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ABSTRACT

Information retrieval experimentation generally proceeds in
a cycle of development, evaluation, and hypothesis testing.
Ideally, the evaluation and testing phases should be short
and easy, so as to maximize the amount of time spent in
development. There has been recent work on reducing the
amount of assessor effort needed to evaluate retrieval sys-
tems, but it has not, for the most part, investigated the ef-
fects of these methods on tests of significance. In this work,
we explore in detail the effects of reduced sets of judgments
on the sign test. We demonstrate both analytically and em-
pirically the relationship between the power of the test, the
number of topics evaluated, and the number of judgments
available. Using these relationships, we can determine the
number of topics and judgments needed for the least-cost
but highest-confidence significance evaluation. Specifically,
testing pairwise significance over 192 topics with fewer than
5 judgments for each is as good as testing significance over
25 topics with an average of 166 judgments for each—85%
less effort producing no additional errors.

Categories and Subject Descriptors: H.3 Information
Storage and Retrieval; H.3.4 Systems and Software: Perfor-
mance Evaluation

General Terms: Experimentation, Measurement

Keywords: information retrieval, evaluation, hypothesis
testing, test collections

1. INTRODUCTION
Much work on retrieval systems is incremental: small

changes to existing algorithms creating small gains in per-
formance. Over time, small gains can build to substantial
improvements. But small performance changes can happen
for no reason but random chance, and whether they’re worth
pursuing further cannot be evaluated by visually inspecting
retrieval results. We need statistical hypothesis tests to in-
struct us on whether a small change is worth following up
on, or whether a line of research should be dropped.
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In IR, hypothesis tests are performed over a set of queries,
which are input to a system to produce a ranked list of doc-
uments. Each ranked list is evaluated against a set of rel-
evance judgments that indicate whether each document is
relevant to the query. Unless a large set of relevance judg-
ments is already available, they must be acquired by having
human assessors read and judge documents. This is a very
time-consuming process, and as a result, there has been a
great deal of recent interest in small sets of judgments. But
an evaluation over a small set of judgments will produce
errorful measures of performance; it seems clear that they
must affect the conclusions drawn from a hypothesis test.

We treat a hypothesis test as a binary decision-maker:
the null hypothesis is either rejected or not rejected. For
the decision to have any meaning, it must be tied to some
implication about the reason for it. If the null hypothesis is
rejected, we want it to be because we are unlikely to have
observed a particular sample in a world in which that hy-
pothesis is true. This is captured by the accuracy of the
test: a test with high accuracy is not likely to falsely reject
the null hypothesis.

On the other hand, if the null hypothesis is not rejected,
we want it to be because our sample is unlikely to have
been observed when the null hypothesis is not true. This is
captured by the power of the test: a test with high power is
likely to reject the null hypothesis when it is false. Power is
important but subtle. If we decide to drop a line of research
because it did not produce a significant result, we must be
certain that the power of the test is high. If it isn’t, then
the failure to reject the null hypothesis is not meaningful.

Our goal in this work is to investigate how incomplete
relevance judgments affect the conclusions we draw from
hypothesis tests. Our focus is on power; as we will see, in-
complete relevance judgments, when uncertainty is properly
accounted for, do not affect the accuracy of the test.

We begin with a brief look at previous work on hypothe-
sis testing in information retrieval. We then provide a tuto-
rial on the sign test with special emphasis on the notion of
power. This leads into our first major result: an expression
to determine how many topics should be used to maintain
power when there is uncertainty due to relevance judgments.
After that, we describe how to estimate the uncertainty due
to relevance judgments, leading to our next major result:
a model for estimating the number of judgments needed to
reach a given level of uncertainty with a given number of
topics. We can then define a cost function for experimen-
tation to find the optimal number of topics and judgments
needed to run a significance test that has high power.



2. HYPOTHESIS TESTING IN INFORMA-

TION RETRIEVAL
Investigations into the appropriate hypothesis tests to use

in information retrieval experimentation go back at least
as far as van Rijsbergen’s classic 1979 textbook [10]. Van
Rijsbergen discusses the sign test, Wilcoxon sign rank test,
and t-test, and concludes that since little is known about
the distribution of evaluation measures, only weak tests like
the sign test can be used.

Zobel [14] and Sanderson & Zobel [8] undertook an empir-
ical investigation of hypothesis test performance on retrieval
systems that had been submitted to TRECs (Text REtrieval
Conference) over the years. As these systems represent real
retrieval systems over real topics that people might be in-
terested in, they provide an opportunity to evaluate and
compare tests on real data. Both works also investigate the
effect of reducing assessor effort on evaluation by using other
evaluation measures or reduced-depth pools of judgments.

Recently, there has been some interest in whether small
test collections can generalize. There are two notions of
“generalization” in retrieval experimentation: generaliza-
tion to a new set of systems that did not contribute any
judgments to the set, and generalization to new topics that
have not been seen before. The latter is the domain of hy-
pothesis testing. Recent work on the TREC Web and Ter-
abyte tracks has suggested that more topics and fewer rele-
vance judgments provide evaluations as good as a few topics
with a lot of relevance judgments.

Cormack & Lyman investigated the effect of small test
collections on the power of a test empirically, concluding
that good evaluation can be provided by many topics with
a small number of judgments for each [3].

