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ABSTRACT

Query expansion, in the form of pseudo-relevance feedback
or relevance feedback, is a common technique used to im-
prove retrieval effectiveness. Most previous approaches have
ignored important issues, such as the role of features and the
importance of modeling term dependencies. In this paper,
we propose a robust query expansion technique based on
the Markov random field model for information retrieval.
The technique, called latent concept expansion, provides a
mechanism for modeling term dependencies during expan-
sion. Furthermore, the use of arbitrary features within the
model provides a powerful framework for going beyond sim-
ple term occurrence features that are implicitly used by
most other expansion techniques. We evaluate our tech-
nique against relevance models, a state-of-the-art language
modeling query expansion technique. Our model demon-
strates consistent and significant improvements in retrieval
effectiveness across several TREC data sets. We also de-
scribe how our technique can be used to generate mean-
ingful multi-term concepts for tasks such as query sugges-
tion/reformulation.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Experimentation, Theory

Keywords

Information retrieval, query expansion, Markov random fields

1. INTRODUCTION
Users of information retrieval systems are required to ex-

press complex information needs in terms of Boolean ex-
pressions, a short list of keywords, a sentence, a question, or
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possibly a longer narrative. A great deal of information is
lost during the process of translating from the information
need to the actual query. For this reason, there has been
a strong interest in query expansion techniques. Such tech-
niques are used to augment the original query to produce a
representation that better reflects the underlying informa-
tion need.

Query expansion techniques have been well studied for
various models in the past and have shown to significantly
improve effectiveness in both the relevance feedback and
pseudo-relevance feedback setting [12, 21, 28, 29].

Recently, a Markov random field (MRF) model for infor-
mation retrieval was proposed that goes beyond the simplis-
tic bag of words assumption that underlies BM25 and the
(unigram) language modeling approach to information re-
trieval [20, 22]. The MRF model generalizes the unigram,
bigram, and other various dependence models [14]. Most
past term dependence models have failed to show consistent,
significant improvements over unigram baselines, with few
exceptions [8]. The MRF model, however, has been shown
to be highly effective across a number of tasks, including ad
hoc retrieval [14, 16], named-page finding [16], and Japanese
language web search [6].

Until now, the model has been solely used for ranking doc-
uments in response to a given query. In this work, we show
how the model can be extended and used for query expan-
sion using a technique that we call latent concept expansion

(LCE). There are three primary contributions of our work.
First, LCE provides a mechanism for combining term de-

pendence with query expansion. Previous query expansion
techniques are based on bag of words models. Therefore, by
performing query expansion using the MRF model, we are
able to study the dynamics between term dependence and
query expansion.

Next, as we will show, the MRF model allows arbitrary
features to be used within the model. Query expansion tech-
niques in the past have implicitly only made use of term
occurrence features. By using more robust feature sets, it
is possible to produce better expansion terms that discrim-
inate between relevant and non-relevant documents better.

Finally, our proposed approach seamlessly provides a mech-
anism for generating both single and multi-term concepts.
Most previous techniques, by default, generate terms inde-
pendently. There have been several approaches that make
use of generalized concepts, however such approaches were
somewhat heuristic and done outside of the model [19, 28].
Our approach is both formally motivated and a natural ex-
tension of the underlying model.



The remainder of this paper is laid out as follows. In
Section 2 we describe related query expansion approaches.
Section 3 provides an overview of the MRF model and de-
tails our proposed latent concept expansion technique. In
Section 4 we evaluate our proposed model and analyze the
results. Finally, Section 5 concludes the paper and summa-
rizes the major results.

2. RELATED WORK
One of the classic and most widely used approaches to

query expansion is the Rocchio algorithm [21]. Rocchio’s ap-
proach, which was developed within the vector space model,
reweights the original query vector by moving the weights
towards the set of relevant or pseudo-relevant documents
and away from the non-relevant documents. Unfortunately,
it is not possible to formally apply Rocchio’s approach to
a statistical retrieval model, such as language modeling for
information retrieval.

