
Low Latency Index Maintenance in Indri

Trevor Strohman

strohman@cs.umass.edu

W. Bruce Croft

croft@cs.umass.edu

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

ABSTRACT

There has been a resurgence of interest in index maintenance
(or incremental indexing) in the academic community in the
last three years. Most of this work focuses on how to build
indexes as quickly as possible, given the need to run queries
during the build process.

This work is based on a different set of assumptions than
previous work. First, we focus on latency instead of through-
put. We focus on reducing index latency (the amount of time
between when a new document is available to be indexed and
when it is available to be queried) and query latency (the
amount of time that an incoming query must wait because
of index processing). Additionally, we assume that users
are unwilling to tune parameters to make the system more
efficient.

We show how this set of assumptions has driven the de-
velopment of the Indri index maintenance strategy, and de-
scribe the details of our implementation.

1. INTRODUCTION
One of the biggest successes of information retrieval re-

search has been the development of efficient full-text index-
ing systems. The compressed inverted list index allows for
quick retrieval of documents from very large corpora. Web
search engines have put this technology to public use, and
now hundreds of millions of people use full-text search every
day.

Most research into text indexing assumes that the collec-
tion of documents to be searched is unchanging. However,
it is difficult to imagine many useful scenarios where this
is a reasonable assumption. Web documents, news feeds,
e-mails, corporate documents, and even library book collec-
tions are constantly changing. Even if the documents them-
selves are static, most collections of documents grow over
time, and the newest documents are often the most relevant.
Handling this changing nature of data is an important area

Copyright is held by the author/owner.
OSIR’06, August 11, 2006, Seattle, Washington, USA.
ACM .

of information retrieval research.
The process of updating information in an existing index

is called both index maintenance and incremental indexing
in the literature. This is a small but active field of research.
However, the evaluation metrics used in most papers is on
the throughput of the indexing process. We claim that in-
dexing throughput is not the critical factor in many real
scenarios. Modern information retrieval systems can handle
as much as 50GB per hour of new text data on a single ma-
chine [4], and other than the web, few data sources generate
new or changed text at that rate.

By contrast, consider a search engine storing data from
a particular newswire. The TREC1 AP89 collection con-
sists of 84,678, for an average of 261 new news stories a day.
This collection is small by current standards, and the rate
of information change cannot be considered taxing for any
modern system. Raw indexing throughput is not the most
important measure for this application. We argue that la-
tency is a better measure–the amount of time taken between
the appearance of a document on the wire until it is able to
be searched, and the amount of time that incoming queries
must wait while the indexing process for a new document is
taking place.

We have built an incremental indexing system that focuses
on this latency problem. The remainder of this paper focuses
on describing our system and relating it to previous work.
We do not have an evaluation of our system at this time,
but we hope that this paper will spark additional work in
the future.

2. RELATED WORK
While there has always been practical commercial inter-

est in incremental indexing, academic work on this topic
has been sparse. A small pool of researchers considered
this topic between 1990 and 1995, then publications nearly
stopped. In the past three years, new research has arrived
to build upon and update the assumptions in earlier work.

Cutting and Pedersen [7] present the first incremental in-
dexing work that we consider here. The authors use a va-
riety of methods to store posting lists so that they may
be dynamically updated. In the first method, they store
postings (word and document location pairs) directly in the
B-Tree, sorted first by word and second by document loca-
tion. This straightforward approach is used more recently
by the MySQL database engine for full-text search [1]. This

1http://trec.nist.gov



Disk Model Transfer rate Seek time Year Size
Seagate ST1980 3.55 MB/s 9.9 ms 1994 1GB
Seagate ST3146854FC 80 MB/s 3.5 ms 2004 147GB

Table 1: Performance figures for two Seagate hard

disk models produced in the last decade.

method is simple and conceptually clean, but leaves room
for improvement in both space and speed. The authors im-
prove on space utilization by storing the word only once,
instead of in each posting. Then, they improve on speed
by using an external heap file to store list data instead of
storing the data within the tree itself.

