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Abstract

The Principle of Maximum Entropy is discussed and two classic probabilistic models of information
retrieval, the Binary Independence Model of Robertson and Sparck Jones and the Combination Match
Model of Croft and Harper are derived using the maximum entropy approach. The assumptions on which
the classical models are based are not made. In their place, the probability distribution of maximum
entropy consistent with a set of constraints is determined. It is argued that this subjectivist approach is
more philosophically coherent than the frequentist conceptualization of probability that is often assumed as
the basis of probabilistic modeling and that this philosophical stance has important practical consequences
with respect to the realization of information retrieval research.

1 Introduction

This paper takes a fresh look at modeling approaches to information retrieval that have been the basis of
much of the probabilistically motivated IR research over the last twenty years. We shall adopt a subjectivist
Bayesian view of probabilities and argue that classical work on probabilistic retrieval is best understood from
this perspective. The main focus of the paper will be the ranking formulas corresponding to the Binary
Independence Model (BIM}, presented originally by Robertson and Sparck Jones [RS77] and the Combination
Match Model (cMM), developed shortly thereafter by Croft and Harper [CH79). We will show how these
same ranking formulas can result from a probabilistic methodology commonly known as Maximum Entropy
(MAXENT).

In order to rank documents in response to a query, a probabilistic system will calculate a probability of
relevance for each document. This calculation will be based on some joint probability distribution over the
relevance variable and variables corresponding to the evidence used by the system. The system, however, will
not have full knowledge of such a distribution. In the Binary Independence and Combination Match madels,
a probability distribution is chosen by making strong assumptions concerning the distribution, which together
with parameters estimated from the data, allows the desired probability of relevance to be calculated. In
this paper we will show how these formal models can be derived from the Principle of Maximum Entropy,
which counsels usg to select the probahility et hition with masimiime entramg of a1l Fhooa Fhat emnfoarm Fm



1.1 Maximum Entropy

Bayesian reasoning: A clear distinction is made in Statistics with regard to those who consider themselves
frequentists and others who tend to be known as Bayesians. Frequentists view a probability as a real char-
acteristic of a physically reproducible experimental setup. A clear example of this would be the repeated
throwing of a coin or pair of dice. Another would be the random sampling of a physically existing population
such as that which is done for the purposes of medical testing or political polling.

Bayesians can be distinguished in two important ways. First is a far greater tendency to call on Bayes law:

p(E|K)

p(H|E,K) =

when reasoning probabilistically. The second is that Bayesians have a wider view of what a probability is. For
a Bayesian, a probability is interpreted as the plausibility of a proposition. While these propositions can refer
to repeatable events, such as coin tosses, they may also refer to propositions that are not easily or naturally
given a frequentist interpretation. Propositions referring, for example, to whether Albert Gore will be elected
president of the United States in the year 2000, or whether Lizzy Borden was actually guilty of what she was
accused are anathera to the frequentist, but considered grist for the probabilistic mill by the Bayesian.

These two facets of the Bayesian are not unrelated. Often, H is a statistical hypothesis and E is data that
has been collected. K is included to emphasize that, for the Bayesian, all probabilities are conditioned on the
background knowledge possessed by the person (or machine) making the probability assessment, as well as
other information such as the data from an experiment. In such cases, p(E|H, K) is the likelihood of seeing
the evidence we have observed given that the hypothesis is true, and p(H|K) is the prior probability that H
is true before any data has been observed. p(£|K) is the probability assigned to seeing the evidence without
any knowledge of which of the possible hypotheses may be true. In general, it may be calculated by summing
the product of the likelihoods and prior probabilities over all possible hypotheses:

pE=c|K) = Y pE=enH=h|K)=Y oE=c|H=h,K)p(H=h; | K)

i=1 i=1

where e is the observed evidence, each h; is one of the possible hypotheses, and the summation is over all
possible hypotheses. Equivalently, p{F|K’) can be viewed as a normalization constant chosen to make the sum
of probabilities over all possible hypotheses conditioned on the evidence, e, sum to 1.

For a frequentist, this type of reasoning is not considered valid unless the probability of a hypothesis can be
given a frequency interpretation. Often it is not possible, or at least it is very unnatural, to conceive of the
hypothesis as a random event. For the Bayesian who views the probability of a hypothesis as a measure of
its plausibility, this does not present a problem. We see then that the two aspects of the Bayesian outlook,
the utilization of Bayes law and the interpretation of the meaning of a probability, are intimately intertwined.
The reader is referred to [Fin73, Hac65] for more in depth discussions of these issues.

The Principle of Maximum Entropy: At the end of the 19th century, primarily as a result of the work of
Maxwell, Boltzmann and Gibbs [Jay79], the area of Statistical Mechanics was born. As a consequence, the
entropy of a physical system became associated with a probability distribution of the phase space of possible
atomic configurations.

In 1948, Claude Shannon published The Mathematical Theory of Communication and established the foun-
dations of Information Theory. From three intuitively appealing desiderata, Shanmnon developed a formal
expression for a measure of “how much ‘choice’ is involved in the selection of an event or of how uncertain we
are of the outcome” [Shad8]. He showed that for a probability distribution, p = (p1,...,pt), over k possible
elementary events, the quantity:



is, within a constant factor, the unique quantity in accord with his assumptions®. Since the form of the ex-
pression is recognized as the expression given for the physical property of entropy in formulations of Statistical
Mechanics he calls the quantity entropy and adopts the symbol H, recalling Boltzmann’s H-theorem.

In 1957, Edwin Jaynes “converted Shannon’s measure to a powerful instrument for the generation of statistical
hypotheses and ... applied it as a tool in statistical inference” [Tri79]. In a pair of seminal articles, [Jay57a,
Jay57b], Jaynes demonstrates that by viewing it as a problem of statistical inference, Statistical Mechanics can
be derived without depending on “additional assumptions not contained in the laws of mechanics” [Jay57a).
His method of inference is based on what has come to be known as the Principle of Maximum Entropy. In his
own words, this principle states that the maximum entropy estimate is:

the least binsed estimate possible on the given information; i.c. it is mazimally noncommittal with
regard to missing information. [Jey57a, pg. 620/

This maximum entropy estimate is obtained by determining that probability distribution associated with a
random variable, A, over a discrete space (a3, .. ., a,) which has the the greatest entropy subject to constraints
on the expectations of a given set of functions of the variable. That is, the distribution that maximizes { 2)
subject to a gset of constraints:

Eg(A) = pm-gla) = G

i=1

E(gn(A)) =D P gml(as) = Gm
i=1
These constraints embody the knowledge that we wish to incorporate in our distribution of the probability
over the possible elementary events.

An example: The example given here is an adaptation of the “Brandeis Dice Problem” originally presented
as an illustration of the maximum entropy approach in [Jay63].

Suppose that we are given a large number of dice and the task of ranking them. Once the dice are ordered,
each will be thrown one time, and our goal is to get as large a number of 4’s as we can. Suppose, furthermore,
that experiments have been run on the dice. Each die has been thrown a large number of times, but the only
knowledge we have of these experiments is the average value produced by each die. Following the Probability
Ranking Principle [Rob77], we decide to rank the dice by the probability of their producing 4 5. How are we
to arrive at this probability?

Of some things we feel sure. A die whose average is very close to either 1 or 6 should rank very low. We
know that a die that produced an average close to 1 must have produced almost all 1’s and hence could have
produced only a few 4’s at best. The frequency of 4’s was low in the experimental trials, and common sense
dictates assigning a very low probability to its producing 4 the next time it is thrown. Similarly for an average
close to 6. Somehow common sense also tells us that dice that produce sample means above 3.5 should be
ranked higher than those that produced sample means below 3.5. A die that produced an average greater
than 3.5 has exhibited a tendency toward the higher numbers, whereas a die that produced an average below
3.5 has exhibited a tendency toward the lower numbers. It is reasonable, then, to assign a higher probability
of producing a 4 to a die that has displayed an affinity for higher numbers. But, how are we to compare, for
example, a die with an average of 3.7 against a die with an average of 4.27
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distribution with maximum variance. This would result in all of the probability mass placed on the 1 and the
6 in such a way that mean, g, was respected. That is,

6 — -1

Tplr pz:o'ﬂ p3=0' p4=0: p5=D1 p6=#T>

Anpother approach that has been used in statistics is to choose the distribution that minimizes the sum of the
squares of the probabilities. Unfortunately, this can lead to negative values for some of the probabilities in
soIme cases.