A number of formalized query expansion techniques have
been developed for the language modeling framework, in-
cluding Zhai and Lafferty’s model-based feedback and Lavrenko
and Croft’s relevance models [12, 29]. Both approaches at-
tempt to use pseudo-relevant or relevant documents to esti-
mate a better query model.

Model-based feedback finds the model that best describes
the relevant documents while taking a background (noise)
model into consideration. This separates the content model
from the background model. The content model is then
interpolated with the original query model to form the ex-
panded query.

The other technique, relevance models, is more closely re-
lated to our work. Therefore, we go into the details of the
model. Much like model-based feedback, relevance models
estimate an improved query model. The only difference be-
tween the two approaches is that relevance models do not
explicitly model the relevant or pseudo-relevant documents.
Instead, they model a more generalized notion of relevance,
as we now show.

Given a query Q, a relevance model is a multinomial dis-
tribution, P (·|Q), that encodes the likelihood of each term
given the query as evidence. It is computed as:

P (w|Q) =

∫

D

P (w|D)P (D|Q)

≈

∑

D∈RQ
P (w|D)P (Q|D)P (D)

∑

w

∑

D∈RQ
P (w|D)P (Q|D)P (D)

(1)

where RQ is the set of documents that are relevant or pseudo-
relevant to query Q. In the pseudo-relevant case, these are
the top ranked documents for query Q. Furthermore, it is
assumed that P (D) is uniform over this set. These mild
assumptions make computing the Bayesian posterior more
practical.

After the model is estimated, documents are ranked by
clipping the relevance model by choosing the k most likely
terms from P (·|Q). This clipped distribution is then inter-
polated with with the original, maximum likelihood query
model [1]. This can be thought of as expanding the original
query by k weighted terms. Throughout the remainder of
this work, we refer to this instantiation of relevance models
as RM3.

There has been relatively little work done in the area of
query expansion in the context of dependence models [9].
However, there have been several attempts to expand using
multi-term concepts. Xu and Croft’s local context anal-
ysis (LCA) method combined passage-level retrieval with
concept expansion, where concepts were single terms and
phrases [28]. Expansion concepts were chosen and weighted
using a metric based on co-occurrence statistics. However,
it is not clear based on the analysis done how much the
phrases helped over the single terms alone.

Papka and Allan investigate using relevance feedback to
perform multi-term concept expansion for document rout-
ing [19]. The concepts used in their work are more general
than those used in LCA, and include InQuery query lan-
guage structures, such as #UW50(white house), which corre-
sponds to the concept “the terms white and house occur, in
any order, within 50 terms of each other”. Results showed
that combining single term and large window multi-term
concepts significantly improved effectiveness. However, it is
unclear whether the same approach is also effective for ad

hoc retrieval, due to the differences in the tasks.

3. MODEL
This section details our proposed latent concept expansion

technique. As mentioned previously, the technique is an
extension of the MRF model for information retrieval [14].
Therefore, we begin by providing an overview of the MRF
model and our proposed extensions.

3.1 MRFs for IR

3.1.1 Basics

Markov random fields, which are undirected graphical mod-
els, provide a compact, robust way of modeling a joint dis-
tribution. Here, we are interested in modeling the joint
distribution over a query Q = q1, . . . , qn and a document
D. It is assumed the underlying distribution over pairs of
documents and queries is a relevance distribution. That is,
sampling from the distribution gives pairs of documents and
queries, such that the document is relevant to the query.

A MRF is defined by a graph G and a set of non-negative
potential functions over the cliques in G. The nodes in the
graph represent the random variables and the edges define
the independence semantics of the distribution. A MRF sat-
isfies the Markov property, which states that a node is inde-
pendent of all of its non-neighboring nodes given observed
values for its neighbors.

Given a graph G, a set of potentials ψi, and a parameter
vector Λ, the joint distribution over Q and D is given by:

PG,Λ(Q,D) =
1

ZΛ

∏

c∈C(G)

ψ(c; Λ)

where Z is a normalizing constant. We follow common
convention and parameterize the potentials as ψi(c; Λ) =
exp[λifi(c)], where fi(c) is a real-valued feature function.

