
Finding and Linking Incidents in News

Ao Feng and James Allan
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA
{aofeng, allan}@cs.umass.edu

ABSTRACT

News reports are being produced and disseminated in over-
whelming volume, making it difficult to keep up with the
newest information. Most previous research in automatic
news organization treated news topics as a flat list, ignoring
the intrinsic connection among individual reports. We ar-
gue that more contextual information within and across the
topics will benefit users in their news understanding process.

A news organization infrastructure, incident threading, is
proposed in this article. All text snippets describing the
occurrence of a real-world happening are combined into a
news incident, and a network is composed of incidents that
are interconnected by links in certain types. A limited vo-
cabulary of connection types is defined and corresponding
rules are established based upon the human experience of
news understanding.

The incident threading system is implemented with two
different algorithms. One starts from clustering of text pas-
sages and then creates links with pre-built rules. The other
method defines a global score function over the whole col-
lection and solves the optimization problem with simulated
annealing. The former achieves higher accuracy in the iden-
tification of incidents and the latter generates better links,
which is preferred since the links are more important for the
formation of the incident network.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering;
H.3.4 [Systems and Software]: Information networks

General Terms

Algorithms, Design, Experimentation, Management, Mea-
surement, Performance

Keywords

Automatic news organization, Incident threading, Thread-
ing rules, Global optimization, Simulated annealing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

1. INTRODUCTION
With the rapid development of modern technologies, the

amount of information is increasing in an exponential man-
ner [6]. Every day there is a huge amount of new information
available to us, and a large portion of it is news. It comes
from many different sources, including traditional media
such as newspaper, radio and TV, and modern sources like
the Web. Without proper organization of the overwhelming
information, one can easily become lost because of its vast
size. This phenomenon is called information overload.

It is not feasible for a user to go through all the informa-
tion without any pre-processing, because the news a person
can read is much less than the amount produced within the
same time period. To help the user obtain the necessary in-
formation in the shortest time, a system should be designed
that automatically processes news and converts it into a
more user-efficient format.

The way news is organized in the system should match
people’s cognition process.

• Each user has his or her own information need. For
example, a resident of New York City might be inter-
ested in a crime that happened in the City, but may
not care if there is a conflict in Kosovo. So the system
must be able to separate news from different topics.

• People remember what they already know, and are
only interested in new messages rather than repeti-
tions, even if they are described is a different way.
That means the system should not provide duplicate
information.

• People do not treat news events as isolated facts. In-
stead, they tend to compare new information to mem-
ory and insert it into the existing fact network, at a
location next to the relevant pieces. It would be prefer-
able if the system is able to link related events, because
people are very likely to be interested in both (or nei-
ther).

Here we are proposing a model called incident threading.
It identifies all text pieces that discuss the same real-world
happening and assigns them to a news incident. Incidents
are not treated as isolated entities, because there are cer-
tain types of links between the real-world events, and people
have the ability to recognize them. In this model, causal,
temporal, spatial or other kinds of connections are consid-
ered among the incidents, and their relations are explicitly
marked with the specific type. With these links as edges, the

news forms an interconnected network of incidents showing
how they are related.

The most important concepts in the model are incident

and incident network. An incident is a news event that
happens at a specific time (or in a time range), at a given
geographical location, and involves one or more entities and
some action. An incident can appear in various news re-
ports, and even if the vocabularies do not look similar, it is
always the same incident if they talk about the same thing.
News is not static, as there are often new updates on a cer-
tain topic. The updates do not belong to the old incident,
since the time and/or other factors have changed, but there
is some internal connection that places them together. An
incident network is a graph that shows these related inci-
dents along with the links.

In Section 2, we will describe earlier research topics re-
lated to incident threading like TDT, event threading and
discourse analysis. Section 3 shows the incident threading
infrastructure and explains the main concepts. Section 4
introduces different implementations of the incident thread-
ing system, and the evaluation methods are in Section 5.
Section 6 describes the details of the experiments. Section
7 shows that both the two-stage algorithm and simulated
annealing achieve obvious improvement over the baseline,
while the global optimization algorithm is preferred because
of its performance in incident links. Section 8 concludes the
article together with suggested future work.

2. PREVIOUS WORK
The idea of incident threading was motivated by exist-

ing research topics. Topic Detection and Tracking (TDT)
monitors a news stream and places the information pieces
into individual topics, while each topic includes all the news
events closely related. It is ignored in TDT how a topic is
established by the news events, and event threading tries to
capture the internal structure of these topics. In addition to
the effort of automatic news organization, discourse analysis

studies the information flow in a press article with manual
analysis. There are other news processing tasks, like nov-
elty detection, news summarization and information filter-
ing, which also aim at helping users in their news browsing.
We now summarize these works and show why they have
not provided an ideal framework for news organization.

2.1 TDT
TDT is a research program that focuses on event-based

news organization. It breaks an incoming news stream into
a list of topics, where each topic is “a set of news stories that
are strongly related by some seminal real-world event” [1].
To simplify the problem, several assumptions were made in
TDT:

• Topics do not overlap. That means each news story be-
longs to at most one topic. From our observation, it is
not always true since parts of the same story are often
about different events, and sometimes the boundary
between similar topics is not very clear.