P = <p1=

The MAXENT solution to this problem is to assign to each die the probability distribution over the six possible
numbers that has maximum entropy. From this distribution, we can determine the probability of each die
coming up 4, and then rank the dice based on these probabilities. The MAXENT solution has the following
attractive properties: :

» The probability associated with each die accords with the data in that, under this distribution, the expec-
tation of the number to appear on a given toss is equal to the experimental average.

¢ Of all distributions that conform with the data in this way, it is that which has the maximum uncertainty
associated with it, in the sense of uncertainty which follows from the Shannon desiderata. The probability
is “spread out” as much as possible in accord with the constraints that have been imposed. In this way, it
may be said to include all the knowledge available and nothing more. In the words of Jaynes, it is the least
biased distribution possible.

¢ The method is logically consistent. We are guaranteed that anomalies (negative probabilities, for example)
will not occur if we follow the MAXENT procedure.

¢ The results accord with common sense. For example, the probability distribution for a die with an average
close to 1 will be highly peaked around 1.

The probability distribution associated with a die whose average is 4.0 is given by Golan, Judge and Miller
[GIM96, Table 2.3.1, pg. 14] as

p =< 0.103,0.123, 0.146, 0.174, 0.207, 0.247 >

The expected value for this distribution is 4.0, and of those with expectation of 4.0, the probability is the
most evenly distributed. An average of 5.0 corresponds to a distribution of

p =< 0.021, 0.038, 0.072, 0.136, 0.265, 0.478 >
which is even more skewed toward higher numbers, as we would expect. An average of 3.5 corresponds to
p =< 0.167,0.167,0.167, 0.167, 0.167, 0.167 >

which is as spread out as a distribution over six possibilities can be, and is the same probability distribution
we associate with a die about which we have no information. It is interesting to note here that the MAXENT
approach allows such a die (one for which the experimental average was missing for some reason) to bhe
included in the ranking along with the rest. Values for the probability of throwing a 4, associated with dice
with averages of 2.0, 3.0, 3.5, 4.0, and 5.0 are, respectively, 0.072, 0.146, 0.167, 0.174 and 0.136.

We have modified The Brandeis Dice Problem so that the example is suggestive of the problem faced in the

design of information retrieval systems. It is now time to address directly the issue of how the MAXENT
approach pertains to IR modeling.

1.2 The MAYXENT Annroach asnd Prohohiliciie TR Meadaliao



In two papers in the early ’80s, Cooper and Huizinga [CH82] and Cooper [Co083], make a strong case for
applying the maximum entropy approach to the problems of information retrieval. Cooper points out that,
“A common criticism of most probabilistic approaches to information retrieval system design is that they
involve the use of unrealistic simplifying assumptions concerning statistical independence” [Coo&3]. Cooper
and Huizinga state that one might “forgive serious oversimplifications in particular cases if the assumptions
were in some sense correct on the average, or if they constituted a best guess in some cogent statistical sense,
but no convincing arguments have been advanced showing that the assumptions are supportable even in this
weak sense®” [CHS82, pg. 101].

In these papers, firm first steps are taken in the direction of applying maximum entropy to information
retrieval. The maximum entropy approach is used to incorporate the idea of term precision weighting [SWY76]
in a probabilistic context. They show how probability-of-relevance computations based on MAXENT result in
an expressive request language combining the capabilities of both Boolean and “weighted-request” retrieval
systems.

In [Kan84, KL86], Kantor and Lee extend the analysis of the Principle of Maximum Entropy in the context
of information retrieval. In [LK91] they explore the use of maximum entropy to resolve user estimates of
conditional relevance probabilities that may be inconsistent with available term occurrence data. Very recently,
[KL98], they have conducted experiments to test the performance of the PME as a method of document
retrieval. While they outperform two simpler methods on small collections, they report discouraging results
on large document sets and conclude that the PME, in general, does not appear to present advantages over
more “naive” methods.

I contrast to the work of Kantor and Lee in [KL9§], our interest is not in the development of an alternative
retrieval algorithm based on the PME. Our intent is rather to consider the conceptual basis for traditional
approaches to probabilistic retrieval. The goal in what follows will be to analyze classical probabilistic IR
models in light of the Principle of Maximum Entropy. The primary objectives of this paper are to: 1) show that
traditional approaches to probabilistic retrieval modeling can be reproduced using the MAXENT methodology;
and 2) compare and contrast the classical and MAXENT approaches. The reasons for undertaking this study
is our belief that:

e The MAXENT approach is, in a sense, more basic than previous approaches. We believe that maximum
entropy allows for the development of probabilistic models from conceptually simpler, more fundamental
principles. We recognize that opinions will differ as to what is to be considered conceptually simpler and
more fundamental. We shall try to avoid taking a dogmatic stand in what follows and stay to our goal of
presenting an alternative view and the reasons we believe this view to be worthy of consideration.

¢ The MAXENT approach adopts a different philosophical attitude with respect to the role of probability
theory, and the meaning of “probability”. This difference we believe to be pertinent when the probability
calculus is applied to the problem of information retrieval. We find this distinction to be more than an
abstract issue of philosophical interpretation, but one with practical repercussions that can affect how the
IR problem is viewed; the types of solutions researchers are predisposed to consider; the methodologies and
tools brought to bear; the formulation of proposed solutions; and ultimately the design of retrieval systems.

o Maximum entropy offers a formal, mathematically consistent technique for the combination of evidence.
The justification of this technique, felt to be compelling by some, less so by others, can be said, at the least,
to be reasonable. In cases of sufficient simplicity, for which common sense suggests a solution, MAXENT is
found to accord with common sense.

e Maximum entropy can be viewed as a methodology of research. The researcher, intent on modeling some
aspect of nature stochastically, chooses an elementary event space as best she can based on her knowledge
of the phenomenon under study. She further constrains the probability distribution over this space usmg
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Mechanics, for example. Or, an application utilizing the distribution, for image reconstruction perhaps,
may produce results inferior to what we have reason to suspect is possible. If so, this is where, according
to Jaynes, the Maximum Entropy approach can be most valuable. Jaynes recounts how classical statistical
mechanical theory was unable to predict some thermodynamic properties such as heat capacities. This state
of affairs forced the search for additional constraints. The nature of this constraint lay in the discreteness
of possible energy states. Jaynes asserts as “historical fact that the first claims indicating the need for
the quantum theory ... were uncovered by a seeming unsuccessful application of the principle of maximum
entropy” [Jay94, p. 1125].

If the distribution is not living up to expectations, then something known about the problem has not been
taken into account and MAXENT points a finger in the direction that needs to be explored. There may be 2
way of using this knowledge to further constrain the distribution. It this extra piece of knowledge can be
identified, a way of incorporating the knowledge in the form of one or more new constraints can be designed
and the process may continue. If no more constraints can be found and the results are still not adequate, the
researcher must begin to question the specification of the elementary event Space over which the probability
distribution is defined. After sericus contemplation, the space may, in retrospect, be thought not to be the
best. The researcher may want to modify the space so as to better conform to her prior knowledge with
respect to the nature of her problem.

In this paper, the following view of a probabilistic retrieval system is adopted. The rank of a document is
the system’s probability that the document in question will be found to be relevant to a given query. In
arriving at this probability, the system brings to bear all general knowledge it has concerning the relevance
of documents to queries. This is combined with knowledge of the characteristics of the particular document
collection being searched and the specific query/document pair currently under gcrutiny. In the case of the
Binary Independence Model, knowledge gleaned from the user in the process of relevance feedback is used as
well.

For a given query, the system will arrive at a joint probability distribution over the elementary event space
2 = X x R, where X is a vector of document attributes and R={0,1} corresponds to judgments of relevance.
Knowledge built into the system in combination with knowledge of the statistical characteristics of the doc-
ument collection are used to constrain the probability distributions that will be considered. Of the set of
probability distributions satisfying these constraints, the unique distribution that maximizes the entropy will
be chosen. The distribution can then be used to assign the system’s probability of relevance.