3.1.2 Constructing G

Given a query Q, the graph G can be constructed in a
number of ways. However, following previous work, we con-
sider three simple variants [14]. These variants are full in-

dependence, where each query term is independent of each



other given a document, sequential dependence, which as-
sumes a dependence exists between adjacent query terms,
and full dependence, which makes no independence assump-
tions.

3.1.3 Parameterization

MRFs are commonly parameterized based on the maxi-
mal cliques of G. However, such a parameterization is too
coarse for our needs. We need a parameterization that allows
us to associate feature functions with cliques on a more fine
grained level, while keeping the number of features, and thus
the number of parameters, reasonable. Therefore, we allow
cliques to share feature functions and parameters based on
clique sets. That is, all of the cliques within a clique set are
associated with the same feature function and share a sin-
gle parameter. This effectively ties together the parameters
of the features associated with each set, which significantly
reduces the number of parameters while still providing a
mechanism for fine-tuning on the level of clique sets.

We propose seven clique sets for use with information re-
trieval. The first three clique sets consist of cliques that
contain one or more query terms and the document node.
Features over these cliques should encode how well the terms
in the clique configuration describe the document. These
sets are:

• TD – set of cliques containing the document node and
exactly one query term.

• OD – set of cliques containing the document node and
two or more query terms that appear in sequential or-
der within the query.

• UD – set of cliques containing the document node and
two or more query terms that appear in any order
within the query.

Note that UD is a superset of OD. By tying the parameters
among the cliques within each set we can control how much
influence each type gets. This also avoids the problem of
trying to determine how to estimate weights for each clique
within the sets. Instead, we now must only estimate a single
parameter per set.

Next, we consider cliques that only contain query term
nodes. These cliques, which were not considered in [14], are
defined in an analogous way to those just defined, except the
the cliques are only made up of query term nodes and do
not contain the document node. Feature functions over these
cliques should capture how compatible query terms are to
one another. These clique features may take on the form of
language models that impose well-formedness of the terms.
Therefore, we define following query-dependent clique sets:

• TQ – set of cliques containing exactly one query term.

• OQ – set of cliques containing two or more query terms
that appear in sequential order within the query.

• UQ – set of cliques containing two or more query terms
that appear in any order within the query.

Finally, there is the clique that only contains the docu-
ment node. Features over this node can be used as a type
of document prior, encoding document-centric properties.
This trivial clique set is then:

• D – clique set containing only the singleton node D

We note that our clique sets form a set cover over the
cliques of G, but are not a partition, since some cliques
appear in multiple clique sets.

After tying the parameters in our clique sets together and
using the exponential potential function form, we end up
with the following simplified form of the joint distribution:

logPG,Λ(Q,D) =

λTD

∑

c∈TD

fTD
(c) + λOD

∑

c∈OD

fOD
(c) + λUD

∑

c∈UD

fUD
(c)

︸ ︷︷ ︸

FDQ(D,Q) - document and query dependent

+

λTQ

∑

c∈TQ

fTQ
(c) + λOQ

∑

c∈OQ

fOQ
(c) + λUQ

∑

c∈UQ

fUQ
(c)

︸ ︷︷ ︸

FQ(Q) - query dependent

+

λDfD(D)
︸ ︷︷ ︸

FD(D) - document dependent

− logZΛ
︸ ︷︷ ︸

document + query independent

where FDQ, FQ, and FD are convenience functions defined
by the document and query dependent, query dependent,
and document dependent components of the joint distribu-
tion, respectively. These will be used to simplify and clarify
expressions derived throughout the remainder of the paper.

3.1.4 Features

Any arbitrary feature function over clique configurations
can be used in the model. The correct choice of features de-
pends largely on the retrieval task and the evaluation met-
ric. Therefore, there is likely not to be a single, universally
applicable set of features.

To provide an idea of the range of features that can be
used, we now briefly describe possible types of features that
could be used. Possible query term dependent features in-
clude tf, idf, named entities, term proximity, and text style
to name a few. Many types of document dependent features
can be used, as well, including document length, PageRank,
readability, and genre, among others.

Since it is not our goal here to find optimal features, we
use a simple, fixed set of features that have been shown to
be effective in previous work [14]. See Table 1 for a list
of features used. These features attempt to capture term
occurrence and term proximity. Better feature selection in
the future will likely lead to improved effectiveness.

