
Proper names and their Spelling Variations in Automatic
Speech Recognition output

Hema Raghavan and James Allan
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
{hema,allan}@cs.umass.edu

ABSTRACT

Names, particularly foreign names often have ambiguous spellings

in English. In Automatic Speech Recognized (ASR) documents

this ambiguity is more pronounced because a speech recognizer

usually chooses similar sounding names or words for those it does

not find in its lexicon. The result then is a large number of different

spellings for the same name, even within one document.

In this paper we propose several methods of normalizing names

in an ASR corpus -i.e., grouping together names such as Arafat,

Araafat etc which are spelling variations of the same name. Our

methods range from a simple String Edit Distance model to more

complex generative models that model the corruption in the spelling

of names as the effect of a noisy channel. We evaluate our methods

using the Paice methodology which was developed for stemming

algorithms. We also demonstrate the usefulness of our methods on

two tasks - a new task which attempts to find all documents con-

taining all variants of a given name, and the traditional spoken doc-

ument retrieval task. We get significant improvements on the first

task. We also illustrate with several examples the nature of ASR

errors and give reasons why ASR errors have not surfaced as a sig-

nificant problem in the TREC Spoken Document Retrieval task and

on the TDT tasks.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval

General Terms

Experimentation, Evaluation

Keywords

Spoken Document Retrieval, Automatic Speech Recognition, Spelling

variants of names

1. MOTIVATION

Submission for CIKM 2004. Please do not cite or distribute this draft paper.

Proper names are often key to our understanding of the informa-

tion conveyed by a document. This is particularly the case when the

domain is news. For example, a document with several mentions

of George W. Bush, Dick Cheney, Baghdad and Saddam Hussein,

gives us a good sense of what the contents of the document may

be. In comparison, other regular English words like death, scud

and missiles, may be good indicators of more general topics like

war, but may not give us any indication of the exact event being

discussed. Linking stories that discuss the same event, like the At-

tack on Iraq is very useful for news filtering systems.

The name Gaddhafi is a good example of a name with multi-

ple spelling variations including Qaddhafi (New York Review of

Books) Qaddafi (New Republic), Gaddafi (Time), Kaddafi (News-

week), Khadafy (Maclean’s), Qadhafi (U.S. News & World Re-

port), Qadaffi (Business Week), and Gadaffi (World Press Review)

[3]. In print media (or on the web) a single source is usually con-

sistent in its spelling of a given entity. In ASR, the problem is more

pronounced as names are often Out of Vocabulary, that is they do

not exist in the lexicon of the speech recognizer. The ASR system

usually then outputs a similar sounding word or sequence of words

in place of this Out of Vocabulary word. For a 60K word lexicon,

around 10% of the names are out of vocabulary [15]. Some errors

may simply be a result of recognition errors. The source level con-

sistency is also lost as is shown in the following example, which is

an ASR output of a single news segment on CNN, taken from the

TDT3 corpus [6]

19981018 (1130-1200) CNN HEADLINE NEWS

...newspaper quotes qaddafi is saying they’ll turn them over but

only if they’re allowed ..leader moammar gadhafi says he doesn’t

want an international confrontation over the suspects in the..

A person looking for all mentions of Gaddafi may never find a

document that spells the name as Ghaddafi using typical search

techniques. For an average information retrieval user, this might

not matter as he might find sufficient relevant documents with the

spelling as Gaddafi. But to an intelligence official, for example

recall is probably very significant. Another example is that of auto-

matically transcribing the U.S Supreme Court proceedings (http://-

www.oyez.org) and searching through them. Names of people will

certainly be important in that scenario, and it is easy to imagine

why a user would want to search for names in such an archive.

We discuss prior work in section 2 and illustrate how our meth-

ods differ from spelling correction and other similar problems with

names in other domains. We define our problem more concretely in

section 3 and explain our different approaches to solve it in section

4. The intrinsic and extrinsic evaluations are outlined in section

5 and the data and parameters of our experiments are explained

in section 6. In section 7 we describe our results where we show

that String Edit distance and some of our generative models show

significant improvements in retrieving documents pertaining to a

given entity. We also discuss how and why the problems associated

with names have not cropped up significantly in previous research

in TDT and the TREC spoken document retrieval tracks, and argue

that it is because of the nature of those tasks that we have been es-

caping the problem of ambiguity in the spellings of names, and that

in the long run the problem cannot be ignored. We conclude and

outline directions for future work in sections 8 and 9.

2. PAST WORK
That names can be spelled differently is a problem that has been

addressed by the database community in great detail. They found

that the problem was rising in significance as we were increasingly

interested in reconciling different sources of databases. Differences

in names due to spelling errors, spelling variants and translitera-

tion errors have been dealt with by different kinds of Approximate

String Matching Techniques like Soundex, Phonix, and String Edit

distance [10, 25]. The nature of the problem is identical when the

domain consists of databases of documents. But solving it poses

the additional question that what is it that you want to normalize?

Would one aim at normalizing all words in all documents? In tra-

ditional information retrieval clustering regular English words into

groups based on their morphological root is common and the tech-

nique is called stemming[12, 14]. However stemming algorithms

leave names unchanged or treat them as ordinary words. The rules

that would apply to conflate names would be different from stem-

ming rules. In order to apply the techniques that were developed for

names by the database community one would have to detect names

in a corpus, and normalize them to some canonical form. Ragha-

van and Allan [19] showed that normalizing names using Soundex

codes resulted in a 10% improvement on the TDT3 Story Link De-

tection Task, where the test set consisted of only newswire stories.

Their bottleneck in applying this to the entire Story Link Detection

Task was that detecting names in ASR is an errorful process.

Spoken Document Retrieval was a track at the TREC-6,7 and 8

[20, 21, 22] conferences. At the TREC-8 SDR track the conclusion

was that ASR is not really an issue for traditional IR. However,

the queries in those tracks were not really centered on any entity.

The TREC-8 proceedings also acknowledge that Mean Average

Precision dropped as Named Entity Word Error Rate (NE-WER)

increased. Miller et al [15] give a breakdown of the OOV rates

for different entities for different lexicon sizes. A typical speech

recognizer has a lexicon of about 60K and for this size of a lexi-

con about 10% of the person names are Out of Vocabulary (OOV).

When a word is OOV the speech recognizer substitutes the word

for a similar sounding word or sequence of words.

The problem has been explored by the Cross Lingual IR commu-

nity where the challenge is cross language transliteration variations

[23, 7]. Their problem is quite similar to ours except that the do-

main is different and the errors caused by a Speech recognizer are

typically different from those of a Machine Translation system.

Another problem that resembles the one we are addressing in

this paper is that of spelling correction. Spelling correction has

been tackled in several different ways [8], in some cases with the

use of contextual cues [9] and in some cases it has been modeled as

a “noisy channel problem” [11]. The last is interesting because we

also approach the problem of correcting spelling variations due to

speech recognizer errors as a noisy channel. However, the nature

of the two problems are different; we elaborate on this distinction

in the next section where we define the problem more concretely.

