
Abstract

Search engines are a critical tool for intelligence
analysis. A number of innovations for search
have been introduced since research with an em-
phasis on analyst needs began in the TIPSTER
project. For example, the Inquery search engine
introduced support for specification of complex
queries in a probabilistic inference network
framework. Recent research on language model-
ing has led to the development of Indri, a search
engine that combines the best features of infer-
ence nets and language modeling in an architec-
ture designed for large-scale applications. In this
paper, we describe the Indri system and show
how the query language is designed to support
modern language technologies. We also present
results demonstrating that Indri is both effective
and efficient.

1. Introduction

Search and detection technology has been a focus of
DARPA and ARDA research programs since the TIPSTER
program began in the early 1990s (Harman 1992). A num-
ber of innovations have been developed in this research,
resulting in very significant improvements in the effective-
ness of search tools. The Inquery search engine (Callan et

al. 1995), developed at the University of Massachusetts for
the TIPSTER project, provided a query language capable of
representing complex queries in a probabilistic framework
and was used in a number of government and commercial
applications.
 In the years since Inquery was developed, there has been
significant progress, both in terms of information retrieval
(IR) research and in the development of other language
technologies and applications, such as information extrac-
tion and question answering. These new technologies inter-
act with search and provide new requirements for a search
engine. In addition, the ever-increasing volume of search-
able data requires that search engines be scalable to the level

of multi-terabytes. In response to these requirements, we
have recently developed Indri, a scalable search engine that
combines the advantages of the inference net framework
used in Inquery with the language modeling approach to
retrieval that has been the subject of much recent IR re-
search (Croft and Lafferty 2003). Indri is part of the ARDA-
sponsored Lemur project1.
 The Indri search engine is designed to address the follow-
ing goals:
– The query language should support complex que-

ries involving evidence combination and the ability
to specify a wide variety of constraints involving
proximity, syntax, extracted entities, and document
structure.

– The retrieval model should provide superior effec-
tiveness across a range of query and document
types (e.g. Web, cross-lingual, ad-hoc2).

– The query language and retrieval model should
support retrieval at different levels of granularity
(e.g. sentence, passage, XML field, document,
multi-document).

– The system architecture should support very large
databases, multiple databases, optimized query
execution, fast indexing, concurrent indexing and
querying, and portability.

In this paper, we describe the most important aspects of
the Indri retrieval model, query language, and system archi-
tecture. We give some examples of the types of complex
queries that can be supported, and illustrate the effectiveness
and efficiency of the system using results from the 2004
TREC Terabyte track.

1 http://www.lemurproject.org. Indri is available as a
download from this site.
2 “ad-hoc” refers to the TREC track that focuses on finding as
many relevant documents as possible using queries of varying
complexity

Indri: A language-model based search engine for complex queries

(extended version)

Trevor Strohman, Donald Metzler, Howard Turtle and W. Bruce Croft

Center for Intelligence Information Retrieval
University of Massachusetts Amherst

Amherst, MA, 01003, USA
strohman@cs.umass.edu

Keywords: Search and Retrieval, Question Answering

Operator Name Description
#uwN(t1 t2 …) Unordered Window Matches unordered text
#odN(t1 t2 …) Ordered Window Matches ordered text
#any:field Any operator Finds any text appearing in a field named field
term.field Field restriction Finds the word term appearing in a field named field
#combine(q1 q2 …) Combine operator Combines beliefs from other operators to form a single

score for a document
#weight(w1q1 w2q2 …) Weight operator Combines beliefs from other operators to form a single

score for a document, using weights to indicate which op-
erators should be trusted most

#greater(field n)
#less(field n)
#equal(field n)

Numeric range operators Finds any occurrence of field with a numeric value less
than, greater than, or equal to n

#date:before(d)
#date:after(d)
#date:between(b a)

Date range operators Finds any occurrence of a date occurring before or after a
date, or between two dates.

#operator[field](q1 q2 …) Extent retrieval Evaluates operator on every occurrence of field; useful for
passage retrieval

#filrej(c s) Filter reject Evaluate the expression s only if c is not satisfied
#filreq(c s) Filter require Evaluate the expression s only if c is satisfied

Table 1: Indri query language operators

2. Retrieval Model

The retrieval model implemented in the Indri search en-
gine is an enhanced version of the model described in
(Metzler 2004b), which combines the language modeling
(Ponte and Croft 1998) and inference network (Turtle and
Croft 1991) approaches to information retrieval. The
resulting model allows structured queries similar to those
used in Inquery to be evaluated using language modeling
estimates within the network, rather than tf.idf estimates.
As in the original inference network framework, docu-
ments are ranked according to P(I|D, α, β), the belief the
information need I is met giving document D and hyper-
parameters α and β as evidence.