• Topics are independent. A topic is a complete object
and any relation to others is ignored, which is obvi-
ously not the case in reality.

• Topics are indivisible. All the evaluation metrics are
topic-based, and participants of TDT place all the ef-

forts into making their topics closer to the truth (de-
fined by examples). However, an important factor is
ignored in this assumption. A topic is composed of a
seminal event and other “related” events, but the TDT
community did not go deeper into the topic structure.

TDT has become quite mature after eight annual evalu-
ations (1997 to 2004). The concept “topic” has been well
defined empirically, and building topics from a continuous
news stream has achieved moderate accuracy. However, the
way that TDT defines a topic seems inconsistent with user
expectations, particularly by the assumptions listed above.
Within incident threading, we remove or substantially re-
duce each of those assumptions.

2.2 Event threading
As an attempt to organize news in finer-grained units,

event threading [5] tries to capture the news events within
a TDT topic and the organization among those events. An
event is defined as “something that happens at some specific
time and place” [13], and events in the same topic are shown
in a directed acyclic graph (DAG). An edge from event A
to event B means that there is some dependency between
them, either causal (A directly leads to the happening of B)
or temporal (A precedes B in time). However, the causal
and temporal relations are hard to distinguish, and a clear
boundary is not set between them. Therefore, only the ex-
istence of dependency between two events is modeled, and
no attempt is made to identify the relation type.

From the experiments in [5], acceptable accuracy can be
achieved in event threading with simple algorithms and easy-
to-extract features, but there are still many limitations in
this model.

• Each topic is independent. In this work, topics are
assumed to be independent to prevent linked events
from spanning topic boundaries, thereby reducing the
computational complexity of the task.

• Dependencies between events are binary. There can
be many different types of dependencies, and the as-
signment of such labels is subject to the annotator. In
this preliminary attempt, the relation was simplified
to one of two values: related or not.

• A story is the smallest news unit. It assumes that all
the text in a news story is coherent in content and
discusses the same thing.

In order to make it clear how news is organized, we need a
more complicated model that takes these into consideration.
Incident threading bears many similarities to event thread-
ing, but we remove the topic independence assumption and
incorporate multiple types of links (dependencies) between
incidents.

2.3 Discourse analysis
One of the deficiencies of event threading is that it does

not have the actual relation type, but how is the dependency
decided between two events? If we randomly pick two events
from a news topic and ask an annotator to give the descrip-
tion of their relation, we may end up with tens of different
answers after trying 100 people. A limited vocabulary of
relation types and a detailed description (if a formal defini-
tion cannot be provided) of each are necessary to avoid the
possible confusion.

Figure 1: Hypothetical structure of a news schema

There has not been any previous attempt to do this in
the information retrieval community, but discourse analysis
in journalism deals with similar problems. Figure 1 (repro-
duced from a figure by Dijk [12]) shows the structure of a
news schema in discourse analysis. Some of the units are
valueless for us (like headline and lead), while others can be
good candidates to describe the organization of news events.

It is worth pointing out that discourse analysis methods
are usually applied by people instead of computer programs.
We use the derived structure to select reasonable link types.

2.4 Others
Besides TDT and event threading, there are other research

topics that also aim at automatic processing of news to help
retrieve useful information.

TREC has a novelty track that ran for three years - 2002
through 2004 [10] - to deal with the redundancy problem.
The conclusion from the track is that novelty detection is
still a hard problem, mainly because of the limited informa-
tion contained in each sentence.

News summarization is another way of reducing the read-
ing workload of users. Newsblaster [4] clusters news stories
into a hierarchical structure, where the units in the lowest
level are similar to news events, and larger clusters corre-
spond to topics. NewsInEssence [7] is another summariza-
tion system, and it supports user-formed clusters. News
summarization systems reduce information length, but it is
still the user’s responsibility to keep track how the topic
evolves over time.

News filtering systems [3] serve only information predicted
to be interesting to users, and the key problem is to create
and update the user profile. News filtering is based on the
assumption of a relatively stable profile of interest and does
not readily accommodate someone with ad-hoc or shifting
interests.

All of those approaches address the problem of informa-
tion overload, but none of them attacks the problem by cre-
ating a searchable and browsable network of incidents.

3. INCIDENT THREADING
From the description in Section 2, the previous research

topics have addressed some problems in news organization,
but each has its own deficiency and cannot provide an ideal
solution for it. We believe that event threading, in par-
ticular, is on the right track, but it is still unnecessarily
restrictive.

To have a clear view what is happening in a news stream,
we may need to go below the topic level and analyze the in-

ternal structure of them. The individual news events should
be created and organized into a fact network, where the
edges show their actual relations instead of a yes/no judg-
ment. Furthermore, events in different topics can also be re-
lated in some way (e.g., involving the same person, happen-
ing at the same place). By building such an event network,
users can browse news events, see how the interesting topics
appear, evolve and disappear in the news stream. They can
also switch from one topic to another by following the links
between them. This function is especially useful when new
topics appear in the news stream, showing how they relate
to other topics of interest.