Tomasic, Garcia-Molina and Shoens [14] focus on the stor-
age allocation policy in the inverted file. As in Cutting and
Pedersen’s approach, the inverted file is a heap that requires
an allocation policy. Clearly the individual lists are expected
to grow over time, but leaving large gaps in the file for extra
postings wastes space and time (since the extra file space im-
plies longer seek times between relevant data regions). The
authors explore three allocation policies: constant, block,
and proportional. In the constant case, each inverted list
update operation reserves a constant amount of extra space
for new postings. The block strategy is similar, except the
extended list is forced to end on a block boundary. The
proportional strategy increases leaves some percentage of
the total length of the list as empty space; this means that
longer lists have more room to grow. Additionally, the au-
thors consider three update policies; new, whole and fill.
The new strategy writes new postings to a new location, ef-
fectively making each inverted list a linked list of segments.
The fill strategy is similar, except each linked list segment
is forced to be the same length. Finally, the whole strategy
requires that each inverted list be copied at every update, so
that lists remain contiguous. Not surprisingly, the authors
find that the new strategy is quicker for updates, while the
whole strategy is preferred for queries.

Brown, Callan and Croft [2] investigate similar approaches
to those of Tomasic et al. [14]. The authors modify the IN-
QUERY retrieval system to store its data in the Mneme ob-
ject store [11]. This abstraction of the storage layer is similar
to more recent work, such as de Vries et al. [8]. Brown et al.
store inverted lists in this disk-based object store; small lists
are segregated from large ones, and small lists are allocated
in power-of-two sized blocks. Large lists are not necessar-
ily stored sequentially, but may be stored in a linked list of
blocks. The results are largely similar to Tomasic et al. [14].

Clarke et al. [5] present a system which, in contrast with
the others shown so far, explicitly discusses query activity
while new documents are added to the collection. Unlike the
work shown in this paper, this method still adds documents
to the index in batches, but these updates are committed
quickly to the index, so that pauses in query operations are
as short as possible.

The four papers mentioned here represented the state-
of-the-art for index maintenance until recently. However,
these papers were written in the mid-1990s; since that time,
computer technology has changed drastically.

The disk models shown in Table 1 are a small sample
of the disks available on the market, but they represent
the progress that drive makers have achieved over the last
decade. Seek times have dropped by approximately 60%,

but transfer rates have increased by as much as 20 times.
Just looking at these figures, it seems that disk seeks have
become significantly more costly relative to disk transfers.

This comparison is not completely fair, because average
seek time is computed as the average time to seek between
two random locations on the device. Since the new devices
are bigger, the ’average’ seek time represents a jump over
much more data. In the 1994 disk, for example, an average
seek might cross 500MB of data, while on a newer disk it
might cross 70GB of data. Therefore, we expect that if the
same size document index was used on both drives, the seek
time difference would be more dramatic.

A more subtle change is in the amount of time necessary
to read the data of the entire disk. For the 1994 drive, the
entire contents of the drive can be transferred in about 4
minutes. The 2004 drive requires 30 minutes for the same
task. If we assume that collection sizes keep pace with disk
sizes, we see that transfer rates are not keeping up with
increasing data size.

More details on the changes in retrieval system perfor-
mance can be found in Zobel, Williams and Kimberly [15].
The important factor is that research that relies on disk per-
formance must be revisited in order to maintain relevance.

Lester et al. [10] revived interest in the area of index main-
tenance with a 2004 study on the relative advantages of
three strategies, in-place, re-build and re-merge. The in-
place strategy is similar to Tomasic’s whole strategy with
a proportional allocation policy. The re-build strategy sim-
ply rebuilds the entire collection, while re-merge merges new
postings into an existing index, forming a new index. The
authors find that for updates of less than 10000 documents,
both incremental strategies are better than rebuilding the in-
dex. Furthermore, for the smallest updates (under 100 doc-
uments), the in-place strategy is faster. However, for these
small updates, the update time per document approaches 1
second.