2.1. Document Representation

Typically, in the language modeling framework, a docu-
ment is represented as a sequence of tokens (terms).
Based on this sequence, a multinomial language model
over the vocabulary is estimated. However, it is often the
case that we wish to model more interesting text phe-
nomena, such as phrases or the absence of a term. Here,
we represent documents as multisets of binary feature
vectors. The features can be nearly any interesting bi-
nary observation of the underlying text.
 Traditional language modeling approaches are con-
cerned only with word occurrences; this can be modeled
by binary features vectors that are the length of the cor-
pus vocabulary. Each word in the document is then en-
coded by a feature vector with a single non-zero entry
representing that term.
 However, we may wish to model document features
that are not words; for instance, marking that a word ap-
pears at the end of a sentence or that it is capitalized.
These facts can also be expressed as binary features. In a

complex formulation of this model, each feature vector
may have many non-zero entries, indicating all features
that occurred at that position.

2.2. Multiple Bernoulli Models

Since our event space is now binary we can no longer
estimate a single multinomial language model for each
document. Instead, we estimate a multiple-Bernoulli
model for each document, as in Model B of (Metzler
2004b). This overcomes the theoretical issues encoun-
tered in (Metzler 2004a). Note that the multiple-
Bernoulli model imposes the assumption that the features
(ri’s) are independent, which may be a poor assumption
depending on the feature set.
 We take a Bayesian approach and impose a multiple-
Beta prior over the model, θ. The Beta is chosen for sim-
plicity, as it is the conjugate prior to the Bernoulli distri-
bution. Our belief at node θ is then:

)),(#||),((# iiii DrDDrBeta βα +−+

for each I where #(ri,D) is the number of times feature ri
is set to 1 in document D’s multiset of feature vectors.
 Indri estimates this model for the full text of each
document. In addition, it creates models for each tagged
subsection of a document, such as paragraphs and ab-
stracts. These tagged regions are considered pseudo-
documents, and can be retrieved as if they were full
documents.

2.3. Inference Networks

The inference network approach to retrieval, first intro-
duced in (Turtle and Croft 1991), formed the basis of the
Inquery system, and is now a major component of the
Indri retrieval model. The inference network model pro-

vides a principled way to combine many sources of evi-
dence of document relevance.
 In the inference network formulation, we suppose that
a query is composed of a series of concepts, where these
concepts may be terms, phrases, or more complex enti-
ties. We suppose that a document is relevant to a user
precisely when it contains the concepts listed in the
query.
 It is important to note that a term concept is not analo-
gous to a term simply appearing in a document; for in-
stance, a document may contain the word ‘terrorism’ but
not be about terrorism. However, the occurrence of ‘ter-
rorism’ in a document provides evidence that this docu-
ment is about terrorism. It is this evidence that we wish
to estimate.

 Figure 1 shows an inference network. In this figure, D
represents the document, which is an observed quantity.
The language models θ are estimated based on hyper-
parameters α and β combined with the observed docu-
ment D. From these models, document features (repre-
sented by ri nodes) can be presented as evidence to con-
cept nodes qi, forming a basis of evidence of relevance at
node q.

2.4. Representation Nodes

The ri nodes correspond to document features that can be
represented in an Indri structured query. The belief at a
given representation node is computed as:

∫=
i

iiiii DPrPDrP

θ

βαθθβα),,|()|(),,|(

which reduces to:

ii

ii
i

D

Dr
DrP

βα
αβα
++
+

=
||

),(#
),,|(

Furthermore, selecting)|(CrP ii µα = and

))|(1(CrP ii −= µβ we get the multiple-Bernoulli model
equivalent of the multinomial model's Dirichlet smooth-
ing (Zhai 2004) estimate:

µ
µβα
+

+
=

||

)|(),(#
),,|(

D

CrPDr
DrP iii

i

where µ acts as a tunable smoothing parameter.

2.5. Query Nodes

The goal of the query process is to establish the probabil-
ity that a document is relevant to a query. In the figure,
our belief that document D is relevant is found at node I.
Between node I and the representation nodes (ri) lie a set
of query nodes that define how our belief of document
relevance should depend on the document representation.
 As an example, if our query is related to organized
crime, the occurrence of words like ‘crime’, ‘mob’ and
‘weapons’ could indicate document relevance. Other
words, like ‘red’ or ‘car’, are not likely to indicate any-
thing about document relevance. Therefore, the query
nodes for this kind of query would connect the node I to
representation nodes for ‘crime’, ‘mob’ and ‘weapons’,
but would leave the nodes for ‘car’ and ‘red’ uncon-
nected.
 The edges only define part of the function of query
nodes, however. Query nodes combine evidence at the
representation nodes to estimate the belief that a concept
is expressed in a document. However, different query
nodes may perform inference in different ways. The ac-
tual arrangement of the query nodes and the way the
nodes combine evidence is dictated by the user through
the query language.