The concept “event” is popular in information extraction
(IE) where it has a different definition1. To avoid possi-
ble confusion of the concept, we name these news events
incidents, and the graph that shows the relation among in-
cidents as an incident network. The process of creating the
incidents and generating networks is called incident thread-

ing. When we talk about event, incident, fact or happening,
we refer to some incident that actually happened sometime
in the real world and/or the union of all text passages that
describe this happening.

3.1 Incident
Before we start talking about what incident threading is,

or how we will implement a threading system, we need to
define the basic concepts first.

1. News story: It is the basic unit in news distribution.
Each story has a unique ID, a piece of text and source
time, which marks when it was published. Some sto-
ries, mainly those from newswire, contain optional fields
like title, headline or keywords.

2. Passage: Each story contains a text field, which is the
union of multiple characters. A passage is the combi-
nation of consecutive characters that represents a com-
plete description of some news event. One story can
contain one or more passages.

3. Main characters (WHO): The most important named
entities in a passage that show who or what is involved
in the event described by the passage.

4. Time stamps (WHEN): We consider two types of time
features. One is the publication time of the news,
which is the same for all passages from one story.
The other is the absolute or relative time point (or
range) mentioned in the passage when the correspond-
ing event happened. Sometimes the context is required
to obtain the right time stamp, for descriptions like “on
Wednesday”, “this week”, “when he was 18”.

5. Location (WHERE): The geographical position where
the event described in the passage happened. It is very

1An event in IE is an activity described by a sentence that
involves zero or more entities. For example, “Israeli troops
fought running gun battles with Palestinian civilians and se-
curity forces again today” describes an event, while “Israeli
troops”, “fought”, “battles”, “Palestinian civilians” and “se-
curity forces” are the text to extract. The event extraction
task is usually limited to certain types of events (like con-
flicts) and focuses on accurate identification of their argu-
ments. Different descriptions of the same semantic content
are often handled separately.

Figure 2: Sample incident network

common that the location information is unavailable in
the passage, and inference from the context is required
under that condition.

6. Action (WHAT): The key verb that describes the ac-
tual happening in the passage.

With the concepts above, we can define what an incident
is. Suppose that we have a news collection of v passages
C = {p1, p2, . . . , pv}. There are a total of t incidents I =
{I1, I2, . . . , It} in this collection that satisfy:

∀i Ii 6= ∅, Ii ∈ 2C

∀i 6= j Ii ∩ Ij = ∅ (1)

∀i∃k pi ∈ Ik

The first constraint means that each incident is a non-empty
set of passages (2C is the power set of C, where each element
of it is a possible subset of C), the second one specifies that
the incidents do not overlap, and the last one says that each
passage must belong to some incident.

Basically incidents are non-overlapping divisions of the
passage collection. An incident corresponds to a real-world

occurrence that involves certain main characters, happening

at specific time and location. It is the union of passages
that contain the same (or similar) features (e.g., who, when,
where, what) and describe the same thing.

3.2 Incident network
In the earlier work of event threading [5], the connections

between news events were established with binary links.
It captured the intrinsic relations to some extent, but the
yes/no relation was too simplified to show the news evolu-
tion accurately. Discourse analysis provides another frame-
work that reflects the structure of a news report, and it can
also be applied to modeling the relation of two incidents.
Here we will borrow some concepts from it to build the in-
cident network.

An incident network is one or more incidents that are

connected by certain types of dependencies. Incidents in the
network are arranged in a graph, and two incidents directly
connected by an edge (directed or undirected) have some
type of relation. Figure 2 shows an example of it. There are
mainly three classes of connections, and we present them in
decreasing order of anticipated difficulty.

The first class is called logical relations. Connections of
this type specify that one incident is the necessary premise
or inevitable result of another, as judged by a normal adult’s
experience. They are represented by directed edges in the in-
cident network, and each edge goes from the logical premise

to the result or consequence. Accurate identification of these
types requires the ability to understand natural languages
and in-depth analysis of human mind, which are very dif-
ficult to implement. We do not have any plan of semantic
analysis for accurate logical relations. However, experiments
in Section 6 suggest that simple rules with term features can
also achieve acceptable accuracy for some types.

The second class of relations, named as progression, re-
quires weaker links than the previous types. One incident
may not necessarily lead to the other, but they involve the
same main characters, happen at similar time and location.
From the traditional TDT point of view, they discuss the
same main topic and one follows the happening of the other.
There is only one relation type in this class called “follow-
up”. Links in this class are shown as directed edges, pointing
from the earlier incident to the later one.

The last class is called weak relations. It occurs when two
incidents do not have a strong logical or progressive link
between them, but contain some common factor(s), like in-
volving the same person, happening at the same place. De-
pendencies in this class are represented by undirected edges
in the incident network, because there is usually no prior-
ity or built-in order from the weak link of the overlapping
feature.

The first two classes are strong relations that usually exist
within news topics, and the last class mostly goes between
topics and establishes a global incident network. It facili-
tates a user to navigate through the news, because the weak
connections can lead the user from one interesting topic to
another. It also helps to find all information that involves
specific entities.

