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Abstract

Accurate entity resolution is sometimes impossi-
ble simply due to insufficient information. For ex-
ample, in research paper author name resolution,
even clever use of venue, title and co-authorship
relations are often not enough to make a confi-
dent coreference decision. This paper presents sev-
eral methods for increasing accuracy by gather-
ing and integrating additional evidence from the
web. We formulate the coreference problem as one
of graph partitioning with discriminatively-trained
edge weights, and then incorporate web informa-
tion either as additional features or as additional
nodes in the graph. Since the web is too large to
incorporate all its data, we need an efficient pro-
cedure for selecting a subset of web queries and
data. We formally describe the problem of re-
source bounded information gathering in each of
these contexts, and show significant accuracy im-
provement with low cost.

1 Introduction

Machine learning and web mining researchers are increas-
ingly interested in using search engines to gather information
for augmenting their models, e.g. [Etzioni et al., 2004], [Mc-
Callum and Li, 2003], [Dong et al., 2004]. However, it is
impossible to query for the entire web, and this gives rise to
the problem of efficiently selecting which queries will pro-
vide the most benefit. We refer to this problem as resource-
bounded information gathering from the web.

We examine this problem in the domain of entity resolu-
tion. Given a large set of entity names (each in their own con-
text), the task is to determine which names are referring to
the same underlying entity. Often these coreference merging
decisions are best made, not merely by examining separate
pairs of names, but relationally, by accounting for transitive
dependencies among all merging decisions. Following previ-
ous work, we thus formulate entity resolution as graph par-
titioning with edge weights based on many features with pa-
rameters learned by maximum entropy [McCallum and Well-
ner, 2004], and in this paper explore a relational, graph-based
approach to resource-bounded information gathering.

The specific entity resolution domain we address is re-
search paper author coreference. The vertices in our coref-
erence graphs are citations, each containing an author name
with the same last name and first initial.1 Coreference in this
domain is extremely difficult. Although there is a rich and
complex set of features that are often helpful, in many sit-
uations they are not sufficient to make a confident decision.
Consider, for example, the following two citations both con-
taining a “D. Miller.”

• Mark Orey and David Miller, Diagnostic Computer Sys-
tems for Arithmetic, Computers in the School, volume
3, #4, 1987

• Miller, D., Atkinson, D., Wilcox, B., Mishkin, A., Au-
tonomous Navigation and Control of a Mars Rover, Pro-
ceedings of the 11th IFAC Symposium on Automatic
Control in Aerospace, pp. 127-130, Tsukuba, Japan,
July 1989.

The publication years are close; and the titles both relate
to computer science, but there is not a specific topical over-
lap; “Miller” is a fairly common last name; and there are no
co-author names in common. Furthermore, in the rest of the
larger citation graph, there is not a length-two path of co-
author name matches indicating that some of the co-authors
here may have themselves co-authored a third paper. So there
is really insufficient evidence to indicate a match despite the
fact that these citations do refer to the same “Miller”.

In this paper, we present two different mechanisms for aug-
menting the coreference graph partitioning problem by incor-
porating additional helpful information from the web. In both
cases, a web search engine query is formed by conjoining the
titles from two citations. The first mechanism changes the
edge weight between the citation pair by adding a feature in-
dicating whether or not any web pages were returned by the
query. The second mechanism uses one of the returned pages
(if any) to create an additional vertex in the graph, for which
edge weights are then calculated to all the other vertices. The
additional transitive relations provided by the new vertex can
provide significant helpful information. For example, if the
new vertex is a home page listing all of an author’s publica-
tions, it will pull together all the other vertices that should be
coreferent.

1Future work will address the problem of correctly merging
names with typographic errors in the first initial and last name.



Gathering such external information for all vertex pairs in
the graph is prohibitively expensive, however. Thus, meth-
ods that acknowledge time, space and network resource lim-
itations, and effectively select just a subset of the possible
queries are of interest. Learning and inference under resource
limitations has been studied in various forms. For example,
the value of information, as studied in decision theory, mea-
sures the expected benefit of queries [Zilberstein and Lesser,
1996]. Budgeted learning, rather than selecting training in-
stances, selects new features [Kapoor and Greiner, 2005].
Resource-bounded reasoning studies the trade offs between
computational commodities and value of the computed re-
sults [Zilberstein, 1996]. Active learning aims to request hu-
man labeling of a small set of unlabeled training examples
[Thompson et al., 1999], for example, aiming to reduce label
entropy on a sample [Roy and McCallum, 2001].