3. Indri Query Language

Inference networks, combined with language feature
models, give a solid theoretical basis for expressing in-
formation needs. In order to harness this model, Indri
provides a query language that can express complex con-
cepts.
 The Indri query language is based on the successful
Inquery structured query language. Both query lan-
guages are composed of operators, each of which can be
considered a query node in an inference network. The
Indri language contains the most popular operators from
Inquery, along with many new operators that express
concepts related to document structure.

3.1. Inquery operators

 The Indri query language includes the window opera-
tors from Inquery. These operators allow the user to indi-
cate that the location of query terms in a document af-
fects relevance. The ordered window operator expresses
that the terms should appear in a particular order in the
document, while the unordered window operator merely
requires terms to appear close together. Both operators
have a distance parameter, N, that defines how close the
terms need to be to each other.
 Indri also includes the #combine and #weight opera-
tors, which are similar in usage to the #sum and #wsum
operators from Inquery. These terms allow users to com-
bine beliefs from a variety of other query nodes effec-

Figure 1: Sample inference network

tively. Mathematically, the #combine operator corre-
sponds to the #and operator from Inquery, while the
#weight operator corresponds to the #wand operator pro-
posed by Metzler (Metzler 2004a).
 Indri also incorporates the filter-require (#filreq) and
filter-reject (#filrej) operators from Inquery, which are
useful for filtering operations. The filter-require operator
indicates that all relevant documents match a particular
pattern; filter-reject indicates that relevant documents do
not match a pattern.

3.2. Field operators

In addition to the Inquery operators, Indri adds operators
for dealing with document structure. The simplest of
these operators is the period operator, (used as term.field)
which suggests that term is only relevant to the query if it
appears within field.
 Fields can be any tagged information from a document.
Therefore, a field can be a large segment of a document,
like a chapter; a smaller segment, like a paragraph; or
just a few words, as in a noun phrase. A field can appear
more than once in a single document.
 For instance, the construction wash.np can be used to
find the word ‘wash’ appearing in a noun phrase, (as in
“car wash”) as opposed to as a verb.
 By using the #any operator, Indri can search for the
existence of a field in a document. This is especially
useful when nested inside proximity expressions.

3.3. Extent retrieval

Indri also allows fields to be used as regions for scoring.
In the #combine[field](q1 ... qn) formulation, each oc-
currence of the tag field in the corpus is considered to be
a separate document. The query #combine(q1 ... qn)is
then used to score and rank every one of these pseudo-
documents. This provides a convenient way to perform
passage retrieval on document structures, like paragraphs
or sentences..

3.4. Date and numeric retrieval

Indri can be instructed to recognize numeric quantities,
including dates. For referencing numeric quantities, In-
dri provides the #less, #greater and #equal operators. For
ease of dealing with dates, Indri provides the
#date:before, #date:after and #date:between operators.

4. System Architecture

The four goals for Indri put forth in the introduction are
in conflict with one another. We wanted the system to be
fast at indexing and retrieval, and still be able to handle
complex data and information needs. In addition, this
system was required to handle concurrent indexing and
querying. Finally, as this system is meant to be usable in
an academic setting, we wanted the code to be clear and
easy to modify.
 During the development of the system, we constantly
made decisions that supported one goal at the expense of

another. However, we believe that the Indri system has
achieved a functional balance between its design goals.

4.1. Parsing

 Indri comes with a variety of parsers for known docu-
ment formats like TREC formatted text, XML, HTML,
and plain text documents. These parsers translate the
documents into an intermediate representation, called a
ParsedDocument, that the indexer can store directly. For
custom applications, the parsers can be bypassed entirely,
and a hand-constructed ParsedDocument can be passed
directly to the indexer.
 We expect that the HTML and XML parsers will be
the most used parsers in Indri, since they can extract
document structure along with text. These parsers can be
configured to pass tag information from documents on to
the indexer so that this can be used for querying docu-
ment structure.
 The ParsedDocument contains a list of terms in the
document and where they occur, and also contains infor-
mation about fields in the document. Each field can con-
tain a numeric representation of its contents. Addition-
ally, the ParsedDocument contains the full unparsed text
of the document, and the locations of all terms in this
unparsed text. This unparsed text and the associated term
positions can be used in retrieval scenarios where users
may want to see query terms highlighted in the docu-
ment.
 Indri provides a small library of Transformation ob-
jects for parsing as well. Transformation objects trans-
form a ParsedDocument into another ParsedDocument;
therefore, they can be easily chained together. The Indri
system includes implementations of the Porter and
Krovetz stemmers as Transformations, and also includes
a stopword removal Transformation. More of these may
be added in the future.