4. IMPLEMENTATION
In this section we will describe two ways to implement the

incident threading system. One runs a clustering algorithm
on a collection of passages to form incidents, then establishes
links among them. The other considers the possible rela-
tions between two passages while both incidents and links
are created together in a global optimization framework.

Clustering algorithms generate clusters in different granu-
larities, and they can be news topics, subtopics or events. In
TDT-2004, the traditional topic detection task was replaced
by a hierarchical structure, and a hierarchical agglomera-
tive clustering (HAC) algorithm with sampling achieved the
highest performance in the evaluation [11]. Here we also use
HAC to create incidents, but the links between them will
be built with two different methods, incident similarity or
pre-defined rules.

4.1 Baseline
The baseline method is very similar to the best “event

threading” algorithm (cos+TD+Simple-Thresholding in [5]).
However, time decay is not applied because it requires the
duration of each TDT topic, which is not available in our
experiments.

HAC is applied to a collection of n passages to gener-
ate the incidents. It starts with n singleton clusters where
each cluster contains only one passage. In each round, the
most similar cluster pair is merged, and the process goes on
until the highest similarity falls below the preset clustering
threshold. The similarity of two clusters is the average of
all pair-wise passage similarities across the clusters.

Each passage is represented by its tf-idf term vector. There

are various ways to calculate term frequency (tf) and inverse
document frequency (idf), and we use the formula in [2]. The
tf component is,�

tf i =
tfi

tfi + 0.5 + 1.5 ×
lenpas

avg(lenpas)

(2)

here tfi is the frequency of term i, lenpas is the passage
length, and avg(lenpas) is the average passage length in the
whole collection. The idf component is,

idfi =
log n+0.5

dfi

log(n + 1.0)
(3)

where dfi is the document frequency of term i, and n is the
number of passages in the whole collection. The similarity of
two vectors is calculated by the cosine of the angle between
them,

cos(pi, pj) =
〈pi, pj〉

‖pi‖ × ‖pj‖
(4)

After the HAC process stops, all incident pairs are com-
pared. If the similarity between two incidents is over the
link threshold, a link is created between them which points
from the earlier incident to the later one. There is no type
associated with the link.

4.2 Two-stage algorithm
The two-stage algorithm has similar procedure to the base-

line, but additional features are introduced in the similarity
calculation, and links are created by predefined rules instead
of simple similarity.

In addition to the full text, there are other useful features
in the content of a passage, including main characters, loca-
tions, time stamps, key verbs, etc. They are indexed as plain
text in different fields of the passage, and can be viewed as
various representations of the same description. With all
these features, cosine similarity (Equation 4) of correspond-
ing fields can be calculated between a passage pair, and the
similarity of this pair is the weighted sum of similarities
based on individual features,

Sim(pi, pj) =
l✁

k=1

wkSimk(pi, pj) (5)

where Simk(pi, pj) is the similarity of pi and pj based on
the k-th feature, and wk is the weight associated with it.
There are l features in total, and the weights of them add
up to 1. The weights are empirically adjusted to achieve
best performance, but the first feature (term vector of the
full text) usually gets the most importance.

After the incidents are created, each passage is given a
type label by a classifier (e.g. BoosTexter[9], which needs to
be trained for individual types), and the type of an incident
is determined by the labels of all passages in it. Next, some
threading rules are applied to establish links among these
incidents. In different scenarios, there can be various rules
that apply to the individual circumstances. Table 1 shows
the rules that will be used in our experiments. The fields in
each rule are rule index, link type, type of incident 1, type of
incident 2, additional requirements (sim: similarity higher
than a given threshold, time: similarity over the thresh-
old and incident 1 earlier than incident 2) and score upper
bound (used later in Equation 16), respectively. Threading
(link) rules will be described in more detail in Section 6.

Ind Link I1 I2 Req Cap

1 Prediction Prediction General Sim 0.05
Damage

2 Consequence General Damage Sim 0.05
3 Comment General Comment Sim 0.05

Damage
4 Preparation Preparation General Sim 0.05
5 Follow-up General General Time 0.05

Table 1: Threading rules in Science/Discovery

4.3 Global optimization
If two passages are randomly selected from a collection,

there are two forces that interfere with each other and try
to place them in their own designated location. One is the
similarity between the passages, which tends to pull them
together to merge them into the same incident. The other is
their satisfaction of some rule that pushes them apart and
places them into two connected incidents. These options are
mutually exclusive, and each has some probability (or score)
associated with it. For a passage pair, their relation can be
in one of three possible states. They can be either in the
same incident, connected by some relation, or not related at
all. These relations can be encoded as: -1 (not related), 0
(in the same incident) or a positive integer (connected, with
the value showing the link type).

When we expand the pair-wise competition to the whole
collection, it becomes a global optimization problem. With
a collection of n passages, an n×n relation matrix R can be
established. Note that links are directional, so we encode Rij

and Rji differently if they are positive: when there is a link
of type r (see Table 1, r = 1 means a prediction link) going
from incident i to j, Rij = 2r − 1, and Rji = 2r. Then we
define a global score function on this relation matrix, where
a larger score means better news organization.

