL(Mb || Ma)).  

It would have been possible to use the symmetric cross entropy 
instead.  Since the actual distribution of scores matters to us—the 
values, not just the rankings—we chose KL divergence because it 
has a minimum of zero.  For cross entropy, the minimum score 
(occurring for perfectly matching documents) is the entropy of the 
query, which varies by query. 

4.3 Experiments 
In total, we have approximately 600 data points, of which 58% 
were negatives. We measure the accuracy—the number of correct 
predictions—for each fold, and then compute an average across 
the folds. During the training phase, the classifier computes the 
score for each pair, and chooses a prediction threshold to 
maximize the accuracy on the training data.  Table 2 shows the 
accuracies achieved by the three main document models described 
above. 

Table 2. Classification accuracy of individual models. 

Document model Accuracy 

Baseline 0.749 

Annotations 0.773 

Punch line 0.801 
 

The first things to notice are that the accuracies are fairly good, 
and that the models that use joke structures have some advantage 
over the baseline. Also, there is diversity among the models; 
Table 3 shows that each has some examples that only it predicts 
correctly. We further see that the models are erring on the side of 
caution, by not recognizing positives when they appear.  

Table 3. Diversity among classification models. 

Document 
model 

Number of pairs 
only this model 
gets right 

Accuracy 
on 
negatives 

Accuracy 
on 
positives 

Baseline 4 0.91 0.52 

Annotations 13 0.91 0.59 

Punch line 56 0.90 0.66 
 

To take advantage of the diversity among the models, we try 
combining them using machine learning. We use the scores from 
the models as inputs to a classifier, and allow the classifier to 
make the prediction.  We use Weka’s logistic regression tool [12]; 
its other classifiers performed similarly or worse. We test several 
combinations of features: first, the three models we have seen 
above.  Next, with the idea that relative document length would be 
predictive, we add two features concerning that.  Finally, we use 
as our features the scores from all 108 model variations described 
in Section 3.1.4.   



The results of the classifiers are shown in Table 4. We see that 
using the set of three features, the classifier achieves better 
performance than any of the models alone.  Adding additional 
features does not help; if anything, it was useful to manually 
select the set of three features. We assessed significance using 
paired t-tests on the sets of individual predictions. At the p = 0.02 
level, annotations beats baseline, and the best classifier beats 
annotations; however, for the punch line versus annotations and 
for the classifier versus punch line, they just miss significance, 
yielding p-values around 0.06. 

Table 4. Classification accuracy of combination models. 

Features Number of 
features Accuracy 

Baseline, annotations, punch line 3 0.818 

Above, plus ratio and average of 
document lengths 5 0.802 

Various 108 0.801 
 

It is surprising in light of Section 5 below, and somewhat 
misleading, that the punch line model would perform so well in 
classification. Further analysis shows that for the baseline model, 
there is not a large separation between the scores of its positive 
and negative classes. This is a result of the sampling procedure: 
by intent, the two classes were close in baseline scores. The 
annotations model has a similar situation. However, the punch 
line model tends to score differently than the other two; thus its 
positive and negative examples were not pushed together by the 
choice of samples, and it could outperform the other models in 
this setting. 

5. RANKING 
We next consider this “same jokes” task in a ranking setting.  
Ranking is a more appropriate setting for evaluating the task, if 
we anticipate using the system to retrieve “more jokes like this.” 

5.1 Setup 
In this setting, we use one joke as a query, and perform a retrieval 
using one of the document models described earlier.  The relevant 
documents for this query are those jokes in the same cluster.  We 
measure average precision, recall at various cutoffs, and R-
precision. We repeat this process for every joke in the cluster, and 
calculate the average of the measures for the cluster.  We do this 
for every cluster, and finally we report the averages across all 60 
clusters. 

5.2 Results 
The results of the ranking experiments are displayed in Table 5. 
We see that unlike in classification, here the baseline model 
performs best and the punch line model worst.  The differences 
between the baseline and annotations model are not significant. 

Table 5. Ranking performance of individual models. 

Document 
model MAP R-precision Recall at 

10 
Recall at 
100 

Baseline 0.793 0.744 0.860 0.966 

Annotations 0.774 0.713 0.847 0.948 

Punch line 0.514 0.458 0.587 0.737 
 

One way to compare the performance of the models is with a 
scatterplot of their scores, as in Figure 3. The plots show how 
closely the annotations and baseline models track each other, as 
their scores lie near the diagonal (Pearson correlation = 0.84). 
They also show how the baseline model almost always gives 
better results than the punch line model.  However, we can also 
see how each of the alternative models has clusters for which they 
soundly beat the baseline. This suggests that again there is 
potential for improvement by combining the scores of the three 
models. 

 
Figure 3. Mean average precision of each joke cluster (one 

data point per cluster).  Left, baseline model versus 
annotations. Right, baseline versus punch line. 

