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Abstract

Traditional authorship attribution approaches

have made attempts at capturing features

that were designed heuristically – researchers

guessed at which aspects of language would

best separate one author from another and then

performed experiments to see how valid their

assumptions were. While this approach has

met some success, it also proves to be un-

scalable – most test collections to date have

been on the size of 10 or less authors, which

in the age of internet-style publication is an

unrealistically low quantity. We believe that

this approach to feature selection for author-

ship attribution adds unnecessary complexity

to what the task really seems to be: a multi-

class classification problem, and one where

the most useful features can be easily discov-

ered using a standard dimensionality reduc-

tion technique. We demonstrate the use of

such a technique to dramatically reduce the

number of used features for authorship attribu-

tion using an implementation of Support Vec-

tor Machines.

1 Introduction

The task of authorship attribution (henceforth, AA)

is assigning an author to a particular document or

work. While the number of plausible authors has

ballooned due to the advent of the internet, the col-

lections used for AA research have more or less re-

mained static. Multiple approaches to AA have been

developed, and many have been shown to be exper-

imentally successful, however relatively little work

has been done towards demonstrating the effective-

ness of these approaches to large-scale data sets. In

this work we test the plausibility of using statistical

inference to automatically select a sufficient subset

of all possible features to use in a standard machine-

learning approach to AA. We use a corpus of works

from various time periods and multiple languages to

provide a realistic, heterogeneous representation of

the AA problem.

2 Previous Work

Throughout most of its history, researchers typi-

cally approach the task of AA by manually select-

ing a subset of stylometric features such as function

words (Zhao et al., 2006), POS counts (Stamatatos

et al., 2001), punctuation and sentence length (Sta-

matatos et al., 2001; Holmes, 1998) or letter n-grams

(Khmelev and Tweedie, 2003; Keselj et al., 2003).

Despite several studies that attempt to evaluate these

kinds of features (Stamatatos et al., 2001; Holmes,

1998; Koppel and Schler, 2003), the evaluation has

been mainly performed on collections that pale in

comparison to what we would consider standard-

sized collections today.

More recent work such as (Diederich et al., 2000)

and (Koppel et al., 2006) has provided us with some

empirical basis for our investigation; the former

work makes a compelling argument for SVMs be-

ing the most appropriate technique to approach this

task, while the latter introduces what we feel to be

the most realistic setting for the AA task to date.



3 Our Approach

3.1 Corpus

Our source data comes from Project Gutenberg1 , an

online source of free electronic books. Currently

the project contains over 17, 000 books in various

languages. We selected 100 authors with multiple

works contained in the collection. Table 1 shows

some of the statistics of the collection. For our

experiments, we partitioned the collection into 10
overlapping data sets, ranging from 10 to 100 au-

thors.

# # books # unique # terms

authors per author terms/author per book

100 30 5,367 58,240

Table 1: Collection statistics. Average counts of books

per authors and terms per book are presented.

In addition to the size of the collection, which

distinguishes it from collections previously used for

AA, there are several interesting observations that

differentiate the data sets studied here from other

data sets that are typically used for text classifica-

tion:

• High dimensionality. The richness of lan-

guage in our setting leads to even larger num-

ber of unique terms than is usual in text classifi-

cation. A classical Reuters-21578 set contains

27, 658 distinct terms, almost 3 times less than

the smallest of our data sets (73, 743 unique

terms for 10 authors).

• Small number of large documents. Collec-

tions used for text classification evaluation typ-

ically consist of large number of relatively short

documents (e.g., newswire, academic paper ab-

stracts, etc.). Our data sets, on the other hand

consist of a small number of very long docu-

ments (books). Again, compared to Reuters-

21578 that contains above 21, 578 documents,

our largest data set contains only 3, 003 docu-

ments. When considering the semi-supervised

classification task, this leads to an intriguing

setting, where train examples are scarce, but

each example is semantically rich.

1http://www.gutenberg.org/wiki/Main Page

• Non-topical class relations. Typically, docu-

ment classification is based on document top-

icality. In our data sets, we instead assume

that each author can be associated with a dis-

tinct term distribution, but this distribution is

not necessarily topic-driven.

3.2 Data Normalization and Preparation

To normalize the data for feature extraction the fol-

lowing steps were taken:

• Anonymization. Any mention of the author’s

name was removed from the text of the book.

In addition, the book header (first 50 lines of

the book) was removed in order to prevent

any metadata from influencing the classifica-

tion process.

• Stemming and Stopwords removal. We used

the standard INQUERY (Allan et al., 2000)

stopwords list and the well-known Porter stem-

ming algorithm2.

• Indexing. To facilitate efficient feature extrac-

tion, the normalized book collection was in-

dexed using the INDRI search engine3 .

3.3 Feature Construction and Selection

We take the bag of words approach, which was

proven to be successful in both information retrieval

(Salton et al., 1975) and document classification

(Joachims, 2002) settings. In other words, we rep-

resent each book as a vector of length-normalized

term counts. As term vectors are highly-dimensional

and sparse, classification using all features becomes

intractable for large datasets. Instead, we consider

feature selection based on mutual information.