3.1.5 Ranking

Given a query Q, we wish to rank documents in descend-
ing order according to PG,Λ(D|Q). After dropping document
independent expressions from logPG,Λ(Q,D), we derive the
following ranking function:

PG,Λ(D|Q)
rank
= FDQ(D,Q) + FD(D) (2)

which is a simple weighted linear combination of feature
functions that can be computed efficiently for reasonable
graphs.

3.1.6 Parameter Estimation

Now that the model has been fully specified, the final step
is to estimate the model parameters. Although MRFs are
generative models, it is inappropriate to train them using



Feature Value

fTD
(qi, D) log

[

(1 − α)
tfqi,D

|D|
+ α

cfqi
|C|

]

fOD
(qi, qi+1 . . . , qi+k, D) log

[

(1 − β)
tf#1(qi...qi+k),D

|D|
+ β

cf#1(qi...qi+k)

|C|

]

fUD
(qi, ..., qj , D) log

[

(1 − β)
tf#uw(qi...qj),D

|D|
+ β

cf#uw(qi...qj)

|C|

]

fTQ
(qi) − log

[
cfqi
|C|

]

fOQ
(qi, qi+1 . . . , qi+k) − log

[
cf#1(qi...qi+k)

|C|

]

fUQ
(qi, ..., qj) − log

[
cf#uw(qi...qj)

|C|

]

fD 0

Table 1: Feature functions used in Markov random field model. Here, tfw,D is the number of times term
w occurs in document D, tf#1(qi...qi+k),D denotes the number of times the exact phrase qi . . . qi+k occurs in
document D, tf#uw(qi...qj),D is the number of times the terms qi, . . . qj appear ordered or unordered within a
window of N terms, and |D| is the length of document D. The cf and |C| values are analogously defined on
the collection level. Finally, α and β are model hyperparameters that control smoothing for single term and
phrase features, respectively.

conventional likelihood-based approaches because of metric

divergence [17]. That is, the maximum likelihood estimate
is unlikely to be the estimate that maximizes our evaluation
metric. For this reason, we discriminatively train our model
to directly maximize the evaluation metric under consider-
ation [14, 15, 25]. Since our parameter space is small, we
make use of a simple hill climbing strategy, although other
more sophisticated approaches are possible [10].

3.2 Latent Concept Expansion
In this section we describe how this extended MRF model

can be used in a novel way to generate single and multi-
term concepts that are topically related to some original
query. As we will show, the concepts generated using our
technique can be used for query expansion or other tasks,
such as suggesting alternative query formulations.

We assume that when a user formulates their original
query, they have some set of concepts in mind, but are only
able to express a small number of them in the form of a
query. We treat the concepts that the user has in mind, but
did not explicitly express in the query, as latent concepts.
These latent concepts can consist of a single term, multi-
ple terms, or some combination of the two. It is, therefore,
our goal to recover these latent concepts given some original
query.

This can be accomplished within our framework by first
expanding the original graph G to include the type of con-
cept we are interested in generating. We call this expanded
graphH. In Figure 1, the middle graph provides an example
of how to construct an expanded graph that can generate
single term concepts. Similarly, the graph on the right illus-
trates an expanded graph that generates two term concepts.
Although these two examples make use of the sequential de-
pendence assumption (i.e. dependencies between adjacent
query terms), it is important to note that both the original
query and the expansion concepts can use any independence
structure.