3. PROBLEM DEFINITION
There has been a significant amount of work on spelling cor-

rection in the past. In this section, we define our problem more

precisely and also explain why it differs from spelling correction.

Differences in spellings of words can be of two types: spelling

errors or spelling variations. We define spelling errors to be those

kind of errors where a given word X which has one and only one

correct spelling is spelled in some other form, say X ′. The job of a

spelling correction algorithm is to correct X ′ to X . Spelling errors

may be due to a confusion on the part of the human or may even be a

result of typographic errors which cause letters to be added, deleted

or interchanged. For example, if a user typed acheive when he

intended to type achieve, that would be a spelling error. A spelling

variant on the other hand , is when a word may or may not have a

single correct spelling and there are many different ways in which it

can be spelled. For example, if two people spelled the name Smith

differently, one person as Smith and the other as Smythe, that would

qualify as a spelling variant. These latter kind of spelling variations

are more predominant in ASR documents. In other words we are

trying to group names that sound like each other together. However,

we do experiment with models that learn from spelling errors, to

see if any knowledge of those types of errors can be leveraged to

the benefit of our models.

Additionally, the argument that Jon Smith and John Smythe are

probably really different people and should not be grouped together

is more of a cross-document coreference problem. The problem we

are attempting to solve in this paper is one of grouping names that

“sound like” each other together, without the use of contextual cues

like those used in cross document coreference. As an example we

cite the name Lewinsky which has 199 occurrences in the TDT3

corpus, and also appears as Lewinski (1324 times), and Lewenskey

(171 times). Most of these occurrences refer to Monica Lewinsky.

The aim is to group all these variants together, without taking into

consideration which ones refer to the same entity. We then measure

the effectiveness of our methods on various tasks.

4. APPROACH
In this section we explain the techniques by which we group

names together. The first technique uses String Edit Distance to

group names that are variants of each other. The other techniques

are some of the possible generative models suitable to this task.

We also explain why generative models may be more efficient in

certain scenarios.

The simplest way to group words that sound like each other to-

gether is to use a standard clustering algorithm with String Edit dis-

tance as a distance metric. The Edit Distance between two strings is

the number of insertions, deletions and substitutions it would take

to convert one string to another. The simplest form of String edit

distance is the Levenshtein distance where each such operation has

a cost of one. We used single link clustering for clustering words

together using a distance threshold of 1.

Many methods employed by the database community build on

String Edit distance. The method has some disadvantages. Con-

sider a user who types in a query containing a name such that the

spelling as typed by the user has no occurrences in the corpus. To

employ String Edit distance, one would have to compare the query

name against all the words in the vocabulary of the corpus, to find

the most similar strings. In a news filtering domain where new sto-

ries are continuously being indexed this would mean a re-clustering

of the vocabulary every time a new story is indexed, with a recal-

culation of all corpus statistics. With a generative model the query

word or document just needs to be expanded, thereby speeding up

the search process.

4.1 Defi nitions
Equivalence class: An equivalence class is defined as a group

of names such that any two names in that class are variants of each

other and such that there exist no two names from different equiva-

lence classes that are variants of each other. We represent an equiv-

alence class as a set of words enclosed in curly braces as {name-1

name-2 ...}
Root form: Given an equivalence class, one word from the class

is chosen at random as the root form and mentions of all other

words in that class in the corpus are normalized to the root form.

Basis set: The set of equivalence classes which are used to nor-

malize the corpus.

Given a list of equivalence classes, pairs of names that go to-

gether can easily be generated such that for each pair both words

are obtained from the same equivalence class.

4.2 Algorithm
The diagram in Figure 1 gives an outline of the different methods

we use to cluster names into different equivalence classes. In all of

our methods we cluster words which are names using a clustering

algorithm. For this we need to be able to determine whether any

two pairs of words are linked or not. We generate pairs of linked

words in many different ways. Our starting point in each case is

the parallel text of ASR and closed caption. A list of names is

created by running a named entity tagger on the closed caption text,

and creating a names dictionary. Typically named entity extraction

tools run better on grammatically sound text as opposed to ASR.

Hence we chose to create the names dictionary using the closed

caption text. At several points we refer to the terms – alignments,

probabilistic dictionary etc. These terms stem from the statistical

machine translation literature, which we explain briefly and discuss

why it suits our task. First we give an overview of the methods of

obtaining pairs of words that go together.

In the first and most simple method (lightly shaded in figure

1) we train a statistical machine translation model using ASR and

closed caption text as parallel text. The output of the training pro-

cess creates a probabilistic dictionary consisting of word pairs the

probability that the first word is a translation of the second. We

extract word pairs with a high enough (above an empirically deter-

mined threshold) translation probability, and such that at least one

word exists in the names dictionary. The result is a list of pairs

of names that are variants of each other. Essentially, by this sim-

ple method we are exploiting the fact that a name like Lewinsky in

closed caption, which represents the human spelling may appear

as Lewinski, Lowinski etc, sufficient times in the corpus and our

method will be able to detect these variants in the process of align-

ing the ASR and closed caption text and thus create an equivalence

class {Lewinsky, Lewinski, Lowinsky}. This list of pairs of words

is called List-1 in the figure.

The second method of generating pairs of words that are linked

to each other (shaded dark in figure 1) is to ask a human to create a

list of pairs of names that are spelling variations of each other. We

call this List-2. The problem with the first and second methods is

that they do not generalize well. In other words, unless a name oc-

curred in closed caption or in ASR, we do not have an equivalence

class for it. The amount of closed caption we have is limited, and

since new names constantly appear in news, we wanted a method

that generalized well.

The third method is generative (the unshaded area in the figure

1). It takes a list of pairs of name variants, treats one name as

a translation of the other and in this way learns an alignment of

characters, and a character to character probabilistic dictionary. For

example it can learn that c is replaceable or a translation of k and

vice-versa with high probability. In addition, it can learn from the

alignments that ei may be interchangeable for ie and vice-versa.

We can obtain the list of words that we use to train the generative

model from List-1 or List-2. We also have a third list of common

spelling errors like achieve and achieve[2] that we use to train a

generative model. We call this list List-3 . Depending on whether

List-1, List-2 or List-3 is used to train GIZA++ we have Methods

3, 4 and 5. In Method-6 we train GIZA++ using a combination of

List-1, List-2 and List-3.

To learn alignments, translation probabilities, etc in the first method

we used work that has already been done in statistical machine

translation [17], where the translation process is considered a result

of a noisy channel. We can consider that an ASR system corrupts

the spelling of a name as a result of a noisy channel. To obtain the

closed caption word e, of an ASR word f we want to find the string

for which the probability P (e|f) is greatest. This is modeled as

P (e|f) =
P (e)P (f |e)

P (f)
(1)

For a given name f since P (f) is constant, the problem reduces

to one of maximizing P (e)P (f |e). P (e) is called the language

model. We need to model P (f |e) as opposed to directly modeling

P (e|f) for the same reason as in Machine translation in order that

our model assign more probability to well formed English names.