1.3 Contents of Paper

In the next section we give a brief review of the Binary Independence Model (BIM) developed by Robertson
and Sparck Jones. We also review the Croft and Harper adaptation of the basic BIM idea to applications
for which no relevance judgments are presumed to be available. With this, we will be prepared for the main
purpose of the paper.

In Section 3, we show how the essence of the Binary Independence Model (BIM) can be derived from the
Principle of Maximum Entropy. With the development of the model established, we discuss the assumptions
of the Binary Independence Model, in the light of the maximum entropy approach. In particular, we show
that linked dependence, which is assumed in the Binary Independence Model is, in a sense, a consequence of
the MAXENT model in that it is a characteristic of the resulting probability distribution. In section 4 we g0
on to show how the work of Croft and Harper can also be reproduced from the maximum entropy standpoint.
Again we compare the approach taken by the original authors to that adopted with MAXENT.

In Section 5, we discuss the two models we have developed with the MAXENT approach. More specifically, we
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2 Background

2.1 Binary Independence Model

The Binary Independence Model {BIM), developed by Robertson and Sparck Jones [RS77, van79], adopts
a probabilistic approach to the development of a ranking formula. It is designed to be applicable in an
environment in which the relevance of some of the documents will have been judged prior to the application
of the BIM ranking formula.

In the Binary Independence Model, the focus is on the odds of relevance, conditioned on the occurrence pattern
of the query terms that is observed in a given document:

lze,. .., 2,
Ofrellz,...,5,) = Erellzsn..,e)
plrellz,. .., zs)
where (z1,...,z,) € {0,1}* are the values of (X1,-..,X,) corresponding to the occurrences of the s query

terms in a given document. For the purposes of clarity of exposition, rel and rel shall be used interchangeahly
with 0 and 1, respectively, for the values of the relevance variable, R. The application of Bayes law in both
the numerator and the denominator gives:

O(relle, . .., zs) ﬂu—mslfﬂ) - Ofrel) (3)
p{x1, ..., zslrel)

The key assumption in the Binary Independence Model is that query term occurrences are independent in
both the relevant and non-relevant sets. Formally:

Y(r1,...,zs) € {0,1}°: plzy, ... x5lrel) = Hp(a:,-jrel) (4
plas, . zolrel) = [[ptailrel) (5)

From which, it immediately follows that:

s PlEs, . zslrel) | Typlmsfred)
Vier,oz) € {0,1) Cplay,. .. zajrel) L p(wilrel) (6

William Cooper later emphasized that equation ( 6) is all that really needs to be assumed [Coo91]. This,
“linked dependence assumption” is weaker than the pair of conditional independence assumptions, ( 4) and
( 3), and is a fairer statement of the properties that need be assumed to hold, in order for the application of
the Binary Independence Model to be valid.

‘The product on the right of ( 6) can be reorganized into two separate products: one over terms that do occur
in the document and one over terms that don’t:

7 plaijrel) _ pzilrel) plxs|rel)
o p(wi|rel) ooPl@drel) 1 plairel)

By extracting ;%(%((%_E});L%; from each of the factors, we obtain a formula that involves the multiplication of a

value which is independent of the term occurrence pattern by a term-dependent coefficient for each of the
terms occurring in a document,

Tp(mifrel) plaifrel) ,p(X; = Ojrel) plzilrel) p(Xi =0Olrel)  1Tp(X: = Olrel)
Hp( H

_ (
x;|rel) S pzilrel) p(Xi = Orel) 22 p(xilrel) /P(Xz' =0rel)  1p(X: = O|rel)

r ol X = Olrell ol X — QOlee?) o — ol Y e Tl ?Y oA X P . .~ g



Under the linked dependence assumption ( 6), the expression ( 7) may be substituted for the fraction in ( 3),
giving:

p(X; = 1|rel) p(X; = Orel) p(Xs = Qfrel)
Ofrel|lz1,...,z4) - Ofrel 8
(relfer ‘ ,1_"[1 (X; = 1rel) p(Xi = Olrel) H ; = Ofrel) (ret) ®)
Taking the log of both sides yields:
p(X; = 1|rel) p(X; = 0|rel) p(X 0|rel)
log O(rel|zy, . .., s} = I = log O(rel 9
og O(rel|z; Ts) Z 0g P(X; = 1[red) p(X: = Ofred) + Z ZoheD + log O(rel) (9)

o=l

The Binary Independence Model supposes that relevance feedback information is available and that the prob-
abilities in ( 9) can be estimated from the set of documents judged relevant and non-relevant:

plailrel) = &
plzilrel) = &
giving,
log O(relizs, ..., zs) = Z gzg_g) +Zlog g + log O(rel) (10)

The result is an additive formula for the calculation of the log-odds of relevance, conditioned on the occur-
rence pattern of the query terms. The increase in the log-odds in favor of a hypothesis, from log O(rel) to
log O(rellzy,. .., ;) in this case, has been called “weight-of-evidence” by Good {Goo60, Goo50]. The formula
allows the welght of evidence in favor of relevance provided by the occurrence pattern of the query terms,
relative to that provided by a document in which no query terms are present, to be calculated by adding:

&(1-&)
§:(1—&)
for each query term that appears in the document. From a practical standpoint, it is important that the
calculation invelves only terms that appear in the document.

log {11)

2.2 Croft & Harper model without Relevance Information

In 1879, Croft and Harper adapt the work of Robertson and Sparck Jones to develop a probabilistic retrieval
model that does not depend on the availability of relevance information. In the place of relevance feedback
data they use collection statistics to estimate the probability of a query term appearing in a non-relevant
document. Croft and Harper rewrite the sum of the BIM term weights, ( 11}, as
$™ tog P = re)(L = pXs = Urel)) Zlﬂ P =Tjrel) Z g o pXi= 1D
p(X; = 1jrel) (1 — p(3; = 1[rel)) 1 1 - p(X; = Ljrel) p(X = 1jrel)

#;=1 ;=1

They estimate the value of p(X; = 1|rel) as %, where n; is the number of documents in which term ¢ appears
and N is the total mimber of documents in the collection. They also assume that the probability of appearing
in a relevant document is the same for all terms in the query, an assumption we will examine further later
on. The first term of ( 12) is simply a constant, C, tirnes the number of query terms that appear in the
document. Viewing this constant as a weighting factor, they conclude that the best ranking function is a
weighted combination:

a - za:l + ilogN

®;=1 ;=1

(13)



3 The BIM-MAXENT Retrieval Model

In this section, we derive a retrieval model based on the Principle of Maximum Entropy. The model, which we
shall refer to as BIM-MAXENT, will be constrained in such a way as to be consistent with the assumptions made
in the Binary Independence Model of Robertson and Sparck Jones . Qur goal is to reproduce the ranking
formula. Subsequently, we will analyze the constraints placed on the probability distribution in our maximum
entropy model and compare them with the assumptions on which the Binary Independence Model is based.

3.1 Basic BIM-MAXENT Model
Our goal is to maximize the entropy of the probability distribution:

H{p) =" p(w)log p(w) (14)

wen
where each w is an elementary element of the event space O = X x R. Each elementary event corresponds to
the observation of a document with respect to a given query. Associated with each observation are the random
variables, X;,...,X;, & R, where s is the number of terms in the query. Fach of these variables is binary,
with X; = 1 corresponding to the occurrence of term i in the document, and R = 1 corresponding to the

document being relevant to the query. Hence, the sum in ( 14) is taken over all possible (binary) assignments
(il:l,. .. ,$5,T) to {Xl,. . ,XS,R).

constraints: In the maximum entropy model, the probability distribution over these elementary events will
be constrained in three different ways:

» For each query term, the probability of its occurring in a document known not to be relevant to the query
will be constrained. These probabilities may be constrained independently.

¢ For each query term, the probability of its occurring in a document known to be relevant to the query will
be constrained. As with the probabilities conditioned on non-relevance, the probability associated with each
query term may be constrained independently of the rest.

* The prior probability of relevance (i.e., the probability that an arbitrary document is relevant before any of
the term occurrence variables is observed) will be constrained.

