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Abstract

OCR systems for printed documents typically require

large numbers of font styles and character models to work

well. When given an unseen font, performance degrades

even in the absence of noise. In this paper, we perform

OCR in an unsupervised fashion without using any charac-

ter models by using a cryptogram decoding algorithm. We

present results on real and artificial OCR data.

1. Introduction and Related Work

Most OCR systems for machine-print text need to know

about a large collection of font styles to work well. Such

systems are font-dependent and suffer in accuracy when

given documents printed in novel font styles. We examine

an alternative approach that groups together similar char-

acters in the document and solves a cryptogram to assign

labels to clusters of characters. This method does not re-

quire any character models, so it is able to handle arbitrary

fonts. It can take advantage of patterns such as regularities

in image distortions that are particular to each document. In

addition, the cryptogram decoding procedure is well-suited

for performing OCR on images compressed using token-

based methods such as Djvu, Silx, and DigiPaper.

Treating OCR as a cryptogram decoding problem dates

back at least to papers by Nagy [10] and Casey [2] in 1986.

More recently, Ho and Nagy [3] develop an unsupervised

OCR system that performs character clustering followed by

lexicon-based decoding. Their decoding procedure itera-

tively applies a set of rules to find mappings by comparing

a “v/p” ratio against manually set thresholds. One major

difference between their work and ours is that we use prob-

abilistic reasoning instead of predefined thresholds. In [7],

Lee presents a unified approach to decode substitution ci-

phers by using Hidden Markov Models and the expectation

maximization algorithm. He uses n-gram statistics as model

priors, whereas we use entire word patterns. Breuel [1] in-

troduced a supervised OCR system that is font independent,

but it does not take advantage of token-based image com-

pression.

2 The Model

We take binary images of machine printed text as in-

put, and we use a segmentation scheme that assumes each

ink blot (i.e., connected component) is a separate character,

though some effort is made to identify characters composed

of multiple ink blots, such as those with accent symbols

and the letters i and j. An object defined in this manner

can correspond to (1) exactly one character, (2) a partial

character, or (3) multiple characters such as the ligatures fi

and ffi. These objects are then clustered using greedy ag-

glomerative clustering, so that the input document is trans-

formed into a string of cluster assignments in place of the

actual characters. By examining the patterns of repetitions

of cluster IDs and comparing them to the patterns for dic-

tionary words, we decode the mapping between cluster IDs

and characters in the output alphabet. We describe each step

in more detail below.

2.1 Character Clustering

Two straightforward distance measures between binary

images A and B are the Hamming and the Hausdorff dis-

tances. TheHamming distance is simply the number of pix-

els on which A and B differ. It is fast and easy to calculate,

but is not robust to noise or variations like stroke thickness.

Hausdorff distance [8] is defined as

h(A, B) = max
a∈A

min
b∈B

d(a, b), (1)

where d is a metric, such as the Euclidean distance. If the

Hausdorff distance from A to B is δ, then for every point

a ∈ A, there is a point in B within distance δ.



To reduce effects from noisy pixels on the distance, we

“soften” the Hausdorff distance so that hp(A, B) = δ

means for at least p percent of the points a ∈ A, there

is a point in B within distance δ. To make the Hausdorff

measure symmetric, we take the mean of hp(A, B) and
hp(B, A). In our experiments, we use this average with
p = 95.

The Hausdorff measure is more robust than the Ham-

ming measure, but is expensive to compute for the O(n2)
pairwise distances, where n is the number of images. We

take advantage of the speed of the Hamming distance and

the robustness of Hausdorff distance by using the canopy

method devised by McCallum et al [9]. First, the Hamming

distance is computed for all pairs of images, and two dis-

tance thresholds T1 and T2 are specified, where T1 > T2.

Next, we go through the list of images in any order and

remove one image from the list to serve as the seed of a

new canopy. All images in the list within distance T1 of

the seed image are placed into the new canopy, and all im-

ages within distance T2 are removed from the list. This pro-

cess is repeated until the list is empty. The more expen-

sive Hausdorff measure is then used for pairwise distances

within each canopy.

After all pairwise distances have been computed, the im-

ages are partitioned using hierarchical agglomerative clus-

tering. Inter-cluster similarity is computed by the group

average. I.e., the distance between clusters G1 and G2 is

given by d(G1, G2) = 1
|G1|·|G2|

∑
A∈G1

∑
B∈G2

h(A, B).

To choose the final number of clusters, we use the elbow

criterion described in the experiments section.

2.2 Character Decoding

Consider the following encoding of an English word:

α β γ γ β γ γ β δ δ β

If each Greek letter stands for one letter, what is the decod-

ing? After some thought, it should be clear that it is the

word “Mississippi,” since no other English word has that

particular pattern of letters.