A more detailed explanation is given in [17].

Give a pair of sentences (e, f), an alignment A(e, f) is defined

as the mapping from the words in e to the words in f . If there

are l closed caption words and m ASR words there are 2lm align-

ments in A(e, f). a ∈ A(e, f) can be denoted as a series am
1 =

a1, a2...am where aj = i means that a word in position j of the

ASR string is aligned with a word in position i of the closed caption

string. Then P (f |e) is computed as follows:

P (f |e) =
∑

a

P (f, a|e)

P (f, a|e) = P (m|e)

m∏

j

P (aj |a
j−1

1
, f j−1

1
, m, e)

×P (fj |a
j
1
, f j−1

1
, m, e) (2)

Where fj is a word in position j of the string f , and f j
1

is the se-

ries f1...fj . The model is generative in the following way: We first

choose for each word in the closed caption string, the number of

ASR words that will be connected to it, then the identity of those

ASR words and then the actual positions that these words will oc-

cupy. IBM models 3 and 4 build on the above equations, and also

incorporate the notion of fertility. Fertility takes into account that

a given word in closed caption may be omitted by an ASR system,

or one word may result in two or more like Iraq → I ROCK . The

models are trained using EM. Further details are in [17].

For our method three onwards, we again use the same models,

but in this case the pairs of strings are ASR and closed caption

words as opposed to sentences, and the place of words in the pre-

vious case is taken by characters. Modeling fertility, etc, again fits

very well in this case too. For example the terminal character e is

often dropped in ASR, and a single o in closed caption may result

in a double o in ASR or vice versa.

The IBM models have shown good performance in machine trans-

lation, and especially so within certain families of languages, for

example in translating between French and English or between Sin-

hala and Tamil [17, 24]. Pairs of closed caption and ASR sentences

or words (as the case may be) are akin to a pair of closely related

languages.

For any task using the generative models we have to detect the

names in the corpus and cluster them using one of the generative

models. Traditional named entity recognizers have very high word

error rates for ASR documents. Therefore, we use a simpler as-

sumption which is that all non-dictionary words in the corpus are

names. We run the corpus through the Unix spell command and use

the list of words returned as a result of that command to be the list

of words that need to be clustered. We could potentially apply our

method to all words in the vocabulary, but that would be a burden

on computation. Further, we would be swamped with equivalence

classes which are groups of morphologically related words, which

is beyond our scope. The aim is to conflate variants of names

Detecting names in ASR text being error prone we approximate

the list of names to be the Out of Vocabulary words in the corpus.

To see if our assumption was a good one, we ran the Unix spell

command on the names in the annotated set that is,the names in

the conflation classes used in Method-2. Of 296 names, 292 were

rejected by the Unix spell command. The names that were not

rejected were cypress, sherry, henry and wally. Names like Jim,

John etc were also rejected by the spell command. Hence it is a

reasonable approximation that the list of OOV words contains all

the names.

In summary, we have 7 different methods of grouping names, de-

pending on how the pairs of names that go together were generated.

• Method-1: (Simple Aligned) Closed caption and ASR text

are aligned using GIZA++. The name pairs are extracted

from the probabilistic dictionary. The names are grouped

such that if A and B are paired, and B and C are paired,

then A, B and C are put into the same equivalence class.

The groupings obtained in this way form the basis set.

• Method-2: (Supervised or Sup) A human generated list of

equivalence classes of names forms the basis set.

• Method-3: (Generative Unsupervised or Gen Uns) Equiv-

alence classes are obtained by training GIZA++ using list-1

(pairs of names obtained by aligning CCAP and ASR as in

Method-1). We then use the generative model thus obtained

to cluster OOV words in the corpus in the following way. If

A is generated by B with high probability (above a thresh-

old), then there exists a link between A and B.

• Method-4: (Generative Supervised or Gen sup) Equiva-

lence classes are obtained by training GIZA++ using a hu-

man generated list of pairs of words (Method-2) which are

variants of each other, and then using the generative model

thus obtained to cluster OOV words as in Method-3. The

clustered OOV words form the basis set.

• Method-5: (Generative Spelling Correction or Gen Sp.

Corr.) Equivalence classes of names are obtained by training

GIZA++ using pairs of words where the second word is a

spelling correction of the first, and then using the generative

model thus obtained to cluster OOV words as in Method-3.

Again, this cluster forms the basis set.

• Method-6: (Generative Combined or Gen Comb) GIZA++

is trained using a combined list of pairs of words used to train

the translation models in methods 3,4 and 5. The generative

model is then used to cluster OOV words. This cluster forms

the basis set.

• Method-7: (String Edit Distance or StrEd) We also grouped

together names that differ by a string edit distance of one.

This is a simple baseline. If we make use of a higher String

Edit distance of n we denote it by StrED-n. Otherwise, the

default is a value of 1.

5. EVALUATION
We evaluate our methods for grouping names in two ways. The

intrinsic evaluation, first outlined by Paice[18] for stemmers, at-

tempts to compare the groupings of names as generated by each of

our methods with a gold standard which is determined by human

judgments.

5.1 Intrinsic (Paice) evaluation
The Paice evaluation measures the performance of a stemmer

based on its Understemming and Overstemming Indices. The Un-

derstemming Index (UI) aims to measure how many groups of words

that are actually related are not conflated to the same root form by

a stemmer (i.e., the misses). The Overstemming Index (OI) on the

other hand measures how many words are wrongly conflated to the

same root (i.e., the false alarms). If we look at the purpose of our

methods as trying to build a stemmer for names, the intrinsic eval-

uation measures for stemmers applies to this work. We now look

at the Understemming and Overstemming indices of our various

methods in order to understand the performances on the extrinsic

evaluation.

The gold standard (truth set) was obtained by a method is similar

to Paice[18] of obtaining relevance judgments. A group of under-

graduate students was hired to do the truth judgments. The entire

vocabulary of all the corpora (see section 6) was provided to the stu-

dent in a text editor in alphabetical order. The purpose as explained

to them was to group together words that were alternates of each

other together. Alternates encompassed morphological variants, ty-

pographic errors and words that sounded like each other. The stu-

dent was instructed to go through the list systematically, and for

each word look at the previous 10 words, as well as the following

10 words to see if there were any other variants. If there was a

word or a group where the current word was likely to fit in, they

were asked to cut the word and paste it into the appropriate group.

In this way groups were created such that no word could belong

to more than one group. The student was also asked to identify

groups that referred to names of people, places etc. We extracted

only those groups which were marked as names for our evaluation.