In this paper we employ a similar strategy, and com-
pare it with two baseline approaches, showing on 7 dif-
ferent data sets that leveraging web queries can reduce F1
error by 13.03%, and furthermore that, by using our pro-
posed resource-bounded approach, 53.5% of this gain can be
achieved with about 1% of the web queries. We also suggest
that our problem setting will be of interest to theoretical com-
puter science, since it is a rich extension to correlational clus-
tering [Bansal et al., 2002; Demaine and Immorlica, 2003].

2 Conditional Entity Resolution Models

We are interested in obtaining an optimal set of coreference
assignments for all mentions contained in our database. In our
approach, we first learn maximum entropy or logistic regres-
sion models for pairwise binary coreference classifications.
We then combine the information from these pairwise mod-
els using graph-partitioning-based methods so as to achieve a
good global and consistent coreference decision. We use the
term, “mention” to indicate the appearance of an author name
in a citation and use xi to denote mention i = 1, . . . , n. Let
yij represent a binary random variable that is true when men-
tions xi and xj refer to the same underlying author “entity.”
For each pair of mentions we define a set of l feature func-
tions fl(xi, xj , yi,j) acting upon a pair of mentions. From
these feature functions we can construct a local model given
by

P (yi,j |xi, xj) =
1

Zx

exp(λlfl(xi, xj , yij)), (1)

where Zx =
∑

y exp(λlfl(xi, xj , yij)). In McCallum and

Wellner [2003] a conditional random field with a form similar
to (1) is constructed which effectively couples a collection of
pairwise coreference models using equality transitivity func-
tions f∗(yij , yjk, yik) to ensure globally consistent configura-
tions. These functions ensure that the coupled model assigns
zero probability to inconsistent configurations by evaluating
to −∞ for inconsistent configurations and 0 for consistent
configurations. The complete model for the conditional dis-
tribution of all binary match variables given all mentions x

can then be expressed as

P (y|x) =
1

Z(x)
exp

(

∑

i,j,l

λlfl(xi, xj , yij) +

∑

i,j,k

λ∗f∗(yij , yjk, yik)

)

, (2)

where y = {yij : ∀i,j} and

Z(x) =
∑

y

exp
(

∑

i,j,l

λlfl(xi, xj , yij)+
∑

i,j,k

λ∗f∗(yij , yjk, yik)
)

(3)
As in Wellner and McCallum [2002], the parameters λ can
be estimated in local fashion by maximizing the product of
Equation 1 over all edges in a labeled graph exibiting the true
partitioning. When fl(xi, xj , 1) = −fl(xi, xj , 0) it is possi-
ble to construct a new undirected and fully connected graph
consisting of nodes for mentions, edge weights ∈ [−∞,∞]
defined by

∑

l λl(xi, xj , yij) and with sign defined by the
value of yij . In our work here we define a graph in a sim-
ilar fashion as follows.

Let G0 =< V0, E0 > be a weighted, undirected and fully
connected graph, where V0 = {v1, v2, ..., vn} is the set of
vertices representing mentions and E0 is the set of edges
where ei =< vj , vk > is an edge whose weight wij is given
by P (yij = 1|xi, xj) − P (yij = 0|xi, xj) or the differ-
ence in the probabilities that that the citations vj and vk are
by the same author. Note that the edge weights defined in
this manner are in [−1,+1]. The edge weights in E0 are
noisy and may contain inconsistencies. For example, given
the nodes v1, v2 and v3, we might have a positive weight
on < v1, v2 > as well as on < v2, v3 >, but a high neg-
ative weight on < v1, v3 >. Our objective is to partition
the vertices in graph G0 into an unknown number of M non-
overlapping subsets, such that each subset represents the set
of citations corresponding to the same author. We define our
objective function as F =

∑

ij wijf(i, j) where f(i, j) = 1
when xi and xj are in the same partition and −1 otherwise.

[Bansal et al., 2002] provide two polynomial-time approx-
imation schemes (PTAS) for partitioning graphs with mixed
positive and negative edge weights. We obtain good empir-
ical results with the following stochastic graph partitioning
technique, termed here N-run stochastic sampling.