S =

i6=j✁
1≤i,j≤n

score(i, j, Rij) (6)

In this equation,

score(i, j, Rij) =

✂✄ ☎ c if Rij = −1
Sim(pi, pj) if Rij = 0
Rule(pi, pj , Rij) if Rij > 0

(7)

Here c is a small constant assigned to unrelated passage
pairs, Sim(pi, pj) is the similarity of the passages calculated
by Equation 5. Rule(pi, pj , Rij) is a function that tells how
well the passage pair fits the rule of relation Rij , and its
format differs by rule. Usually it is related to the incident
types, passage similarity, and sometimes the time stamps of
the passages.

The relation matrix R has n2 parameters, but they are not
completely independent. The relation between two passages
should be symmetrical. When two passages are in the same
incident, they must have the same relation to all other pas-
sages. The restrictions for the global optimization problem
are,

∀i, j, k Rij = 0 ⇒ Rik = Rjk

∀i, j Rij ≤ 0 ⇒ Rji = Rij (8)

∀i, j Rij > 0 ∧ Rij ≡ 1 (mod 2) ⇒ Rji = Rij + 1

With the restrictions in Equation 8, there is no explicit
solution for the optimization problem of the global score
function in Equation 6. Furthermore, it is too expensive
to go over the whole solution space for a collection with
reasonable size. Here we will use simulated annealing (SA)
to search for the global maximum. The process of the SA
algorithm is:

1. Initialize relation matrix R as all -1, except for the
diagonal elements that are 0. Calculate initial score
S. Set initial temperature T .

2. Record current best solution RB = R, SB = S.

3. while (T > Tmin)

(a) Save current state R0 = R.

(b) Randomly select a passage i.

(c) Select another passage j according to the distri-
bution of Ri∗.

(d) Change the value of Rij , update matrix R to sat-
isfy the restrictions.

i. 0 → −1: break a cluster into two

ii. 0 → +: break a cluster into two, and select
the relation that maximizes Rule(pi, pj , Rij)

iii. −1 → 0: merge two clusters

iv. −1 → +: build a link that maximizes
Rule(pi, pj , Rij)

v. + → −1: disconnect a link

vi. + → 0: merge two clusters

(e) Calculate new score SN .

(f) If (SN > SB), RB = R, SB = SN .

(g) If random() < e
SN−S

T , keep the change of R.
Otherwise, R = R0.

(h) T = T × constant.

4. Return best solution RB.

5. EVALUATION
In order to evaluate how well the algorithms in Section

4 work, we need to compare their output to ground truth.
Since there is no existing work that processes news in the
same way, we do not have any collection that is annotated
at the incident level. We hired some annotators to mark up
part of the TDT collections. They were asked to identify
passages that describe the same real-world happening and
build links between related incidents with a limited type
vocabulary. Section 6 provides more details.

There are different ways to represent the annotated data.
We can generate a list of clusters (incidents) each including
one or more passages, and a list of links among these clusters
which indicates their relations. However, system-generated
clusters are usually different from the annotated data, and it
is a nontrivial task to establish the correct mapping between
them. It also brings great difficulty to the evaluation of
links. Another choice is to create the relation matrix of all
passages, where elements in the matrix are encoded in the
same way as in the global optimization framework.

With a relation matrix R from an algorithm and another
one RT from the annotation, the clustering accuracy of in-
cidents can be defined as,

Preccluster = P (RTij = 0|Rij = 0)

Reccluster = P (Rij = 0|RTij = 0) (9)

Fcluster = 2×Preccluster×Reccluster

Preccluster+Reccluster

The probabilities are averaged over all passage pairs. Simi-
larly, we can randomly select two different passages i and j,
and the accuracy for binary links (ignoring the type) is,

Precbin = P (RTij > 0 ∧ Rij ≡ RTij (mod 2)|Rij > 0)

Recbin = P (Rij > 0 ∧ Rij ≡ RTij (mod 2)|RTij > 0)

Fbin = 2×Precbin×Recbin

Precbin+Recbin
(10)

When the link types are taken into consideration,

Preclink = P (Rij = RTij |Rij > 0)

Reclink = P (Rij = RTij |RTij > 0) (11)

Flink = 2×Preclink×Reclink

Preclink+Reclink

From the experiments, there is usually a tradeoff between
the accuracy of clusters and links. When the performance of
one gets higher, the other often decreases with it. A balance
is required between these two for an overall evaluation mea-
sure. A perfect output should get a relation matrix identical
to RT , and a mismatch between the corresponding elements
of R and RT means an error. There are three types of val-
ues in the relation matrix, -1 (not related), 0 (cluster) and
positive (link), so it is natural to compare the distribution
of them in the two matrices (R and RT).