The work most closely related to this one is Jensen’s
Ph.D. thesis [6]. He undertook a careful empirical inves-
tigation into the power of hypothesis tests over large sets
of topics evaluated on only the top retrieved results, addi-
tionally investigating the effect that automatically-assigned
relevance judgments have on power. His two findings are
that large topic sets are necessary when evaluating over few
retrieved results, and that automatic relevance assignments
decrease power.

Our conclusions are the same as the previous two works:
more topics with fewer judgments is at least as good as full
sets of judgments. Above that, our contributions are an an-
alytic investigation of the sign test leading to a cost function
for determining the optimal number of topics and judgments
needed, and an empirical evaluation of that cost function on
real IR systems. We have elected to focus on the sign test
due to its simplicity; we hope to perform a similar analysis
for the t-test.

3. THE SIGN TEST
The sign test is appealing as it is one of the easiest to

implement, the easiest to understand, and makes the fewest
assumptions about the data. For simplicity, we will focus on
the one-sided sign test; our results can be extended without
much difficulty to the two-sided test.

The two hypotheses in the one-sided sign test are:

H0 : θ ≤ θ0

H1 : θ > θ0

We assume we have n i.i.d. Bernoulli trials Y1, Y2, ..., Yn,

each of which having probability of success θ, i.e. P (Yi =
1) = θ. The test statistic is S =

∑n

i=1
Yi, the number of

successes. S has a binomial distribution Binom(n, θ). If
the null hypothesis is true, the maximum expected number
of successes is nθ0, with a maximum variance of nθ0(1−pθ0).
If S is much greater than that expectation, it is unlikely that
the data is distributed according to the null hypothesis. θ0

is generally chosen to reflect the hypothesis that each trial
is equally likely to be a success or failure, θ0 = 1

2
. If S

is unlikely to have occurred when θ0 = 1

2
, then we may

reasonably conclude that the observed values did not occur
by chance.

For a given level of significance α, there is at least one
“critical value” cα such that P (S ≥ cα|n, θ0) =

∑n

i=cα

(
n

i

)
θi
0(1−

θ0)
n−i < α. If the observed S is greater than the maximum

cα, we may reject the null hypothesis as being unlikely.
In this formalism, α is the expected accuracy of the test.

It defines the probability of making a Type I error, or false
positive, of rejecting the null hypothesis when it is not true.
Figure 1(a) shows the distribution of S under the null hy-
pothesis for n = 50; the shaded region is the probability of
rejecting the null hypothesis when α = 0.05. If H0 is true,
the area of the shaded region corresponds to the probability
of making a Type I error.

As n increases, the binomial distribution converges to a
normal distribution:

S − nθ0√
nθ0(1 − θ0)

❀ N(0, 1)

Therefore for large n, we can use a normal distribution func-
tion to approximate the binomial, avoiding the computa-
tional difficulty of calculating

(
n

i

)
. The normal cumulative

density function with zero mean and unit variance is gen-
erally denoted by Greek letter Φ; Φ(x) = P (X < x) is the
probability that normalized random variable X takes on a
value less than x. Φ is defined as the lower tail of the nor-
mal distribution, but since our alternative hypothesis is that
θ > θ0, we need the upper tail.

P (S ≥cα|n, θ0) ≈ 1 − Φ

(
cα − nθ0√
nθ0(1 − θ0)

)

We can estimate cα using the normal quantile function Φ−1.

Zα =
cα − nθ0√
nθ0(1 − θ0)

≈ −Φ−1(α)

The normal approximation is generally acceptable for n >
25 [13].

3.1 Power
The complement to accuracy is power. Power reflects the

probability of making a false negative error, that is, failing to
reject the null hypothesis when it is false. This is also known
as Type II error and usually denoted β. Power is 1− β, the
probability that the null hypothesis will be rejected when it
is false.

Power is relevant when the null hypothesis is false; there-
fore we need θ > θ0. It will also be useful to think in terms
of a population “effect size” h = θ−θ0

θ0
[2]. This is the per-

cent increase in successes above what would be expected by
the null hypothesis. If the null hypothesis is true, then effect
size h = 0. For the purposes of analyzing the power of the
one-sided sign test, we will define h > 0.
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(a) Null hypothesis true.
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(b) Null hypothesis false.

Figure 1: Distribution of S depends on θ. On the left, the gray area represents the probability of making a
Type I error. On the right, the gray area is the probability of making a Type II error. The error region is
bounded by the critical value cα in both.

For a given significance level α and sample size n, the
power of the one-sided sign test is as follows. Let cα be
the maximum critical value at which we will reject the null
hypothesis. For a given population success rate θ, power is
defined as:

1 − β = P (S ≥ cα|n, θ)

=

n∑

i=cα

(
n

i

)
θi(1 − θ)n−i

Figure 1(b) shows the region of the binomial distribution
that would produce Type II errors when θ = 0.7.

From this equation we can see how each variable in the
test (n, α, h) affects the power. Increasing sample size n
increases power. Increasing significance level α increases cα

and therefore decreases power. Increasing effect size h en-
tails an increase in true success proportion θ, which increases
power. Figures 2(a) and 2(b) show how power is affected as
effect size, sample size, and significance level α change.

In reality, we can control n and α, but we have no control
over h. In determining the number of trials, then, we must
consider the minimum effect size we would like to be able to
detect with high probability, while keeping the probability
of making a false positive (Type I error) low.

