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ABSTRACT 
Gnutella, a well-known P2P system, uses resources inefficiently 
when directly applied to information retrieval problems. In this 
paper we propose an efficient search mechanism that extends the 
standard Gnutella protocol to support content-based retrieval in 
P2P networks. The idea is to estimate locally the relevance of 
peers when they receive query messages. Only those peers esti-
mated as relevant will retrieve the query and send response 
messages back to the source. Based on a large real testbed 
evaluation, we show that our method improves the tradeoff be-
tween the quality of retrieval and resources consumed while 
preserving most advantages of standard Gnutella.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Search proc-
ess;H.3.4[Systems and Software]:Distributed Systems, 
Performance Evaluation 

General Terms 

Algorithms, Performance, Design, Experimentation 

Keywords 
Search, Content-based, Peer-to-peer, Retrieval,  

1. INTRODUCTION 
Peer-to-Peer (P2P) networks are a powerful architecture 
for sharing computing resources and data. In the strictest 
definition, each peer has the functionality of both server 
and client, and accordingly, can both provide and request 
information. The decentralized nature of P2P systems can 
be an advantage over client-server architectures. First, they 
tend to be more fault-tolerant as there is no single point-of-
failure. Second, processing, network traffic, and data stor-
age can be balanced over all peers, which enables the 
network to scale well with the number of peers. These ad-
vantages come with the cost of requiring a more 

complicated strategy to locate specific resources.  

Because they may support a large number of peers and 
have no central index, efficient search in a P2P system can 
be a challenge. In general, peers can locate resources or 
content by propagating queries through the network and 
then waiting for results from peers with relevant results. 
Many specific strategies have been proposed. The simplest 
approach is taken by the Gnutella [1] protocol, which 
broadcasts query messages to each neighbor, hop-by-hop 
across the network within some distance from the source. 
Although it is not efficient in terms of network bandwidth, 
this technique is simple, robust, and has a minimum re-
quirement on cooperation and consistency among peers. 
For example, it allows arbitrary network topologies, and 
each peer stores no information regarding the state of oth-
ers. 

Distributed Hash Tables (DHT) (e.g., [2]) are more effi-
cient in terms of network bandwidth, but scale poorly with 
the number of terms (i.e., keys) indexed per document. If 
the entire filename is one key, then the cost of indexing 
content is cheap; indexing documents based on terms that 
appear in the content itself is impossible with a DHT. 
Therefore, Internet-based digital libraries of text documents 
cannot be supported with DHTs or Gnutella, though it is 
still desirable to support a sophisticated semantic-based 
search with a P2P architecture.  

Some techniques, such as SETS [3], try to reorganize the 
topology of network so that topic-related peers are close to 
each other. By taking advantage of a rigid topology, net-
work traffic can be reduced. In other techniques, such as 
the localized search mechanism proposed by Kalogeraki, et 
al [4], each node maintains an index or a profile of its 
neighbors’ content that is used rank its neighbors. Search is 
then restricted to what are believed to neighbors with rele-
vant results. 

The cost of those approaches, like in DHTs is increased 
coordination among peers, which must be sustained as 
peers join and leave, and change their content. Moreover, 
each peer has an increase storage cost to participate in the 
system.  

In this paper we propose an efficient search mechanism 
that extends standard Gnutella protocol to support content-
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based retrieval in P2P networks. Our approach is for peers 
themselves to estimate their relevance to each query they 
receive. If they judge themselves to have a relevant re-
sponse, peers send a response messages directly back to the 
source. Our approach eliminates coordination that other 
protocols incur during membership or content changes, and 
it reduces the number of responses that a source receives to 
a tunable amount. Although our approach does not directly 
lower the number of queries received by each peer, our use 
of a random topology allows us to localize queries so that 
they do not reach every peer in the system. 

We evaluated our approach on a large testbed with thou-
sands of peers. We found that the tradeoff between the 
quality of retrieval and resources consumed is greatly im-
proved while most advantages of standard Gnutella are 
preserved. For example, according to our experiments, 
Gnutella consumes more than three times the network 
bandwidth required by our approach for the same level of 
recall.  

The rest of the paper is organized as follows: Section 2 
describes related work. Section 3 introduces our resource-
efficient algorithm for content-based search in P2P net-
works. We present our testbed and evaluation 
methodologies in Sections 4 and 5. Experimental results 
are shown in Section 6. Section 7 summarizes the conclu-
sions of this paper and discusses future work.  

