
Undirected and Interpretable

Continuous Topic Models of Documents

Abstract

We propose a new type of undirected graphi-
cal model suitable for topic modeling and di-
mensionality reduction for large text collec-
tions. Unlike previous Boltzmann machine
and harmonium based methods, this new
model represents words using Discrete dis-
tributions akin to traditional ‘bag-of-words’
methods. However, in contrast to directed
topic models such as latent Dirichlet alloca-
tion, each word is drawn from a distribution
that takes into account all possible topics, as
opposed to a topic-specific distribution. Fur-
thermore, our models use positive continu-
ous valued latent variables and learn more in-
terpretable latent topic spaces than previous
undirected techniques. As other undirected
models, once such models have been learned,
inference required for representing a docu-
ment in the latent space is fast. We present
document retrieval experiments showing the
benefits of our new approach.

1. Introduction

Research in statistical machine learning models of co-
occurrence has led to the development of a variety
of useful topic models — mechanisms for discover-
ing latent, low-dimensional, multi-faceted summaries
of documents or other discrete data. In these mod-
els, graphical model structures are carefully-designed,
often by employing latent variables, to capture the rel-
evant structure and co-occurrence dependencies in the
data.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

Graphical models can be categorized into two funda-
mental classes: directed (aka Bayesian networks) and
undirected (aka Markov random fields). The first cat-
egory include models of words alone, such as Latent
Dirichlet Allocation (LDA) (Blei et al., 2003; Griffiths
& Steyvers, 2004), of relations between entities (Now-
icki & Snijders, 2001; Kemp et al., 2004), of words
and research paper citations (Erosheva et al., 2004),
of word sequences with Markov dependencies (Grif-
fiths et al., 2004; Wallach, 2006; Wang et al., 2005a),
of words and their authors (Steyvers et al., 2004), of
words in a social network of senders and recipients
(McCallum et al., 2005), of words and relations (such
as voting patterns) (Wang et al., 2005b), as well as
words and their timestamps (Blei & Lafferty, 2006;
Wang & McCallum, 2006).

Directed graphical models can be described as a gener-
ative processes and thus enjoy modeling and computa-
tional benefits conferred from conditional independen-
cies such as simple sampling procedures. However, in
many applications, the dependency between two ran-
dom variables in directed models can be difficult to de-
scribe and specify and the direction of directed edges
in the underlying graph can arguably be set either way.
Importantly, posterior inference over hidden topic vari-
ables and parameters for directed models with struc-
tures similar to LDA is typically intractable and ap-
proximate inferences techniques such as variational
methods(Jordan et al., 1998), Gibbs sampling(Andrieu
et al., 2003) and expectation propagation (Minka &
Lafferty, 2002) are employed to address these issues.

Recently, a class of structured undirected topic mod-
els has begun to draw increased interest — largely due
to the fact that inference of hidden topics can be fast
compared to directed, LDA inspired models. The Ex-
ponential family harmonium (EFH) is one of the ear-
lier works in this direction (Welling et al., 2004). In
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Figure 1. Graphical representations for our models. Shaded random variables are observed word tokens.

(Welling et al., 2004) a specific model for latent seman-
tic indexing of documents is also outlined in which a
consistent conditional Gaussian distribution for hid-
den (topic) variables is coupled with a corresponding
Bernoulli or Discrete distribution for discretized counts
of words across the vocabulary of a document collec-
tion.

The two-layer structures in EFHs have an impor-
tant property: the random variables at the two layers
are conditionally independent given each other, which
means the mapping from one layer to the other layer
can be done by a simple matrix multiplication (and
possibly some trivial follow-up transformations).

However, there is no free lunch. The faster inference
corresponds to more difficult learning due to the in-
tractable normalizing constant in these types of undi-
rected models. Fortunately, the contrastive divergence
(Hinton, 2002) approach has been shown to be efficient
for inference and effective for learning in these models.
Further, in many situations involving document pro-
cessing learning can be done off-line. We will discuss
this in more detail in Section 2.

Based on the two-layer factorization structure of an
EFH, there are several other undirected topic mod-
els that have been recently proposed for various tasks.
For example, a dual-wing harmonium (DWH) model
(Xing et al., 2005) has been proposed and applied to
captioned images. In this model hidden topics are con-
ditional Gaussian given words and word counts are
distributed according to a Poisson distribution and
Gaussians for color histograms. The rate adapting
Poisson (RAP) models (Gehler et al., 2006) are sim-
ilar, but with Poisson for words counts and Binomial
(Bernoulli) for hidden topics. Applications to docu-
ment retrieval and object recognition demonstrate its
effectiveness.