Especially because of the issues in transfer time, a new
class of update algorithms has been discussed in the litera-
ture recently. This strategy, called geometric partitioning by
Lester et al. [9], does not force inverted lists to be merged
together when postings are flushed to disk. Instead, new
postings are flushed to disk in entirely new indexes, called
partitions. Queries acting upon this data must check each
partition for inverted list data, so there is a query speed
penalty for maintaining too many partitions. Therefore,
these partitions can be merged together to form larger par-
titions that are more efficient to query. Since merging is
costly, an efficient system must balance the needs of query
processing and efficient indexing in choosing its merging pol-
icy.

The name geometric partitioning refers specifically to a
merging policy developed by Lester et al. [9]. For a system
that can hold b document pointers in memory and some
positive integer parameter r, the i

th partition is limited in
size to br

i pointers. For example, if r = 3, the first disk
partition is limited to holding 3 times as many documents as
the system memory can hold; if this partition grows beyond
that size, its data is merged into the second partition (which
is limited to 9 times the system memory). By keeping this
exponential distribution of partition sizes, the total number
of indexes is kept small while still making the common case
(merging in-memory data into the first partition) fast.

Many authors ([3], [4], [9], [12]) have studied the parti-



m

d m'

m m'

Figure 1: Three steps in the process of adding a

new memory partition. First, a new partition m
′ is

added. Next, m is written to disk asynchronously.

Next, d is made available for new queries. Finally,

when m is no longer in use by any query, it is deleted.

tioning strategy with good results. However, previous work
has focused on throughput instead of latency of operations.
In this work, we consider latency as our first goal.

3. IMPLEMENTATION DETAILS

3.1 Overview
Our implementation is a part of the Indri search engine [13].

The implementation described here has been in the toolkit
since the 2.0 release.

Indri is a component of the Lemur toolkit for Informa-
tion Retrieval [6]. The Lemur toolkit is an open-source sys-
tem built to enable Information Retrieval research using lan-
guage modeling. Indri extends upon the goals of the Lemur
toolkit by adding new structured document retrieval func-
tionality and a flexible query language. In addition, Indri is
built to be used by both researchers and industrial users.

One common use of Indri is to index news feed data. Like
most search engines on modern hardware, it is not difficult
for Indri to keep up with the volume of data generated by a
news feed. However, it is desirable that new news articles be
made available immediately. Furthermore, the addition of a
new news article should not be able to halt query processing
for a noticeable period of time. This set of requirements
drove our implementation of a concurrent version of Indri.

3.2 Index design
As in the work of Lester et al. [9], Indri uses index parti-

tions to maintain high query and indexing throughput. In
many previous systems, data stored in memory was not con-
sidered fully indexed, and data needed to be flushed to disk
in order to be queried. This is not the case in Indri; the first
partition is stored in RAM, and can be queried directly.
This allows Indri to support high-speed indexing and query
processing for smaller collections without ever requiring disk
seek delays.

For collections that grow larger than memory can hold,
Indri writes partitions to disk. Once a partition has been
written to disk, the data will never be changed–it may be
merged into another partition and then deleted, but never
changed. This allows disk data to be read without the need
for locks.

In memory, term statistics and vocabulary are stored in

Fast indexing

Fast retrieval Geometric partitioning

Figure 2: Three possible partition merging policies.

The ‘fast indexing’ policy avoids merging partitions

as much as possible; this method approximates a

traditional batch indexer. The ‘fast retrieval’ pol-

icy eagerly merges new data, making a single large

disk partition. The ‘geometric partitioning‘ strategy

finds a balance between the other two policies.

a hash table. On disk, vocabulary information is stored in
two B-Trees, with one dedicated to frequent terms and the
other dedicated to infrequent terms. The frequent terms
tree (consisting of terms that appear more than 1000 times
in the collection) is small enough that it always fits easily
in memory. The infrequent terms tree is larger than system
memory for large collections. The inverted list information
for all terms is stored in a single file, sorted by alphabet-
ical order of term. The postings in each list are stored in
document order.