 

2. RELATED WORK  
 

Search in peer-to-peer networks is a problem rich in previ-
ous work.  

As we stated, Gnutella [5] takes the simplest possible ap-
proach to search. A peer forwards query messages to all of 
its neighbors until some distance from the source is 
reached. Since the query routing policy in Gnutella treats 
each peer equally regardless of queries, Gnutella is very 
inefficient in network bandwidth.  

Other approaches improve the efficiency of routing queries 
by storing information about other peers’ content. For ex-
ample, Kalogeraki, et al [4] proposed storing profiles of the 
past query behavior of each neighbor to improve the future 
search efficiency. This approach is not robust since it as-
sumes that users would submit similar queries. Yang, et al 
[6] proposed a technique where each peer maintains an 
index of other peers’ resources who are within some num-
ber of hops. Maintaining such an index is costly if topology 
or membership changes are frequent. One advantage of our 
method is that each node is fully decentralized and does not 
need to store other peers’ information.  

Another idea to improve search efficiency in P2P networks 
is to reorganize the topology of networks [7] [3]. For in-

stance, Mayank, et al [3] propose maintaining a topology 
where peers grouped together if they have libraries of simi-
lar topics; queries are then routed only to the closest 
clusters. Although the search algorithm can take advantage 
of the reorganized topology to improve efficiency, the ap-
proach suggests some trade-offs. First, placing peers 
together based on topic may degrade network performance 
if juxtapose peers have poor bandwidth between them. Sec-
ond, maintenance costs does not scale well with mem-
bership changes. And finally, in the quality of the clusters, 
which depends on the characteristics of collections of 
peers, has a large affect on the success of the reorganized 
topology [3].  

Lu, et al [8] addresses the problem of content-based re-
trieval in hybrid P2P architectures. In contrast to pure P2P 
systems where all nodes are equal and no functionality is 
centralized, hybrid P2P architectures introduce directory 
nodes responsible for regionally centralized directory ser-
vices. In [8] a directory node, also known as super peer, 
keeps pruned indices of its neighboring leaf nodes and use 
a KL-divergence-based similarity between query and col-
lection to rank those leaf nodes. Query messages are only 
forwarded to top ranked leaf nodes. In our approach each 
peer locally decides its relevance to the query by calculat-
ing the same KL-divergence-based similarity. The 
advantage of our approach is that there are no directory 
nodes that are costly to maintain.  

Distributed IR research assumes a central sever-client ar-
chitecture where the central server has direct access to the 
indices of all collections in clients. One of distributed IR 
problems most related to this paper is resource selection, 
that is, how to pick the most relevant collections.  

The CORI resource selection algorithm [9] uses a Bayesian 
inference network model in the INQUERY system to rank 
collections. Although it is stable and effective, it is hard to 
integrate this method to search engines other than 
INQUERY. Xu et al[10] proposed a method where collec-
tions are ranked by Kullback-Leibler divergence between 
query language model and collection model. In [11] Luo Si 
et al used the very similar approach for resource selection. 
Both methods estimate language models by word fre-
quency. The only differences are in details on how to 
estimate the language models. In our experiments we use 
the same approach to estimate the relevance of a collection 
given a query.  

3. SEARCH IN P2P NETWORKS  
In this section, we first define our search problem and de-
tail our assumptions. Then, we introduce our efficient 
search algorithm, which is an extension of the Gnutella 
approach. 



3.1 Problem definitions and assumptions  
In a P2P network each peer has the same role and the com-
munication between any two nodes is symmetric. Such a 
network can be viewed as an undirected graph. Each node 
represents one peer in the network. If peer A directly con-
nects to peer B then there is a logical edge between the two 
corresponding nodes. In that case, A is called the neighbor 
of B and vice versa. In this paper, we also assume that the 
network graph can be arbitrary as long as it is fully con-
nected and we do not modify the topology.  

Each peer is assigned a local document collection on which 
some IR search engine runs. Peers return top-ranked docu-
ments as the result for a given query. For simplicity, we 
assume each search engine is optimal, that is, it returns all 
of relevant documents it has. The queries considered here 
are in natural language style such as, “information about 
what manatees eat”.  