We start by defining a function that describes how well
two relations match each other. If they have different signs,
it is obviously a mistake. Otherwise, it should be correct
(for 0 and -1) or possibly correct (for positive integers). An
identical link requires both its existence and the right type,
so we assign it a higher score if both match, but a link in the
wrong type also gets partial score. Note that most elements
in the relation matrix are -1’s, so the sum over the whole
matrix is easily overwhelmed by the type of non-related pas-
sage pairs. To get approximately equal contributions from
all three types (25% from clusters, 25% from unrelated pairs
and 50% from links), the number of elements in each class is
counted in the truth matrix RT , and the matrix matching
function is adjusted to model the distribution fairly.

match(x, y) =

✂���✄ ���☎
0 if sgn(x) 6= sgn(y)
2N0/N+ if x = y > 0
N0/N+ if x > 0, y > 0, x 6= y
1 if x = y = 0
N0/N− if x = y = −1

(12)

here sgn(·) is the sign function, which returns 1 if positive,
0 if zero and -1 if negative. N+ is the number of positive
elements in RT , N0 is the number of 0’s, and N− is the
number of -1’s.

With the function in Equation 12, we can get an overall
score that models how well R matches RT ,

M(R, RT) =

✁
i6=j

match(Rij , RTij)✁
i6=j

match(RTij, RTij)
(13)

The result ranges from 0 to 1; a perfect match returns 1.
If a system outputs one big cluster that includes every-
thing, R would be all 0’s. match(Rij , RTij) returns 1 for

the N0 zero elements in RT , and 0 for others. On the other
hand, match(RTij, RTij) gets N0 1’s, N+ 2N0/N+’s and N−

N0/N−’s. The matrix matching score for such a system is
0.25.

The matrix comparison evaluation is disadvantageous to-
wards the baseline system, since it does not generate any
relation type. This method also favors high accuracy in the
link type, while a match in link type is given additional
bonus over finding the correct link itself. We believe that it
is the right assignment because the contextual information
reflected in the link types is more important for getting the
incident networks correct. Some relations are more impor-
tant than others, but we are ignoring that factor to avoid
arbitrary weight assignment.

6. EXPERIMENTS
The collection used in the experiments is part of TDT-32.

TDT topics come from different scenarios (rules of inter-
pretation or ROIs used by the LDC annotators to classify
topics). Each scenario has its own characteristic event or-
ganization. For example, legal cases usually have crimes,
investigations, arrests, trials, etc, and the relations among
them are generally fixed. Schank and Abelson [8] found
similar phenomena in the understanding of human knowl-
edge, and they created scripts for scenarios in real life (e.g.,
restaurant script3). Here we borrow the term “script” and
generate one script for each ROI, which includes a list of
rules for possible link types under that scenario.

Six topics were selected from the TDT-3 corpus that all
deal with reports in science and discovery. We found it dif-
ficult for annotators to agree on passage boundaries, so for
this first study we elected to treat each story as a passage
(a simplification we are currently working to remove). An-
notators were first asked to group stories into incidents so
that all stories in an incident talk about the same event (as
described in Section 3). They were then asked to assign each
of those incidents to one of the following classes: comment,

prediction, damage, background, preparation, or general.

• Comment: Verbal or written evaluation of some real-
world happening.

• Prediction: An assumption that something will or
will not happen in the future.

• Damage: Loss in any type caused by a real-world
happening.

• Background: Additional information that helps peo-
ple understand the context. Usually it is some general
knowledge that is not associated with any time or lo-
cation.

• Preparation: The process of making something ready
for an event in the future.

• General: An event that does not fit in any of the
categories described above.

2Available from the linguistic data consortium (LDC), cat-
alog number LDC2001T58.
3The main steps in the restaurant script include: customer
enters restaurant, customer finds seat, customer sits down,
waiter/waitress gets menu, etc.

ROI-7: Science/discovery
Topics 6
Total size 280
Topic sizes 52, 43, 158, 77, 2, 6
Language English
Source Newswire, broadcast
Incidents 30
N− 32875
N0 2583
N+ 3602

Table 2: Experiment corpus

As a final step, annotators linked appropriate pairs of inci-
dents and selected a label for the link (thread) from: pre-

diction, consequence, comment, preparation, or follow-up.

• Prediction: The first incident predicts the happening
of the second one, and the second incident indicates the
actual outcome.

• Consequence: The first incident directly causes the
second to happen, and the latter describes some gain
or loss.

• Comment: The second incident provides verbal or
written commentary on the first one.

• Preparation: The first incident describes the process
of making something ready for the second.

• Follow-up: The second incident happens after the
first and they are closely related, but their relation
does not satisfy any rule described above.

Some of the incident and link types are adapted from dis-
course analysis (see Figure 1), and the rules in this ROI are
listed in Table 1. More information about the experiment
corpus is in Table 2.

All three algorithms in Section 4 are implemented in our
experiments. The stories from the six different topics form
the collection (with duplicates removed). In the baseline and
the two-stage algorithm, we opt to follow the pattern used by
the annotators: first incidents are created with clustering,
then links are established based on incident similarity or
rules. Simulated annealing takes the stories as the basic
units in the global optimization framework.

Heuristic information is used in many of our algorithms,
functions and parameters, and much of the knowledge comes
from our observation of the whole collection. Therefore, we
are unable to leave out a strict “test” set without utilizing
any information from it. All evaluation results reported are
performance numbers for the whole experiment collection,
and they only suggest how well we can do in this specific
corpus. On the other hand, accuracy is not very sensitive
with slight changes of most parameters, so these are good
indications of actual performance.