Mutual Information. Feature selection based on

mutual information of the features is a common pro-

cedure in document classification (Joachims, 2002).

In our case, term t is ranked by mutual information

with the author class variable a, or formally

MI(t) =
∑

a∈A

P (a)P (t|a) log
P (t|a)

P (t)
, (1)

2http://www.tartarus. org/martin/PorterStemmer
3http://www.lemurproject.org/indri/



where A is the set of all possible author classes,

and probabilities are computed using maximum-

likelihood estimates.

Number of features. We initially used a standard

approach, where the number of features to use in

the learning algorithm is set a priori to some con-

stant C . However, we observe that as the number

of possible classes (authors) grows, so does the per-

plexity of a distribution over the terms in the col-

lection (note that each new author adds on average

more than 5, 000 unique terms to the collection –

see Table 1). If we assume Zipf’s Law (Zipf, 1949)

holds for our collection, the number of potential fea-

tures will monotonically increase sublinearly as the

number of authors increases. Hence, we assume that

number of features to use in the learning algorithm

should increase log-linearly with the number of po-

tential authors. That is, for collection containing na

authors, the number of features used in the learning

algorithm will be

ν(na) = C(1 + α log na), (2)

where α ∈ [0, 1] is a damping factor.

4 Experimental Results

As described above, in our experiments we consider

10 overlapping data sets, the smallest containing 162
books from 10 authors, and the largest containing

3, 003 books from 100 authors, all normalized ac-

cording to the procedure outlined in Section 3.2.

All authorship attribution experiments are done

using SV Mmulticlass. For a linear kernel, used in

our experiments, SV Mmulticlass is quite efficient,

and its runtime scales linearly with the number of

training examples4. We use a 5-fold cross-validation

to evaluate an average accuracy of the AA task on the

various data sets.

We run three types of classification experiments:

SVM[all], SVM[C] and SVM[ν(na)]. SVM[all] uses

all features (terms) to perform the AA task, while

SVM[C] and SVM[ν(na)] use a subset of C and

ν(na) (Equation 2) features, respectively, selected

by the mutual information metric (Equation 1). We

set C = 500, α = 0.64 in our experiments.

4http://svmlight.joachims.org/

Runtime cpu/sec

# authors 10 20 30

SVM[all] 93.72 434.16 871.38

SVM[C] 9.99 28.32 148.48

SVM[ν(na)] 10.65 46.28 248.80

% Accuracy

# authors 10 20 30

SVM[all] 97.54 93.22 93.59

SVM[C] 92.58 90.25 88.17

SVM[ν(na)] 95.07 92.79 92.31

Table 2: Comparison of AA task performance for 10, 20

and 30 author data sets. The top table compares runtime

in seconds/cpu, while the bottom table compares average

accuracy.

SVM[all] vs. SVM[C] and SVM[ν(na)] Table 2

illustrates the performance in terms of runtime and

accuracy for all three classification methods on the

three of our smallest datasets. We note that the re-

sults of our experiments seem to support the hypoth-

esis that a limited number of features helps to sus-

tain a reasonable accuracy across growing data sets,

while dramatically reducing the runtime. Encour-

aged by these results we turn to examine the per-

formance of SVM[C] and SVM[ν(na)] on the larger

data sets.

SVM[C] vs. SVM[ν(na)] In terms of average ac-

curacy (right-hand graph at Figure 1), the perfor-

mance of both SVM[C] and SVM[ν(na)] remains

quite stable as the number of authors goes up: in

both cases, accuracy drops only 10%, when mov-

ing from 10 to 100 authors data set. When jux-

taposing the relative performance of SVM[C] vs.

SVM[ν(na)], we note that adding more features uni-

formly improves accuracy, as expected. Comparing

the accuracy results vectors for these two methods

using Wilcoxon rank-sum test, shows that this im-

provement is statistically significant (p < 0.02).

The left-hand graph at Figure 1 demonstrates that

both for SVM[C] and SVM[ν(na)] the runtime of

the classification procedure does not scale too well

as the number of possible classes (authors) grows.

SVM[ν(na)] seems to be especially sensitive to this

— note the sharp runtime increase when number of

authors grows from 70 to 80.
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Figure 1: Comparison of SVM[C] and SVM[ν(na)] performance.

5 Conclusions

We have shown that a machine learning approach to

AA need not fall victim to the curse of dimensional-

ity when encountering large data sets. A simple fea-

ture selection procedure using techniques from in-

formation theory can reduce the number of possible

features by orders of magnitude while still maintain-

ing classification accuracy to within a few percent of

using all of the available features.

We believe that the future direction of feature se-

lection for AA will be necessarily driven by methods

that can adjust to the changing characteristics of the

data, and therefore require methods that emphasize

certain features using statistical information present

in those data sets.

Another important direction in AA research is

tackling the problem of scaling the performance of

exisitng multi-class categorization models for large-

scale corpora with hundreds or thousands of candi-

date classes.
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