The peer who submits a query to the network is called the 
source of the query. The source can only send the query 
message to its neighbors and the query message is propa-
gated over the network by their sending to their neighbors. 
The routing protocol decides to which neighbor the query 
message is sent and when to stop sending it. The peer re-
ceiving the query message, if it decides to answer the 
query, will run the search engine and send back the re-
sponse message containing retrieved documents for the 
query. Here we assume that the response message is sent 
back directly to the source. 

3.2 The efficient search mechanism: extend-

ing the Gnutella protocol 
A naive application of Gnutella to content-based retrieval 
would flood query messages within some predefined search 
depth limit and all peers receiving the query message do 
retrieval and reply to the source. By doing so, a lot of net-
work bandwidth is wasted since only a few peers have 
documents relevant to a given query.  

Our goal is to achieve a desired level of recall as efficiently 
as possible while preserving the advantages of Gnutella, 
which includes the lack of coordination among nodes. In a 
random graph, peers that have relevant documents are ran-
domly distributed across the network. Thus, on average, the 
more peers that are visited by a query, the more relevant 
documents the source peer may receive; and consequently, 
the more bandwidth that is consumed. We cannot achieve a 
sufficient recall level by only visiting a small number of 
nodes in our defined problem. There is an unavoidable 
trade-off between the quality of retrieval and the network 
bandwidth. We are interested in how to minimize this 
trade-off. Since a peer is visited only when it receives the 
query message, it is difficult to reduce the number of query 
messages if a reasonable recall level is required. However, 

the response message, which is much larger than the query 
message, can be used more efficiently.  

We modify Gnutella such that, when receiving query mes-
sages, only peers estimated as relevant reply to the source. 
No matter estimated as relevant or not, all peers receiving 
query messages still forward query messages to all of their 
neighbors until a distance from the source is reached. At 
each peer receiving the query message, we calculate 
P(Q|C), the probability of generating query, Q, from the 
collection, C, of a peer. Then we set a threshold. Peers with 
P(Q|C) above the threshold are regarded as relevant. Only 
relevant peers will retrieve the query against their collec-
tions and send back the source retrieval results.  

Even though our approach floods query messages, it is still 
resource-efficient. The reasons for this are two-fold. First, 
the size of query message is much smaller than the size of 
response message that contains retrieval results. Response 
messages are well utilized in our algorithm. Secondly, in 
traditional server-client architecture or hybrid P2P architec-
ture, a central server or a super peer is responsible for 
calculating the relevance of a larger number of neighboring 
peers in order to rank them. In our approach such a re-
source-consuming computation is divided over individual 
peers, which is desirable because of the decentralized na-
ture of P2P networks.  

This probability, P(Q|C), is computed as follows [11] 
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where C is the local collection of a peer and G is the global 
collection that can be obtained from some large general-
purpose English collection. #(q,C) and #(q,G) denote the 
total counts of the term q in the collection C and G respec-
tively. ||C|| and ||G|| denote the total counts of all terms in 
the collection C and G, respectively. P(q|G) can be seen as 
a global information and can remain stable for different 
collections as long as they are large enough and general-

purpose. λ is the smoothing parameter and in section 6 we 

vary λ to investigate its effect on performance.  

P(Q|C) was proposed by Xu and Croft [10] for the resource 
selection problem in distributed IR. P(Q|C) measures the 
similarity between the query model and the collection 
model. So the larger the P(Q|C) is, the more likely the col-
lection is relevant. 

Given P(Q|C), we need to set a threshold to make a binary 
decision: relevant or not. Here we define the original 
threshold as  

t = P (q | G)
q∈Q

∏   



for a query Q. It represents the likelihood for a query Q to 
be generated from a general and large English corpus. In 
section 6 we vary the threshold to see its effect on perform-
ance. 

In addition to the local collection frequency P(q|C), which 
is already in the local index , each peer also needs to store 
the global collection frequency P(q|G). Since usually the 
query language only covers a quite small part of the vo-
cabulary of the global collection, the vocabulary of global 
collection can be greatly pruned to save space on each peer. 
We also notice that P(Q|C) can be cheaply calculated by 
simply looking up query terms in the two collection fre-
quency tables. All of these factors make the computation of 
P(Q|C) efficient and feasible.  

4. EXPERIMENTAL    SETTINGS 
We use TREC web corpus WT10G [12] as our test collec-
tion. This corpus has many properties of real Web data, 
such as a realistic distribution of the number of documents 
per web site. There are about 16.9 million documents in 
WT10G. In this section, we describe how our testbed was 
set up, the network topology, and the query set we used. 