Algorithm 1. – N-Run Stochastic Sampling:
We define a distribution over all edges in G0, P (wi) ∝

e− wi

T
where T acts as temperature. At each iteration, we draw

an edge from this distribution and merge the two vertices.
Edge weights to the new vertex formulated by the merge are
set to the average of its constituents and the distribution over
the edges is recalculated. Merging stops when no positive
edges remain in the graph. This procedure is then repeated
r = 1...N times and the partitioning with the maximum F is
then selected.

3 Coreference Leveraging the Web

Now, consider that we have the ability to augment the graph
with additional information using two alternative methods:



(A)..., H. Wang, ... Background Initialization..., ICCV,...2005.

(B)..., H. Wang, ... Tracking and Segmenting People..., ICIP, 2005.

(C)..., H. Wang, ... Gaussian Background Modeling..., ICASSP, 2005.

(D)..., H. Wang, ... Facial Expression Decomposition..., ICCV, 2003.

(E)..., H. Wang, ... Tensor Approximation..., SIGGRAPH. 2005.

(F)..., H. Wang, ... High Speed Machining..., ASME, (JMSE), 2005.

Figure 1: Six Example References

(1) changing the weight on an existing edge, (2) adding a
new vertex and edges connecting it to existing vertices. This
new information can be obtained by querying some external
source, such as a database or the web.

The first method may be accomplished in author corefer-
ence, for example, by querying a web search engine as fol-
lows. Clean and concatenate the titles of the citations, issue
this query and examine attributes of the returned hits. In this
case, a hit indicates the presence of a document on the web
that mentions both these titles and hence, some evidence that
they are by the same author. Let fg be this new boolean fea-
ture. This feature is then added to an augmented classifier
that is then used to determine edge weights.

In the second method, a new vertex can be obtained by
querying the web in a similar fashion, but creating a new ver-
tex by using one of the returned web pages as a new mention.
Various features f(·) will measure compatibility between the
other “citation mentions” and the new “web mention,” and
with similarly estimated parameters λ, edge weights to the
rest of the graph can be set.

In this case, we expand the graph G0, by adding a new set
of vertices, V1 and the corresponding new set of edges, E1 to
create a new, fully connected graph, G′. Although we are not
interested in partitioning V1, we hypothesize that partitioning
G′ would improve the optimization of F on G0. This can
be explained as follows. Let v1, v2ǫV0, v3ǫV 1, and the edge
< v1, v2 > has an incorrect, but high negative edge weight.
However, the edges < v1, v3 > and < v2, v3 > have high
positive edge weights. Then, by transitivity, partitioning the
graph G′ will force v1 and v2 to be in the same subgraph and
improve the optimization of F on G0.

As an example, consider the references shown in Fig.1. Let
us assume that based on the evidence present in the citations,
we are fairly certain that the citations A, B and C are by H.
Wang 1 and that the citations E and F are by H. Wang 2. Let
us say we now need to determine the authorship of citation
D. We now add a set of additional mentions from the web,
{1, 2, .. 10}. The adjacency matrix of this expanded graph
is shown in Fig. 2. The darkness of the circle represents the
level of affinity between two mentions. Let us assume that
the web mention 1 (e.g. the web page of H. Wang 1) is found
to have strong affinity to the mentions D, E and F. Therefore,
by transitivity, we can conclude that mention D belongs to the
group 2. Similarly, values in the lower right region could also
help disambiguate the mentions through double transitivity.

4 Resource Bounded Web Usage

Under the constraint on resources, however, we must select
only a subset of edges in E0, for which we can obtain the cor-

Figure 2: Extending a pairwise similarity matrix with additional
web mentions. A..F are citations and 1..10 are web mentions.

responding piece of information ii. Let Es ⊂ E0, be this set
and Is be the subset of information obtained that corresponds
to each of the elements in Es. The size of Es is determined
by the amount of resources available. Our objective is to find
the subset Es that will optimize the function F on graph G0

after obtaining Is and applying graph partitioning.
Similarly, in the case of expanded graph G′, given the

constraint on resources, we must select V ′

s ⊂ V1, to add to
the graph. Note that in the context of information gathering
from the web, |V1| is in the billions. Even in the case when
|V1| is much smaller, we may choose to calculate the edge
weights for only a subset of E1. Let E′

s ⊂ E1 be this set.
The sizes of V ′

s and E′

s are determined by the amount of
resources available. Our objective is to find the subsets V ′

s

and E′

s that will optimize the function F on graph G0 by
applying graph partitioning on the expanded graph. We now
present the procedure for the selection of Es.