The Paice evaluation measures the over-stemming and under-

stemming indices as follows. A pair of words are considered to be

linked if they belong to the same equivalence class. The evaluation

assumes that we have a true set of equivalence classes. For each

such equivalence class i with ni words, there are ni ∗ (ni − 1)/2
pairwise links. This number, which is called the Global Desired

Merge Total (GDMT) is the total number of pairwise links across

all classes. The Global Unachieved Merge Total (GUMT), is the

number of pairwise links that the algorithm missed. The Global

Wrongly Merged Total (GWMT) is the total number of word pairs

that were detected as linked by our algorithm but did not exist in

the truth set. The overstemming and under-stemming indices are

therefore computed as:

Under-stemming Index (UI) = GUMT/GDMT

Over-stemming Index (OI) = GWMT/GDMT

We illustrate this by using stem classes (not names) in the truth

judgments and obtain UI and OI values for stemmers of the En-

glish Language. The Krovetz stemmer has UI and OI values of

Figure 1: Architecture of System

0.5265 and 0 respectively. The Porter stemmer has UI and OI val-

ues of 0.37317 and 0 respectively. We know from the literature

that a Krovetz stemmer is more conservative [12] than the porter

stemmer and these results indicate exactly that. The understem-

ming and overstemming indices indicate the strength of the stem-

mer, and give us a sense of the kinds of errors that may be caused

by a particular stemmer. A perfect stemmer would have a UI and

OI value of 0. However, in reality the trade off is usually between

a high miss rate and a high false alarm rate. We know that different

stemmers perform differently on different corpora and for different

tasks different stemmers may be suitable (for example we know

that for Arabic a light stemmer is more suitable [13]). The Paice

measures allow us to quantify the performance of a stemmer, to see

where it falls on the light to heavy spectrum. Thereafter, one can

determine what kind of stemmer is more suited to a given task.

5.2 Extrinsic evaluations
We propose two extrinsic or task based evaluations for our meth-

ods. In the first task, given a name as a query, we aim to find all

documents that have a mention of that name, or of any of its vari-

ants. The truth judgments for the intrinsic evaluation were used

to find documents that were relevant to a query. A document was

marked as relevant to a query if it contained a mention of the query

word or any other word in the equivalence class of that query word,

where the equivalence classes were as defined by the truth judg-

ments. More details on the queries and corpora are in section 6. In

order to measure the performance on this task, we used set based

precision and recall metrics. In other words, for each query, we

measure precision as the fraction of documents of the retrieved set

that are relevant and recall as the fraction of the relevant set that

were retrieved. We can then average these Precision and Recall

numbers that we obtain for each query, and accordingly obtain F1

measures.The F1 measure is the harmonic mean of the Precision

and Recall. The average of the precision and recall can be either a

Micro average or a Macro average. A micro average is an average

over all queries and a Macro average is an average of the averages

of each class. The micro averaged scores tend to be dominated to-

wards the most common categories whereas Macro average scores

may be skewed towards outliers. We measure both in this paper.

We evaluate our methods using some standard evaluations from

Information Retrieval- ad-hoc retrieval and known item retrieval.

For ad-hoc retrieval we have 3 kinds of queries: standard TREC

queries, queries rich in entities with some contextual information,

and thirdly queries rich in entities with lots of contextual informa-

tion

For both the retrieval experiments we used a traditional infor-

mation retrieval system, with a vector space model and TF*IDF

weighting, with a list of 500 stopwords for stopword removal and

the Krovetz stemmer for stemming [12], as a baseline. We do not

expect that this baseline system will perform well. In fact, on the

name query task one does not expect that to retrieve documents

other than those containing the query word. Nevertheless it pro-

vides a measure of how much we stand to gain by our methods as

compared to traditional methods on these tasks.

6. CORPUS, TOOLS ETC
Figure 2 shows the different corpora used in our experiments

split by source and by time period. For the TDT sources we had

the ASR output of the BBN Byblos Speech recognizer as given

to us by LDC. For the TREC-7 data set we had the ASR output

of several different systems. In experiments in this paper we used

the two NIST baselines which have word error rates of about 34%

and 47% respectively, CUHTK (WER-25%), Sheffield (WER 36%)

and Dragon (WER 29.5%). Unless mentioned otherwise, the cor-

pus used for TREC-7 experiments is the output of the Dragon sys-

tems speech recognizer. For TREC-6 we had only the ASR outpur

provided by NIST. For the TREC corpora we have human gener-

ated transcripts and for the TDT corpora we have closed caption

quality transcripts with a WER of 14.5%. The TDT3 corpus has

23282 ASR documents, and the TDT2, TREC-6 and TREC-7 cor-

pora have 3943, 1819 and 2866 ASR documents respectively.

To train the probabilistic dictionary, alignment probabilities etc

of the noisy channel model or the machine translation system we

use GIZA++ [16]. In order to do the actual translations we use the

ISI ReWrite Decoder [4]. The decoder takes as input the models as

Source TDT2 TDT3 TREC-6 TREC-7

SDR SDR

VOA Jan-Jun 98 Oct-Dec 98 X X

PRI Jan-Jun 98 Oct-Dec 98 May-Jun 96 Oct 97

ABC Jan-Jun 98 Oct-Dec 98 May-Jun 96 Jan 98

CNN Jan-Jun 98 Oct-Dec 98 May-Jul 96 Jun 97 - Jan

NBC X Oct-Dec 98 X X

MSNBC X Oct-Dec 98 X X

CSPAN X X Jun 96 Feb 98

Figure 2: The different corpora used in our experiments

learned by GIZA++ and a sentence from the foreign language and

can output the top n translations of the input sentence. The ReWrite

decoder can translate using IBM Model-3 or Model-4. Hence, we

restrict ourselves to choosing between Model 3 and Model 4. In or-

der to build the language model P (e), we used the CMU Language

Modeling toolkit[1]. For our information retrieval experiments we

used the LEMUR toolkit [5].

In order to obtain queries and relevance judgments for the first

task, namely, the name query retrieval task, we arbitrarily chose

35 groups of names. The TDT3 corpus was chosen to be the test

corpus for this task. Hence from the 35 groups of names we elim-

inated those words that had no occurrences in the TDT3 corpus.

This gave us 35 groups with a total of 76 words. Each of the 76

words formed a query. For each name query we consider all docu-

ments that contain a mention of any of the names in the equivalence

class of the query name as relevant to that query. In this way we

obtained relevance judgments for the name query task.

The Simple Aligned and Generative Unsupervised methods re-

quire a parallel corpus of ASR and closed caption for training. For

the name query task we use TDT2, TREC-6 and TREC-7 to train

these methods. The Supervised and Generative Supervised meth-

ods require a human to provide pairs of words that are variants of

each other. We picked 150 groups of words at random to input to

these two methods. We filtered out those words from the truth set

that occurred exclusively in the TDT3 corpus and in no other cor-

pus. This is therefore equivalent to asking a human to group words

in a training corpus.