In the two-stage algorithm, similarities based on differ-
ent features are combined with Equation 5, and the weight
assignment is,

(wterm, wwho, wwhere, wwhen, wwhat) = (0.8, 0.1, 0.1, 0, 0)
(14)

Algorithm Baseline Two-stage SA
Preccluster 0.330 0.390 0.248
Reccluster 0.540 0.547 0.455
Fcluster 0.410 0.455 0.321
Precbin 0.113 0.069 0.131
Recbin 0.282 0.360 0.402
Fbin 0.161 0.116* 0.198
Preclink 0 0.049 0.118
Reclink 0 0.254 0.361
Flink 0* 0.082* 0.178
M(R, RT) 0.402* 0.482 0.509

Table 3: Evaluation results of three different sys-
tems: baseline, two-stage and simulated annealing
(micro-average)

The features are extracted by an automatic content extrac-
tion (ACE) system from New York University4. The last
two features are not used since the extracted text is rela-
tively short in comparison to others, and the corresponding
similarity matrices are very sparse. After the incidents are
created, majority voting is used to decide the type of the
incident. A classifier is trained by BoosTexter to assign the
label to each story, and a 3-fold cross-validation achieves
17% error rate.

The simulated annealing algorithm usually gets different
results from various runs, so we start it 20 times and take
one with the best result. The temperature starts at 100 and
decreases 1% in each iteration. The process stops when the
temperature is lower than 0.0001 or when the current state
has not been changed in 50 steps (local maximum). The
similarity of different features is combined in a different way
from in the two-stage algorithm,

(wterm, wwho, wwhere, wwhen, wwhat) = (0.9, 0.1, 0, 0, 0)
(15)

For most rules,

Rule(pi, pj , Rij) = sat(pi
.
= RI1

ij , pj
.
= RI2

ij)

×min(Sim(pi, pj), R
cap
ij) (16)

where sat(·) is a function that assigns a weight according to
the number of true predicates,

.
= means that the passage is

in the same type as the incident in the rule, and Rcap
ij (the

last field in Table 1) is an upper bound of the similarity. Rule
5 in Table 1 also requires the time stamps of the incidents
to be in the right order. The type labels of passages are
assigned by the BoosTexter classifier.

Because of the randomness of SA, it usually takes more
time for each run. While the baseline and two-stage algo-
rithm can finish in under 10 seconds, SA usually takes about
2-10 minutes per run on the same server (about 2GHz sin-
gle CPU, 2GB memory), depending on how fast it converges.
Its speed will become the bottleneck for a large collection.

7. RESULTS
Table 3 shows the performance of the three different al-

gorithms, with averages on a story-pair basis. Significance
testing was done on a per-topic basis, and SA is better than

4Proteus, http://nlp.cs.nyu.edu/index.shtml

Algorithm Baseline Two-stage SA
Preccluster 0.548 0.535 0.588
Reccluster 0.795 0.924 0.632
Fcluster 0.611 0.654 0.588
Precbin 0.164 0.126 0.372
Recbin 0.109 0.048 0.447
Fbin 0.121 0.067* 0.396
Preclink 0 0.066 0.156
Reclink 0 0.030 0.217
Flink 0* 0.040* 0.177
M(R, RT) 0.418* 0.442 0.519

Table 4: Evaluation results of three different sys-
tems: baseline, two-stage and simulated annealing
(macro-average)

the other two in link quality and overall score. With a one-
tail t-test at 95% confidence level, SA achieves significant
improvement over both in Flink, the two-stage algorithm
in Fbin and the baseline in M(R,RT) (numbers with * in
the table). Table 4 lists the performance of the same sys-
tems, but evaluated on a topic-based averages. Although the
numbers are different, the comparison between correspond-
ing algorithms is very similar. Due to the limited size of
our experiment collection, we are hesitant to claim that the
results are more than suggestive, so the actual significance
test P-values are not listed here.

From the comparison in Table 3 and 4, we can see that
the traditional clustering algorithms achieve better perfor-
mance for establishing incidents, while simulated annealing
captures better links. When the similarity between two pas-
sages (or stories) is high, it is natural to assume that they
are talking about the same thing and place them into the
same incident. However, clustering algorithms do not con-
sider the alternative choice - maybe they are similar simply
because they mention the same topic. The main disadvan-
tage of the two-stage algorithm is, once a cluster is formed,
it becomes impossible to break it and model the relations
among its different parts. On the other hand, SA considers
both options at the same time, and tries to optimize the
global incident network in a competitive process. We be-
lieve it is a better strategy for this application. However,
the F-values for links are still low, especially for the clus-
tering algorithms. We know that finding contextual links
without semantic understanding of languages is a very diffi-
cult task, and the numbers look promising given the limited
information used in the experiment.

Another observation is that the use of additional features
improves clustering performance. Two-stage and the base-
line use the same clustering algorithm, but the former gets
higher accuracy (not significant) with named entities (who)
and location information (where). Time stamps and key
verbs did not show any help in our experiments, but they
may still be useful if applied in the right way.