After H is constructed, we compute PH,Λ(E|Q), a proba-
bility distribution over latent concepts, according to:

PH,Λ(E|Q) =

∑

D∈R PH,Λ(Q,E,D)
∑

D∈R

∑

E PH,Λ(Q,E,D)

where R is the universe of all possible documents and E

is some latent concept that may consist of one or more
terms. Since it is not practical to compute this summa-
tion, we must approximate it. We notice that PH,Λ(Q,E,D)
is likely to be peaked around those documents D that are
highly ranked according to query Q. Therefore, we approx-
imate PH,Λ(E|Q) by only summing over a small subset of
relevant or pseudo-relevant documents for query Q. This is
computed as follows:

PH,Λ(E|Q) ≈

∑

D∈RQ
PH,Λ(Q,E,D)

∑

D∈RQ

∑

E PH,Λ(Q,E,D)
(3)

∝
∑

D∈RQ

exp
[

FQD(Q,D) + FD(D) + FQD(E,D) + FQ(E)
]

where RQ is a set of relevant or pseudo-relevant documents
for query Q and all clique sets are constructed using H.
As we see, the likelihood contribution for each document in
RQ is a combination of the original query’s score for the
document (see Equation 2), concept E’s score for the docu-
ment, and E’s document-independent score. Therefore, this
equation can be interpreted as measuring how well Q and E
account for the top ranked documents and the “goodness”
of E, independent of the documents. For maximum robust-
ness, we use a different set of parameters for FQD(Q,D) and
FQD(E,D), which allows us to weight the term, ordered, and
unordered window features differently for the original query
and the candidate expansion concept.

3.2.1 Query Expansion

To use this framework for query expansion, we first choose
an expansion graph H that encodes the latent concept struc-
ture we are interested in expanding the query using. We
then select the k latent concepts with the highest likelihood
given by Equation 3. A new graph G′ is constructed by
augmenting the original graph G with the k expansion con-
cepts E1, . . . , Ek. Finally, documents are ranked according
to PG′,Λ(D|Q,E1, . . . , Ek) using Equation 2.

3.2.2 Comparison to Relevance Models

Inspecting Equations 1 and 3 reveals the close connec-
tion that exists between LCE and relevance models. Both



Figure 1: Graphical model representations of relevance modeling (left), latent concept expansion using single
term concepts (middle), and latent concept expansion using two term concepts (right) for a three term query.

models essentially compute the likelihood of a term (or con-
cept) in the same manner. It is easy to see that just as the
MRF model can be viewed as a generalization of language
modeling, so too can LCE be viewed as a generalization of
relevance models.

There are important differences between MRFs/LCE and
unigram language models/relevance models. See Figure 1
for graphical model representations of both models. Uni-
gram language models and relevance models are based on
the multinomial distribution. This distributional assump-
tion locks the model into the bag of words representation
and the implicit use of term occurrence features. However,
the distribution underlying the MRF model allows us to
move beyond both of these assumptions, by modeling both
dependencies between query terms and allowing arbitrary
features to be explicitly used.

Moving beyond the simplistic bag of words assumption in
this way results in a general, robust model and, as we show
in the next section, translates into significant improvements
in retrieval effectiveness.

4. EXPERIMENTAL RESULTS
In order to better understand the strengths and weak-

nesses of our technique, we evaluate it on a wide range of
data sets. Table 2 provides a summary of the TREC data
sets considered. The WSJ, AP, and ROBUST collections
are smaller and consist entirely of newswire articles, whereas
WT10g and GOV2 are large web collections. For each data
set, we split the available topics into a training and test set,
where the training set is used solely for parameter estima-
tion and the test set is used for evaluation purposes.

All experiments were carried out using a modified version
of Indri, which is part of the Lemur Toolkit [18, 23]. All
collections were stopped using a standard list of 418 com-
mon terms and stemmed using a Porter stemmer. In all
cases, only the title portion of the TREC topics are used
to construct queries. We construct G using the sequential
dependence assumption for all data sets [14].

4.1 Ad Hoc Retrieval Results
We now investigate how well our model performs in prac-

tice in a pseudo-relevance feedback setting. We compare
unigram language modeling (with Dirichlet smoothing), the
MRF model (without expansion), relevance models, and
LCE to better understand how each model performs across
the various data sets.

For the unigram language model, the smoothing param-
eter was trained. For the MRF model, we train the model
parameters (i.e. Λ) and model hyperparameters (i.e. α, β).
For RM3 and LCE, we also train the number of pseudo-

Name Description # Docs Train
Topics

Test
Topics

WSJ Wall St.
Journal 87-92

173,252 51–150 151–200

AP Assoc. Press
88-90

242,918 51–150 151–200

ROBUST Robust 2004
data

528,155 301–450 601–700

WT10g TREC Web
collection

1,692,096 451–500 501–550

GOV2 2004 crawl of
.gov domain

25,205,179 701–750 751–800

Table 2: Overview of TREC collections and topics.

relevant feedback documents used and the number of ex-
pansion terms.