For the second type of extrinsic evaluation (Spoken Document

Retrieval) we trained the different models similarly. For testing

on a given corpus using the Supervised and Generative Supervised

methods we filtered out those words from the truth set that occurred

exclusively in that corpus and in no other corpus. Similarly we

trained the Simple Aligned and Generative Unsupervised models

using ASR and closed caption text from all other sources except

those in the test set.

Two of our four corpora for the extrinsic evaluations are the

TREC-6 and TREC-7 spoken document retrieval track queries and

corpora. The remaining two corpora are the TDT2 and TDT3 cor-

pora. TREC-6 and TREC-7 queries are standard TREC queries.

The TREC-6 task is known item retrieval and TREC-7 is ad-hoc

retrieval. For the TDT2 corpus we use one randomly chosen doc-

ument from each topic as the query. These represent long queries

with lots of entities and plenty of contextual information. For the

TDT3 corpus we use the topic descriptions as provided by the LDC

as the queries. The LDC topic descriptions discuss the events that

describe a topic and the key entities and locations involved in the

event. These are representative of shorter queries, rich in enti-

ties. LDC has provided relevance judgments for both the TDT2

and TDT3 corpora.

All retrieval experiments were performed using the LEMUR tool-

african AFRICA bosnia BOZNIA

albania ALBANIAN brack BRECK

albanian ALBANIANS cac CACK

alex ALEC calloway CALLAWAY

america AMERICAN cardoso CARDOZO

ann ANNE ching CHIANG

baseball BASEBALLS christine CHRISTINA

beshloss BESCHLOSS

Figure 3: Example of words in List-1 obtained by Simple

Aligned

kit, and using the traditional vector space model with TF-IDF weight-

ing for ranked retrieval. Mean Average Precision was used as a

measure of retrieval effectiveness for the evaluation of Spoken Doc-

ument Retrieval on the TREC-7, TDT2 and TDT3 corpora. On the

TREC-6 corpus and queries we used the evaluation used by TREC

that year. The task that year was known item retrieval and the eval-

uation metric was the percentage of queries for which a relevant

document was found at rank one. Most queries in that track had

exactly one relevant document.

6.1 Parameter Settings
At stage-1 (see figure 1), we extract pairs of words from the prob-

abilistic dictionary by choosing pairs of words with a probability of

translation above an empirically derived threshold of 0.5. However,

for some rare words, where the alignment makes a mistake, some

of the pairs with a high probability of translation are also not ac-

ceptable. For example, on aligning the closed caption and ASR on

the TDT3 corpus, we get some erroneous pairs with a high prob-

ability of translation, for example P (THAT |Steinbrener) = 1.

Hence, we filter out those word pairs from the dictionary that have

a string edit distance of greater than 3 between them. Both these

thresholds were determined from the training set.

The top 15 word pairs obtained by aligning the TDT3 corpus and

sorting the list alphabetically are given in figure 3. The first column

is the closed caption word and the second is an ASR word. Note

that the spurious terms like baseball in the above list are due to

errors by the named entity tagger in the named entity tagging of the

closed caption text, while creating the names dictionary. We did

not correct those errors manually.

We used the default parameters of GIZA++ to train the Statisti-

cal Machine Translation models. An exhaustive list of the param-

eters is provided in the documentation [16]. Of all the possible

smoothing methods that the CMU Language Modeling Toolkit [1]

provides, we chose Witten-Bell smoothing as it consistently gave

a lower perplexity score on a development test set, for all of our

generative models.

In stage-2 we choose to expand a name word by generating the

top n translations of it. With a small n the Under stemming Index

is high and with a large n the Over stemming Index is high. We

empirically chose n = 5.

7. RESULTS

7.1 Perplexity
The following table gives the Perplexity scores on a test set of

100 words for IBM models 3 and 4. Not surprisingly the translation

model trained on spelling errors has higher perplexity, the nature of

spelling variations in names being different from the kinds of vari-

ations caused by a speech recognizer. Of Models 3 and 4, 3 shows

lower perplexity. Therefore we use Model-3 to generate spelling

variations.

Model3 Model4

Gen Unsup 3.61314 3.2826

Gen Sup 3.10678 28.4017

Gen Sp. Corr. 8.7577 9.9129

Gen Comb 2.59981 2.91117

A few example ASR and CCAP words and the probabilities as-

signed by the different models are given below:

P (afrika| P (berkely| P (cardoza|
africa) berkeley) cardoso)

Gen. Unsup 0.00134 0.005249 0.00022

Gen. Sup 0.00073 0.00111 0.00021

Gen. Sp. Corr. 7.02E-09 0.00562 1.57E-08

Gen. Comb 0.00202 0.00679 0.00052

7.2 Name Query Retrieval experiments
The single name retrieval experiments were performed using TREC-

7, TDT2 and TREC-6 as the training corpora, and TDT3 as the test

corpus. The results of our experiments on the single name query

task are given in figure 4. We report both Macro and Micro aver-

aged F1 measures (They do not differ much because in each equiv-

alence class of query words there were mostly 2 words and a few

classes had 3 words).

From the table in Figure 4, all improvements in F1 as compared

to the baseline are statistically significant except the Gen Sp. Corr

model. In general, the Simple aligned, Generative Unsupervised

and StrED methods are the best performing for this task.

Our 76 query words for this task belonged to 35 equivalence

classes. Figure 5 gives a breakdown of the F1 measures for each

equivalence class for each of the methods. String edit distance per-

forms very well on certain equivalence classes of names for exam-

ple: on the equivalence class containing Seigal it gets a precision

and recall of a 100%. The equivalence class is {Seigal, Segal, Sie-

gal, Siegel} (Query class 22) and all of the words in the equiva-

lence class differ from each other by a string edit distance of one.

In the case of the equivalence class { Lewenskey Lewinski Lewin-

sky} (Query class 27), the term Lewenskey has a string edit distance

of 2 (greater than one) from the other two members Lewinsky and

Lewinski. This results in lower recall and therefore a lower F1 by

StrED. The equivalence class of {John Jon Joan} (Query class 19)

has very low precision and recall. This is because both John and

Jon differ by a string edit distance of one from so many other names

in the corpus, such as Jong, and therefore this results in a lowered

precision. Similarly in the case of query class {Chiang Ching}
(Query class 11), Chiang and Chang differ from Ching by an edit

distance of 1, resulting in a lowered precision. Whether the word

Ching deserves to be in the same equivalence class as Chiang and

Chang is debatable and is a matter of human judgment.