4.1 Testbed Setup  
We group documents in WT10G into more than ten thou-
sand collections according to their IP addresses. Each IP 
address corresponds to one peer. Table 1 shows the number 
of peers, and the number of documents per peer, where the 
number of documents is binned into four ranges. For ex-
ample, there are 6,188 peers with a collection size of 
between 5 and 29 documents. 

N(the # 
of 
docs) 

[5,29] [30,59] [60,99] More 
than 
100 

The # 
of peers 

6188 1951 1068 2305 

Table 1. document-peer distribution in WT10G 

Many peers have libraries with only a few documents; we 
select only those peers that have at least 30 documents. 
Thus we use 5,324 peers, and a total of 16.1 million docu-
ments in all. Each peer has one subset where all documents 
are from the same IP address. Our testbed covers most of 
documents in WT10G and has a large number of nodes. 

4.2 Network Topology 
The connections between peers were generated randomly. 
Since recent studies have shown that Internet graphs follow 
power laws [13], to make our experiments more real, we 
adopt the Power-Law Out-Degree algorithm in [14] to gen-
erate such a random graph. Peers are assigned randomly to 
nodes in a one-to-one correspondence and there are 5,324 
nodes.  

4.3 Query Set  
We use 50 title queries from TREC 2001 web ad hoc topics 
that have relevance judgments from the TREC corpus [16]. 
According to our statistics, 4,603 peers do not have any 
relevant documents for any query in the query set. So rele-
vant documents are distributed over a very small number of 
peers, which makes locating them difficult in a random 
topology. 

5. EVALUATION    METHODOLOGY  
In P2P networks, we want to minimize resources consumed 
for a fixed level of retrieval quality. In this paper, resources 
we are interested in are network bandwidth and query proc-
essing cost. We measure retrieval quality with two metrics: 
recall and a modified version of Mean Reciprocal Rank 
(MRR). We evaluate our approach in the following three 
ways: query-processing efficiency, network efficiency, and 
a modified version of MRR. 

5.1 Query-processing efficiency 
Here the query-processing cost is referred to as the cost 
consumed by the search engine on individual peers. As-
suming each peer uses the same search engine, query-
processing cost can be measured by the number of peers 
required to do retrieval given a query. We are interested in 
this measure because many effective retrieval algorithms 
are both time and space consuming and peers may receive a 
lot of queries at the same time. On the other hand, in a real 
P2P system, given a query, many peers do not contain any 
relevant documents. In order to utilize the computing re-
sources of each peer as efficiently as possible, we introduce 
query-processing efficiency. Given a query, if we assume N 
peers are searched and M out of N peers need to perform 
retrieval on their collections, then the recall level, R, is the 
number of relevant documents in those M peers over the 
total number of relevant documents in the network. The 
query processing efficiency is measured by the average 
ratio of (R/M). 

5.2 Network bandwidth efficiency 
The efficiency of network bandwidth is measured by the 
average bandwidth consumed at a certain recall level. 
Given a query, we assume the cumulative recall after N 
peers are searched is R, and M out of N peers need to reply 
the source, the bandwidth consumed at recall level R is 
calculated as: 

Bandwidth= N*S1+M*S2, 

where S1 denotes the size of the query message and is set 
to 100 bytes in our experiments;  S2 denotes the size of the 
response message. We assume each response message con-
tains 10 documents with the size of 1,000 bytes and the 
response message header with the size of 100 bytes. So S2 
is set to 10,100 bytes in our experiments.  



5.3 MRR  
Above, we use recall to measure retrieval performance. 
Mean reciprocal rank (MRR) is another metric to measure 
retrieval performance when high retrieval accuracy is the 
primary concern. In information retrieval systems, typically 
the user receives a ranked list and in some cases the user 
only needs one relevant document, which he hopes is 
ranked as high as possible. Question Answering (QA) sys-
tems only require one correct answer and are given no 
credit for multiple correct answers [15]. In these cases, the 
rank of the first relevant document is more important than 
how many documents are relevant in the ranked list. So 
MRR, which is defined as the inverse of the rank of the 
first relevant document, is a better metric for evaluating 
high accuracy retrieval. 