We can also express power in terms of the normal approx-
imation. When θ0 = 1

2
,

1 − β ≈ 1 − Φ

(
cα − nθ√
nθ(1 − θ)

)

= 1 − Φ(Zα − h
√

n)

≈ Φ(Φ−1(α) + h
√

n)

where Φ is the normal density function with zero mean and
unit variance. (For details on the derivation of this expres-
sion, see Cohen [2].)

We have introduced a lot of notation up to this point, and
there is still more to be introduced. Table 1 provides an easy
reference to the notation and its meaning.

3.2 Sign Test Example
Suppose we have two retrieval algorithms, A and B, and

a sample of n = 50 topics. Our null hypothesis is that

sign test notation

θ0 null hypothesis about proportion of successes.
θ population proportion of successes.
n sample size.
Yi Bernoulli random trial with p(Yi = 1) = θ.
S observed success count. S =

∑n
i=1 Yi ∼ Binom(n, θ).

α significance level; probability of Type I error.
cα critical value for significance level α.
Zα normalized critical value.
β probability of Type II error; power = 1 − β.

h effect size h = θ−θ0

θ0
.

uncertainty notation

Ŷi estimated Yi in the presence of uncertainty.

λ certainty λ = P (Ŷi|Yi).
h′ adjusted effect size based on certainty λ.
n′ adjusted sample size based on certainty λ.

evaluation notation

m number of documents in the collection.
Xi Bernoulli random trial for relevance of a document.

∆MAP difference in mean average precision.

ĵ(λ, n) estimated number of judgments to reach λ.

γ coefficients in ĵ(λ, n) = exp(γ0 + γ1 log λ + γ2 log n).
cost notation

Cj , Ct cost of making a judgment and developing a topic.
C(λ, n) total cost incurred to experiment with uncertainty λ

and original sample size n.

Table 1: Table of symbols.

algorithm A outperforms algorithm B half the time on the
population of topics, i.e. whether one is better than the other
is essentially random.

H0 : θ ≤ 1

2

H1 : θ > 1

2

For n = 50 and α = 0.05, the critical value cα is 32: if A
outperforms B on at least 32 of the 50 topics, we will reject
the null hypothesis.

Suppose we know that h = 0.4, i.e. A outperforms B on
70% of the topics in the population.1 Using the normal
approximation, the power of a test with 50 topics and α =

1Obviously we have no practical way of knowing this, but
the assumption will help demonstrate power.
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(a) Increasing effect size increases power.
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Figure 2: Effect of sample size, effect size, and significance level on power.

0.05 is about 0.882, so the probability that we will draw a
sample of 50 topics and fail to reject the null hypothesis on
the basis of that sample is about 0.12.

Since 50 topics has become the standard for IR experimen-
tation, it is interesting to calculate the power of the sign test
to detect varying effect sizes with n = 50. If we want 80%
power and 95% accuracy, the effect size must be at least
0.35, i.e. the better system needs to be better on at least
68% of the topics. For 60% power, the effect size must be at
least 0.25, or 62.5% of the topics. For 95% power, the effect
size would have to be 0.47; A would have to outperform B
on 73.5% of topics.

3.2.1 Evaluating Power

Does the theory pan out? Are we able to detect significant
differences between retrieval systems at the rate predicted
by the analysis above?

In IR hypothesis testing studies, topics are generally taken
to be i.i.d. samples from some population, and retrieval runs
that were submitted to TREC tracks are used to test hy-
potheses about hypothesis tests. We will follow this ap-
proach, using the 249 topics from the 2004 TREC Robust
track and the 110 submitted systems [12].

We will treat the 249 topics as a population from which we
sample uniformly at random. We will take the population
effect size h to be the effect size over the 249 topics in the
“population”.

We randomly selected samples of n topics from the set of
249. We performed sign tests on all 5995 pairs of systems.
As stated above, with n = 50 we can detect an effect size

of h = 0.35 with power 0.8 at significance level 0.05 (using
the normal approximation). If the analysis is correct, we
should see that for all pairs with a population effect size of
h ≈ 0.35, we correctly rejected the null hypothesis for 80% of
them. We will refer to the percentage for which we do reject
the null hypothesis as the “observed power”. This phrase is
sometimes used to mean “post-hoc power”; the concept of
post-hoc power has been discredited by Hoenig & Heisey [5].
By “observed power” we simply mean the percentage of tests
for which the null hypothesis was rejected, calculated over
many random trials.

Table 2 compares predicted and observed power for vari-
ous sample sizes and population effect sizes. The predicted
powers in this table are computed exactly, not using the
normal approximation. The observed powers are calculated
over multiple samples of n topics. Observed power is close
to that predicted by the theory, though somewhat higher on
average (this may be an artifact of the topic design process
or of the particular systems submitted to the track). Note
that the standard errors are rather high. The conclusions
drawn from a test may vary a lot from sample to sample; a
single hypothesis test is therefore not enough to draw strong
conclusions.