For each word represented as a string of cluster assign-

ments, we compute its numerization string by going from

left to right, assigning 1 to the first cluster ID, 2 to the sec-

ond distinct cluster ID, 3 to the third distinct cluster ID, etc.

For the above string, suppose the cluster assignments are

7 3 20 20 3 20 20 3 17 17 3, then the corresponding numer-
ization string is 1 2 3 3 2 3 3 2 4 4 2.

By computing the numerization strings for every docu-

ment and dictionary word, we identify code words in the

document that map to a unique dictionary word or a small

number dictionary words. This gives an initial mapping be-

tween cluster IDs and output characters.

Formally, let E = (e1, e2, ..., en) be the sequence of
words encoded by cluster assignments, C = {ci} be the set
of cluster IDs, and Σ = {αj} be the alphabet of the target
language. Our goal is to compute the set of assignments that

maximizes P ({ci = αj}|E). By considering one mapping
at a time, we write

P (ci = αj |E) =
P (E|ci = αj)P (ci = αj)

P (E)

∝ P (E|ci = αj)P (ci = αj)

∝ P (e1, e2, ..., en|ci = αj)

≈

n∏

k=1

P (ek|ci = αj) (2)

=

n∏

k=1

P (ci = αj |ek)P (ek)

P (ci = αj)

∝

n∏

k=1

P (ci = αj |ek),

where we have applied the naive Bayes assumption, used

Bayes’ rule, and assumed a uniform prior for P (ci = αj).
The quantityP (ci = αj |ek) is calculated by normalizing

the count of the number of times cluster ID ci maps to out-

put letter αj among the dictionary words that have the same

numerization string as ek. We used Laplace smoothing with

λ = 0.001 to avoid zero probabilities.
Once P (ci = αj |E) has been calculated for ev-

ery ci and αj , each cluster ci is mapped to character

argmaxαj
P (ci = αj |E). Not all assignments will be cor-

rect at this point, because of words whose numerization

strings don’t have much discriminating power. We solve

this problem by using the set of mappings of which we are

confident to infer the less confident ones.

2.3 Confidence Estimation

An intuitive way to measure the confidence of an as-

signment for ci is to look at how peaky the distribution

P (ci = ·|E) is. Entropy quantifies this measure. For ev-
ery cluster ID ci, the entropy of its assignment is

H(ci) = −
∑

αj∈Σ

P (ci = αj |E) log(P (ci = αj |E)). (3)

Sorting the entropies in ascending order gives a list of

ci’s whose assignments are in decreasing confidence. Re-

call that each code word ek is associated with a list of dic-

tionary words Dk that have the same numerization string.

In general, some dictionary words in Dk are incompatible

with the mode of P (ci = ·|E). Our refinement strategy is
to iterate the ci’s as sorted by entropy, assume the mapping

of ci = argmaxαj
P (ci = αj |E) to be true, and for each



code word that contains ci, remove from its list of dictionary

words those words that are incompatible with the assumed

assignment. After each iteration, the assignment probabili-

ties and entropies of unprocessed ci’s are recomputed using

the reduced lists of words.

2.4 Ligatures and Partial Mappings

The decoding procedure described above assumes each

cluster ID maps to one output character, but some clusters

actually contain ligatures and partial characters. To deal

with partial characters, prior to the decoding steps described

above, we count the number of times each subsequence of

cluster IDs appears in the document. The subsequences that

contain only ci’s that appear in no other subsequences are

replaced by a single new cluster ID. To correct mapping er-

rors that remain after the decoding step, we use a refinement

strategy based on string-edit distances. The output alphabet

is conceptuallymodified toΣ′ = Σ∗, the set of strings made

of zero or more letters from Σ.
We begin with an example. Suppose we are given the

partially decoded words

?ost fri?tens enou?

where ? denotes the same cluster ID that needs to be de-

ciphered. Recall that each cluster maps to an element of

Σ′, not necessarily to a single character. The first word

alone does not givemuch information, since it can be cost,

post, and almost, among others. From the second and

third words, it becomes clear that the question mark stands

for the letters gh. Essentially, this puzzle is solved by a

knowledge of the English lexicon and a mental search for

words that are most similar to those partial decodings.

The first step in this strategy is to identify the set C̃ ⊂ C

of clusters that are candidates for correction. An intuitive

definition of C̃ is the set of cluster IDs appearing only in

non-dictionary words, but it misses those clusters appear-

ing in decoded words that happen to be in the dictionary

by accident. Instead, we define C̃ to be the set of clusters

that occur more frequently in non-dictionary words than in

dictionary words, where frequency is measured by the nor-

malized character count.