The Simple Aligned method relies on having seen the name in

closed caption or in ASR. Therefore, for a class like {Christina

Christine} (Query class 2) this method performs poorly. Then

again, a pair like {Greensborough Greensboro} (Query class 24)

is detected using the simple aligned method and by no other. The

generative methods are able to track certain kinds of variations in

spelling due to similar sounding alphabets. For example, the sub-

stitution of i with y like in the {Sydney Sidney } (Query class 29)

equivalence class case and {Silvia Sylvia} (query class 23) equiva-

lence class case. Most of the generative models have also learned

that c and k are substitutable for each other as in the equivalence

class {Katherine Kathryn Catherine} (Query class 7). Note that

Method TREC-7 TDT3

0 (Baseline) 0.3587 0.7156

1 (Simple Aligned) 0.3646 0.7144

2 (Sup) 0.3587 0.7116

3 (Gen Sup) 0.3588 0.7146

4 (Gen Uns) 0.3659 0.7229

5 (Gen Comb) 0.3587 0.7074

6 (Gen Sp. Corr.) 0.3588 0.7186

7 (StrED) 0.3587 0.757

Figure 6: SDR results

the generative model trained from spelling correction does well on

the {Yeltsin, Yelsin} (query class 8) example and poorly on equiv-

alence classes which are groups of similar sounding words like in

the case of Catherine and Katherine.

7.3 Spoken Document Retrieval
We now move on to discuss results on the spoken document re-

trieval task. The average precision numbers for each of the methods

on the different corpora are given in figure 6. The method based

on clustering names using a string edit distance of 1 is better than

the TF-IDF baseline, and the difference in Mean Average Precision

is statistically significant on the TDT3 corpus. We experimented

with higher string edit distances only to see significant decreases in

Mean Average Precision.

When we look at a query-by-query breakdown of our methods

most queries do not change. Query 30042 shows reasonable im-

provement with our methods. The topic of this query is the Panam

Lockerbie trial and Kofi Annan is a key entity. The ASR versions

of his names are quite different from the original. Kofi often gets

corrupted by the ASR system. For example, it appears case in one

case as COPING ANAND (document VOA19981002.1700.1937),

and once as COKIE ANAND (VOA19981005.1700.1890). Thus

query 30042 benefits by some of our methods particularly the Gen-

erative supervised method which puts ANAN, ANNAN and ANAND

into the same equivalence class. The same goes for the String Edit

distance method which groups ANAN and ANNAN into the same

class. Although the name ANN is also a part of that same equiva-

lence class, and there are false alarms as a result of that error, there

is still an improvement in MAP of about 1.5% for this query.

On the TREC-7 Spoken Document retrieval track we see little or

no improvement by our methods, except by the Simple Aligned

method which causes a 6% increase in MAP and by the Unsu-

pervised Generative method which causes a 2% increase in MAP.

In the TREC-7 corpus exactly 5 queries had any mention of an

OOV word. The OOV words in this query set (as determined by

Unix spell command are) are andor, canadian, chinese, chung, clin-

ton, cuba, huang, kong montserrat. One would expect words like

Montserrat or Huang to benefit by our methods. But that did not

happen. There was not a single mention of Montserrat in the TREC-

7 ASR corpus. This word appears in Query 59 of the TREC-7 SDR

track, What data is available on volcanic activity on the island of

Montserrat?. Clearly the words Montserrat and volcanic are key-

words in this query. If the word Montserrat had appeared as a word

in the corpus then it would have been output as an OOV word, and

then at least one of the methods would have attempted to cluster

it with some other similar sounding words. Now we explore what

the ASR system did to the different mentions of Montserrat. There

were 6 documents relevant to the query. In one case Montserrat

was identified as MONTHS THE ROT (document eo970823.srt) by

the ASR system, in one case as MONTH AROUND THE(document

Method Micro average Micro Average Micro Macro Average Macro Average Macro F1

Recall Precision F1 Recall Precision

0 (Baseline) 0.4015 1 0.5730 0.4001 1 0.5716

1 (Simple Aligned) 0.6328 0.93310 0.7542 0.6084 0.9259 0.7343

2 (Sup) 0.4778 0.9613 0.6384 0.4637 0.9600 0.6254

3 (Gen Sup) 0.53022 0.9377 0.6774 0.5179 0.9382 0.6676

4 (Gen Uns) 0.5902 0.9211 0.7200 0.5762 0.9132 0.7066

5 (Gen Comb) 0.4585 0.9778 0.6242 0.4431 0.9803 0.6104

6 (Gen Sp Corr) 0.4412 0.9788 0.6082 0.4307 0.9373 0.5952

7 (StrED) 0.7525 0.8674 0.8060 0.7516 0.8716 0.80724

Figure 4: Results on the Name Query Retrieval task

Query Equivalence class Baseline Simpl Aligned Sup Gen Uns Gen Sup Gen Sp Corr Gen Comb StrED

1: {christy christie } 0.6692 0.6692 0.8654 0.7744 0.8174 0.6692 0.6692 0.5941

2: { christina christine } 0.6667 0.3102 0.9620 0.8531 0.9043 0.6667 0.6667 0.6847

3: { toney toni} 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.3734

4: { michelle michel mitchell} 0.4205 0.4205 0.5391 0.4638 0.4986 0.4205 0.4205 0.8723

5: {columbia colombia colombian} 0.6332 0.9189 0.6332 0.7029 0.6662 0.6332 0.6332 0.4877

6: {darryl daryl} 0.6667 1.0000 0.6667 0.6667 0.6667 0.6667 0.6667 1.0000

7: { katherine kathryn catherine} 0.3268 0.7078 0.5911 0.7223 0.6502 0.2428 0.5000 0.7947

8: { yeltsin yelsin } 0.6968 0.6667 0.6667 0.6690 0.6679 0.7298 0.6667 0.9973

9: {paula paul } 0.5210 0.5210 0.5210 0.6996 0.5972 0.5210 0.5210 0.8046

10: {kathy cathy } 0.7750 0.6667 0.4375 0.7155 0.5430 0.6667 0.9254 0.9714

11: {chiang ching } 0.6667 1.0000 0.6667 0.5161 0.5818 0.6667 0.6667 0.1429

12: {elliott elliot } 0.4158 0.6667 0.4158 0.4314 0.4235 0.4158 0.4158 0.6667

13: {rendell randell randall } 0.5000 0.6667 0.6721 0.7958 0.7287 0.5000 0.5000 0.6667

14: {ferrell farrell } 0.7143 0.9091 0.6667 0.8293 0.7391 0.6667 0.7692 0.9091

15: {finn flynn} 0.5455 0.6667 0.6667 0.5333 0.5926 0.5455 0.5455 0.0250

16: {roberta robert} 0.6316 0.6316 0.6316 0.8520 0.7254 0.6316 0.6316 0.8556

17: {gardiner gardner } 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.9600

18: {jacarta jakarta } 0.6667 1.0000 0.6667 0.6667 0.6667 0.6667 0.6667 1.0000

19: {jon joan john } 0.3387 0.0341 0.3390 0.3390 0.3390 0.3387 0.3387 0.3403

20: {gennady genady } 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 1.0000

21: {james jamie } 0.6667 0.6494 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667