4.1.1 Expansion with Single Term Concepts

We begin by evaluating how well our model performs when
expanding using only single terms. Before we describe and
analyze the results, we explicitly state how expansion term
likelihoods are computed under this setup (i.e. using the
sequential dependence assumption, expanding with single
term concepts, and using our feature set). The expansion
term likelihoods are computed as follows:

PH,Λ(e|Q) ∝

∑

D∈RQ

exp
[

λTD

∑

w∈Q

log

[

(1 − α)
tfw,D

|D|
+ α

cfw

|C|

]

+

λOD

∑

b∈Q

log

[

(1 − β)
tf#1(b),D

|D|
+ β

cf#1(b)

|C|

]

+

λUD

∑

b∈Q

log

[

(1 − β)
tf#uw(b),D

|D|
+ β

cf#uw(b)

|C|

]

+

log

(

(1 − α)
tfe,D

|D|
+ α

cfe

|C|

)λ′

TD

(
cfe

|C|

)λ′

TQ

]

(4)

where b ∈ Q denotes the set of bigrams in Q. This equation
clearly shows how LCE differs from relevance models. When
we set λTD

= λ′
T,D = 1 and all other parameters to 0,

we obtain the exact formula that is used to compute term
likelihoods in the relevance modeling framework. Therefore,
LCE adds two very important factors to the equation. First,
it adds the ordered and unordered window features that are
applied to the original query. Second, it applies an intuitive
tf.idf -like form to the candidate expansion term w. The idf
factor, which is not present in relevance models, plays an
important role in expansion term selection.
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Figure 2: Histograms that demonstrate and compare the robustness of relevance models (RM3) and latent
concept expansion (LCE) with respect to the query likelihood model (QL) for the AP, ROBUST, and WT10G
data sets.

The results, evaluated using mean average precision, are
given in Table 3. As we see, the MRF model, relevance mod-
els, and LCE always significantly outperform the unigram
language model. In addition, LCE shows significant im-
provements over relevance models across all data sets. The
relative improvements over relevance models is 6.9% for AP,
12.9% for WSJ, 6.5% for ROBUST, 16.7% for WT10G, and
7.3% for GOV2.

Furthermore, LCE shows small, but not significant, im-
provements over relevance modeling for metrics such as pre-
cision at 5, 10, and 20. However, both relevance modeling
and LCE show statistically significant improvements in such
metrics over the unigram language model.

Another interesting result is that the MRF model is sta-
tistically equivalent to relevance models on the two web data
sets. In fact, the MRF model outperforms relevance mod-
els on the WT10g data set. This reiterates the importance
of non-unigram, proximity-based features for content-based
web search observed previously [14, 16].

Although our model has more free parameters than rele-
vance models, there is surprisingly little overfitting. Instead,
the model exhibits good generalization properties.

4.1.2 Expansion with Multi-Term Concepts

We also investigated expanding using both single and two
word concepts. For each query, we expanded using a set of
single term concepts and a set of two term concepts. The
sets were chosen independently. Unfortunately, only negli-
gible increases in mean average precision were observed.

This result may be due to the fact that strong correla-
tions exist between the single term expansion concepts. We
found that the two word concepts chosen often consisted of
two highly correlated terms that are also chosen as single
term concepts. For example, the two term concept “stock
market” was chosen while the single term concepts “stock”
and “market” were also chosen. Therefore, many two word
concepts are unlikely to increase the discriminative power
of the expanded query. This result suggests that concepts
should be chosen according to some criteria that also takes
novelty, diversity, or term correlations into account.

Another potential issue is the feature set used. Other
feature sets may ultimately yield different results, especially
if they reduce the correlation among the expansion concepts.

Therefore, our experiments yield no conclusive results with
regard to expansion using multi-term concepts. Instead, the
results introduce interesting open questions and directions
for future exploration.