Formally these three constraints can be expressed as:

p(X;i=1R=0} = §£ i=1,...,s (15)
pXi=1R=1) = & t=1,...,8 (16}
p(R=1) = p (17)

The constraints given in ( 15) and ( 16) are analogous to probabilities that, in the Binary Independence Model,
are estimated as a result of relevance feedback. There, the values & and £; are estimated from documents
Jjudged to be relevant and non-relevant respectively.

No attempt is made to estimate the value p in the Binary Independence Model. The prior odds of relevance
does enter into the odds of relevance conditioned on the term occurrence pattern given in { 8). However, it
is not needed for the purposes of ranking. We include constraint ( 17) in order to fully mimic the log-odds
of relevance formula developed in the BiM model. This constraint has something of a subordinate status
in our model, also. If no reasonable value for it can be assigned, it may be treated as a parameter in the
resulting probability distribution. We will see that, for the purposes of ranking, the parameter may be left
undetermined.
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_ _ 1 fXi(w)=1ARwW)=1 .
gi{w) = {0 otherwise p=Les

gr(w) R{w)

If

The desired constraints on the probability distribution can be effected by constraining the expectations of
these features such that:

Elnw)] = Gi=& (1-p) i=1,...,8 (18)
Elgpw) = Gi=¢&-p i=1...,s (19)
Elgr(w)] Gr=p (20)

In ( 20) we constrain the probability p(R = 1) to p directly,

Elgr(w)l=p ff E[Rj=p i pR=1)=p

since the expected value of a binary variable is simply the probability that the variable equals 1. In { 18), we
are effectively constraining p(X; = 1|R = 0) to &, since

Elgiw)]=&(1-p) if p(X;=1,R=0) = &-(1-p)
i p(Xi=1R=0)-p(R=0) = & -(1-p)
i p(X;=1R=0) - ¢

The last step follows because, having constrained p(R = 1) to p, we have constrained p(R = Otol—p.
Similarly, ( 19) effects the desired constraint on p(X; =1R=1):

Elgi(w)]=6p #ff p(X;=1,R=1) = &-p
f pXi=1lR=1)-pR=1) = & p
ff  p(X;=1|R =1} = &

probability of an arbitrary event: To maximize the entropy subject to these constraints, we apply the La-
grange method of undetermined multipliers [Chi67]. Introducing the multipliers, Aj; Aj,..., A Ag,.. .y Agl
and Ag, the problem of maximizing H in conformance with the constraints, { 18)—{ 20), is transformed into

the maximization of the unconstrained function:

H(p)= Y p)logpw) + Ml—3 p(w)) (21)
+ A6 jeip(w)gl(w)) +ot A(Ga= ) p(w)Fs(w))
+ (G —i(w)gl(w)) +o Aa(Gs—fp(w)gs(w))
+ Ar(Gr —wezﬂ:p(w)gn(w)) -

where the term, X,(1 — p(w)), corresponds to the constraint, applicable to any probability distribution, that
the p(w} must sum to 1. Taking the partial derivative with respect to p(w), for a specific event, w, gives:

Bp?w)H, = l+logplw) — A, - Xlgl(w)—-...—isgs(w)
— Mg(@) == Ags(w)
— Ar

Using Ao for Aj — 1 and setting the derivatives (one for each w) equal to zero, we get:

E] 3

) Y Y y L AT . e S e T



where r is 1 if w corresponds to a relevant document and 0 otherwise; 7 = (1 — r}is 1 if w corresponds to a
non-relevant document; and for i = 1,...,s: 2; is 1 when term 4 occurs in the document and O otherwise. It
is not difficult to prove (see, for example, Chapter 4 of [Tri69]) that this solution will always be, not only a
maximum, but a global maximum for the entropy.

3.2 BIM-MAXENT Ranking Formula

As we saw in the introduction, the ranking formula developed for traditional probabilistic systems is based on
the calculation of the odds of relevance given the occurrence pattern of the query terms. Based on the model
developed in the previous section, the conditional odds of relevance for the maximum entropy distribution can
be calculated as:

Ofrellzs, ... 5,) = plrellzy,....xs) _ pley,..., ¢, rel)/pler, ..., z5) _ plrr,.. xs,rel)

plrel|zy,... z:) plz1, ...,z rel}fp(z1,. .., 2,) plzy,. .. x,,rel)

E(AE:?;_:M?‘FA)R) o 6[(Z:=1(A‘_)_‘5)‘Fi)+lﬁ]
e\"? iy T

Therefore, the log-odds of relevance is given by:

log O(reljzy, ... \Es) = (i(.)\i - xz)m,) + Arp = (Z(A; — 5\,)) + Ar (23)

x;=1
This gives an expression for the log-odds of relevance in terms of the parameters, Ay, ..., Aq Ar,..., Ay and
Ar. We will need to determine the values of these parameters in terms of the constraining factors, £1,...,8,;
§15...,&; and p, in order to transform this ranking formula to one in terms of parameters that can be set

from the data that will be available at the time of retrieval.

3.3 Characteristics of the BIM-MAXENT Distribution

To prepare for the determination of the values for the Lagrange multipliers, we shall find it convenient to
derive closed form solutions for the following probabilities:

o O(X,; =1{R = 1): the odds of term occurrence given relevance.
» O(X; = 1|R = 0): the odds of term occurrence given non-relevance,

e (R =1): the prior odds of relevance.

odds of term occurrences given relevance:  Using the formulation developed for each term in the previous
section, the odds of occurrence conditioned on relevance can be determined. For the sake of concreteness we

develop the odds for the occurrence of the first term. For an arbitrary assignment, zo,...,z,, of values to
Xz, T ,Xsi

plan.wyrel) oI ]

p0, 2, ..., 25, rel} e [)\o+(2:=2a\;ri)+}-ﬂ]

We see that eM expresses how many times more likely we are to find an occurrence, as opposed to a non-
occurrence, of the first term, in a relevant document that has an occurrence configuration for the remaining
terms of {z2,...,z,). That is,



Since this is the case for an arbitrary configuration, (xs,...,z,) € {0,1}*!, we may sum over all possible
configurations:

Z p(lyza, ... z5,rel} = Z eM p(0,zg,...,z,,rel)

which is to say:
p(Xi=1R=rel) = M p(X1=0,R= rel)
and therefore:

pXi=1R=rel) p(Xri =1L, R=rel)/p(R=rel) p(X1=1,R=rel)
p(Xi =0R=vrel)  p(X1=0,R=rel)/p{R=rel) p(X1=0,R= rel)
Al

O(X; =1rel) =

= e
What we have shown for O(X, = 1|rel) holds equally well for all X;:

p(Xi =],R=T8{) A L
p(Xi:D,szrel)_e i=1,...,8 (24)

OX;=1rel) =

odds of term occurrences given non-relevance: The analysis of term occurrences given non-relevance is very
simjlar to that for relevance:

p(1:I21 o ,.’L’s,m) — e[AG+X1+(Z:=ZX!‘IE)] = e)_‘l

(0, Ta, ..., 2., 7el) e[z\n+(zf=2xeri)]

i

which leads to:

O(Xi=1|m)=€ii i=1,....8 {25)

prior odds of relevance: We will derive the prior odds of relevance in terms of the probabilities of relevance
and non-relevance. In order to derive a closed form for the probability of relevance from the formula given in
( 22}, we can sum over all elementary events for which R = 1:

poel) = 3 plar,. o ,mared)

3

Z e[)\D‘I'(Z::l(:\ir_"r)\iT)wi)+)\RT} = Potr) Z e[z‘.:l-\iwi]

Considering that for each configuration (zs,...,z,) there are two terms in the summation, one with z; = 0
and one with ;3 = 1, we can write:

p(rel} = 3(A0+'\R) Z (e [A1+E:=2A‘zi} + 3[2;23‘521'])
L TR

Applying this same reasoning to each of the remaining x;, in turn:

5

plrel) = e{’\°+)‘ﬂl(eh+1)(e‘\2+1) Z e[Ei=3k"mi]

= QPR +1) (26)

i=1
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Similar analysis for the probability of non-relevance yields:

p(T‘_BI_) = Z p(xlx"'axsym)"_“EAO Z 6[2:=1A“m‘]

= *DH(E +1) (27)

The probabhilities of relevance and non-relevance given in ( 26) & { 27) can now be combined to give the odds
of relevance:

p(rei) B e()\a+}~R)HI 1(8 +1)
plrel) e[ (eM+1)