3.3 Ties in the Sign Test
Ties are trials for which Yi = 0, i.e. there is no measurable

difference. Lehmann [7] describes two approaches to ties in
the sign test. The usual practice is to discard all trials that
resulted in Yi = 0 and reduce n accordingly. In Figure 2(b)
we showed how power changes with n; this also shows how



n h 1 − β 1̂ − β
25 0.25 0.222 0.246 ± 0.015

0.35 0.408 0.445 ± 0.018
0.50 0.727 0.780 ± 0.023

50 0.25 0.478 0.515 ± 0.089
0.35 0.753 0.816 ± 0.098
0.50 0.971 0.993 ± 0.012

100 0.25 0.795 0.850 ± 0.083
0.35 0.971 0.990 ± 0.021
0.50 1.000 1.000 ± 0.000

Table 2: Predicted and observed rates of detecting
significance for varying sample size n and effect size
h. Predicted power is denoted 1−β. Observed power

is 1̂ − β± one standard error.

power changes as ties become more frequent (as n decreases).
Another approach to ties is to randomly assign them to

be successes or failures according to the null hypothesis θ0.
This also decreases the power of the test: the expected
number of success after this procedure is Ŝ =

∑n−n0

i=1
Yi +∑n0

i=1
θ0 (n0 the number of ties). If the null hypothesis is

true, we are assigning ties to be successes at a rate lower than
they would be if they were not ties, and therefore we have
less ability to reject the null hypothesis; power decreases.

Of these two methods, the former reduces power less than
the latter. In fact, the former method reduces power the
least of all possible tie-handling methods [7].

3.4 Uncertainty
By “uncertainty”, we mean that there are trials for which

we believe that Yi = 1 or Yi = 0, but there is a chance that
our measurements are wrong. In IR, uncertainty can come
from having incomplete or imperfect relevance judgments.
We view uncertainty as being similar to a tie; it is a trial for
which there is a measurable difference but the error of that
measurement is high. We will denote an uncertain outcome

as Ŷi. Our certainty in Yi is the probability that Ŷi = 1 given
Yi = 1, i.e. the probability that we have correctly predicted
the outcome of the trial. We will call this probability λ.

certainty = λ = P (Ŷi = 1|Yi = 1) (1)

Informally, uncertainty = 1− certainty.

3.4.1 Failing to Account for Uncertainty

Failing to account for uncertainty entails using the esti-

mates Ŷi and ignoring the uncertainty 1 − λ.
Suppose the null hypothesis is true, i.e. h = 0. Given un-

certainty 1−λ, what is the probability that we will reject the
null hypothesis with significance α and sample size n? The
expectation is that there will be equal numbers of successes

and failures. Each Ŷi we predict to be a success will actually
be a failure with probability 1−λ; it will actually be a success
with probability λ. Therefore E[S] = n( 1

2
λ+ 1

2
(1−λ)) = 1

2
n,

which is exactly its expectation when there is no uncertainty
at all. Therefore uncertainty does not affect the accuracy of
the test.

Now suppose the null hypothesis is false, i.e. h > 0 and
θ > 1

2
. If certainty λ > 1

2
, the expected number of successes

we will observe is n(θλ+(1− θ)(1−λ)) ≤ nθ. Since the ex-
pectation is less than what it would be with no uncertainty,
power will be reduced.

3.4.2 Accounting for Uncertainty

Above we discussed dealing with ties by randomly assign-
ing them to be positive or negative. This can be generalized
to the idea of uncertainty: we can incorporate uncertainty
by treating instances that we are uncertain of the true out-
come as ties, then assigning them to be success or failures
randomly depending on how much uncertainty we have.

For example, suppose the effect size is h = 0.4, so θ =

P (Yi = 1) = 0.7 for each trial i. But suppose we have Ŷi,

an estimate of Yi in which we have certainty λ = P (Ŷi =

1|Yi = 1) = 0.8. Then P (Ŷi = 1) = P (Ŷi = 1|Yi = 1)P (Yi =

1)+P (Ŷi = 1|Yi = 0)P (Yi = 0) = 0.7·0.8+0.3·0.2 = 0.62 for
an effect size of only h′ = 0.24. Our uncertainty has reduced
the effect we can detect from 0.4 to 0.24, thus reducing the
power of the test. To make up for the reduction in power,
we would need 138 trials rather than 50.

We will define the “adjusted effect size” h′ to be the re-
duced effect size in the presence of uncertainty.

h′ =
θλ + (1 − θ)(1 − λ) − θ0

θ0

(2)

We can quantify the increase in trials necessary to make
up for a loss in power due to uncertainty. Let h be the true
effect size (h > 0) and h′ be the adjusted effect size, with
h′ < h due to certainty .5 ≤ λ < 1 (if λ < .5, we may
simply flip our prediction and take λ = 1−λ). Let n be the
original sample size. The goal is to find n′, the new sample
size needed to be able to detect the adjusted effect size with
the same power.

Since we want the power to be the same, we need to find
the n′ that results in the difference in powers being zero:

Φ(Zα − h
√

n)−Φ(Zα − h′
√

n′) = 0

Since this represents the area under the normal curve from
x0 = Zα − h

√
n to x1 = Zα − h′

√
n′, it will be minimized

when Zα − h
√

n = Zα − h′
√

n′.
Solving for n′ gives:

n′ = n

(
h

h′

)2

This expression relies on knowing the true effect size, which
of course we do not in practice. However, if θ0 = 1

2
, as it

nearly always would, then

n′ = n

(
θ − 1

2

θλ + (1 − θ)(1 − λ) − 1

2

)2

= n

(
θ − 1

2

(2θλ − λ) − (θ − 1

2
)

)2

= n

(
θ − 1

2

2λ(θ − 1

2
) − (θ − 1

2
)

)2

n′ = n

(
1

2λ − 1

)2

(3)

and we have reduced it to an expression that relies only
on the original sample size and the uncertainty λ. Though
we began with the assumption that we knew the popula-
tion effect size, the final answer does not depend on that
knowledge.