22: {segal siegel seigal siegal} 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 1.0000

23: {silvia sylvia } 0.6667 1.0000 0.6667 1.0000 0.8000 0.6667 0.6667 0.8571

24: {greensboro greensborough } 0.5455 0.6667 0.5455 0.5455 0.5455 0.5455 0.5455 0.7648

25: {lawrence laurence } 0.6667 0.6667 0.6667 0.9941 0.7981 0.6667 0.6667 0.9971

26: {leona leone } 0.6667 0.6250 0.6667 0.8506 0.7475 0.6667 0.6667 0.5000

27: { lewenskey lewinski lewinsky } 0.5000 0.5703 0.6585 0.7046 0.6808 0.5000 0.5000 0.9485

28: {calloway callaway } 0.6667 1.0000 0.6667 0.9941 0.7981 0.6667 0.6667 0.9942

29: {sidney sydney} 0.6667 0.9884 0.6667 0.9884 0.7963 0.6667 0.6667 0.8419

30: {holbrook holbrooke } 0.4225 0.6457 0.4225 0.6400 0.5090 0.4225 0.4225 0.4045

31: {louie louis} 0.6667 0.6667 0.6667 0.5286 0.5896 0.6667 0.6667 0.9854

32: {lindsey linsey lindsay} 0.5253 0.6574 0.3502 0.4485 0.3933 0.5253 0.5253 0.9908

33: {lucile lucille } 0.6667 1.0000 0.6667 0.7000 0.6829 0.6667 0.6667 0.9542

34: {lynn lynne} 0.6344 0.6344 0.6344 0.6344 0.6344 0.6344 0.6344 0.9542

35: {macarthur mcarthur } 0.6667 1.0000 0.6667 0.6667 0.6667 0.6667 0.6667 0.8571

Figure 5: Query by Query breakdown of the performance of our methods on the name query retrieval task

eh971027.srt). Other mentions were MONSTER RIDE (document

eo970824.11) and ONCE ROCK (document eo970825.25). There-

fore the word volcanic was the only keyword in the query that aided

retrieval and that word was rarely misrecognized. We had a simi-

lar problem with the keyword Huang which never appeared in the

ASR corpus but was a part of a query. In both these cases query

expansion using the generative models might have helped. This we

leave for future work.

For the TREC-6 and TDT2 queries and corpora there was no im-

provement using our methods. The TREC-6 SDR task was known

item retrieval and the measure of performance was the percentage

of queries for which a relevant document was found at rank one.

All our systems including the baseline TF*IDF system achieved a

retrieval rate of about 74% on the ASR corpus.. This is compara-

ble to the best performing system that year. When we examined

the queries we found the following words to be Out of Vocabulary–

Goldfinger, Unabomber, Valujet, everglades, healthcare, mammo-

grams. Most queries have only one relevant document, and often

the above mentioned words are misrecognized in that one relevant

document. For example, In the case of the query containing Un-

abomber- Query 18, and the query containing Valujet- Query 47,

both words are misrecognized in the single relevant document and

hence our methods are of no use. Some of these queries would

have been hard for an information retrieval system anyways. For

example, Query 8: What is the name of a possible real model for

the well-known fictional spy hero of Goldfinger and other novels?,

where the relevant document j960617, does not mention any of the

words in the query.

Hence there was not much value to our method for two reasons,

firstly the low number of questions that used Out of Vocabulary

words, and secondly by definition, the task required high preci-

sion at the top of the ranked list and as long as there is a single

document containing the spellings as they appear in the query, the

performance is good.

In the case of the TDT2 corpus since we used entire documents

as stories there are enough words in the query that a few recogni-

tion errors can be tolerated and therefore traditional retrieval is rea-

sonably good for the task. There has been evidence from previous

TREC tracks which also support this claim [22] – that as queries

get shorter, there is decrease in retrieval performance.

7.4 Intrinsic Experiments
For this set of experiments we filtered out from the true set of

equivalence classes those names that did not occur in the Simple

Aligned list of equivalence classes. If we did not do that the simple

aligned method achieves a very high UI score. This gave us 245

equivalence classes with an average of 2.24 words per equivalence

class and a total of 390 links between pairs of words that needed to

be detected.

Method UI OI

1 (Simple Aligned) 0.23697 0.0042

2 (Sup) 0 0

3 (Gen Sup) 0.39323 0.02339

4 (Gen Uns) 0.35156 0.00391

5 (Gen Comb) 0.36198 0.00305

6 (Gen Sp. Corr) 0.67708 0.001

7 (StrED-1) 0.22917 0.00027

8 (StrED-2) 0.08333 0.0036

9 (StrED-3) 0.03906 0.001

10 (StrED-4) 0.03125 0.12448

11 (StrED-5) 0.02343 0.33671

StrED-1 has the lowest OI value. Although StrED-2 has a very

low UI, its OI is much higher and therefore it performs badly on

our extrinsic evaluations. Of our other models the Simple Aligned

model performs well on the extrinsic evaluations although it has a

high OI value. This is because the equivalence classes as obtained

by the Simple Aligned method are pretty good representations of

ASR confusions. However we are comparing all our methods with

human confusions. For example the Simple Aligned method would

conflate Kofi and Copy into one class if that was a genuine ASR

error and the alignment was correct. This is not representative of

human confusions and would actually count as a false alarm on

the intrinsic evaluations. Therefore, although the OI is high for

the Simple Aligned Method, on closer examination we found that

the false alarms were actually representative of ASR errors. For

example, the previous example where Montserrat was mapped to

MONTHS more than once, was clearly quite different from a hu-

man confusion. The Simple Aligned method has a UI of 0.23,

which indicates that about 77% of the 390 links were detected by

the Simple Aligned method. But the high OI indicates that a lot of

the links as obtained by the Simple Aligned method do not feature

as human confusions. Therefore, if one assumes that the Simple

Aligned method is fairly accurate, the high OI indicates that a lot

of ASR confusions are very different from human ones. This is

probably a good explanation of why the Simple Aligned and Gen-

erative Unsupervised methods perform well on these tasks.

7.5 Other experiments
We wanted to check how our methods performed on outputs of

different ASR systems. The experiments on the TREC-7 data in

the previous section used the output of Dragon systems, which has

a word error rate of 29.5%. The NIST-B2 system has a high WER

(46.6%). For this system the improvements in Mean Average Preci-

sion using the Simple Aligned method is 6.5%. In this case too the

Generative Unsupervised method performs well resulting in a 1.2%

increase of Mean Average Precision as compared to the baseline.