5.3 Re-ranking 
To combine the models, we return to the approach from above: 
training a pairwise classifier using scores from the three models. 
The classifier actually outputs a probability score, not just a 
binary decision, so we can take and use this score for ranking. In 
order to bring this classifier into the ranking setting, for which the 
query is fixed, we have two immediate possibilities.  First, we 
could pair the query with every other document in the collection, 
one by one, and use these scores to rank all the documents.  Or, 
we could take some set of top documents from the baseline model 
and use the classifier to re-rank them. We take the latter approach, 
for efficiency reasons, and also to exploit the fact that the baseline 
classifier already has high recall. 

To choose the number of documents to re-rank, we plot in Figure 
4 the recall curve as a function of the number of documents. The 
curve levels off by 500 documents, at recall = 99.8%. 



 
Figure 4. Recall of the baseline model, averaged over all jokes. 

In order to train a classifier to re-rank the top 500 documents, we 
must create a new training set reflecting the distribution where the 
model will now be applied. For the positives, we use all pairs of 
jokes in all clusters, for we need all the positive examples we can 
get.  To generate the negatives, we run the baseline ranking, 
identify the top 500 documents, and sample randomly from them. 
(We do not expect it to be important to keep constant the ratio of 
positives to negatives from training to test sets, since we are using 
the model’s output for ranking, as opposed to for classification. 
We use a ratio of about 1:2 for positives to negatives, which keeps 
the size of the training set reasonable.) 

To create training and test splits, we divide the data into 10 groups 
of clusters for cross-validation.  For each cluster, the training data 
are the positives and negatives from queries in the other 9 groups. 

Table 6 shows the results of using the classifier to re-rank the top 
500 documents. Using the classifier by itself, the scores are in fact 
worse than the baseline.  Once more, we examine the scatterplot 
of scores (Figure 5, left). This time we see that while the classifier 
does not perform as well as the baseline overall, it is a toss-up as 
to which works better for any particular cluster. This means that 
yet once again, we stand to benefit by combining these classifiers. 

Since the machine learning classifier has already been given the 
baseline score as a feature, we create this final combination by 
simply linearly interpolating between the output score of the 
classifier and the baseline score, giving them equal weight. This 
resulting ranking turns out to be significantly better than any of 
the others. The right side of Figure 5 shows how, with the 
interpolated classifier, the mean average precision of almost every 
joke cluster improves compared to the baseline. 

Table 6. Ranking performance using classifier to re-rank. 

Document model MAP R-precision Recall 
at 10 

Recall 
at 100 

Baseline top 500 re-
ranked with classifier 0.749 0.684 0.841 0.965 

Baseline top 500 re-
ranked with (0.5  
classifier + 0.5 
baseline) 

0.822 0.772 0.882 0.977 

 
Figure 5. Mean average precision of each joke cluster (one 

data point per cluster).  Left, baseline model versus classifier. 
Right, baseline versus interpolated classifier. 

We performed a few experiments analyzing the contribution of 
the classifier, and in particular, whether the improvement in score 
could be achieved in some simpler way. These experiments are 
shown below, in Table 7. First, one method for improving 
retrieval in many situations is to expand the query using pseudo-
relevance feedback. We used linear interpolation between the 
original query and the top t documents [14]. We used t = 2, and 
weighted the original query and the new terms 0.4 and 0.6, 
respectively. Its performance is virtually identical to the baseline. 

Next, we investigated whether the boost from the classifier could 
be due to it using the symmetric version of KL divergence. For 
this run, we use the baseline model but use the symmetric version 
of the score. This by itself is clearly not helpful either. 

Table 7. Other experiments. 

Document model MAP R-precision Recall 
at 10 

Recall 
at 100 

Baseline with 
pseudo-relevance 
feedback 

0.795 0.740 0.851 0.974 

Baseline using 
symmetric score 0.594 0.534 0.711 0.841 

 

6. DISCUSSION 
We gain some insight into the utility of the three document 
models by looking at specific queries where they performed 
differently. 

For the most part, it seems that if a joke is sufficiently long, 
certain words actually do show up in all its versions. In the 
challenging-looking joke cluster from Figures 1-3, for example, 
the baseline model gives a reasonable MAP of 0.62; annotations 
scores mildly higher. 

When a joke is short, the baseline model still performs well if 
there are distinctive words that appear in every version.  For 
instance,  the unusual words “trampoline” and “tire gauge” in the 
joke versions in Figure 6 allow the baseline model to retrieve 
these clusters perfectly. 