LM MRF RM3 LCE

WSJ .3258 .3425α .3493α .3943αβγ

AP .2077 .2147α .2518αβ .2692αβγ

ROBUST .2920 .3096α .3382αβ .3601αβγ

WT10g .1861 .2053α .1944α .2269αβγ

GOV2 .3234 .3520α .3656α .3924αβγ

Table 3: Test set mean average precision for lan-
guage modeling (LM), Markov random field (MRF),
relevance models (RM3), and latent concept expan-
sion (LCE). The superscripts α, β, and γ indicate
statistically significant improvements (p < 0.05) over
LM, MRF, and RM3, respectively.

4.2 Robustness
As we have shown, relevance models and latent concept

expansion can significantly improve retrieval effectiveness
over the baseline query likelihood model. In this section
we analyze the robustness of these two methods. Here, we
define robustness as the number queries whose effectiveness
are improved/hurt (and by how much) as the result of ap-
plying these methods. A highly robust expansion technique
will significantly improve many queries and only minimally
hurt a few.

Figure 2 provides an analysis of the robustness of rele-
vance modeling and latent concept expansion for the AP,
ROBUST, and WT10G data sets. The analysis for the
two data sets not shown is similar. The histograms pro-
vide, for various ranges of relative decreases/increases in
mean average precision, the number of queries that were
hurt/improved with respect to the query likelihood baseline.

As the results show, LCE exhibits strong robustness for
each data set. For AP, relevance models improve 38 queries
and hurt 11, whereas LCE improves 35 and hurts 14. Al-
though relevance models improve the effectiveness of 3 more
queries than LCE, the relative improvement exhibited by
LCE is significantly larger. For the ROBUST data set, rel-
evance models improve 67 queries and hurt 32, and LCE
improves 77 and hurts 22. Finally, for the WT10G collec-
tion, relevance models improve 32 queries and hurt 16, and
LCE improves 35 and hurts 14. As with AP, the amount of
improvement exhibited by the LCE versus relevance models
is significantly larger for both the ROBUST and WT10G
data sets. In addition, when LCE does hurt performance, it
is less likely to hurt as much as relevance modeling, which
is a desirable property.



1 word concepts 2 word concepts 3 word concepts
telescope hubble telescope hubble space telescope
hubble space telescope hubble telescope space
space hubble space space telescope hubble
mirror telescope mirror space telescope NASA
NASA telescope hubble hubble telescope astronomy
launch mirror telescope NASA hubble space

astronomy telescope NASA space telescope mirror
shuttle telescope space telescope space NASA

test hubble mirror hubble telescope mission
new NASA hubble mirror mirror mirror

discovery telescope astronomy space telescope launch
time telescope optical space telescope discovery

universe hubble optical shuttle space telescope
optical telescope discovery hubble telescope flaw
light telescope shuttle two hubble space

Table 4: Fifteen most likely one, two, and three word concepts constructed using the top 25 documents
retrieved for the query hubble telescope achievements on the ROBUST collection.

Overall, LCE improves effectiveness for 65%-80% of queries,
depending on the data set. When used in combination with
a highly accurate query performance prediction system, it
may be possible to selectively expand queries and minimize
the loss associated with sub-baseline performance.

4.3 Multi-Term Concept Generation
Although we found that expansion using multi-term con-

cepts failed to produce conclusive improvements in effective-
ness, there are other potential tasks that these concepts may
be useful for, such as query suggestion/reformulation, sum-
marization, and concept mining. For example, for a query
suggestion task, the original query could be used to gener-
ate a set of latent concepts which correspond to alternative
query formulations.

Although evaluating our model on these tasks is beyond
the scope of this work, we wish to show an illustrative exam-
ple of the types of concepts generated using our model. In
Table 4, we present the most likely one, two, and three term
concepts generated using LCE for the query hubble telescope

achievements using the top 25 ranked documents from the
ROBUST collection.