It is disappointing to see that two-stage gets lower accu-
racy in binary links, although it has the advantage of gener-
ating the actual link type. The high error rate of BoosTexter
seems to be the main reason, as the training data are quite
skewed (there are too many general passages and only a few
for comment, background, etc.). We expect a lower error
rate when the collection gets larger. Furthermore, a classi-

fier that outputs probabilities instead of deterministic labels
will alleviate the impact of erroneously classified elements.

8. CONCLUSIONS
In this paper, we have presented a news organization in-

frastructure that is different from the traditional topic-based
models. We believe that a flat list of news topics cannot
provide users with enough information how a topic emerges,
evolves and ends in the real world. However, with accurate
identification of the content-coherent incidents and relations
among them, the news organization is clearly displayed.

In addition to the framework, we propose a few algorithms
to form the incident network. The two-stage method ex-
tends the clustering algorithm with scenario-specific rules,
but the performance of finding links is greatly limited by the
clustering accuracy. Based on the tension between possible
relations of a passage pair, we also design a global opti-
mization problem that takes all possible configurations into
consideration. Experiments show that simulated annealing
in the global optimization framework consistently provides
more accurate links than the two-stage algorithm, at the
cost of lower accuracy in clusters and higher computational
complexity. For the application of incident threading, con-
textual information is more important, so global optimiza-
tion is preferred over the traditional clustering algorithm.

The score function in Equation 7 reflects the competition
between different relation types, but failure analysis shows
that there are still many cases where the score cannot cor-
rectly match the truth relations. More analysis is necessary
for better modeling of semantic information, where addi-
tional features and careful tuning of parameters are required.

Due to the difficulty in annotation, the experiments were
based on whole news stories. From our observation, parts
of a news story are often about different things, so passage-
level news analysis will be more ideal for news organization.
We are looking forward to building a passage-based incident
threading system, and hopefully it will yield more accurate
incidents and links.

The data collection in the experiments is small and limited
to a single scenario. While we expect similar performance
under other conditions, we need more data from multiple
ROIs and create the corresponding rules for each of them.

The application of additional features extracted from the
text proves useful in our experiments. However, the simple
weighted sum may not be the ideal way to use them, and
there are still some features that do not work well with this
method. Further research is necessary to analyze the merit
of those features.

Acknowledgments

This work was supported in part by the Center for Intelli-
gent Information Retrieval and in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under contract
number HR0011-06-C-0023. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect those of
the sponsor.

9. REFERENCES
[1] J. Allan, editor. Topic Detection and Tracking:

event-based information organization. Kluwer
Academic Publishers, 2002.

[2] M. Connell, A. Feng, G. Kumaran, H. Raghavan,
C. Shah, and J. Allan. UMass at TDT 2004. In
Proceedings of TDT 2004, 2004.
www.nist.gov/speech/tests/tdt/tdt2004/papers/
UMass-TDT2004-paper.pdf.

[3] F. Kilander. A brief comparison of news filtering
software. Unpublished paper, 1995.

[4] K. R. McKeown, R. Barzilay, D. Evans,
V. Hatzivassiloglou, J. L. Klavans, C. Sable,
B. Schiffman, and S. Sigelman. Tracking and
summarizing news on a daily basis with Columbia’s
Newsblaster. In Proceedings of the Human Language

Technology Conference, 2002.

[5] R. Nallapati, A. Feng, F. Peng, and J. Allan. Event
threading within news topics. In Proceedings of ACM

Thirteenth Conference on Information and Knowledge

Management, pages 446–453, 2004.

[6] D. E. O’Leary. The Internet, intranets, and the AI
renaissance. Computer, 30(1):71–78, 1997.

[7] D. Radev, J. Otterbacher, A. Winkel, and
S. Blair-Goldensohn. NewsInEssence: Summarizing
online news topics. Communications of the ACM,
48(10):95–98, 2005.

[8] R. C. Schank and R. P. Abelson. Scripts, Plans,

Goals, and Understanding: an Inquiry into Human

Knowledge Structure. Lawrence Erlbaum Associates,
1977.

[9] R. E. Schapire and Y. Singer. BoosTexter: A
boosting-based system for text categorization.
Machine Learning, 39(2/3):135–168, 2000.

[10] I. Soboroff. Overview of the TREC 2004 novelty track.
In The Thirteenth Text Retrieval Conference. NIST,
November 2004.
http://trec.nist.gov/pubs/trec13/papers/NOVELTY.
OVERVIEW.pdf.

[11] D. Trieschnigg and W. Kraaij. Scalable hierarchical
topic detection: exploring a sample based approach.
Proceedings of the 28th annual international ACM

SIGIR conference on Research and development in

information retrieval, pages 655 – 656, 2005.

[12] T. A. van Dijk. News as Discourse. Lawrence Erlbaum
Associates, 1988.

[13] Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. T.
Archibald, and X. Liu. Learning approaches for
detection and tracking news events. IEEE Intelligent

Systems Special Issue on Applications of Intelligent

Information Retrieval, 14(4):32–43, 1999.