To keep index latency as low as possible, we do not let
disk I/O block indexing operations. All new documents are
added to the in-memory partition. A monitoring thread
checks periodically to see if the in-memory partition m has
grown too large. If so, a new memory partition m

′ is cre-
ated to accept new documents (Figure 1). Then, m is writ-
ten to disk in a background thread. While m is being
written to disk, it remains available for query processing.
When the disk write completes, m has an on-disk repre-
sentation, d, which will be used in place of m for all fu-
ture queries. However, m may still be in use by some long-
running queries. When all of those queries have completed,
m is safely deleted.

In other systems, it is common for the parsing and in-
dexing functions to be intertwined. Each word is parsed
from the document, then added immediately to the index.
In Indri, adding documents to the memory index requires a
lock to prevent a query processing thread from seeing incon-
sistent data. Therefore, to keep index lock duration down,
Indri parses each document completely (while not holding
index locks) before adding document data to the index.

3.3 Query processing
Query processing is made more complicated by the ex-

istence of many index partitions. In Lester et al. [9], in-



verted lists for each query term are materialized in mem-
ory by copying data from each fragment into memory, then
processing the combined list. Indri works differently; each
partition is treated as a separate index. In the first phase of
query processing, term statistics (such as term frequency)
are collected from all partitions. In the second phase, the
query is processed separately on each index partition, start-
ing with the oldest data. When all partitions have been
visited, query processing completes.

Since all data on disk is immutable, no special locking
is necessary to access it. Indri allows many queries to ex-
ecute simultaneously on this read-only data. When query
processing reaches the most recent data (in the in-memory
partition), the query processor must acquire a lock to ensure
that the memory partition does not change while query pro-
cessing occurs. The query processor acquires a read lock,
so that other queries can operate on the in-memory data
simultaneously. While this read lock does cause an increase
in index latency, this latency can be reduced arbitrarily by
decreasing the size of the in-memory partition.

Since merging happens asynchronously (as described in
the indexing section), long-running queries can continue to
execute while merging is in progress. The only point of con-
tention between indexing and querying operations happens
in the in-memory partition, where I/O operations are never
performed while a lock is held.

3.4 Merging policy
In other recent index maintenance work, authors have pro-

posed particular fixed merging policies. Parameters can be
tuned in these policies to produce higher query throughput
or higher indexing throughput.

However, in the kind of cases we are considering, we ex-
pect the optimal policy to change over time. In a desktop
search application, we may find the system flooded with new
data as a user downloads a large batch of documents onto
the system. When this large batch of documents arrives,
it is advantageous to tune the system for optimal indexing
performance. However, later in the day, a user may start
running queries against the data (while no new data is enter-
ing the system). At this point, optimum query performance
would be preferred.

Indri attempts to pick a merging policy based on the
weighted load average of the system over the previous 15
minutes (Figure 2). Every query is counted, as is every
added document. When no queries have been executed in
15 minutes, the system is optimized for document indexing,
and the system only merges index partitions when it is close
to running out of file handles. Similarly, when no documents
have been added for 15 minutes, the system chooses to merge
data as often as possible in order to make the index struc-
tures optimized for query processing. Load between these
two extremes causes the system to find a balance between
query speed and indexing speed.

Our performance tuning so far has caused us to choose to
merge partitions when:

• More than one partition exists, and

• The system has not thrashed in the last 5 minutes
(that is, has not had to halt document additions be-
cause the system could not write them to disk quickly
enough), and:

– either:

documents added per second

50 × queries per second
< |partitions to merge|

– or there is very high query load, or

– or there are very few documents being added.

This formulation is clearly ad hoc, and we have not per-
formed a detailed analysis to determine how close to optimal
this policy is. We do know that it seems to work well for
the kinds of tasks we have tried. It works well enough that
we have not seen the need to expose these parameters to the
user.