MRR as defined in information retrieval cannot be directly 
used in our problem since we do not rank peers. Accord-
ingly, we introduce a modified version of MRR. The search 
process in our approach described in Section 3.2 can be 
viewed as a breadth-first search and furthermore can be 
simulated by a queue. In such a queue, those peers replying 
the source consist of a returned list. MRR in this paper is 
defined as the inverse of the position of the first relevant 
node in a returned list. For example, suppose the search 
queue is P1, P2, P3, P4, P5 and only P2, P4 and P5 reply 
to the source. We also assume P1, P4 and P5 are relevant 
peers; that is, they are peers that have one or more relevant 
documents given a query. The returned list is P2, P4, P5 
and the MRR is ½ since P4 is the first relevant peer. If 
there is no relevant peer in a returned list, the MRR will be 
set to 0. MRR is bounded between 0 and 1. In the optimal 
case where only relevant peers reply to the source, the 
MRR should always be 1.  

6. EXPERIMENTAL RESULTS  
In this section, we show results for our three evaluation 
methodologies. Since every peer can post a query, for each 
query we randomly pick 100 nodes from the network as the 
sources and average them. In our experiments, we are only 
interested in cases where only a part of the network is 
searched, which is common in real P2P systems. 

6.1 Results for query-processing efficiency 
We first investigate the effect the smoothing parameter 
lambda has on the performance. We use centralized archi-
tecture and standard Gnutella as our baseline. In Figure 1, 
the line labeled “Central mode” denotes the accumulative 
recall when all peers are directly connected to the central 
server and the server ranks peers according to P(Q|C) de-
fined in Section 3.2 and retrieves peers in that order. 
“Gnutella” denotes the naive application of Gnutella to 
content-based retrieval where each peer receiving the query 
message will reply the source. Gnutella can be seen as the 
special case of our approach when every node is considered 

as relevant. In Figure 1 our algorithm uses the original 
threshold values defined in section 3.2, with lambda set to 
0.2, 0.5, and 0.8, respectively. These three lambda settings 
represent the three cases: heavy smoothing, medium 
smoothing, and light smoothing with the global collection 
model. 

In Figure 1 and 2 each point is actually the average number 
over a set of queries and we require that there should be at 
least 90% of queries (45 queries) for each point. If some 
points are not averaged over all queries, the corresponding 
curve may not be continuous.  

In our experiments we use title queries. The query terms 
are distributed over only a few peers, the higher the lambda 
is, the more a peer relies on the occurrence of exact query 
terms to be judged as relevant. In that case, the number of 
peers above threshold is decreased when lambda is in-
creased. That’s why the curve with “lambda=0.8” has a 
fewer number of retrieved node than does the curve with 
“lambda=0.2”.  

Figure 1: query-processing efficiency
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Figure 2:query-processing efficiency cont.
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Figure 1 shows that our approach is significantly better 
than Gnutella no matter how lambda is set. This is because 
our approach can intelligently estimate the relevance of 
each peer. Secondly, a higher lambda is helpful for improv-
ing query-processing efficiency. Lastly, a higher lambda 
has the risk that some of the queries may not have a high 
recall even when the whole network is searched.  

In Figure 2, “Optimal mode” denotes evaluation of 
Gnutella where only peers who really have relevant docu-
ments are retrieved and reply to the source. “Optimal 
mode” shows us the case when prediction of the relevance 
of peers is 100% accurate, so it can provide us with a theo-
retical upper bound on recall when a certain number of 
nodes are retrieved. “Central mode” is the same as in Fig-
ure 1 with only the first 150 nodes plotted. “Original 
threshold” is the same as “Lambda=0.5” in figure 1 with 
only the first 150 nodes plotted. “Thresh-
old_1”and“Threshold_3” are different thresholds in our 
algorithm while lambda is kept to 0.5. In “Threshold_1” 

the threshold is set to 
0.1e  (that is 2.72) times the original 

threshold. Similarly, ”Threshold_3” is 
3.0e  times the origi-

nal threshold .  

From figure 2 we can see that a high threshold is very help-
ful for improving the ratio of the number of retrieved node 
over recall. However, there is some trade-off. The higher 
the threshold is, the fewer the number of peers above the 
threshold. So the highest recall could be very low, as in 
experiments for “Threshold_3”, where the threshold is set 
too high.  