4.2. Indexing

 The indexing system builds compressed inverted lists
for each term and field in memory. Periodically, as
memory gets scarce, this data is flushed to disk. The data
that is written to disk is self-contained: it contains all
information necessary to perform queries on that data. In
a sense, an Indri index can be considered a set of smaller
indexes. The retrieval system has been written to be able
to query many indexes together.
 The indexer also stores a copy of the incoming docu-
ment text in compressed form. This text is commonly
used to produce document snippets at retrieval time.
 The index subsystem is capable of storing any text that
can be represented in Unicode.

4.3 Retrieval

When a query is submitted to the Indri system, it is
parsed into an intermediate query representation. This
intermediate representation is then passed through a vari-
ety of query transformations. Some of these transforma-

tions are for performance reasons; for instance, expres-
sions that do not use term proximity information are se-
lected for a slightly faster execution path. Other trans-
formations expand complex query operators into a series
of simpler internal operators for evaluation.
 Indri is capable of evaluating queries against many
indexes simultaneously, and indexes do not need to re-
side on the same machine. In the event that the indexes
are not on the same machine as the query director proc-
ess, the query director connects to an Indri daemon on the
remote machine which performs some of the query proc-
essing.
 Query evaluation proceeds in two phases. In the first
phase, statistics about the number of times terms and
phrases appear in the collection are gathered. In the sec-
ond phase, the statistics from the first phase are used to
evaluate the query against the collection.
 The query evaluation code in Indri incorporates the
max-score optimization in order to speed query evalua-
tion (Turtle and Flood 1995).

4.5 Concurrency

 Indri supports multithreaded operation, where docu-
ment insertions, deletions and queries can be processed
simultaneously. This recent addition to the engine has
been added to support retrieval against dynamic collec-
tions of data, like news feeds.
 In the implementation, we have been careful to arrange
data such that locks are held as briefly as possible. Our
goal has been to never force an operation to block for
longer than a second. In most cases we are able to
achieve this bound.
 Indri stores indexed documents in a repository, which
is composed of an ordered set of indexes. At any one
time, only one of these indexes can receive new docu-
ments; all other indexes are read-only. The index that
receives new documents resides in main memory, and
contains only a small fraction of the total indexed docu-
ments. This means that the majority of indexed docu-
ments are in read-only indexes, which simplifies concur-
rent execution significantly.
 When the active in-memory index fills, it is marked
read-only and written to disk asynchronously. While the
write is taking place, a new in-memory index is created
to receive any incoming documents. When the write
completes, the old in-memory index is deleted, and the
copy on disk takes its place. During this index write,
queries can continue to run, and documents can still be
indexed. A similar process is used to merge many in-
dexes together into a single index.

5. Query Language Examples

The operators in the Indri query language allow users to
construct extremely detailed queries. In contrast to the
short keyword queries that most systems encourage, the
Indri query language is capable of expressing the com-
plexity in real information needs.

 We expect that, in general, users will not form these
queries directly; rather, they will interact with a domain-
specific interface that will form these complex queries
based on user input. In this section, we give examples of
what these automatically generated queries might look
like.
 Consider the following information need: “I want
paragraphs from news feed articles published between
1991 and 2000 that mention a person, a monetary
amount, and the company InfoCom.”
 This need can be expressed in the following Indri
query:

#filreq(

#band(NewsFeed.doctype

#date:between(1991 2000))

#combine[paragraph](

#any:person

#any:money InfoCom))

This query requires that the index be built with person,
money, doctype, date and paragraph tags.
 In a similar construction, a user may wish to search for
reports after 1995 mentioning the person “Elashi” inter-
acting with any company.

#filreq(

#band(FieldReport.doctype

#date:after(1995))

#combine(#person(Elashi)

#any:company))

A user may be interested in all articles by Thomas
Friedman published before 2000 that discuss the Oil for
Food program:

#filreq(

 #band(#ow3(Thomas Friedman).author

 #date:before(2000))

 #ow5(oil for food))

As these examples show, the Indri query language has
been designed to leverage document structure as well as
text, giving users added ability to hone in on relevant
documents.