For every decoded word wi that contains an element of

C̃, we find the dictionaryword that is closest to it in edit dis-

tance and tally the edit operations that involve elements of

C̃. If wi happens to be in the dictionary, we count the iden-

tity mappings that involve elements of C̃ . To avoid having

to calculate the edit distance of wi to every dictionary word,

we prune the list of dictionary words by computing the ra-

tio r(wi, dj) =
comm(wi,dj)
max(|wi|,|dj|)

for every dictionary word dj ,

where comm(wi, dj) is the number of (non-unique) char-
acter trigrams that wi and dj have in common [5]. Let

aegean aluvic

bernoulli dlr

exxon fluoroscan

multilaterally zinn

Table 1. Some correctly deciphered non-

dictionary words from the ASCII code data.

d(wi) = argmaxdj∈Dr(wi, dj), which can be found ef-
ficiently by using an inverted index of character trigrams.

Next, only the string edit operations between wi and d(wi)
need to be tallied. When multiple dictionary words share

the same maximum ratio with wi, the edit operations of wi

are ignored, because empiracally, using such words skews

the edit counts toward common letters such as e. After all

edit counts have been tabulated, each cluster ID in C̃ is re-

mapped to the string it most frequently edits to.

3 Experiments and Analysis

We performed experiments on artificial and real

data. The lexicon used contains 10,683 words

from the Spell Checker Oriented Word Lists

(http://wordlist.sourceforge.net/).

Artificially-generated data provide a sanity check for the

performance of the decoding algorithm under optimal con-

ditions and allows us to examine the robustness of the algo-

rithm by varying the amount of noise present. We use two

types of artificial data in our experiments, one to simulate

perfect character segmentation and clustering, and another

to more closely resemble conditions of real-world images.

The best-case scenario for the decoding algorithm is

when (1) there is a bijective mapping between clusters and

the output alphabet Σ, and (2) the alphabet of the lexicon
used by the decoder equals Σ. To simulate this condition,
we clean data from the Reuters corpus by removing all dig-

its and punctuation marks, and lowercasing all remaining

letters. The three hundred files with the most words after

preprocessing selected, and the ASCII codes of the text is

given to the decoder. The number of words in these files

range from 452 to 1046. Table 2 shows the performance

of the algorithm, and Table 1 lists some correctly decoded

words that are not in the dictionary. Most errors involve

mislabeling the letters j and z, which make up 0.18% and

0.07% of the characters, respectively. In comparison, the

letter e, which comprises 9.6% of the characters, was re-

called 100% of the time.

Leetspeak (or Leet) is a form of slang used on the Inter-

net that includes the substitution of letters by similar look-

ing numerals (e.g., 3 for e), punctuation marks (e.g., |-| for
h), or similar sounding letters (e.g., ph for f). In addition,

letter substitutions may vary from one occurence to another,



ASCII Leetspeak

character accuracy 99.80 99.65

word accuracy 98.84 98.06

Table 2. Decoding performance on 300 news

stories encoded in ASCII and Leetspeak.

Figure 1. Examples of unusual fonts used to

create document images of Reuters stories.

so that the letter s may be written as $ in one word and 5

in the next. An example sentence in Reuters translated to

Leetspeak is

! 7}-{!nk it kind 0ph (V)udd!e$ @n

@12e4dy mvddy $!7u@7!0n

(i think it kind of muddies an already muddy situation).

Understanding Leetspeak requires solving some of the

same issues in character recognition. More than one charac-

ter in Leetspeak can be used to represent the same alphabet

letter, which mirrors the problem of split clusters. Multiple

Leet characters can be used to represent the same alphabet

letter, and this mirrors the problem of over-segmentation of

character images.

To generate Leetspeak data to test our decoding algo-

rithm, we defined substitutions such that no two original

letters share any characters in their mappings. This is done

only as a simplification of the problem, since Leetspeak can

be much more complex than what is presented here. We

ran the decoding algorithm on the same 300 Reuters stories

encoded in Leet, and Table 2 gives the character and word

accuracies. The decoding performance on Leet is just as

good as on the ASCII data with similar types of errors, so

our algorithm seems to be robust to multiple representations

of the same character and partial characters.

We evaluated our algorithm on two sets of images. The

first consists of 201 Reuters news stories preprocessed in

the manner described above and then rendered in unusual

font styles (see Figure 1). These images are clean but do

contain ligatures. The second set of images comes from

the OCR data set of the Information Science Research In-

stitute at UNLV [11], which includes manually-segmented

text zones for each page. From a collection of Department

of Energy reports in the UNLV data set scanned as bi-tonal

images at 300 dpi, we picked 314 text zones that are primar-

ily text (excluding zones that contain tables or math formu-

las) for recognition.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Figure 2. A histogram of horizontal spacing
gaps in an image. See text for details.