Similarly with the CUHTK Sheff (WER 35.6%) and NIST-B1

(WER 33.8%) and (WER 24.6 %) systems we obtained improve-

ments of 1.6%, 0.39% and 0.05% respectively using the Simple

Aligned method. Thus, with increasing WER, the named entity

word error rate increases significantly, and therefore the benefits of

our method are more apparent in such situations. Now one may ask

that why would one use a recognizer with a WER higher than that

of the best performing system. It is important to remind ourselves

that WER is not only a function of the recognition algorithm being

used, but is also extremely situation dependent. For example, back-

ground noise, such as street noise or music can result in an increase

of Word Error Rate.

System NIST-B2 Drag

WER 46.6 29.5

NE-WER 77.1 40.6

MAP (Kstem) 0.2676 0.3587

MAP (Simple Al) 0.285 0.3646

MAP (Sup.) 0.2676 0.3587

MAP (Gen Sup) 0.2676 0.3588

MAP (Gen Uns) 0.2681 0.3659

MAP (Gen Spell Corr.) 0.2676 0.3587

MAP (Gen Comb) 0.2676 0.3588

MAP (Gen StrED-1) 0.2676 0.3587

8. DISCUSSION AND CONCLUSIONS
We showed that string edit distance is an effective technique for

locating name variants, both intrinsically and extrinsically. How-

ever, we argued earlier that such an approach is too computationally

expensive to be useful in large scale applications. We developed a

set of generative models and showed that they are almost as effec-

tive at name finding, document retrieval, and TDT tasks, but are

substantially more efficient. In any setting where it is important to

find variants of names across (or within) documents, the generative

approaches appear to be a preferred choice.

The problem has not been of significance in previous TREC tasks

or in TDT, because by virtue of the nature of those tasks we have

always escaped the problem of misspelled names. In the TREC

tasks few queries are centered on an entity. In Story Link Detection

and other TDT tasks one is usually required to compare entire sto-

ries with each other. A story is long enough that there are enough

words that are in the vocabulary (just like a very long query) or that

are correctly recognized, that the ASR errors do not really matter.

Therefore, the TDT tasks also do not suffer as a result of these ASR

errors.

9. FUTURE WORK
We can improve and apply our methods to other domains like

Switchboard data, or on the court proceedings. The Simple Aligned

method uses the probabilistic dictionary learned by the statistical

MT process to cluster the words. We added some heuristics to de-

termine what pairs of words are linked from this dictionary. There

are several other, more formal approaches we can adopt, for exam-

ple, we can bootstrap the alignments, or re-align the corpus using

the probabilistic dictionary to obtain a better probabilistic dictio-

nary which we can incorporate in a formal framework.

Our methods also generalize well across languages. There are no

language specific techniques employed in any of our methods. As

long as a sufficient amount of data is available in the form of closed

caption text and ASR output , our methods should work well. Our

techniques would also apply in the case of Spoken Query retrieval,

where the search is on a cross modal (print and ASR) corpus, where

we would apply a phoneme to grapheme approach and then use our

methods on the grapheme.

10. ACKNOWLEDGEMENTS
This work was supported in part by the Center for Intelligent

Information Retrieval and in part by SPAWARSYSCEN-SD grant

number N66001-02-1-8 903 . Any opinions, findings and conclu-

sions or recommendations expressed in this material are the au-

thor(s) and do not necessarily reflect those of the sponsor.

11. REFERENCES
[1] The cmu language modelling toolkit,

http://mi.eng.cam.ac.uk/ prc14/toolkit documentation.html.

[2] Common spelling errors,

http://www.actwin.com/rwmack/spelling.htm.

[3] How are you supposed to spell muammar gaddafi,

http://www.straightdope.com/classics/a2 264b.html.

[4] Isi rewrite decoder,

http://www.isi.edu/licensed-sw/rewrite-decoder/.

[5] The lemur toolkit, http://www.cs.cmu.edu/lemur.

[6] Tdt3, http://www.ldc.upenn.edu/projects/tdt3/.

[7] N. AbdulJaleel and L. S. Larkey. Statistical transliteration for

english-arabic cross language information retrieval. In

Proceedings of the 12th CIKM conference, pages 139–146.

ACM Press, 2003.

[8] I. Durham, D. A. Lamb, and J. B. Saxe. Spelling correction

in user interfaces. Commun. ACM, 26(10):764–773, 1983.

[9] A. R. Golding and D. Roth. A winnow-based approach to

context-sensitive spelling correction. Mach. Learn.,

34(1-3):107–130, 1999.

[10] A. L. P. James C. French. Applications of approximate word

matching in information retrieval. In Proceedings of the Sixth

CIKM Conference, 1997.

[11] M. D. Kernighan, K. W. Church, , and W. A. Gale. A

spelling correction program based on a noisy channel model.

In Proceedings of COLING-90, pages 205–210, 1990.

[12] R. Krovetz. Viewing morphology as an inference process. In

Proceedings of the 16th SIGIR conference, pages 191–202.

ACM Press, 1993.

[13] L. S. Larkey, L. Ballesteros, and M. E. Connell. Improving

stemming for arabic information retrieval: light stemming

and co-occurrence analysis. In Proceedings of the 25th

SIGIR conference, pages 275–282, 2002.

[14] P. M.F. An algorithm for suffix stripping. Program,

14(3):130–137, 1980.

[15] D. Miller, R. Schwartz, R. Weischedel, and R. Stone. Named

entity extraction from broadcast news, 2000.

[16] F. J. Och and H. Ney. A systematic comparison of various

statistical alignment models. Computational Linguistics,

29(1):19–51, 2003.

[17] V. J. D. P. P. F. Brown Steven A. Della Pietra and R. L.

Mercer. The mathematics of statistical machine translation:

Parameter estimation. Computational Lingustics,

19(2):263–311, 1993.

[18] C. D. Paice. Method for evaluation of stemming algorithms

based on error counting. J. Am. Soc. Inf. Sci., 47(8):632–649,

1996.

[19] H. Raghavan and J. Allan. Using soundex codes for indexing

names in asr documents. In Proceedings of the HLT NAACL

Workshop on Interdisciplinary Approaches to Speech

Indexing and Retrieval, 2004.

[20] In The Sixth Text REtrieval Conference (TREC 0). NIST,

1997. NIST Special Publication 500-240.

[21] In The Seventh Text REtrieval Conference (TREC 7). NIST,

1998. NIST Special Publication 500-242.

[22] In The Eighth Text REtrieval Conference (TREC 8). NIST,

1999. NIST Special Publication 500-246.

[23] P. Virga and S. Khudanpur. Transliteration of proper names

in cross-language applications. In Proceedings of the 26th

ACM SIGIR conference, pages 365–366. ACM Press, 2003.

[24] R. Weerasinghe. A statistical machine translation approach

to sinhala tamil language translation. In SCALLA 2004.

[25] J. Zobel and P. W. Dart. Phonetic string matching: Lessons

from information retrieval. In H.-P. Frei, D. Harman,

P. Schäuble, and R. Wilkinson, editors, Proceedings of the

19th ACM SIGIR Conference,(Special Issue of the SIGIR

Forum), pages 166–172, 1996.