Algorithm 2. – Centroid Based Resource Bounded In-
formation Gathering and Graph Partitioning For each clus-
ter of vertices that have been assigned the same label under a given
partitioning, we define the centroid as the vertex vc with the largest
sum of weights to other members in its cluster. Denote the subset
of vertex centroids obtained from clusters as Vc. (We can also op-
tionally pick multiple centroids from each cluster.) We begin with
graph G0 obtained from the base features of the classifier. We use
the following criteria for finding the best order of queries: expected
entropy, gravitational force, uncertainty-based and random. The un-
certainty criteria uses the entropy of the binary classifier for each
edge. For each of these criteria, we follow this procedure.

1. Partition graph G0 using N-run stochastic sampling.

2. From the highest scoring partitioned graph G∗

i , find the subset
of vertex centroids Vc

3. Construct Es as the set of all edges connecting centroids in Vc.

4. Order edges Es into index list I based on the criteria.

5. Using index list I , for each edge ei ⊂ Es

(a) Execute the web query and evaluate additional features
from result

(b) Evaluate classifier for edge ei with the additional features
and form graph Gi from graph Gi−1

(c) Using graph Gi, perform N-run stochastic sampling and
compute performance measures

Criterion 1 - Expected Entropy

1. Force merge of the vertex pair of ei to get a graph Gp



2. Peform N-run stochastic sampling on Gp. This gives the prob-
abilities pi for each of the edges in Gp

3. Calculate the entropy, Hp of the graph Gp as follows:
Hp = −

P

i
Pi log Pi

4. Force split of the vertex pair of ei to get a graph Gn

5. Repeat steps 2-3 to calculate entropy, Hn for graph Gn

6. The expected entropy, Hi for the edge ei is calculated as:

Hi =
(Hp)+(Hn)

2
(Assuming equal probabilities for both out-

comes)

Criterion 2 - Gravitational Force
This selection criteria is inspired by the inverse squared law of

the gravitational force between two bodies. It is defined as F =

ΓM1∗M2

d2 , where Γ is a constant, M1 and M2 are analogous to

masses of two bodies and d is the distance between them. This

criteria ranks highly partitions that are near each other and large,

and thus high-impact candidates for merging. Let vj and vk be the

two vertices connected by ei. Let Cj and Ck be their corresponding

clusters. We calculate the value of F as described above, where M1

and M2 are the number of vertices in Cj and Ck respectively. We

define d = 1
xwi

, where wi is the weight on the edge ei and x is a

parameter that we tune for our method.

5 Theoretical Problem

There has been recent interest in the general problem of cor-
relational clustering [Bansal et al., 2002; Demaine and Im-
morlica, 2003]. We now present a new class of problems that
are concerned with resource bounded information gathering
under graph partitioning.

Consider the matrix as presented in Fig.2. Suppose we care
about the partitioning in the upper left part of the matrix, and
all the values in the upper right part of the matrix are hidden.
As we have seen before, obtaining these values would impact
the graph partitioning in the section that we care about.

Now, suppose, we have access to an adversarial oracle,
who unveils these values in the requested order. In the worst
case, no useful information is obtained till the last value is un-
veiled. In the best case, however, requesting a small fraction
of the values, leads to perfect partitioning in the section that
we care about. The question that we now ask is, what is the
best possible order to request these values. Making reason-
able assumptions about the nature of the oracle and imposing
restrictions on the edge weights makes this problem interest-
ing and useful. This is one way to formulate this problem.
This paper opens up many such possibilities for the theory
community.

6 Experimental Results

6.1 Dataset and Infrastructure

We use the Google API for searching the web. The data sets
used for these experiments are a collection of hand labeled
citations from the DBLP and Rexa corpora (see table 1). The
portion of DBLP data, which is labeled at Pennstate Univer-
sity is referred to as ’Penn’. Each dataset refers to the cita-
tions authored by people with the same last name and first
initial. The hand labeling process involved carefully segre-
gating these into subsets where each subset represents papers
written by a single real author.

Corpus # Sets # Authors # Citations # Pairs

DBLP 18 103 945 43338

Rexa 8 289 1459 207379

Penn 7 139 2021 455155

Rbig 18 103 1360 126205

Table 1: Summary of Data set properties.