Undirected models of this structure have another im-
portant property that directed models lack: a more
accurate characterization of rare words. As discussed

in Xing et al. (2005), in directed models such as latent
Dirichlet allocation, a word is always generated from
a single topic. When its count is low, this behavior
becomes a very strong assumption/limitation. In the
harmonium-structured models, a word is always from
a distribution influenced by all the topics. This dif-
ferent mechanism might play a crucial role in certain
applications.

In this paper, we propose a novel model based on sim-
ilar two layer factorization structure but with dramat-
ically different semantics. At the hidden layer, pre-
vious models assume either Gaussian distributions or
Binomial (Bernoulli) distributions. In our model, con-
ditioned on observations the hidden layer follows a log-
normal distribution and takes advantage of both con-
tinuity and positivity. We believe that in this setting
more interpretable results arise.

Furthermore, we associate a Discrete distribution for
the identity of each observed word, thus each word to-
ken is drawn in a replicated fashion akin to traditional
’bag-of-words’ models. Note here that all the word to-
kens share a common connection matrix between word
layer and topic layer. By contrast, in (Welling et al.,
2004) a different connection matrix is needed for each
word and word count level. The Poisson distributions
adopted in Xing et al. (2005) and Gehler et al. (2006)
make it possible to use only one connection matrix,
but when reconstructing the document counter vec-
tors, there is no guarantee that the reconstructed doc-
ument has the same length of the original document.
In such a case, at early stage of learning, the learning
rate of the gradient update has to be carefully set to
a small value as reported in Gehler et al. (2006) and
make the model difficult to learn in long run.

More importantly, to the best of our knowledge, none
of the previous undirected models is able to interpret
the learned topics, and our model is the first evidence
that undirected models can also give clearly inter-
pretable topics, which are useful for model diagnosis,
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SYMBOL DESCRIPTION
T number of topics
D number of documents
V number of unique words
Nd number of word tokens in document d
M T × (V − 1) connection matrix
tdi the ith topic of document d
wdj the jth word of document d

Table 1. Notation used in this paper

interpretation, summarization and data mining.

2. Our Model

In contrast to previous undirected topic models, in our
new model, words are encoded as individual observa-
tions instead of word counts. Because of the condi-
tional independencies between two layers, we can de-
scribe the model in plate notation, shown in Figure
1(a). Notations used in this paper are shown in Table
1. We expand the model for document d for clarity
as shown in Figure 1(b) into a restricted Boltzmann
machine or exponential family harmonium structure.

Following a common approach for describing a general
exponential family two layer architecture, we specify
our model as follows: Consider first a Log-normal dis-
tribution p(tdi) = Log-normal(0, 1) at hidden (topic)
layer and Discrete distribution P (wdj) = Discrete(0)
at the observation (words) layer, where use the no-
tation Log-normal(µ, σ2) for a Log-normal distribu-
tion with parameters µ and σ2 — the mean and
variance of the variable’s logarithm, and Discrete(θ)
is a Discrete distribution with natural parameter θk

(k = 1, · · · , V − 1) that can be transformed to the

probability vector πk = eθk/
∑V

v=1 eθv (note here we
set θV = 0). For simplicity, we do not use local po-
tentials, but it is straightforward to define and learn
these potentials as well.

Once we have defined the form we wish the observed
and hidden layers to take, we couple the random vari-
ables within the two layers by the connection matrix
M to get a joint probability distribution in exponential
family form as follows:

P (wd, td) ∝ exp(
T∑

i=1

(− log(tdi) −
1

2
log2(tdi))

+
T∑

i=1

Nd∑

j=1

Miwdj
log(tdi)) (1)

where, for notation convenience, we set MiV = 0, for
i = 1, · · · , T .

Consequently, it is easy to verify the conditional dis-
tributions still remain in the same exponential family
but with shifted parameters,

p(tdi|wd) = Log-normal(

Nd∑

j=1

Miwdj
, 1)

= Log-normal(

V −1∑

k=1

Mikcdk, 1) (2)

P (wdj |td) = Discrete(
T∑

i=1

log(tdi)Mi·) (3)

where cdk is the count of word k in document d.