4. CONCLUSION
While most work in index maintenance has focused on

maximizing throughput, we considered the problem of re-
ducing latency in a concurrent information retrieval system.
Our system, Indri, contains a concurrent indexing and re-
trieval system built to reduce query and indexing latency,
while making intelligent decisions about merging based on
workload.

Our goal with this work is to stimulate new thinking about
workloads and applications for index maintenance, particu-
larly in evaluation. In the future, we hope to evaluate our
system merging policy and latency in order to find ways that
our implementation can be improved.

5. ACKNOWLEDGMENTS
This work was supported in part by the Center for In-

telligent Information Retrieval and in part by NSF grant
#CNS-0454018 . Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect those of the sponsor.

6. REFERENCES
[1] MySQL. http://www.mysql.com/.

[2] E. Brown, J. Callan, and W. Croft. Fast incremental
indexing for full-text information retrieval. In
Proceedings of the 20th International Conference on
Very Large Databases (VLDB), pages 192 – 202,
Santiago, Chille, September 1994.

[3] S. Büttcher and C. L. A. Clarke. Indexing time vs.
query time trade-offs in dynamic information retrieval
systems. In CIKM 2005: Proceedings of the 14th ACM
Conference on Infromation and Knowledge
Management, Bremen, Germany, Nov. 2005.

[4] S. Büttcher and C. L. A. Clarke. A hybrid approach
to index maintenance in dynamic text retrieval
systems. In ECIR 2006: Proceedings of the 28th
European Conference on Information Retrieval,
London, UK, Apr. 2006.

[5] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski.
Fast inverted indexes with on-line update. Technical
Report CS-94-40, University of Waterloo, Waterloo,
Canada, 1994.

[6] W. B. Croft, J. Callan, J. Allan, C. Zhai, D. Fisher,
T. T. Avrahami, T. Strohman, D. Metzler, P. Ogilvie,
M. Hoy, J. Lafferty, J. Brown, L. Si,
K. Collins-Thompson, M. Bilotti, F. Feng, and
L. Larkey. The Lemur Project.
http://www.lemurproject.org/.



[7] D. Cutting and J. Pedersen. Optimizations for
dynamic inverted index maintenance. In Proceedings
of the 13th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 405–411, 1990.

[8] A. de Vries, J. List, and H. Blok. The multi-model
DBMS architecture and XML information retrieval.
Intelligent Search on XML, Lecture Notes in
Computer Science/Lecture Notes in Artificial
Intelligence (LNCS/LNAI), pages 179–192, 2003.

[9] N. Lester, A. Moffat, and J. Zobel. Fast on-line index
construction by geometric partitioning. In
A. Chowdhury, N. Fuhr, M. Ronthaler, H.-J. Schek,
and W. Teiken, editors, Proceedings of the ACM
CIKM Conference on Information and Knowledge
Management, pages 776–783, Bremen, Germany, Nov.
2005.

[10] N. Lester, J. Zobel, and H. Williams. In-place versus
re-build versus re-merge: Index maintenance strategies
for text retrieval systems. In V. Estivill-Castro, editor,
Proceedings of the Australasian Computer Science
Conference, pages 15–22, Dunedin, NZ, Jan. 2004.

[11] J. E. B. Moss. Design of the Mneme persistent object
store. ACM Transactions on Information Systems,
8(2):103–139, 1990.

[12] T. Strohman. Dynamic collections in Indri. Technical
Report IR-426, University of Massachusetts Amherst,
2005.

[13] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: A language model-based search engine for
complex queries. In IA 2005: Proceedings of the 2nd
International Conference on Intelligence Analysis,
2005.

[14] A. Tomasic, H. Garćıa-Molina, and K. Shoens.
Incremental updates of inverted lists for text
document retrieval. In SIGMOD 1994: Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 289–300, Minneapolis,
Minnesota, 1994.

[15] J. Zobel, H. E. Williams, and S. Kimberley. Trends in
retrieval system performance. In ACSC, pages
241–248, 2000.