6. Effectiveness and Efficiency

Even though Indri supports query operators that allow
users to express very complex information needs, Indri
can achieve solid results even with short queries. In the
2004 TREC Terabyte track (Metzler et al. 2005), the In-
dri entry from the University of Massachusetts was the
most effective title query entry. Not only did Indri per-
form well without any use of Indri query language opera-
tors, but the query effectiveness improved significantly

by using automatically generated query proximity ex-
pressions.
 The TREC Terabyte track data consists of a 426GB
collection of web documents, known as the GOV2 collec-
tion, and a set of 50 queries. Table 2 shows the average
precision of the best title run at the conference (submitted
by UMass), and the best run with all query data (submit-
ted by Glasgow). Since the conference, we have fixed
bugs in our system in order to achieve the higher average
precision values shown in the right column.
 Indri evaluated simple queries in approximately 1.3
seconds each over the GOV2 collection using a 6 ma-
chine cluster. Recent research into query optimization
has enabled Indri to run these same queries in 1.7 sec-
onds using the same data on a single Pentium 4 2.6 GHz
machine. We expect that these times will continue to
come down as research continues.

7. Conclusion

Inquery started a tradition at the University of Massachu-
setts of building information retrieval systems that are
simultaneously useful for academic, intelligence and cor-
porate tasks. The powerful inference network framework
made Inquery useful for research, while making it possi-
ble for non-academics to express complex information
needs.
 The University of Massachusetts has continued this
tradition with Indri, a system that combines the inference
network framework with new theoretical advances in
language modeling. In addition, Indri provides new
query language constructs incorporating fields, tags and
numbers to support query activity in question answering
and cross-lingual retrieval. Indri also handles much lar-
ger collections than Inquery, and is capable of scaling up
to clusters of machines for efficient retrieval. Indri also
includes new support for dynamic collections.
 The University of Massachusetts is committed to sup-
porting the wide use of the Indri system, as it did with the
Inquery system. To this end, it is under continued devel-
opment to support new needs that we are just coming to
understand. It is available as an open source system, so it
is free to pick up and use, although Indri will be available
in a commercial package from a third-party in case enter-
prise support is needed.

Acknowledgements

This work was supported in part by the Center for Intelli-
gent Information Retrieval and in part by Advanced Re-
search and Development Activity and NSF grant #CCF-
0205575 . Any opinions, findings and conclusions or rec-
ommendations expressed in this material are the author(s)
and do not necessarily reflect those of the sponsor.

References

J. P. Callan, W. B. Croft, and J. Broglio. TREC and
TIPSTER Experiments with INQUERY. In Readings in

Information Retrieval, ed. Karen Sparck Jones and Peter
Willett, 436-445. San Francisco, CA: Morgan Kaufmann,
1997. [Originally published in: Information Processing &

Management 31 (1995): 327-332.

Croft, W.B. and Lafferty, J. eds., Language Modeling for

Information Retrieval. Kluwer International Series on In-
formation Retrieval, Volume 13, Kluwer Academic Pub-
lishers, (2003).

D. Harman, The DARPA TIPSTER Project, SIGIR Forum,
26, 26-28 (1992).

D. Metzler and W.B. Croft. Combining the language model
and inference network approaches to retrieval. Info. Proc.

and Mgt. 40(5):735-750, 2004.

D. Metzler, V. Lavrenko and W.B. Croft. Formal multiple
Bernoulli models for language modeling. In SIGIR 2004,
pp. 540-541.

D. Metzler, T. Strohman, H. Turtle, and W. B. Croft. “Indri
at TREC 2004: Terabyte Track,” to appear in the Online
Proceedings of 2004 Text REtrieval Conference (TREC
2004).

J. Ponte and W. B. Croft, A language modeling approach to
information retrieval. In SIGIR 1998, pp. 275-281.

H. Turtle and W. B. Croft, Evaluation of an inference net-
work based retrieval model. Trans. Inf. Syst., 9(3):187-222,
1991.

H. Turtle and J. Flood. Query evaluation: strategies and
optimizations. Info. Proc. and Mgt., 31(6):831-850, 1995.

C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to information retrieval. ACM

Trans. Inf. Syst., 22(2):179-214, 2004.

Best results from TREC 2004 Best Indri results (recent experimentation)
Query type

Average Precision Precision at 10 Average Precision Precision at 10
Short queries (title) 0.2838 (UMass) 0.5510 (UMass) 0.2874 0.5663
Long queries (title+desc+narr) 0.3088 (Glasgow) 0.6163 (Glasgow) 0.3293 0.6306

Table 2: Results from tests with the TREC GOV2 collection