From the joint probability of all random variables
(Eqn. 1), we can marginalize out the latent topic vari-
ables, and get the marginal likelihood of the observed
document d,

P (wd) ∝ exp(
1

2

T∑

i=1

(
V −1∑

k=1

Mikcdk)2)

The marginal likelihood of the whole corpus (our ob-
jective function) thus can be calculated as

D∏

d=1

P (wd) ∝ exp(
1

2

D∑

d=1

T∑

i=1

(
V −1∑

k=1

Mikcdk)2) (4)

Note here, we can only compute the marginal likeli-
hood up to a normalizing constant.

2.1. Parameter Learning by Contrastive

Divergence

Parameters of our model can be learned by gradient
ascent on the marginal (log) likelihood in Eqn. 4.
However, due to the intractability of the normaliz-
ing constant, it is difficult to calculate the gradient
of the log-likelihood. We use contrastive divergence
(Hinton, 2002) which has been shown to greatly im-
prove learning efficiency in harmonium architectures
(Welling et al., 2004; Xing et al., 2005; Gehler et al.,
2006). The main idea of contrastive divergence is that
we can truncate a Gibbs sampler with only one (or a
few) iterations, and use the distribution of the sam-
ples (say, ŵd or equivalently ĉdk, d = 1, . . . , D, and
k = 1, . . . , V −1) from the truncated chain to approxi-
mate the model distribution. In this way, the learning
rule can be written as the difference between the em-
pirical average and the approximated (by contrastive
divergence) model average,

δMik
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Algorithm 1 Learning via Contrastive Divergence

1: Input: document wd (d = 1, · · · , D), topic# T
2: Initialize connection matrix M randomly
3: repeat

4: for d = 1 to D do

5: for i = 1 to T do

6: Draw tdi, according to Eqn. 2
7: end for

8: for k = 1 to Nd do

9: Draw ŵdk, according to Eqn. 3
10: end for

11: end for

12: for i = 1 to T do

13: for j = 1 to W − 1 do

14: Update Mij , according to Eqn. 5
15: end for

16: end for

17: until M converges

∝
∂ log

∏D

d=1 P (wd)

∂Mik

−
∂ log

∏D

d=1 P (ŵd)

∂Mik

−
Mik

σ2

∝
D∑

d=1

(cdk

V −1∑

v=1

Mivcdv − ĉdk

V −1∑

v=1

Miv ĉdv) −
Mik

σ2

(5)

where the last term comes from a Gaussian prior over
parameters (with variance σ2) that provides smooth-
ing to help cope with sparsity in the training data
(Chen & Rosenfeld, 1999). This prior favors param-
eters that are closer to zero, and penalize (positive
and negative) large values. We summarize the learn-
ing procedures in Algorithm 1.

The introduction of this prior also helps alleviate the
identifiability problem as reported in Welling et al.
(2004) and Gehler et al. (2006), that is, makes the
model more identifiable. Without further special han-
dling of identifiability issues, we still get surprising
good results as shown in Section 4. Priors over weights
can influence the effectiveness of dimensionality reduc-
tion. A corpus usually has an intrinsic number of
topics that is unknown, and in general, we either try
many settings and select the best, or use nonparamet-
ric methods to estimate this number(Teh et al., 2004).
When given inappropriate number of topics, a model
with prior will try duplicate some topic or create some
random (but not trivial) topics. With priors, the spu-
rious topics will gradually become trivial (near zero
everywhere) since the priors push the weights toward
zero where no enough data evidence support them.

2.2. Multi-Conditional Learning

To explicitly emphasize that we want to capture
co-occurrence patterns, another way is to maximize
the conditional probability of

∏Nd

j=1 P (wdj |w
−j
d ) using

multi-conditional learning principle, where w
−j
d is all

the observed words in document d excluding the jth

word.

Multi-conditional learning (MCL) is a training crite-
rion based on a product of multiple conditional likeli-
hoods(McCallum et al., 2006). When combining the
traditional conditional probability of label given input
with a generative probability of input given label the
later acts as a surprisingly effective regularizer. When
applied to models with latent variables, MCL com-
bines the structure-discovery capabilities of generative
topic models, with the accuracy and robustness of dis-
criminative classifiers, such as logistic regression and
conditional random fields. Results on several standard
text data sets have been shown significant reductions
in classification error due to MCL regularization, and
substantial gains in precision and recall due to the la-
tent structure discovered under MCL(McCallum et al.,
2006).

Note that our configuration of Discrete distribution
with ’bag-of-words’ assumption makes it possible to
take advantage of MCL rather easily, and it is not
straightforward to apply MCL to other models with
similar structures, such as the dual-wing harmonium
model(Xing et al., 2005) and the rate adapting Poisson
model(Gehler et al., 2006).

