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Abstract

Our team participated in the entity tagging and normalization tasks of Biocreative II. For the
entity tagging task, we used a k-best MIRA learning algorithm with lexicons and automatically
derived word clusters. MIRA accommodates different training loss functions, which allowed us to
exploit gene alternatives in training. We also performed a greedy search over feature templates
and the development data, achieving a final F-measure of 86.28%. For the normalization task, we
proposed a new specialized on-line learning algorithm and applied it for filtering out false positives
from a high recall list of candidates. For normalization we received an F-measure of 69.8%.
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1 Introduction

For the entity tagging task, we used a rule-based tokenizer followed by a linear sequence model trained
using a 5-best MIRA learning algorithm. MIRA accommodates different training loss functions, which
allowed us to exploit alternative taggings in training and tune the loss function for higher performance.
We further augment the feature set with curated lexicons and with automatically derived unsupervised
word clustering features and find that their combination gives a more than additive gain.

For the normalization task, we used our entity tagging system trained for high-recall and use
this to generate a list of mentions for each abstract. We used a simple matching algorithm to find
potential gene aliases for each mention, and a new specialized online learning algorithm to filter out
false positives from this initial high-recall set of candidates. Some of the features used by the learning
algorithm are based on learning what kinds of changes indicate different aliases for the same gene and
what kinds indicate different genes.

2 Entity Tagging

Training and test sentences are first tokenized with a rule-based tokenizer. A linear sequence model
assigns one of the three B,I, and O tags to each word, as in [13]. We start from a CRF-based system
[4] with features tuned by greedy search (Section 2.4). We then make four major changes:

1. Training via k-best MIRA on alternative labelings (Section 2.1).

2. Tuning the MIRA loss function (Section 2.1).
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3. Including curated lexicon features (Section 2.2)

4. Adding unsupervised clustering word features (Section 2.3).

Together, these changes yielded an overall improvement of 5% absolute performance improvement
(28% relative error reduction) over the baseline system.

2.1 k-best MIRA and Loss Functions

In what follows, x denotes the generic input sentence, Y (x) denotes the set of possible labelings of x,
Y +(x) the set of correct labelings of x. There is also a distinguished “gold” labeling y(x) ∈ Y +(x).
For each pair of a sentence x and labeling y ∈ Y (x), we compute a vector-valued feature representation
f(x, y). Given a weight vector w, the score w · f(x, y) ranks possible labelings of x, and we denote
by Yk,w(x) the set of k top scoring labelings for x. As with hidden Markov models [12], for suitable
feature functions f , Yk,w(x) can be computed eficiently by dynamic programming. A linear sequence
model is given by a weight vector w.

The learning portion of our method requires finding a weight vector w that scores the correct
labelings of the test data higher than incorrect labelings. We used a k-best version of the MIRA
algorithm [2, 8, 7]. This is an online learning algorithm that for each training sentence x updates the
weight vector w according to the rule:

wnew = arg min
w

‖w − wold‖

s.t. ∀y ∈ Yk,w(x) : w · f(x, y(x))− w · f(x, y) ≥ L(Y +(x), y)

where L(Y +(x), y) is a measure of the loss of labeling y with respect to the set of correct labelings
Y +(x). We experimented with different loss functions, and finally settled on a loss that is a weighted
combination of the number of false positive gene mentions and false negative gene mentions in the
sentence. Our experience showed that getting a high precision is relatively easier than a high recall,
so we weigh the number of false negatives higher than the number of false positives.

2.2 Lexicons

In our experiments, we used a number of curated lexicons. We used the lexicons as proposed in [10].
During the greedy feature search we found that removing some of these actually improved performance
as did adding others. We added a list of genes developed at CHOP, a set of names of chemicals
extracted from PubChem and a list of disease terms extracted from the MeSH ontology.

2.3 Clustering

An 85 million word subset of MEDLINE was used to cluster words by bigram language model perplexity
into a binary tree [1]. Different depth tree cuts were then applied to produce 5 clustering features at
differet levels of granularity for each word type in the tree [11]. Thus, for each word type that has been
clustered there are 5 different non-independent cluster features generated by the clustering. These
additional features are then added the feature function in training and testing. On our development
data, adding these features produced a 0.7% improvement in the best system and as much as 1.3%
improvement in inferior systems.

2.4 Greedy Search

For the baseline system, we started from a feature set similar to that of [10]. We proceeded to improve
it as follows.
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Method CRF Mira Hamming Mira FP+2FN
Features P R F-1 P R F-1 P R F-1
Public access 83.4 79.1 81.2 85.5 78.3 81.8 83.0 86.3 84.6
Clusters 84.6 80.6 82.6 85.7 79.0 82.2 83.1 86.9 85.0
Lexicons 85.0 80.1 82.5 86.7 80.1 83.3 84.4 86.9 85.7
All Resources 85.9 81.3 83.5 87.4 81.6 84.4 85.1 87.7 86.4

Table 1: F-measure on held out testing data (not used in development). Our best system applied four
techniques (lexicons, clustering, alternative labelings in training, and tuned loss) for a 5% absolute
improvement (28% error reduction) over the baseline system.