RV & SO )
= ¢ E(eis+1) (28)

Ofrel)

I

3.4 Parameter Values for BIM-MAXENT

The Lagrange multipliers introduced in { 21) become parameters of the probability distribution derived in
( 22). If we are to derive a specific distribution, we must determine the values of these parameters. While
the derivation of the distribution was based on the form of the expressions to be constrained, as given in
( 18)—( 20}, the actual values to which they must be constrained have yet to play their role. We now turn our
attention to these values.

the value of Ay =... = As: From ( 24), we have A; = logO(X; = 1|rel), but p(X; = 1|rel) has been
constrained to £. Equivalently, p(X = 0|rel) has been constrained to 1 — £, and therefore:

= = — o PLXi = Lrel)
A o= logO{X; = 1l|rel) =log P(X; = Ofrel)
_ $i
= log T (29)
the value of Xy,..., A, Similarly, from ( 25),
- — Xi = 1rel)
N = log O{X: = 1frel) = log RUXi = 1lrel)
og O( |rel) = log 20X = Ofrel)
_ 3
= log & (30)

the value of Ap: The prior, p(rel), has been constrained to A which is equivalent to O{rel) being constrained
to . Combining this with the expression for O(rel) given in ( 28):

AR v+]- — £
¢ He"+l 1-p
Py L&_+1
1—pllerig
i=1
o
- P +1
An = IOg( e" +1) log 7 +Z eA +1

This together with the expressions for A; and X;, derlved in { 29} and ( 30}, gives:

a £ R



It is worth observing that Ap is simply the log-odds of relevance of a document for which none of the query
terms occurs:
p(0,...,0,rel) elro+ir]

log O(rell0,...,0) = Ilo ! — =lo =X 32
O(rell, .-, = Tog B8 = 1og £ (52)

the value of Ag: e is a factor in the probability of each elementary event and Ag plays no other role. Hence
Ap is nothing more than the log of the normalization constant which forces the probabilities over elementary
events to sum to 1.

3.5 BIM-MAXENT Ranking Formula - reprise

Substituting the values of the parameters derived in ( 29), ( 30), ( 31) for the conditional log-odds of relevance
given in ( 23), we have:

log O(rellzy,...,z5)

(Z()\i - 5\;‘)) + Ar

z;=1

(mzd ((log - Eifi —log - Ei‘s_i ))) +log 1 + Z Dg

— &l — p
= (Z_:llog A ) (Z log | ) +log - (33)
This is the ranking formula, ( 10), of the Binary Independence Model.
3.6 Discussion of the BIM-MAXENT Model
To summarize the development presented in this section:
e we have imposed the set of constraints ( 18- 20),
Elgw)] = Gi=&-(1-p) i=1,...,8
E{gg(u})] = G4 Efi-p t=1,...,8

Elgr(w)] = Gr=p

* it was shown in ( 22) that for the maximum entropy distribution subject to these constraints, the probability
of an arbitrary event, is given by:

logp(w) = e[}\0+(E:=1}—\1’Fmi)+(Ef=1‘\i-rm,')+)\;{1"]

e for this distribution, the log-odds of relevance conditioned on a given term occurrence pattern was found in
( 23) to be:

logO(rel|z1,...,2s) = (i:()\i - ;\'\i)ﬁi) +Ar = (Z(Ae - )\i)) + Ar

we=1

¢ by applying the constraint values &;, &, p, values for the parameters were determined in ( 29 31) as

&
.= ]
A ogl_&
3 3
Moo= 1 _
Ogl—Ez-
Ar = log +ilog 3
1 , 1-¢

14



¢ finally, in { 33) we have the log-odds of relevance in terms of the constraint values:

- _ &1 — &) - 1-& P
log O(rel|zy,...,55) = = (;log m) + (;Iog 1_&) +10g1_p

Of the distributions that conform to the constraints, that with maximum entropy is the distribution of the
Binary Independence Model. Two points are worthy of further discussion. First, we have not assumed
independence in any form. The linked dependence condition, while not assumed, can however be shown to
be a property of the derived maximum entropy distribution. Also, we have included a constraint on the
prior probability of relevance. A value for this is not needed if the formula is only to be used for ranking,.
Nonetheless, we might like to consider estimating this probability in order to produce a ranking status value
that can be interpreted as a probability. We begin with a discussion of linked dependence.

Linked Dependence as a Consequence of Maximum Entropy: We have not explicitly encoded the linked de-
pendence assumption in the development of the BIM-MAXENT model. Tt has not been necessary. Rather than
assume that the query term occurrences are conditionally independent random variables, we have chosen a
probability distribution that maximizes entropy subject to a set of constraints. There has been no need to
explicitly assume independence.

We shall defer further discussion of the distinction between constraints and assumptions for the moment.
For now, we will show that although independence has not been assumed, the form of the independence
conditions is a consequence of the Principle of Maximum Entropy. More precisely stated, a property of
the probability distribution that maximizes uncertainty is equivalent to a property of the “physically real”
probability distribution that is assumed to hold in traditional models.

For an arbitrary configuration (z;,...,z,) ¢ {0,1}*:

PEs . mlrel) _ plan,.. . oorel)fplrel) _ o (Dinte) i
p(mla--'zxilm) p(m,...,:r:_g,a)/p(m)

Ofrel)
8(2:21(2;—:\;]!;)8,\,1
- Ofrel) (34)
Recalling the expression for O(rel) derived in { 28), we have:
(E:= (Ai—is)zi) by s < Y
pl®L, ..., ms___if’_el) = & : - (e’\i+1? " = e(zizl('\‘—)‘*)mi) . H—m—ge)‘_ 13 {(35)
plzi, ..., ws|rel) EARHezl(_JLr_U iy V6

On the other hand, the odds of each individual term occurrence conditioned on relevance was found in { 24)

to be e Similarly, the odds of term occurrence conditioned on non-relevance was found in ( 25) to be eri.
Therefore,

O{X; = l|rel) ei
;=1 =
P(X; = 1jrel) T+O(X: = 1jrel) 1+ en
1
P& =0rel) = 1-p(X; = 1lrel) = TTen
. — 1lrel Ac
p(X: = 1jrel) = O(X; llrei __et
14+ 0(X; =1jrel) 1+eM
— — 1
Xi=0rel) = 1-—p(X;=1|rel} = T
p(X: = o] P = el = -1
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These equations may be summarized as:

ghiTi

p(Xi = zs|rel) = Tren
- 65\1'1:1'

P(Xi = 1‘i|’"51} = L+ E‘S“'

and so,

p(Xs = xifrel) ;
H (X: =ailrel) ];[(1+eh 1+e")
5 1 4 gt
(T (113225)
ol

PN CIES TSR - 1‘{“815
Z‘:l ) ( 1+ ehi ) {36)

=1

This is equivalent to the expression given in ( 33), from which we may conclude that:

plzy, ..., z|rel) Hp(X = &;|rel)
plxy,. .. xs|rel) p(X; = xi|rel)

which is the form of the linked dependence assumption discussed in Section 2.1.

Linked dependence, then, is not assumed. It is a property of the constrained maximum entropy distribu-
tion. There is, we believe, a significant difference between making (possibly unwarranted) assumptions and
constraining the distribution. The difference is discussed in greater detail in Section 3.

prior probability of relevance: The constraints imposed on the BIM-MAXENT model include a constraint on
the prior probability of relevance, p(rel) = p. It is important to note, however, that it is not necessary for the
system designer to actually set p to a particular value. If the goal is simply to rank documents according to the
probability of relevance, without making any claims as to the interpretability of the resulting ranking status
value, the value assigned to p becomes irrelevant. It can be ignored here, as it is in the Binary Independence
Model, inasmuch as the value used will not affect the order in which documents are ranked.

Ewven if we wanted to produce the system’s probability of relevance, as opposed to a (for all intents and purposes
non-interpretable) ranking score, we might not include the constraint on the prior probability of relevance.
We would not include this constraint if we felt that we had no reason, a priori, to distinguish between relevant
and non-relevant documents in any way other than that which is incorporated in the constraints, { 18) & ( 19),
regarding term occurrences. If after studying the characteristics of the resulting probability distribution, we
feel comfortable with what MAXENT is telling us, there would be no motivation for including other constraints.