Using the multi-conditional learning creterion, we can
get an alternative objective function as

D∏

d=1

Nd∏

j=1

P (wdj |w
−j
d )

∝ exp(
1

2

D∑

d=1

T∑

i=1

V −1∑

v=1

((2

V −1∑

k=1

Mikcdk − Miv)Mivcdv)

Similar to Eqn. 5, we can have a learning rule under
MCL, which is surprisingly simple due to our ’bag-of-
word’ setting here,

δMik ∝
D∑

d=1

(2cdk

V −1∑

v=1

Mivcdv − 2ĉdk

V −1∑

v=1

Miv ĉdv

+Mik(ĉdk − cdk)) −
Mik

σ2

In Section 4, we show the different between the two
training criteria, and empirically demonstrated that
MCL helps discover more distinct topics than simple
maximum likelihood.
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3. Data Sets

We apply our models to two large well-known text cor-
pora and show the results in Section 4.

3.1. NIPS Data Set

The NIPS proceeding data set consists of the full text
of the 13 years of proceedings from 1987 to 1999 Neural
Information Processing Systems (NIPS) Conferences.1

All the text is downcased, stopwords removed, but not
stemmed. The dataset contains 1,740 research papers,
13,649 unique words, and 2,301,375 word tokens in to-
tal.

3.2. 20 Newsgroups Data Set

The 20 newsgroups data set we use only keeps the
10,000 words with highest average mutual informa-
tion with the class label.2 All the text is downcased,
stopwords removed and stemmed with a Porter stem-
mer.The data set contains 18,796 documents, 10,000
unique words, 1,848,207 word tokens in total. Each
document has one of the 20 newsgroup names as its
label.

4. Experimental Results

In this section, we first show several word lists for sev-
eral learned topics as anecdotal evidence, and then we
compare our model with previous models in informa-
tion retrieval experiments on the newsgroups data set.

4.1. Interpretable Topics

We show the word list for a subset of topics learned
within our weight matrices from the NIPS data set in
Table 2. Immediately, we can see that all the pos-
itive words provide a vivid summary of topics well
known to exist within the NIPS community: Biological
Neuroscience, Reinforcement Learning and Probabilis-
tic Methods. Other topics not shown exhibit words
characteristic of topics such as Computational Neuro-
science. Interestingly, the negatively weighted words
are also common words in other topics, and serve to
separate this topic from others possibly confused with
it. A similar subset of clean topics emerges from the
20 newsgroups data set, with clear Religion, Image
and General Computer topics emerging as illustrated
in Table 4.

We also calculated the average cosine similarity be-

1http://www.cs.toronto.edu/∼roweis/data.html
2http://www.kyb.tuebingen.mpg.de/bs/people/pgehler

/rap/#datasets

tween topics learned by maximum likelihood and
MCL, and found that the MCL criterion does help dis-
cover more distinct topics (average cosine similarity:
0.2281) than maximum likelihood (average cosine sim-
ilarity: 0.3201). We also observe a subtler distinction
between topics found using this method. For exam-
ple, Table 3 illustrates Pattern Recognition, ’Neural
Networks’ and ‘Classification and Regression’ topics.
We found the MCL optimization was better at sep-
arating a Classification and Regression topic from a
Probabilistic Methods topic. The topics are equally
good with some interesting differences, such as com-
monly co-occurring words having lower weights. As
explained in Section 2, we also find several trivial low-
weight topics thanks to the prior we adopted, when we
increase the number of topics.

4.2. Information Retrieval

In information retrieval, given a query, we rank the
documents in corpus by some score, such as vec-
torspace based cosine similarity between document
and query, and query likelihood (Zhai & Lafferty, 2004)
and take the top ones as the retrieval documents. Ob-
viously, not all the retrieved documents are relevant to
the given query, precision and recall are the most com-
mon measure for retrieval performance. Precision can
be understood as the ratio of retrieved and relevant
documents to all retrieved documents, that is,

P =
|{relevant document} ∩ {retrieved documents}|

|{retrieved documents}|

Recall, on the other hand, can be thought as the ra-
tio of retrieved and relevant documents to all relevant
documents in the corpus, that is,

R =
|{relevant document} ∩ {retrieved documents}|

|{relevant documents}|

Using our model as a retrieval system, we can rank
documents in a corpus by the (cosine) similarity be-
tween the latent (topic) representation of the docu-
ments and a given query. We use a small version of
the 20 newsgroup data: only the 100 words with high-
est average mutual information with the class label
are kept and we remove the documents do not con-
tain these 100 words. We randomly split the data set
into training set (9/10, 16,218 documents) and test set
(1/10, 1,802 documents). If a retrieved document has
the same label as the test query document, they are
relevant.