This is the first milestone in this work. As uncertainty
increases, the number of trials needed to maintain a given
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Figure 3: Uncertainty versus sample size n.

level of power increases exponentially. Figure 3 shows how
the number of topics must increase to maintain 80% power to
detect an effect size of h = 0.35 when n = 50 and α = 0.05.

As we suggested above, a significant source of uncertainty
may be incomplete or imperfect relevance judgments. This
immediately implies that we can improve the power of the
test in two ways: increasing the number of topics or increas-
ing the number of relevance judgments for the extant topics.

4. MEASURING UNCERTAINTY
In our IR example above, each topic is classified as a suc-

cess or failure depending on the sign of the difference in some
evaluation measure. In this section we follow [1] and show
how to predict the sign of the difference based on incomplete
relevance judgments, and how to estimate the probability
that the predicted sign is correct.

We have elected to use the IR evaluation measure average
precision (AP). Average precision is a standard evaluation
metric that captures both the ability of a system to rank
relevant documents highly (precision) and its ability to re-
trieve relevant documents (recall). It is typically written as
the mean precision at the ranks of relevant documents:

AP =
1

|R|
∑

i∈R

prec@r(i)

where R is the set of relevant documents, and r(i) is the
rank of document i. We define ∆AP to be the difference in
average precisions between two systems on the same topic.
Given an incomplete set of judgments, we can predict ∆AP
by assuming anything unjudged is nonrelevant. This is a
standard assumption in IR evaluation. However, it gives us
no way to assign a probability to our prediction.

Let Xi be a random variable indicating the relevance of
document i. If documents are ordered by rank, we can ex-
press precision as prec@i = 1/i

∑i

j=1
Xj .

Average precision becomes the quadratic equation

AP =
1∑
Xi

m∑

i=1

Xi/i
i∑

j=1

Xj

where m is the collection size. For a closed form expression
of ∆AP , we need to be able to calculate AP when documents

are ordered arbitrarily, not necessarily by rank (since the
two rankings will most likely be different). To do that, let
aij = 1/ max{r(i), r(j)}. Then

AP =
1∑
Xi

m∑

i=1

∑

j≥i

aijXiXj

To see why this is true, consider a toy example: a list of 3
documents with relevant documents B, C at ranks 1 and 3
and nonrelevant document A at rank 2. Average precision
will be 1

2
( 1

1
x2

B + 1

2
xBxA + 1

3
xBxC + 1

2
x2

A + 1

3
xAxC + 1

3
x2

C) =
1

2

(
1 + 2

3

)
because xA = 0, xB = 1, xC = 1. Though the

ordering B, A, C is different from the labeling A, B, C, it
does not affect the computation.

Doing the same thing for the other list (using bij rather
than aij), we can then express ∆AP as

∆AP =
1∑
Xi

m∑

i=1

∑

j≥i

cijXiXj

cij = aij − bij

We can now see the difference in average precision itself
is a random variable with a distribution over all possible
assignments of relevance to all documents. This random
variable has an expectation, a variance, confidence intervals,
and a certain probability of being less than or equal to a
given value.

The expectation and variance of ∆AP are:

E[∆AP ] ≈ 1∑
pi

∑
(

ciipi +
∑

j>i

cijpipj

)

V ar[∆AP ] ≈ 1

(
∑

pi)
2

(
m∑

i

c2
iipi(1 − pi) +

∑

j>i

c2
ijpipj(1 − pipj)

+
∑

i6=j

2ciicijpipj(1 − pi) +
∑

k>j 6=i

2cijcikpipjpk(1 − pi)

)

where pi = p(Xi = 1), the probability that document i
is relevant. For simplicity, we set pi = 1

2
for all unjudged

documents. ∆AP asymptotically converges to a normal dis-
tribution with expectation and variance as defined above.2

This means that we can use the normal cumulative density
function to determine the probability that a difference in
AP is less than 0.

Assuming topics are independent, we can easily extend
this to mean average precision (MAP), the mean of average
precisions calculated for a set of topics T . MAP is also
normally distributed with expectation and variance:

EMAP =
1

T

∑

t∈T

E[APt] (4)

VMAP =
1

T 2

∑

t∈T

V ar[APt]

And we define ∆MAP = MAP1 − MAP2 analogously to
∆AP . ∆MAP has an expectation and variance as well.

We will define confidence to be

confidence = P (∆MAP < 0) = Φ

(
−E[∆MAP ]√
V ar[∆MAP ]

)

2These are actually approximations to the true expectation
and variance, but the error is a negligible O(m2−m).
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Figure 4: Uncertainty in ∆̂MAP versus actual
∆MAP .

4.1 Certainty and Confidence
We defined certainty above as P (Ŷi|Yi). We would like to

connect the idea of confidence to the idea of certainty. There

is a rather natural connection: let Ŷi = sgn(E[∆APi]). We

will define λ = P (Ŷi = 1|Yi = 1) = P (∆MAP > 0). The
reason for using ∆MAP to assign the probability rather
than ∆AP is that topics are assumed to have been drawn
i.i.d. from a population in which we have λ certainty on
every member. Certainties may vary from topic to topic,
but the topic certainties are samples from a distribution with
expectation equal to the population uncertainty.