In the model with prior probability of relevance unconstrained, the prior odds of relevance would be:

- +1) (eglf*+1) ToEtl fri-&
Ofrel) = Ue" +1) H Lug—l-+1) _1151:“}-1 r 1= 57)

for the maximum entropy distribution. This might cause little consternation. It does not, on the surface, seem
to conflict with any preconceived notions we have concerning the relevance of documents. At first glance, a
need for constraining p(ref), thereby constraining O(rel), is not apparent.

We would also notice, however, that in the model without the p(rel) constraint, the odds of relevance for a
document with none of the query terms occurring is:

Orell0,...,0) = — =1 (38)



This is nettlesome. The system designer will likely feel that the probability of a document in which none of
the query terms are to be found is very far below % This discrepancy is indicative of an under-constrained
distribution. MAXENT is signaling that some pertinent knowledge has not been incorporated into the model.
If the goal is for the system to present its probability of relevance to the user and the system’s belief system

is to mirror the designer’s belief system, then some constraint must be added.

One obvious way to accomplish this, given that the weakness of the model has become apparent in the value
it gives for O(rel|z,...,z,), would be to constrain p(rel|0,...,0) directly. This can be dome, but it may not
be the best approach. In typical IR system design situations most people would assign a very small value for
p(rel|0,...,0). The problem is that humans are notoriously poor at dealing with very small (p{...) ~ 0) and
very large (p(...) = 1) probabilities.

Alternatively, an empirical approach might be taken. By studying a large number of queries, the value given to
the conditional probability, p(rell0, . .. ,0), can be based on statistics of the data. Unfortunately, the extremely
small probability that a document with no query terms would be found to be relevant comes to haunt us again.
For such a small probability a very large sample would be needed. If the sample is not large enough we would
not have much confidence in the resulting value of the statistic. For example, even for a reasonably large
sample of queries against a large collection, there may well be no instance of a document, containing none of
the query terms having been judged relevant.

A preferable approach is to estimate the prior probability of relevance and utilize this as a constraint on the
distribution as was done in BIM-MAXENT with constraint { 20). In the version of BIM-MAXENT with all three
constraints, this problem does not arise, since the odds of relevance given no query terms is given by:

4 i s
41 P 1-4
rello. ... = R P e = >?
Ofrelio, ..., 0) e [pyS P -7

(39)

Implicit in constraining p(rel} is a constraint on O(rel|0,...,0). Presumably p, and hence ﬁ will have been

constrained to be small, We also expect that, for each 4, the constraints, & = p(z; | rel) and & = p(z; | rel)
will be in the relation, & > &, which would mean that %E— < 1, making O(rel|0,...,0) smaller still. This
conforms to the prior knowledge that we desire to incorporate in our retrieval gystem. The system designer
may depend on her own subjective judgment, empirical study, or some combination of the two. However it is
done, constraining the prior probability of relevance will be a better approach to incorporating the knowledge
that is felt to be missing in the two-constraint version of the model, when we come to realize that this version
would entail even odds for a document with no query terms.



4 'The cM-MAXENT Retrieval Model

In the previous section, we developed a model based on the PME from which we were able to derive the same
ranking formula that results from the Binary Independence Model. In this section, we derive a maximum
entropy retrieval model that will be constrained in such a way as to be consistent with the assumptions made
in the Combination Match Model {cmum) of Croft and Harper. ¢MM adapts the Binary Independence Model
to situations where no relevance information is available. Our goal, here, is to reproduce the CMM ranking
formula.

4.1 Basic ¢M MAXENT Model

The development of this model will be very similar to that of the BIM-MAXENT model. The first and third
BIM-MAXENT constraints, concerning the probability of term occurrence conditioned on non-relevance and the
prior probability of relevance will be left as they were. The second constraint concerning the probability of
term occurrence in relevant documents will be eliminated. In its place, the number of query terms expected
to appear in a relevant document will be constrained.

Formally, the constraints will be:

pXi=1R=0) = £ i=1,...,8 (40}
E(XzlR=1) = ¢ where: Xp =) X; (41)
pR=1) = p (42)

The second constraint restricts the probability distributions under consideration to those with a given value
for the expected number of query terms occurring in a relevant document. It will not be necessary that a value
for this expectation be explicitly specified, however. The constraint will result in the inclusion of a parameter
in the distribution and, as we will see, a number of alternatives for determining a value for this parameter will
be available.

For this model, we will be concerned with the following features of the elementary events:

_ 1 fXi(w)=1AR{w)=0 .
gilw) = { 0 Lther(wi)se ) } p=1s (43)
gr{w) = R(w) (45)

which will be constrained by:

Elgiw)] = Gi=£&-(1-p) i=1,...,8 (46)
Elge(w)] = Gp=¢(-p (47)
Blgr(w)] = Gr=p (48)

In ( 47), we are effectively constraining E(X; + -+ + X,|R = 1) to ¢, since:

Egp(w)] = Y _plw)gp(w) > P)Xw) + -+ Xolw))

wen R{w)=1

= z p(R=1) -pw|R=1)(X1(w) +... + X,(w))
A(w)=1

= p(R=1)-E[X; +...+ XJR=1]

H

and, because this has been constrained to ¢ - p and p(R = 1) = E[R] has been constrained to p,

E[X,+...+X,JR=1 = ¢
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By introducing Lagrange multipliers, setting partial derivatives to zero and solving for p(w), we get:

plw) = ESTO DR FEERERRS (49)

where 23 = Zmi.

i=1

Based on the probability distribution, ( 49), we can determine the odds of relevance given a specific occurrence
pattern:

e[/\o+"’-#z#+/\ﬁ] _ e)\#x#-k)lﬂ—zzzli"mi (50)
ACTIS)

Olrellzy,...,z5) = =
and, therefore, a ranking formula based on the conditional log-odds of relevance is:

log O(rel|zy,...,z,) = Agpza— Ziia:g + Ar

i=1
= Jdpzp— Zjﬁ + Az (51)
2=l

Here again Ap is simply the log-odds of relevance conditioned on all query terms being absent,
log O{rell0,...,0). This is a constant term and can be dropped for the purposes of ranking,.

4.2 Characteristics of the cM-MAXENT Distribution

As with the BIM-MAXENT model, we find it convenient to derive closed form solutions for the odds of certain
events. The reasoning employed here closely follows that of Section 3.

odds of term occurrences given relevance: For arbitrary values zs, ..., z4:

p(l,x2,. ., zarel) = e Dot (i reras) ora (L0 edroanr]
e[z\oﬂ# (14305 ) +2n]

P P (1 gmi) +an]

= t# -p(0,x2,...,2:, rel)
Summing over all possible values for (&s,...,2,) € {0,1}5 1
pXi=1,R=1) = Z p{l,x2,...,25,7el) = Z e** . p(0, za, ... , Ts,rel)

L TN xg B, Ty

= % p(Xy =0,R=1)
which generalizes to arbitrary query terms, giving the conditional odds of occurrence for term ¢ as:

O(X; = ljrel) = e'# (52)

We note here that e*# is independent of the values of the X;, and so the probability of occurrence given
relevance is the same for all query terms. Equal probabilities are assumed in the cMM. But, as with linked
dependence for BIM, it appears as a property of the CM-MAXENT distribution as a consequence of maximizing
the entropy.

odds of term occurrences given non-relevance: The odds of a query term occurring in a non-relevant docu-
ment, are the same as for BIM-MAXENT. For term 1, we have,

—_— [A0+X1+(Es,_25\wi)] -
X, = 1lrel) = p(l,wz,...,ms,r_d) _ ¢ = = M 53
O( . 11?‘81) p(0:$2,' “73;817‘8{) e[Au+[Z::2)_ﬁxi)] ) ( )
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which generalizes to arbitrary query terms.

prior odds of relevance: We will derive the prior odds of relevance in terms of the probabilities of relevance
and non-relevance. In order to derive a closed form for the probability of relevance from the formula given in

{ 49), we can sum over all elementary events for which B = 1:

p(rel) = E plx1, ..., x5, rel}

Ty yenaaZg WY e @y

This can be written as:

plrel) = gPotrr) Z -—1 #""