The ’Rbig’ corpus consists of a collection of web docu-
ments which is created as follows. For every dataset in the
DBLP corpus, we generate a pair of titles and issue queries
to Google. Then, we save the top five results and label them
to correspond with the authors in the original corpus. The
number of pairs in this case corresponds to the sum of the
products of the number of web documents and citations in
each dataset.

All the corpora are split into training and test sets roughly
based on the total number of citations in the datasets. We
keep the individual datasets intact because it would not be
possible to test graph partitioning performance on randomly
split citation pairs.

6.2 Baseline, Web Information as a Feature and
Effect of Graph Partitioning

The maximum entropy classifier described in Section 2 is
built using the following features. We use the first and middle
names of the author in question and the number of overlap-
ping co-authors. The US census data helps us determine how
rare the last name of the author is. We use several differ-
ent similarity measures on the titles of the two citations like
the cosine similarity between the words, string edit distance,
TF-IDF measure and the number of overlapping bigrams and
trigrams. We also look for similarity in author emails, in-
stitution affiliation and the venue of publication if available.
We use a greedy agglomerative graph partitioner in this set of
experiments and are interested in investigating the effect of
using a stochastic partitioner.

The baseline column in Table 2 shows the performance of
this classifier. Note that there is a large number of negative
examples in this dataset and hence we prefer pairwise F1 over
accuracy as the main evaluation metric. Table 2 shows that
graph partitioning significantly improves pairwise F1. We
also use area under the ROC curve for comparing the per-
formance of the pairwise classifier, with and without the web
feature.

Note that these are some of the best results in author coref-
erence and hence qualify as a good baseline for our experi-
ments with the use of web. It is difficult to make direct com-
parison with other coreference schemes [Han et al., 2005] due
to the difference in the evaluation metrics.

Table 2 compares the performance of our model in the ab-
sence and in the presence of the Google title feature. As
described before, these are two completely identical models,
with the difference of just one feature. The F1 values improve
significantly after adding this feature and applying graph par-
titioning.



Method AROC Acc Pr Rec F1

Baseline class. .847 .770 .926 .524 .669
DBLP part. - .780 .814 .683 .743

W/ Google class. .913 .883 .907 .821 .862
DBLP part. - .905 .949 .830 .886

Baseline class. .866 .837 .732 .651 .689
Rexa part. - .829 .634 .913 .748

W/ Google class. .910 .865 .751 .768 .759
Rexa part. - .877 .701 .972 .814

Baseline class. .688 .838 .980 .179 .303
Penn part. - .837 .835 .211 .337

W/ Google class. .880 .913 .855 .672 .752
Penn part. - .918 .945 .617 .747

Table 2: Effect of using the Google feature. Top row in each corpus
indicates results for pairwise classification and bottom row indicates
results after graph partitioning.

6.3 Expanding the Graph by Adding Web
Mentions

In this case, we augment the citation graph by adding docu-
ments obtained from the web. We build three different kinds
of pairwise classifiers to fill the entries of the matrix shown in
Fig 2. The first classifier, between two citations, is the same
as the one described in the previous section. The second clas-
sifier, between a citation and a web mention, predicts whether
they both refer to the same real author. The features for this
second classifier include, occurrence of the citation’s author
and coauthor names, title words, bigrams and trigrams in the
web page. The third classifier, between two web mentions,
predicts if they both refer to the same real author or not. Due
to the sparsity of training data available at this time, we set
the value of zero in this region of the matrix, indicating no
preference. We now run the greedy agglomerative graph par-
titioner on this larger matrix and finally, measure the results
on the upper left matrix.

We compare the effects of using web as a feature and web
as a mention on the DBLP corpus. We use the Rbig corpus for
this experiment. Table 3 shows that the use of web as a men-
tion improves the performance on F1. Note that alternative
query schemes may yield better results.

Data Acc. Pr. Rec. F1

Baseline .7800 .8143 .6825 .7426

Web Feature .9048 .9494 .8300 .8857

Web Mention .8816 .8634 .9462 .9029

Table 3: DBLP Results when using Web Pages found by Google as
Extra Mentions(Rbig).