 
 

Figure 3:network-bandwidth efficiency
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Figure 4:network-bandwidth efficiency cont.
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Table 2 MRR results: vary lambda

 

lambda 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

MRR  0.074 0.076 0.078 0.081 0.085 0.092 0.098 0.10 0.12 0.14 

Mess. con-
sumed 

(M bytes) 

1.62 1.54 1.50 1.42 1.35 1.28 1.19 1.11 1.02 0.96 

 

Table 3 MRR results: increase threshold 

 

Multiple of 
orig.thre.(Log 
scale) 

1.0 2.0 3.0 4.0 5.0 5.5 6.0 7.0 

MRR 0.15 0.16 0.18 0.21 0.24 0.25 0.19 0.15 

Mess.size 

(M bytes) 

1.0 1.2 1.5 1.9 2.2 2.4 2.6 2.8 

6.2 Results for network-bandwidth efficiency 

Network bandwidth is a valuable resource in networks. We 
always want to locate as many relevant peers as possible 
within bounded network bandwidth 

First we show what effect the smoothing parameter lambda 
has on network bandwidth efficiency. In figure 3 we adopt 
“Gnutella” and “Optimal mode” as our baselines. 
“Gnutella” and “optimal mode” are defined as in Section 
6.1. We keep the original threshold for “lambda=0.2”, 
“lambda=0.5” and “lambda=0.8”. 

From figure 3 we can gain the following insights: (1) our 
approach, no matter how the lambda is set, can greatly im-
prove network bandwidth efficiency compared to Gnutella. 
(2) High lambda is helpful for improving network band-
width efficiency. However, we noticed that a high lambda 
decreases the recall as discussed in section 6.1. 

Figure 4 shows how increasing the threshold affects net-
work bandwidth efficiency. In figure 4, “Original 
threshold” is the same as “lambda=0.5” in figure 3. 
Lambda is kept to 0.5 for “Thresh-
old_1”,“threshold_2”and“threshold_3”, 
where“Threshold_1”,“threshold_2”and“threshold_3”are

0.1e ,
2.0e and 

3.0e  times the original threshold respectively.  

From figure 4 we can see that an appropriate threshold is 
important for performance. Network bandwidth efficiency 
is improved when the threshold is increased within some 
range. However, when it is set too high, as in “thresh-
old_3”, it hurts efficiency. When the threshold is very high, 
few or none of the peers will be estimated as relevant by 
our approach. In this case, network-bandwidth is wasted 
since we need to search a larger part of the network to 
reach the same level of recall. 

6.3 MRR Results 
Table 2 shows the results as lambda increases and the 
threshold is kept to original one as defined in 3.2. In table 2 
the first row is lambda, the second row is the MRR defined 
in 5.3, the third row is the size of messages consumed 
when a certain MRR is reached. To calculate the size of 
consumed messages, we use the same assumption de-
scribed in 5.2 and assume that the search process will stop 
if one relevant peer is found or some pre-defined search 
depth is reached. We can see that the case with lambda=1.0 
leads to the best MRR and the lowest size of consumed 
messages. Lambda=1.0 means no smoothing at all and 
given a query only peers including all query terms will be 
estimated as relevant by our algorithm. No smoothing helps 



here because we use title queries that typically consist of 
only a few words.  

Table 3 shows the results when threshold increases and 
lambda is still kept to 1.0. The first row shows multiplies of 
the original threshold in log scale. For example, 5.0 in the 

first row means 
5.0e  times the original threshold. The sec-

ond and the third row have the same meaning as in Table 2.  

From Table 3 we can see that MRR increases with the in-

creasing of threshold until 
5.5e  times original threshold 

which gives the best MRR value. The size of the consumed 
message also increases when threshold increases because 
more peers will be visited.  

7. CONCLUSIONS AND FUTURE WORK  
We proposed an efficient search algorithm by extending 
the Gnutella protocol. The idea is to estimate the relevance 
of peers locally when receiving query messages. Only 
those peers deemed as relevant will retrieve the query and 
send response messages back to source. Based on evalua-
tion of a large real testbed, we show that the tradeoff 
between the quality of retrieval and the resources con-
sumed is greatly improved over Gnutella while simplicity, 
robustness and the autonomy of peers are maintained.  

We also notice that the collection language model P(Q|C) is 
far from being the perfect indicator of the relevance of 
peers. For the future work, P(Q|C) may be improved by 
trying different smoothing techniques such as Dirichlet 
smoothing. We are also interested in other methods that 
may help to predict the relevance well in P2P systems.  
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