—  Lotir) Z (E[A#‘thz)\#mi] +€[Z:=2‘\#mi})
= E(A°+AR)(E)\#+1) Z 3[2;2’\#“]

Applying the same reasoning for each z;:

plrel) = eCotrr)ohe 4 132 Z E[Z:=3,\#m.~]

e()\o-i-}ua)(e.k# + 1)3

The probability of non-relevance is as before:

giving, for the odds of relevance:

M +1)
oo = MG

4.3 c¢H MAXENT Ranking Formula — reprise
In { 51} above, the following expression for the log-odds of relevance was derived:

log Ofrel|lzy,...,2:) = Apzy— Zii + Ar

wi=1

{54)

(56)

From ( 53) and constraint { 40), we have that A; = log l—f_—E— If, following Croft and Harper, we use %+ for

f,-, where NV is the total number of documents in the collection, and n; is the number of documents in which

query term ¢ occurs, we have:
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giving the formula:

log O(reljz1, ... ,x5) = Ap-zyp— (Zlog Nﬂi‘n) +Ar

2;=1

N—n;
Mg zp+ (Z]og n_" ) + Ar (57)

i1
ny=1

i

The first term is just a constant, Ay, multiplied by the number of terms that occur in the document. Taking
into consideration that the last term, Ap, is independent of the term occurrence variables and can be ignored
for the purposes of ranking, we have the equivalent of the Combination Match Model formula.

4.4 Discussion of the cM-MAXENT Model

In the foregoing sections we have seen that by exchanging the constraints on the probabilities of occurrence in
relevant documents for a single constraint on the expected number of terms appearing in relevant documents,
we derive the probability distribution ( 49),

p{w} _ B[A0+(E:=2 Xifmi)+3\#:r#r+)\ﬂr]

which leads to the ¢MM for document ranking,

"

> (s 22

z;=1

Croft and Harper point out that MM is a generalization of the inverse document frequency weighting scheme
originally proposed by Sparck Jones. It is interesting to note what happens if we ease the constraints on
our probabilities in the CM-MAXENT model. In this section we will show how we can get a pure idf ranking
formula by eliminating the constraint with respect to term occurrence in relevant documents. We will also
show that elimination of the constraint on term occurrence in the non-relevant documents can be compared
to the observation made by Croft and Harper that, in essence, a coordination match formula results from
assuming, in their model, that the probability of a term occurring in a relevant document is very large. We
continue in this section with a discussion of how assumptions in the CMM are properties of the CM-MAXENT
model. This is analogous to the situation in the Binary Independence Model, where the linked dependence
assumption turns out to be a property of the BIM-MAXENT version of the model. Finally, we discuss the
constraint in CM-MAXENT on the expected number of query terms for relevant documents and approaches to
associating a value with the constraing.

A MAXENT Version of idf Weighting: If we eliminate constraint ( 47) respecting the expected value of the
number of terms to be fotnd in a relevant document, the probability of an arbitrary event would be:

pw) = elor(iadm)tan] (58)

and the conditional log-odds of relevance would be:

log O(rel|zy, ..., zs) = (Z - 5\1) + An

2;=1

For all occurrence patterns (z, ..., %,) € {0,1}5 1
(L, x2,. ., es,rel) = p(0, 21, ..., 5, rel) = lPoTral

and therefore the odds of occurrence of the first term given relevance are even, which can be generalized to
arbitrary terms:

O(X; =1rel) =1 {59)
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The odds of term occurrence given non-relevance would be the same as before:

O(X; =1frel) = & (60)

and the prior probability of relevance would be:

plrel) = 37 elotial 2 ge  Photan)

Combining this with the prior probability of non-relevance, which is the same as before ( 55), gives:

98 | plhetir] N : 2
Orel = —_—— = R, _—
o = - ety
This leads to parameter values of:
5\5 = ].Og & =
1-&

- 2
Arp = loglfp+210g1_£
i=1 '

And finally the ranking formula:

log O(rel|z1,...,x;) = (Z log ! g&) + (Zlog n _2‘;;) +10g1_[:_—p (61)

£

= =1 =]

Since the two terms at the right are constant over all documents, ( 61} is equivalent to ranking by summing

weights associated with each of the occurring query terms. If, as above, & is used for &, this is equivalent to
the weighting scheme originally proposed by Sparck Jones with the minor difference that log Nﬂ:"“ is used in
place of log ﬂﬁ for the term weights. The Sparck Jones weighting formula can therefore be interpretted as the

maximum entropy distribution constrained only so that p(z; | rel) = &

A MAXENT Version of Coordination Matching: In a similar fashion, we can consider a model in which knowl-
edge concerning term occurrences in the collection as a whole is not used to constrain the distribution. In the
absence of the constraints specified in ( 46) the following properties of the MAXENT distribution would hold:

p(W) = e[z\o-i-)\#z#r-l-?\;gr] (62)
giving conditional log-odds of relevance:

log O(rellz:, ..., zs) = Agzy + An

In this formula, both Agand Ap are constant and both can be ignored for the purpose of ranking. The formula,
a linear function of the number of query terms appearing in a document, is equivalent to coordination mateh
ranking.

Assumptions of the Combination Match Model: As with the Binary Independence Model, no assumptions
have been made in the MAXENT version of the combination match model. Neither the linked dependence
assumption nor the Croft and Harper assumption of equal probabilities of occurrence in relevant documents is
made in CM-MAXENT. Here, as before, the properties assumed in the classic models turn out to be true of the
derived MAXENT probability distributions. The essence of the arguments given in favor of linked dependence
in Section 3.6 hold for the cMM. Also, we have seen that the odds of occurrence in a relevant document is

O(Xi = lrel) = e™#
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and hence is the same for all query terms. The property of equal probabilities of occurrence, assumed in the
classical combination match model, is shown to be a property, as well, of the maximum entropy distribution.
The difference between a relation being assumed to hold and the relation arising as a property of a constrained
maximum entropy distribution is an important one and is discussed in more detail in Section 5.

The E[gy{w)] Constraint: In Section 3.6 we saw that the constraint on the probability of relevance was
unnecessary for the purposes of ranking. We also discussed what steps might be taken if a ranking status
value that can be interpretted as a probability is desired. The constraint on the expected value of the number
of terms appearing in the relevant documents is somewhat different. Its value must be determined for ranking.
Nonetheless, the constraint need not be specified explicitly. The Croft and Harper approach can be taken.
The parameter Ay can be left undetermined in the ranking formula and set as the result of empirical testing
s0 as to yield the best possible retrieval results.

The MAXENT approach provides an interesting alternative. If there is data on which to base the setting of the
constant, Ay, based on retrieval experiments, this same data could be used to estimate E[X4|rel] directly. The
game document collection, query set and relevance judgments that are used to analyze retrieval performance
can be used to estimate the expected number of query terms appearing in relevant documents. An interesting
option here is that E[Xg|rel] might be estimated as a function of query characteristics, yielding a query
specific probability distribution on which conditional probabilities of relevance are calculated. A characteristic
which comes immediately to mind in this regard is the number of terms in the query.
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5 Discussion

We have shown that both the Binary Independence Model and the Combination Match Model can be derived
from the maximum entropy approach with appropriate constraints. In this section we analyze in further
detail the difference between the maximum entropy approach and the classical approaches based on a prior:
assumptions. We attempt to signal both the philosophical and practical importance of this distinction to the
conduct of IR research. We emphasize that constraining a distribution is not the same as making, possibly
unwarranted, ¢ priori assumptions. This becomes most clear in the case of the assumption of equal probabilities
of occurrence in relevant documents made in the cMM. We assert in this section that thinking in terms of
constraints results in greater adaptability when we encounter previously uncontemplated sources of knowledge
that can be applied to document ranking. A unifying thread running through all of the following discussion is
the notion that the probabilities manipulated by probabilistic retrieval systems can not reasonably be construed
as frequencies. We begin with a discussion of difficulties inherent in the interpretation of the Probabilistic
Ranking Principle.