Many of the images are slanted, where lines of text are

not parallel to the top and bottom edges of the image. Al-

though clustering can deal with slanted character images,

rectification makes it easier to determine the reading order

and inter-word spacing needed for decryption. Our recti-

fication algorithm is based on an entropy measure of ink

distributions. For each horizontal line of pixels in the im-

age, we count the number of pixels occupied by ink to build

a projection profile of the image as in [6]. We then search

for the rotation that minimizes the projected entropy.

After rectification, the image is despeckled, and each

connected component is extracted and resized to fit within

a 60 x 60 pixel image centered at its centroid. To cluster the

images, pairwise distances are computed by shifting one of

the images around a 3 x 3 window and taking the smallest

Hausdorff distance.

Our decoding algorithm relies on accurate segmentation

of the sequences of cluster IDs into word units, so a princi-

pled method is needed to identify word demarcations. Fig-

ure 2 shows a typical histogram for horizontal spacing be-

tween adjacent connected components on an image, where

the left hump corresponds to spaces within a word, and the

right hump to spaces between two words. We model such

histograms as mixtures of two Poisson distributions (the

solid and dashed curves), one for intra-word spaces and an-

other for inter-word spaces. The model contains a threshold

c (the vertical line) above which a horizontal spacing con-

stitutes a word break.

Formally, the probability of a particular spacing si is de-

fined as

P (si|c, λ1, λ2) (4)
= P (si ∈ P1|c)P1(si|λ1) + P (si ∈ P2|c)P2(si|λ2)
= P (si ∈ P1|c)P1(si|λ1) + (1 − P (si ∈ P1|c))P2(si|λ2)
= I(si > c)P1(si|λ1) + (1 − I(si > c))P2(si|λ2),

where I is the indicator function, and Pj (j = 1, 2) are

Poisson distributions: Pj(si|λj) =
e
−λj λ

si
j

si!
.

Given the list of spaces (s1, ..., sN ), the objective func-
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Figure 3. Histograms of character accura-

cies. (a) For 201 Reuters stories rendered in

unusual fonts. (b) For 314 Dept. of Energy
documents.

tion is simply defined by the likelihood of the data:

Ω(c, λ1, λ2) =

N∏

i=1

P (si|c, λ1, λ2). (5)

The goal is to find the parameters θ = (c, λ1, λ2) that maxi-
mize Ω. We do so using gradient ascent with the bold driver
algorithm to adopt the learning rate at each iteration.

The indicator function is discontinuous so is not every-

where differentiable, which complicates the optimization

routine. We avoid this problem by approximating I by a

shifted sigmoid function: I(si > c) ≈ 1
1+ec−si

.

The number of clusters is chosen using the “elbow cri-

terion” heuristic: In each step of agglomerative clustering,

the distance between the two clusters to merge is plotted,

giving a curve that resembles the exponential function. The

number of clusters to form is derived from the point where

the slope of the curve begins increasing faster than some

threshold value τ . In our experiments, τ is manually set to

0.005.

Figure 3 shows the histograms of character accuracies

on the Reuters and UNLV test images. Averaged over the

number of images, the mean character accuracy for the

Reuters images is 88.09%, and for the Dept. of Energy doc-

ument it is 73.78%. Limiting evaluation to lowercase char-

acters gives a mean of 78.85%. On the UNLV images, the

mean accuracy for identifyingword demarcations, averaged

over the number of images, is 95.44%. Although this fig-

ure initially looks promising, images with low accuracies

are caused by unrecoverable errors in word segmentation.

Our decoding algorithm also misses all digits, punctuation

marks, and uppercase letters; this is an area for future work.

Similar to the results presented in [3], our unsupervised

approach cannot recognize numerals, punctuation marks, or

uppercase letters. Using image-to-character classifiers to

identify those special characters beforehand proves bene-

ficial, as discussed in [4]. To this end, we plan to combine

cryptogram decoding with a robust maximum-entropy char-

acter classifier used by Weinman and Learned-Miller [12].

We presented an unsupervised OCR system using char-

acter clustering with canopies and a cryptogram decoding

algorithm based on numerization strings. Its performance

was evaluated on artificial and real data. Under ideal input

conditions, where both character segmentation and cluster-

ing are correct, our decoding algorithm correctly decodes

almost all words, even those absent from the lexicon. Al-

though our algorithm is not sufficient alone, it can improve

the recognition performance of an OCR system when aug-

mented with appearance models.
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