 

There is a mild indication that joke length correlates with the 
success of the annotations model. In particular, when the 
annotations model works better than the baseline, the joke is 
either short (under 50 words) or long (over 120).  For jokes of 
medium length, either the two models give comparable scores, or 
the baseline model wins.  We can explain the success of the 
annotations model at short jokes by referring back to the example 
from Section 3.1.3 involving “skid marks;” in cases like this, there 
are not always enough words for the baseline model to latch on to. 
In particular, in the example in Figure 7, the annotations model 
scored perfectly, whereas the baseline only had a MAP of 0.5. 

As for punch lines, when the punch lines match closely, this is a 
sufficient condition for the jokes to match.  However, this only 
happens for some jokes. 

Overall, it seems as though every joke has some invariant phrases.  
However, it is difficult to describe, without actually looking at the 
joke, which phrases those might be. This is why using a 
combination of methods makes sense: each deals well with certain 
types of jokes. 

7. RELATED AND FUTURE WORK 
There is a small but growing body of research in computational 
humor. This area typically encompasses two tasks: distinguishing 
humorous from non-humorous documents, and generating humor. 
Binsted et al. [4] collects the work of several groups that publish 
in this field, and a recent review by Mihalcea [8] surveys theories 
of humor from psychology, philosophy, and other fields. Some 
recognition tasks include using text classification to distinguish 
humorous one-liners from other sentences like headlines or 
proverbs [9], or recognizing short children’s jokes using any of 
several theories of humor [11]. In humor generation, there are 
systems that generate riddles with puns or humorous acronyms, 
and then there are systems that insert humor into emails or 
chatbots as a way to improve human-computer interactions [4], 

[9]. In addition, there is a jokes search engine called Jester, but it 
has been created and studied exclusively as a recommender 
system [6]. The models of humor that help computers recognize 
or construct it could be valuable to anyone studying jokes, but 
none of the above work consider variations of a single joke, the 
central idea of this paper.  

The work most similar in spirit to this is an article by Zrehen and 
Arbib [15]. Critiquing IR techniques as relying too heavily on the 
specifc words in a document, they propose an architecture for 
neural networks that would infer the implied context of a sentence 
and then recognize jokes by the incongruities they contain. This 
system was not actually implemented, and its task would have 
again been humor recognition; however, the authors do discuss 
joke retrieval as a domain where the query words may not be 
found in a document, and where one must then include semantics 
in search. 

In terms of other possible methods for recognizing joke variants, 
we considered viewing variants like translations into other 
languages, and learning a translation model of common word 
substitutions [5].  This is similar to Berger and Lafferty’s use of 
translation models between (English-language) queries and 
documents, designed to help connect words having the same 
meaning or topic [3]. However, those models require a large 
amount of training data (matched documents), whereas our set of 
labeled documents, on the contrary, is quite small. 

The idea that most joke clusters have particular invariant words or 
phrases relates to the idea of “key” or “core” concepts, introduced 
by Allan et al. [1] and more recently adapted to long queries [2]. It 
is not clear that concepts which are key in standard text—e.g., 
proper nouns—would play the same role in jokes; however, it 
might be possible to modify techniques such as these to work for 
jokes. 

In the example domains we have described where search is 
difficult because words may change (jokes, puzzles, quotes, etc.), 
it was still possible to formulate a query that at least paraphrases 
the ideal document. An even harder problem would be situations 
where the user can describe what they want, but not in terms that 
would appear in the document.  For instance, “that popular song 
with the catchy rhythm,” or other cases where it is difficult to 
imitate the document. This kind of question motivates approaches 
that use semantics and ontologies to try to understand the user 
[10][13]. 

8. CONCLUSIONS 
We have used knowledge of a particular domain to build a 
retrieval system that performs better at ranking and classification 
than the standard model in that domain. Along the way, we have 
used this domain, humor, to argue for alternative definitions of 
similarity between documents: that they exist and that they matter. 
In particular, that documents in certain domains are difficult to 
search for because one cannot predict the words the item will 
contain; only their relationships count. To discern such other types 
of connections may require that information retrieval move 
beyond the word level and towards understanding meaning, 
perhaps via modeling the structure of text in various domains. 
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Figure 6. Joke clusters easy for the baseline. 

What's the difference between a viola and a trampoline? You 
take your shoes off to jump on a trampoline. 

Q:  What's the difference between a viola and a trampoline? 
A:  You don't have to take your shoes off before you jump on 
a viola. 

What's the difference between a bassoon and a trampoline? 
You take off your shoes when you jump on a trampoline. 

 

Q: How does a blonde measure his/her IQ?  A: With a tire 
gauge! (da da dum)   

Q: How do you measure a blonde's intelligence? A: Stick a 
tire pressure gauge in her ear! 

Figure 7. Joke clusters easy for annotations, difficult for 
the baseline. 

Q: What's black and white and bounces? A: A polar bear on a 
pogo stick! 

Q: What's striped and bouncy?  A: A tiger on a pogo stick! 
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