Probability Ranking Principle: In [Rob77], Robertson gives a formal statement of the Probability Ranking
Principle as originally put forth in an unpublished memorandum by William Cooper:

If a reference system’s response to each reguest is a ranking of the documents in the collection
in order of decreasing probability of uscfulness to the user who submitted the request, where the
probabilities are estimoted as eccurately as possible on the basis of whatever dato has been made
available to the system for this purpose, then the overall effectiveness of the system to its users will
be the best that is obtainable on the basis of that data.

Use of the phrase “probabilities are estimated as accurately as possible”, as well as the nature of the arguments
in the body of the paper, indicate that a frequentist interpretation of probability is intended. But then we are
cautioned that the estimation is to be made on the basis of “whatever data has been made available”. This is
problematic,

Let’s recall momentarily the case of the die that has been tossed millions of times with an average of 5.0. This
is certainly knowledge “available to the system”; it has a bearing on the probability of the next toss revealing
ad.

The situation is the same in IR. Suppose we have a substantial theory, based on the study of extensive
retrieval data. Let us suppose furthermore that this theory permits us to produce a well calibrated [DF82,
MO95, Daw89] estimate of the probability of relevance of a document to a query containing a term as a
function of collection and document statistics with respect to the term. Now what do we do if we have a
two word query? Our theory provides us with two probability estimates. Both are correct. The Probability
Ranking Principle counsels us to use all evidence.

‘The Probability Ranking Principle, doesn’t, however, advise on how this is to be done. The problem that
arises for two word queries, is exacerbated for three word queries, more so for four word queries, and more
so for twenty word queries. Perhaps further study of retrieval data will result, at a later date, in a more
sophisticated model that will offer guidance as to how best to assess the probability of relevance based on
statistical characteristics of all the query terms collectively. In the meantime “as accurate as possible a”
probability of relevance must be estimated in the absence of such a theory. We appear to be at an impasse.

We have two estimates; both are as accurate as possible; we are enjoined to use all of the data at our disposal;
we have no estimate at all based on all of the data. Our conclusion is that 1) if we are to exploit all of the
data, we are obliged to abandon the frequentist notion that the objective is the estimation of a true physical
probability; 2) the alternative is to view the objective as the generation of a subjective probability — the
system’s belief that a document is relevant; 3) a guiding principle must be adopted for the determination of
this probability based on knowledge possesed by the system; 4} the Maximum Entropy Principle is a very
reasonable candidate.
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Constraints are not Assumptions: The Binary Independence Model assumes that oceurrence of query terms
i3 independent, in both the relevant and non-relevant documents. Both intuition and experimental evidence
imply that such an assumption is unwarranted. There is little reason to believe these assumptions are even
approximately correct. Unfortunately, attempts to model term dependence have been disappointing [vR77,
HvR78, SvR33|. The problem is generally attributed to the inability to produce aceurate probability estimates
due to insufficient sample sizes. So, we return to the independence assumptions. But, what is the Jjustification
for basing a model on assumptions in which we have so little faith?

We suggest that “independence” in the Binary Independence Model should not really be thought of as an
assunption at all. Rather, incorporating independence is an attempt to make the most reasonable use of the
information that is available, accepting that there is information that could be very useful if only we had access
to it, but we don’t. The MAXENT approach makes this explicit. In BIM-MAXENT, there is no assumption of
independence. In place of assumptions, we have constraints.

A constraint is not an assumption. Nothing is being assumed to be “true”. No “physically real” population
is presumed to exist, so there is nothing we can “assume” about it. When we constrain the probability of
term occurrence in a relevant document to &, we are not saying that this is an estimate of the proportion of
relevant documents that contain the term in some super-population of documents. We are saying that based
on the evidence we have, a probability distribution for which p(Xi =1| R=1)=§ is the most reasonable
distribution for us to accept, given what we know.

The probability produced by the BIM-MAXENT model is not an estimate of a true physical probability. It is a
subjective probability. It is the system’s subjective probability that the document will be judged relevant by
the user. Again we turn to the analogy of the dice. When, after learning that the average of a large number
of tosses of the die is 5.0, MAXENT assigns a probability of 0.136 for a die coming up 4 on the next throw, it
is not producing an estimate. An estimate of what could it he? Perhaps, an estimate of the fraction of tosses
in the universe of dice with expected values of 5.0 that come up 4:

#[{t] is toss of a die d A E[d] = 5.0 A value of ¢ is 4}
#[{t|t is toss of a die d A E[d] = 5.0}|

Even if we were willing to contemplate such a population, on what basis would we estimate the fraction
involved?

The frequentist may complain that the interpretation that we give to the probability, 0.136 is unscientific, or
even less charitably, meaningless. We are not unsympathetic with regard to this reaction. But, then it seems
that the frequentist is forced to conclude that there is no basis at all on which to rank the dice. We prefer to
forge ahead, in spite of the difficulties involved.

We assert that it is misleading to conceptualize as estimates the probabilities on which the Binary Independence
Model is based. If the design objective is to produce an estimate, it becomes very difficult to understand why
an assumption of something known not to hold, even approximately, would be used to improve the estimation
procedure.

Our goal in this paper has not been to develop a new model. The goal has explicitly been to reproduce BrM
and CMM. We propose the MAXENT formalism as a clearer conceptualization of the thought processes and
research posture underlying these models.

Equal Probabilities Assumption of cMM: Croft and Harper state that,

prior to relevance feedback, we hove no information about the relevant documents and we could
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equal probabilities because they have “no information”. They can’t mean that the absence of information
implies something concrete, and very specific, about the material universe.

We take the liberty here of speaking for them, rephrasing what they said based on our perception of what they
had in mind: “we have no information and therefore we should adopt the probability distribution that best
expresses our uncertainty”. The Principle of Maximum Entropy asserts that our uncertainty is best expressed
by the distribution with greatest entropy subject to constraints embodying knowledge we feel we do possess.
The development of the CM-MAXENT model presented in this paper clarifies, we believe, the conceptual position
of the original authors.

Flexibility of Constraints:  An advantage of the MAXENT approach is that it naturally accomodates the
introduction of added constraints. Assumptions such as linked independence in BIM, and the equal probabilities
of term oceurrences conditioned on relevance in MM, have been shown to exist in the corresponding MAXENT
versions in the form of properties of the constrained distribution. We may decide to bring more information
to bear in the MAXENT models, and as a result, these properties may no longer hold.

For example, suppose that based on a study of retrieval data, we are able to develop a reliable model of the
distributions of document length for both relevant and non-relevant documents. This is pertinent knowledge.
Even though we have no knowledge of these distribution for the particular query in question, knowledge, albeit
general knowledge, can and should be brought to bear.

It is not immediately clear how knowlege such as this can be integrated into models such as BiM and ¢cMM. The
MAXENT approach, on the other hand, gnides us as to how to proceed. What we would do is incorporate the
information we had discerned concerning the two conditional distributions as further constraints on our overall
probability distribution. While the mathematical difficulties that may be involved must not be minimized,
the maximum entropy approach does provide a theoretical foundation for how best to proceed.
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6 Summary

In this paper, we have adopted a probabilistic attitude with respect to information retrieval, where probability is
understood as the system’s judgment that a document will be relevant based on all information it has available
to it. We have argued that previous work is best conceptualized in this way and that a frequentist view of
probability as a fraction of an existing population is untenable. If a system is to rank document according
to the probability that the document is relevant to the query, it must adopt a probability distribution of
relevance conditioned on the evidence it considers. Probabilities will have to be determined in the absence of
total knowledge concerning all aspects of the distribution. Available knowledge constrains the distribution,
but does not leave it fully determined. The Principle of Maximum Entropy provides, in our opinion, the most
reasonable methodology for fully determining the otherwise underconstrained distribution.

In support of our position, we have shown how both the Binary Independence Model and Combination Match
Model may be understood in terms of the PME. Although no assumptions are made, we have shown that the
linked dependence assumption in the case of BIM and the assumption of equal probability of term occurrence
in relevant documents in the case of CMM are consequences of the Principle of Maximum Entropy. We have
seen how the PME can guide us as to how best to assign a prior probability of relevance and how both
pure coordination match ranking and pure idf weighting can result from different ways of constraining the
probability distribution.

The difference between constraints to be applied to a subjective probability distribution and assumptions
concerning the characteristics of frequencies in a supposedly existing population has been emphasized, and
we have argued that this difference has important philosophical and practical ramifications for research in
information retrieval.
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