We use a 20-topic run (3,000 iterations) on the train-
ing set to learn the parameters and calculate the aver-
age precision and recall across all the test documents
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Biological Neuroscience Reinforcement Learning Probabilistic Methods

cells .439 training -.556 learning .318 image -.536 data .364 state -.512

cell .361 networks -.500 policy .266 data -.444 model .307 time -.454

firing .360 error -.472 reinforcement .252 images -.431 mixture .271 neuron -.449

cortex .357 network -.470 control .239 recognition -.345 gaussian .260 neural -.429

cortical .355 speech -.465 state .234 feature -.315 likelihood .225 system -.422

stimulus .327 neural -.461 action .233 object -.271 image .221 control -.405

spike .314 classifier -.436 actions .158 visual -.270 distribution .217 neurons -.373

synaptic .310 class -.412 weight .153 features -.263 bayesian .213 analog -.363

synapses .275 word -.410 states .151 gaussian -.241 images .204 network -.359

motion .268 state -.407 controller .150 classification -.233 em .189 circuit -.335

orientation .262 recognition -.406 optimal .125 mixture -.227 density .183 action -.334

excitatory .255 classifiers -.386 weights .121 models -.217 models .182 synaptic -.317

visual .253 classification -.370 error .117 model -.211 posterior .163 chip -.316

inhibitory .243 set -.359 time .115 likelihood -.190 prior .148 networks -.287

response .243 hmm -.354 neuron .105 set -.189 regression .146 states -.285

stimuli .240 algorithm -.344 sutton .102 orientation -.184 kernel .144 memory -.279

spatial .238 hidden -.342 gradient .101 classifier -.180 log .135 recurrent -.263

direction .233 test -.337 recurrent .101 face -.179 classification .134 current -.263

membrane .231 mixture -.334 agent .096 class -.171 class .133 policy -.259

eye .229 data -.333 learn .096 test -.169 parameters .124 reinforcement -.256

Table 2. The three topics from a 20-topic run of our model on 13 years of NIPS research papers. The Title above the
word lists of each topic is our own summary of the topics. For each topic, we show the top 20 positive words (left) and
the top 20 negative ones (right) with the corresponding weights. Here, for displaying convenience, we have multiplied all
the learned weights by a factor of 10.

Pattern Recognition ‘Neural Networks’ Classification and Regression

recognition .734 policy -.574 input .900 itly -.106 functions .419 units -.075

image .687 weight -.537 output .820 construc -.105 class .403 visual -.069

images .663 action -.504 hidden .617 nash -.100 classifier .391 motion -.068

object .577 reinforcement -.454 model .593 ination -.099 regression .368 unit -.057

speech .547 learning -.428 state .550 probabilit -.098 classifiers .361 task -.055

visual .489 convergence -.420 speech .544 rival -.097 bounds .350 direction -.054

word .483 optimal -.414 training .540 aleksander -.097 gaussian .330 learning -.052

features .465 actions -.400 models .538 laxation -.097 loss .323 eye -.050

feature .419 error -.395 weights .529 arthur -.096 theorem .322 object -.049

objects .384 neuron -.344 error .506 duplicating -.096 density .317 motor -.048

face .379 controller -.341 patterns .504 cedures -.096 approximation .315 cortex -.048

hmm .287 gradient -.338 inputs .502 affirmative -.095 bound .315 action -.047

classification .284 theorem -.335 unit .500 hindered -.095 matrix .314 velocity -.047

segmentation .272 reward -.330 weight .500 allan -.094 classification .312 position -.044

system .262 sutton -.328 net .489 glasgow -.094 vector .312 activity -.044

context .261 finite -.324 architecture .488 delaying -.094 kernel .302 control -.042

frame .258 function -.308 word .483 mutations -.094 distribution .298 cortical -.042

classifier .257 stochastic -.304 systems .482 mech -.094 log .290 reinforcement -.041

orientation .255 control -.296 control .474 concomitantly -.093 data .277 head -.041

vision .245 time -.291 learning .471 mother -.093 neural .270 cells -.040

Table 3. The three topics from a 20-topic, MCL run of our model on 13 years of NIPS research papers. The Title above
the word lists of each topic is our own summary of the topics. For each topic, we show the top 20 positive words (left)
and the top 20 negative ones (right) with the corresponding weights. Here, for displaying convenience, we have multiplied
all the learned weights by a factor of 10.

at different recall levels, and plot the Precision-Recall
curve in Figure 2. We also compare our model with
the (a) RAP model (Gehler et al., 2006) also with 20
topics but with 30,000 updates and (b) the TF-IDF
representation, with cosine similarity, where

TF-IDFdw =
cdw

Nd

log
D

|{documents containing w}|

As shown in Figure 2, we can see that at low recall
– where we are primarily interested – the precision of
our model is superior to both RAP and TF-IDF. Note
that, due to the small vocabulary size, the precisions
are relatively low.