In order to use confidence as certainty, we would like to
see that if sgn(∆AP ) = 1 and certainty is λ, then the pro-
portion of pairs for which sgn(E[∆AP ]) = 1 is at least λ.
To test this, we used the Robust runs from Section 3.2.1.

For each pair of runs over the full set of 249 topics, we
judge a “pool” of depth k (the top-ranked k documents by
both runs for all topics), from k = 1 to 100. After each
increment of k, we estimate the difference in average preci-

sion Ŷi = sgn(E[∆AP ]) and the confidence P (∆MAP > 0)
(with probability of relevance pi = 1

2
).

The results are shown in Figure 4. The solid line is what
we would see if confidence exactly predicted accuracy; since
our points are uniformly above that line, it seems that confi-
dence meets our requirements for a measure of uncertainty.
Therefore we use “confidence” and “certainty” interchange-
ably for the remainder of this work.

4.2 Judgments and Confidence
The evaluation in the previous section gives us data to es-

timate the number of judgments it takes to reach increasing
confidence levels with increasing numbers of topics.

Figure 5 shows the average number of judgments needed
to achieve increasing confidence levels. Confidence levels
may fluctuate, so that after achieving 70% confidence, a few
more judgments cause confidence to drop below 70%. The
judgments are the average minimum number required for
confidence, i.e. the number of judgments made when con-
fidence level λ was first achieved. This models an assessor
that stops judging the first time confidence reaches a given
threshold.
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Figure 5: Number of judgments required to reach
uncertainty levels for varying sample sizes. The fit
lines are shown as well.

The figure shows an exponential relationship between judg-
ments and confidence. It also shows a relationship between
the number of topics and the number of judgments.

We will fit a curve to these plots to estimate the relation-
ship. Define the estimated number of judgments needed to
reach λ confidence for n topics as

ĵ(λ, n) = eγ0+γ1 log λ+γ2 log n

= eγ0λγ1nγ2 (5)

We can fit this model using regression. Since the number of
judgments is a count, we do not want to use an ordinary least
squares estimation, which could lead to predictions that are
less than one. Instead, we will fit a generalized linear model
with a Poisson link function. This guarantees that all predic-
tions will be at least 1. For more information on generalized
linear models and Poisson regression, we refer the reader to
Faraway [4] or Venables & Ripley [11].

The result of fitting the Poisson regression to our data is
is

ĵ(λ, n) = e4.79λ5.43n0.71 (6)

The R2 for this model is 0.95, so it is a good fit.
The fact that it takes exponentially many judgments to in-

crease confidence suggests that it may be more cost-effective
to obtain a large number of topics with a few judgments for
each, rather than judging a large number of judgments for
a small number of topics. But recall from Figure 3 that
the number of topics needed also increases exponentially as
uncertainty increases. Therefore we need a cost-benefit anal-
ysis to tell us what to do.

5. USING UNCERTAINTY TO EXPERIMENT
Given our equation for the new sample size needed to

maintain power in the presence of uncertainty (Eq. 3) and
our model for estimating the number of judgments (Eq. 5),
we can figure out the most cost-beneficial confidence level
to aim for.

We will define a cost function C associated with a level
of confidence λ and original sample size n. The cost is the
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Figure 6: Certainty/confidence versus estimated
cost, and certainty versus adjusted sample size.

total cost of developing n′ topics plus the total cost of ac-
quiring the predicted number of relevance judgments needed
to reach confidence λ. Let Ct be the cost of developing a
topic. Let Cj be the cost of judging one document. Suppose
our sample size n has been selected in advance (or selected
for us).

C(λ, n) = Ctn
′ + Cj ĵ(λ, n′)

= Ctn
′ + Cje

γ0λγ1n′γ2

= Ctn

(
1

2λ − 1

)2

+ Cje
γ0λγ1

(
n

(
1

2λ − 1

)2
)γ2

(7)

which is obtained by substituting Eq. 3 for n′ and Eq. 5 for
ĵ(λ, n′). Figure 5 shows how cost changes with target level
of confidence λ (we have set Cj = 1 and Ct = 0 for this
example).

We wish to minimize Eq. 7 with respect to λ. There is
no analytic minimum, but an approximate minimum can be
found easily by binary search over discrete values of λ.

Estimating the cost of developing a topic is difficult. The
fact that topics can be reused more easily than relevance
judgments (many TREC topics are “portable” over collec-
tions) should be considered, as should the fact that the same
topics can be used to evaluate wildly diverse retrieval sys-
tems that may retrieve complete different documents and
therefore need completely different judgments. Sometimes
topics are developed by a third party and given to us, or
sampled from a query log at very little cost.

When Ct = 0, the cost function has an analytic minimum.
We differentiate with respect to lambda.

dC

dλ
= Cj

(
γ1

λ
− 4γ2

2λ − 1

)
eγ0λγ1

(
n

(
1

2λ − 1

)2
)γ2

Equating this to zero and solving for λ gives

λ =
γ1

2γ1 − 4γ2

(8)

which means the level of confidence that minimizes cost is
independent of the cost of making judgments, and indepen-

dent of the original sample size.
Instead of using n in our cost function, we could include

Type I and Type II error rates and associated costs Cα and
Cβ . We would then minimize along several dimensions (λ,
α, β). Since estimating the cost of false positives and false
negatives is tricky and to some degree personal, we do not
explore this further.