6.4 Applying the Resource Bounded Criteria for
Selective Querying

We now turn to the experiments that use different criteria for
selectively querying the web. We present the results on test
datasets from DBLP and Rexa corpora. As described ear-
lier in Section 4, the query candidates are the edges connect-
ing centroids of initial clustering. We use multiple centroids

Method Precision Recall F1

Merge Only

Expected Entropy 73.72 87.92 72.37

Gravitational Force 63.10 92.37 64.55

Uncertainty 64.95 87.83 63.54

Random 63.97 89.46 64.23

Merge and Split

Expected Entropy 76.19 58.56 60.90

Gravitational Force 64.10 53.06 53.56

Uncertainty 66.56 54.45 55.32

Random 66.45 50.47 52.27

No Merge

Expected Entropy 91.46 38.46 51.06

Gravitational Force 91.53 37.84 50.47

Uncertainty 87.01 41.91 52.70

Random 86.96 43.77 54.03

Table 4: Area Under Curve for different Resource Bounded Infor-
mation Gathering criteria

and pick top 20% tightly connected vertices in each cluster.
We experiment with ordering these query candidates accord-
ing to the four criteria: expected entropy, gravitational force,
uncertainty-based and random. For each of the queries in the
proposed order, we issue a query to Google and incorporate
the result into the binary classifier with an additional feature.

If the prediction from this classifier is greater than a thresh-
old (t = 0.5), we force merge the two nodes together. If lower,
we have two choices. We can impose the force split, in ac-
cordance with the definition of expected entropy. We call this
approach “split and merge”. The second choice is to not im-
pose the force split, because, in practice, Google is not an
oracle and absence of co-occurence of two citations on the
web is not an evidence that they refer to different people. We
call this approach “merge only”. The third choice is to simply
incorporate the result of the query into the edge weight.

After each query, we rerun the stochastic partitioner and
note the precision, recall and F1. This gives us a plot for a
single dataset. Note that the number of proposed queries in
each dataset is different. We get an average plot by sampling
the result of each of the datasets for a fixed number of points,
n (n = 100). We interpolate when queries fewer than n are
proposed. We then average across these datsets and calculate
the area under these curves, as shown in Table 4.

These curves measure the effectiveness of a criteria in
achieving maximum possible benefit with least effort. Hence,
a curve that rises the fastest, and has the maximum area under
the curve is most desired. Expected entropy approach, gives
the best performance on F1 measure, as expected.

It is interesting to note that the gravitational-force-based
criteria does better than the expected entropy criteria on re-
call, but worse on the precision. This is because this ap-
proach captures the sizes of the two clusters and hence tends
to merge large clusters, without paying much attention to the
’purity’ of the resulting clusters. The expected entropy ap-
proach, on the other hand, takes this into account and hence
emerges as the best method. The force-based approach is a
much faster approach and it can be used as a heuristic for
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Figure 3: Using the web and selectively obtaining new mentions.

very large datasets.
Both the criteria work better than uncertainty-based and

random, except an occasional spike. All four methods are
sensitive to the noise in data labeling, result of the web
queries and sampling in stochastic graph partitioning, as re-
flected by the spikes in the curves. However, these re-
sults show that expected entropy approach is the best way
to achieve maximum returns on investment and proves to be
a promising approach to solve this class of problems, in gen-
eral.

6.5 Resource Bounded Querying for Additional
Web Mentions

We now present the results for efficiently querying the web
and adding new mentions to the graph. We start with initial
partitioning of citations for data sets in the DBLP corpus. We
then pick up to two or three tightly connected citations in each
cluster, clean their titles and remove stop words to form a
query. Fig. 3 shows the comparison of the result of these
queries with the result of performing all pairwise queries. By
adding only 14.86% of the nodes to the graph, we can achieve
91.25% of the original F1. In other words, we gain most of
the benefit by using a small fraction of the queries. Note that
the resulting graph is smaller and hence is faster to process.

7 Conclusions and Future Work

We have formulated a new class of problems: resource
bounded information gathering from the web in the context
of correlational clustering, and have proposed several meth-
ods to achieve this goal in the domain of entity resolution.
Our current approach yields positive results and can be ap-
plied for coreference of other object types, e.g. automatic
product categorization. We believe that this problem setting
has the potential to bring together ideas from the areas of ac-
tive learning, relational learning, decision theory and graph
theory, and apply them in a real world domain.

In future work we will explore alternative queries, (includ-
ing input from more than two citations), as well as various
new ways of efficiently selecting candidate queries. We are
interested in investigating more sophisticated querying crite-
ria in the case of web-as-a-mention. Additional theoretical
work in the form of new formulations and bound proofs for
these methods are also anticipated.
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