It is well known that generating multi-term concepts us-
ing a unigram-based model produces unsatisfactory results,
since it fails to consider term dependencies. This is not
the case when generating multi-term concepts using our
model. Instead, a majority of the concepts generated are
well-formed and meaningful. There are several cases where
the concepts are less coherent, such as mirror mirror mirror.
In this case, the likelihood of the term mirror appearing in
a pseudo-relevant document outweighs the “language mod-
eling” features (e.g. fOQ

), which causes this non-coherent
concept to have a high likelihood. Such examples are in the
minority, however.

Not only are the concepts generated well-formed and mean-
ingful, but they are also topically relevant to the original
query. As we see, all of the concepts generated are on topic
and in some way related to the Hubble telescope. It is inter-
esting to see that the concept hubble telescope flaw is one of
the most likely three term concepts, given that it is some-
what contradictory to the original query. Despite this con-
tradiction, documents that discuss the telescope flaws are

also likely to describe the successes, as well, and therefore
this is likely to be a meaningful concept.

One important thing to note is that the concepts LCE
generates are of a different nature than those that would
be generated using a bigram relevance model. For example,
a bigram model would be unlikely to generate the concept
telescope space NASA, since none of the bigrams that make
up the concept have high likelihood. However, since our
model is based on a number of different features over various
types of cliques, it is more general and robust than a bigram
model.

Although we only provided the concepts generated for a
single query, we note that the same analysis and conclusions
generalize across other data sets, with coherent, topically
related concepts being consistently generated using LCE.

4.4 Discussion
Our latent concept expansion technique captures two semi-

orthogonal types of dependence. In information retrieval,
there has been a long-term interest in understanding the
role of term dependence. Out of this research, two broad
types of dependencies have been identified.

The first type of dependence is syntactic dependence. This
type of dependence covers phrases, term proximity, and term
co-occurrence [2, 4, 5, 7, 26]. These methods capture the
fact that queries implicitly or explicitly impose a certain set
of positional dependencies.

The second type is semantic dependence. Examples of se-
mantic dependence are relevance feedback, pseudo-relevance
feedback, synonyms, and to some extent stemming [3]. These
techniques have been explored on both the query and doc-
ument side. On the query side, this is typically done using
some form of query expansion, such as relevance models or
LCE. On the document side, this is done as document ex-
pansion or document smoothing [11, 13, 24].

Although there may be some overlap between syntactic
and semantic dependencies, they are mostly orthogonal. Our
model uses both types of dependencies. The use of phrase
and proximity features within the model captures syntac-
tic dependencies, whereas LCE captures query-side semantic
dependence. This explains why the initial improvement in
effectiveness achieved by using the MRF model is not lost



after query expansion. If the same types of dependencies
were capture by both syntactic and semantic dependencies,
LCE would be expected to perform about equally as well
as relevance models. Therefore, by modeling both types of
dependencies we see an additive effect, rather than an ab-
sorbing effect.

An interesting area of future work is to determine whether
or not modeling document-side semantic dependencies can
add anything to the model. Previous results that have com-
bined query- and document-side semantic dependencies have
shown mixed results [13, 27].

5. CONCLUSIONS
In this paper we proposed a robust query expansion tech-

nique called latent concept expansion. The technique was
shown to be a natural extension of the Markov random field
model for information retrieval and a generalization of rel-
evance models. LCE is novel in that it performs single or
multi-term expansion within a framework that allows the
modeling of term dependencies and the use of arbitrary fea-
tures, whereas previous work has been based on the bag of
words assumption and term occurrence features.

We showed that the technique can be used to produce
high quality, well formed, topically relevant multi-term ex-
pansion concepts. The concepts generated can be used in
an alternative query suggestion module. We also showed
that the model is highly effective. In fact, it achieves signifi-
cant improvements in mean average precision over relevance
models across a selection of TREC data sets. It was also
shown the MRF model itself, without any query expansion,
outperforms relevance models on large web data sets. This
reconfirms previous observations that modeling dependen-
cies via the use of proximity features within the MRF has
more of an impact on larger, noisier collections than smaller,
well-behaved ones.

Finally, we reiterated the importance of choosing expan-
sion terms that model relevance, rather than the relevant
documents and showed how LCE captures both syntactic
and query-side semantic dependencies. Future work will
look at incorporating document-side dependencies, as well.
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