5.1 Example Usage
Suppose we wish to be able to detect an effect size of 0.5

with 80% power. As Table 2 shows, about n = 25 topics
is an appropriate sample size if there is no uncertainty due
to relevance judgments, i.e. we have a full set of judgments
and little to no assessor disagreement.

If we want no uncertainty, we must have λ = 1. Plug-
ging into our cost function (7) (assuming topics are free)
gives C(1, 25) ≈ 1180 relevance judgments. Cost can be
greatly reduced, though; if confidence is reduced to 80%,
cost is reduced to C(0.8, 25) ≈ 914. Plugging the coef-
ficients from the model we trained above into Eq. 8, we
find that the minimum cost is achieved when confidence is
68%: C(0.68, 25) ≈ 620. The adjusted sample size needed to

maintain the power of the test is n′ = 25
(

1

2·.68−1

)2

≈ 192,

so we estimate that judging 192 topics to 68% confidence
costs nearly half as much as judging 25 topics to 100% con-
fidence, without reducing the power of the test at all. Judg-
ing a pool of depth 100 for 25 topics would require 4,161
judgments on average; our cost is 85% less than that.

To test whether our predictions matched reality, we picked
2,000 pairs of Robust systems at random. For each pair, we
evaluated 192 topics to 68% confidence. We also evaluated
25 topics to 100% confidence and a pool of depth 100 for 25
topics.

The actual number of judgments needed to reach 68%
confidence ranged from a minimum of 44 to a maximum of
10,164, with a mean of 794 but a median of only 357. About
70% of the trials required fewer than our prediction of 620
judgments. There is a great deal of variance in the num-
ber of judgments needed, but indeed it required 1,000 fewer
judgments on average for 192 topics than 25. It required
3,406 fewer judgments on average to judge 192 topics than
to judge a pool of depth 100 for 25 topics.

What about the power of the adjusted sample size? We
should be able to detect an effect size of 0.5 about 80% of
the time. In fact, 83% of the pairs with a “true” effect size
of 0.5 were found to be significant with n′ = 192 topics.

We calculated “observed adjusted effect size” by counting

the number of topics for which Ŷi was positive and the num-

ber for which Ŷi was nonzero. These observations are com-
pared to the predicted adjusted effect size (using Eq. 2) in
Figure 7(a). We generally underestimate the adjusted effect
size; this is most likely because confidence underpredicts ac-
curacy (Figure 4). We also calculated “observed power” by
counting the number of trials for which the null hypothesis
is rejected at α = 0.05. This is shown in Figure 7(b), along
with the predicted power of 25 topics and 100% confidence
in each. Empirically, using 192 topics with 68% confidence
actually has more power than using 25 topics with 100%
confidence; again, this is most likely due to confidence un-
derpredicting accuracy. Recall that since our “population”
only consists of 249 topics, there is some effect between ev-
ery pair, so the null hypothesis is always false in this data;
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Figure 7: Effect size and power for 192 topics at
68% confidence. The solid lines are predicted by
our analysis; the points are empirical performance.

though the points at the left end of the plot are high, they
are not Type I errors. In reality, there would be cases in
which the null hypothesis is true.

5.2 Uncertainty in Experimental Design
In this section we show how to use uncertainty in exper-

imental design. We assume that we have a new retrieval
task. There are no existing topics, no existing relevance
judgments. We would like to perform an experiment, but
have limited resources. We need to find the minimum-cost
parameters that will not cost us any of our desired power.

We do not have access to our previously-trained predic-
tion model ĵ, so the first thing we need to do is train one.
To do that, we first run a pilot study. Pilot studies are com-
mon in disciplines in which the cost of running tests is high;
Jensen [6] also proposed the use of pilot tests to determine
the effect of uncertain judgments.

We develop 10 topics for the pilot study. The topics are
submitted to the two runs we wish to compare. All 10 topics
are judged until there is 100% confidence in ∆MAP . We
keep track of the minimum number of judgments required
to reach each intermediate confidence level. This does not
yet give us data to train ĵ; for that we need judgment counts
and confidence levels for varying numbers of topics.

We can get training data for n < 10 by simulating an
evaluation on a subset of the topics using the judgments we
have just made. We can get training data for n > 10 by
sampling with replacement from our set of 10 topics, then
simulating evaluation over the larger set. The results of
these simulations are used to train ĵ.

Now, using n and ĵ, we may find the minimum-cost num-
ber of topics and judgments.

The pilot study serves two purposes: one, to see if the
experiment is worth continuing; if it is, then to estimate the
amount of work necessary to carry it to completion.

5.2.1 Experiment

To experiment with this pilot study, we will again use
Robust systems and topics. Of course, they do not represent
a new task or new topics, but they provide a useful “truth”
to compare against.

The ten topics randomly selected for the pilot study were
315, 350, 367, 393, 442, 602, 610, 670, 675, and 681. As
described above, a pair of systems (selected randomly) is

first evaluated over these 10 topics. The model ĵ is trained
and the minimum-cost λ and n′ found using Eq. 7. We then

randomly select n′ new topics (excluding the ones from the
pilot study) and evaluate to confidence λ on those.