We divide our features into sets of feature templates. For example, there are many features for
the identity of the current token (one for each token type), but we group all of these into a single
feature template. Starting with our initial list of feature templates, we repeatedly remove the one
whose removal results in the greatest increase in the score of the development data, until no further
improvement is possible. Removing just one feature template in this way requires training one model
for each removal candidate. Once we can’t improve the development data performance, we start
adding feature templates from a list of candidates. This resulted in some unexpected additions and
non-additions. For example, we found that adding a conjunction of four POS tags helps performance,
while adding our list of gene acronyms actually hurts performance.

Even though there are hundreds of thousands of features, there are only dozens of feature templates,
so doing this optimization on the development data doesn’t lead to very severe overfitting: the F-score
of the final system on the development data was within 1% of that on unseen data. The initial
performance of the baseline system is similar to that of the “public access” system described in the
following section. This is despite the fact that the baseline system had access to some lexicons, due
to a poorer selection of features overall.

2.5 Analysis

While we were developing the system, we split the provided data into a training, development and test
set (80%,10% and 10% respectively). We did not use the testing data during development, so we can
use it to compare a few approaches. This comparison is shown in Table 1. The table shows Precision,
Recall and F-score for a conditional random field, MIRA with the standard loss and MIRA with a loss
of the number of false positives plus the number of false negatives times two.1 The features used for
the experiments were the final features after the search over feature templates described in Section 2.4
without lexicon features and cluster features (public access), with the lexicons but no cluster features,
with the cluster features but no lexicons and with lexicons and cluster features.

Table 1 demonstrates that out of the three improvements, the use of MIRA with a tuned loss
function and using the alternative labelings yielded the highest performance improvement over the
baseline CRF system (3%). Use of alternative labelings alone yielded only around .5% performance
improvement. Both the automatic cluster features and the curated lexicons gave around 1% F-measure
improvement over the baseline. In conjunction with MIRA with the tuned loss function, the lexicons
still provide around a 1% improvement over the baseline MIRA system, while the the automatic clusters
provide only around a .5% improvement. Surprisingly, in the final system, adding both lexicons and
clusters yielded a 1.8% improvement.

1We found that high recall is harder to achieve than high precision, so we weigh false negatives more.
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3 Gene Normalization

Our approach is in some ways similar to that of []*ryanBC1B. Like them, we first generate a high-recall
list of candidate mentions with corresponding aliases and gene IDs, and then use a linear classifier to
filter out the false positives. Our system differs in the way that we find an intial list of candidates
(Section 3.1,) the learning algorithm (Section 3.3) and in the features that we used to make the
decisions (Section 3.2).

3.1 Gene Mentions and Matching

We used the gene tagger described in Section 2. Since our approach for the gene mention task will filter
out incorrect gene mentions later, we used a loss function to maximize recall: the loss of a labeling for
a sentence was set to the number of false negatives (with respect to the true labeling). This resulted
in a recall on the gene mention tagging task of a little over 90%.2

For each gene mention in the high-recall list, we return the list of gene ID/alias pairs where the alias
is the same as the text of the mention after normalization steps that include removal of common words
(such as “gene”, “protein”, “mouse”), replacement of digits with the corresponding roman numerals,
removal of spaces and dashes, and case conversion. This yields an initial candidate list that has a
recall of 77.2% but a precision of only 37.3%. We tried more agressive matching rules, but we found
that this makes the next learning stage too difficult for the small amount of available training data.

3.2 Filtering Features

To avoid overfitting due to the small training set, we used only 89 features, including the number of
candidates competing for the same mention, the number of candidates that agree on the gene ID, and
which of “human”, “rat” and “mouse” appears closest to the mention. A set of more complicated but
very useful features are based on a learned string string alignment model [6].

The string edit distance model is trained to maximize the probability alignments between aliases of
the same gene, while minimizing the probability of alignments between aliases of different genes. For
each candidate, the model gives a probability that the gene mention to the alias, which is converted
into the following features: the binned value of the probability, the rank of the current candidate
among all candidates in the abstract, and the rank of the current candidate among candidates for the
same mention. These features resulted in a significant improvement (about 2% in F-measure) in our
cross-validation development runs.

3.3 Learning Algorithm

Our model learns to distinguish a candidate (mention-alias pair) containing a true mention of a gene
from a false positive Unfortunately, the training data is incomplete: for each abstract we have only a
list of gene IDs. To overcome this problem we created a MIRA-inspired (Section 2.1) online learning
algorithm that makes use of the correct gene IDs (given to us), as well as its current predictions to
figure out which candidates to require be correct.

More formally, let C be the set of candidates for a particular abstract, Ctop be the set of current
highest scoring candidates for each correct gene ID, and CFP be the set of candidates that correspond
to an incorrect gene ID, but were scored above some threshold θ by the current model. Then, our
algorithm performs the following update

wnew = arg minw ‖w − wold‖+ γ maxc ξc

s.t. w · c ≥ 1− ξc ∀c ∈ Ctop

−w · c ≥ 1− ξc ∀c ∈ CFP

ξc ≥ 0 ∀c ∈ CFP ∪ Ctop.

2We cannot estimate this exactly because we used all available labeled data to train the model.
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Here the ξc are slack variables that allow us to sometimes fail to separate the data. For our experiments,
we used a θ of 0.2 and a γ in the range 0.005 ≤ γ ≤ 0.5.
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