5. Conclusion and Discussion

We have proposed a new harmonium-structured undi-
rected model for large text collections. Unlike the pre-
vious models, the new model still allows the words to
come from a discrete distribution in a ’bag-of-words’
fashion. In contrast to the directed topic models such
as Latent Dirichlet Allocation, a word is always drawn
from a distribution taking into account all possible
topics, instead of a topic-specific distribution. We
show interpretable word lists for topics, and demon-
strate better information retrieval performance.

It is well known that the precision of dimensionality
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Religon Images Computer

god .0107 max -.0256 jpeg .0125 god -.0051 window .0130 god -.0141

peopl .0074 giz -.0183 gif .0077 wire -.0033 graphic .0115 jpeg -.0073

lord .0053 bhj -.0179 imag .0064 lord -.0026 pub .0110 jehovah -.0073

jehovah .0052 output -.0171 color .0053 law -.0024 server .0109 lord -.0064

armenian .0051 qax -.0156 qualiti .0045 presid -.0024 ftp .0108 jesu -.0053

jesu .0046 entri -.0144 format .0042 jesu -.0024 system .0100 peopl -.0043

presid .0045 bxn -.0130 viewer .0042 entri -.0023 mail .0096 christ -.0041

don .0036 file -.0119 compress .0037 jehovah -.0021 data .0090 father -.0033

christian .0036 program -.0115 convert .0035 state -.0021 user .0084 christian -.0030

live .0033 window -.0090 displai .0033 christian -.0020 comput .0081 don -.0029

christ .0032 nrhj -.0085 pixel .0032 year -.0020 anonym .0080 armenian -.0026

govern .0031 line -.0084 quantiz .0029 question -.0019 softwar .0078 son -.0022

dai .0031 biz -.0077 free .0028 live -.0019 widget .0078 mormon -.0018

didn .0030 printf -.0072 graphic .0028 ground -.0018 applic .0077 bibl -.0014

father .0030 check -.0070 bit .0027 christ -.0018 list .0076 output -.0014

state .0028 jpeg -.0068 version .0027 armenian -.0018 includ .0074 vers -.0014

thing .0027 char -.0067 zip .0025 dai -.0018 support .0072 gif -.0013

law .0026 stream -.0066 softwar .0024 hous -.0016 run .0072 didn -.0013

made .0024 section -.0066 quicktim .0024 person -.0016 version .0071 sin -.0013

fact .0022 info -.0064 mirror .0024 time -.0016 motif .0070 live -.0012

Table 4. The three topics from a 50-topic run of our model on the 20 newsgroup data set. The Title above the word lists
of each topic is our own summary of the topics. For each topic, we show the top 20 positive words (left) and the top 20
negative ones (right) with the corresponding weights. Note here, all words are stemmed.
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Figure 2. Precision-Recall plot on the 20 newsgroups data
set of 100 words vocabulary for our model, RAP and TF-
IDF.

reduction based models tends to increase with a larger
input vocabulary. While many real world tasks do
allow off-line computation to be performed, the op-
timization time for large vocabulary experiments can
be challenging, taking over half a day for model opti-
mization. However, we have ongoing experiments with
larger vocabulary sizes underway.

Undirected models with these hidden layer structures
allow a great deal of flexibility to incorporate informa-
tion from multiple modalities as demonstrated in Xing
et al. (2005). In directed models, typically when a
new source of information is introduced, dependencies
with other variables are carefully hand specified, and

in many cases, dependencies are too complicated to
be explicitly expressed. Furthermore, likelihoods from
different modalities are often are not comparable and
weighting parameters are often needed as in Wang and
McCallum (2006). We see great potential to combine
a wide variety of information from the text document
(such as words, authors, timestamp, venue, citations,
etc.), and robustly create extremely rich models that
could have been particularly hard to devise in a di-
rected model. We believe the model presented in this
paper and other similar ones will play an important
role in modeling multi-modal heterogeneous data.
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