We do two experiments. For the first, the first 249 topics
are free (Ct = 0) but any more than that cost 20Cj ; this
would be like receiving 249 topics from NIST but no rele-
vance judgments. For the second, all topics cost 20 times
as much as relevance judgments. If the optimal number of
topics is greater than 249, we create new topics by sampling
with replacement from the existing topics. They will still
be treated as different topics, so if we have duplicated topic
301, judgments for 301 will not count towards 301′. (As it
turns out, we never had to do this.)

As an example, consider systems polyudp5 and NLPR04SemLM.
For the first 10 topics it requires 1,587 relevance judgments
to reach 100% confidence in the difference between them.
We simulate evaluating one topic, two topics, and so on; the
resulting model is ĵ(λ, n) = exp(5.02+5.6 log λ+0.91 log n).
Using this model, we predict the minimum cost to be achieved
with 51 topics and 85% confidence (1625 relevance judg-
ments). It ends up taking 836 judgments to reach 85% con-
fidence on 51 topics, so we overestimated the cost. We have
money left over for a pizza party for our assessors!

5.2.2 Results

For the first experiment, the extra cost of using more than
249 topics resulted in the model never selecting more than
216. Cost, therefore, is equivalent to the number of judg-
ments. On average, over 2,000 trials, cost was predicted to
be 1,492 judgments to reach 75% confidence over 157 topics.
In actuality, it required 950 judgments on average to reach
the target confidence. For comparison, the number of judg-
ments needed to reach 100% confidence over 25 topics was
1,781; this is a 47% decrease in the number of judgments.

Since 542 fewer judgments were required than predicted,
over many experiments our cost function will tend to per-
form better than expected. However, more than half the
trials required more judgments than predicted. The correla-
tion between the predicted and actual number of judgments
is 0.43, indicating that the model is doing a reasonable job
but could be better. This is partially affected by the pilot
sample. If the pilot sample is “harder” than the population,
we may consistently overestimate the number of judgments
required; if the pilot sample is “easier”, we may consistently
underestimate the number of judgments required. In this
case it seems our pilot sample was a bit easier than the pop-
ulation. Using a larger pilot sample could produce more
accurate predictions, but of course would require a greater
start-up cost in the pilot study.

The start-up cost is the number of judgments needed to
reach 100% confidence on the pilot sample of 10 topics.
Over 2,000 trials, the mean start-up cost was 871 judgments.
No trial required more than 2,000 judgments, which again
points to our pilot sample being easier than the population.
About 63% of trials had a start-up cost of 1,000 judgments
or fewer.

Figure 8 shows the observed power as well as the power
for 25 topics at 100% confidence. Power is high. In fact, we
have outperformed our predictions, making up for the trials
in which we underpredicted the number of judgments.

For the second experiment, in which topics cost 20 times
as much as relevance judgments, it turns out that it is often
most cost-beneficial to judge 25 topics to 100% confidence.
In over half the trials, it was more cost-effective to judge
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Figure 8: Observed power over 2,000 trials train-
ing a prediction model ĵ using data from a pilot
study. The solid line is the power of using 25 topics
at 100% confidence; the points are the empirical re-
sult of using more topics with less confidence (fewer
judgments).

25 topics to 100% confidence. It was never cost-effective to
judge more than 74 topics. Of course, these topics could
then be reused, and would be free for the next experiment.

Since fewer topics were used, the number of judgments was
higher than the previous experiment in which topics were
free. On average, 1438 judgments were made to reach 0.97
confidence over 29.2 topics. Including the cost of developing
topics, total mean actual cost was 2022. This was greater
than the predicted cost of 1858, though this time fewer than
half of the trials required more judgments than predicted.

The observed power is actually a little worse than pre-
dicted (not shown). This is because smaller sets of topics
are more prone to errors due to sampling, even with 100%
confidence. This is further reinforcement that more topics
is superior.

6. CONCLUSIONS AND FUTURE WORK
We have proved that a large number of topics with a few

relevance judgments for each is as good for evaluation pur-
poses as a small number of topics with a lot of relevance
judgments for each. Furthermore, we have shown that the
former is much less expensive than the latter: 50% less as-
sessor effort compared to having 100% confidence in each
topic; 80% less assessor effort compared to judging a pool of
depth 100 for each topic.

The biggest weakness of our cost function is the model
for predicting the number of judgments needed. There is
such a huge amount of variance over systems and topics that
it is very difficult to predict with good accuracy. We have
some ideas for improving the accuracy, however: preliminary
experiments suggest that measuring the similarity between
ranked lists and including it as a feature in the model im-
proves predictions substantially. Additionally, rather than
train using the average minimum number of judgments re-
quired to get to a given confidence level, we could train an
“upper bound” model using quantiles of judgments. Pre-
liminary experiments with quantile regression models are

encouraging.
All of our experiments were done using pairs of systems.

In reality, researchers would often have multiple systems to
evaluate. Hypothesis testing in these situations becomes
more difficult, as errors become more frequent simply by
chance. This is known as the “multiple testing problem”.
It requires ad hoc adjustments to Type I and Type II error
rates, and is beyond the scope of this work.

Finally, an obvious direction for future work is to analyze
the Wilcoxon sign rank test and the t-test in the same way.
These tests are perhaps more widely used in IR experimen-
tation than the sign test, and generally have more power to
detect the types of differences we are interested in [9].
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