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ABSTRACT

With the overwhelming volume of online news available today,
there is an increasing need for automatic techniques to analyze and
present news to the user in a meaningful and efficient manner. Pre-
vious research focused only on organizing news stories by their
topics into a flat hierarchy. We believe viewing a news topic as a
flat collection of stories is too restrictive and inefficient for a user
to understand the topic quickly.

In this work, we attempt to capture the rich structure of events
and their dependencies in a news topic through our event models.
We call the process of recognizing events and their dependencies
event threading. We believe our perspective of modeling the struc-
ture of a topic is more effective in capturing its semantics than a flat
list of on-topic stories.

We formally define the novel problem, suggest evaluation met-
rics and present a few techniques for solving the problem. Besides
the standard word based features, our approaches take into account
novel features such as temporal locality of stories for event recog-
nition and time-ordering for capturing dependencies. Our experi-
ments on a manually labeled data sets show that our models effec-
tively identify the events and capture dependencies among them.
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1. INTRODUCTION

News forms a major portion of information disseminated in the
world everyday. Common people and news analysts alike are very
interested in keeping abreast of new things that happen in the news,
but it is becoming very difficult to cope with the huge volumes
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of information that arrives each day. Hence there is an increasing
need for automatic techniques to organize news stories in a way that
helps users interpret and analyze them quickly. This problem is ad-
dressed by a research program called Topic Detection and Tracking
(TDT) [3] that runs an open annual competition on standardized
tasks of news organization.

One of the shortcomings of current TDT evaluation is its view of
news topics as flat collection of stories. For example, the detection
task of TDT is to arrange a collection of news stories into clusters
of topics. However, a topic in news is more than a mere collection
of stories: it is characterized by a definite structure of inter-related
events. This is indeed recognized by TDT which defines a topic as
‘a set of news stories that are strongly related by some seminal real-
world event’ where an event is defined as ‘something that happens
at a specific time and location’ [3]. For example, when a bomb
explodes in a building, that is the seminal event that triggers the
topic. Other events in the topic may include the rescue attempts,
the search for perpetrators, arrests and trials and so on. We see
that there is a pattern of dependencies between pairs of events in
the topic. In the above example, the event of rescue attempts is
‘influenced’ by the event of bombing and so is the event of search
for perpetrators.

In this work we investigate methods for modeling the structure
of a topic in terms of its events. By structure, we mean not only
identifying the events that make up a topic, but also establishing
dependencies—generally causal—among them. We call the pro-
cess of recognizing events and identifying dependencies among
them event threading, an analogy to email threading that shows
connections between related email messages. We refer to the re-
sulting interconnected structure of events as the event model of the
topic. Although this paper focuses on threading events within an
existing news topic, we expect that such event based dependency
structure more accurately reflects the structure of news than strictly
bounded topics do. From a user’s perspective, we believe that our
view of a news topic as a set of interconnected events helps him/her
get a quick overview of the topic and also allows him/her navigate
through the topic faster.

The rest of the paper is organized as follows. In section 2, we
discuss related work. In section 3, we define the problem and use
an example to illustrate threading of events within a news topic. In
section 4, we describe how we built the corpus for our problem.
Section 5 presents our evaluation techniques while section 6 de-
scribes the techniques we use for modeling event structure. In sec-
tion 7 we present our experiments and results. Section 8 concludes
the paper with a few observations on our results and comments on
future work.



2. RELATED WORK

The process of threading events together is related to threading
of electronic mail only by name for the most part. Email usually
incorporates a strong structure of referenced messages and con-
sistently formatted subject headings—though information retrieval
techniques are useful when the structure breaks down [7]. Email
threading captures reference dependencies between messages and
does not attempt to reflect any underlying real-world structure of
the matter under discussion.

Another area of research that looks at the structure within a topic
is hierarchical text classification of topics [9, 6]. The hierarchy
within a topic does impose a structure on the topic, but we do not
know of an effort to explore the extent to which that structure re-
flects the underlying event relationships.

Barzilay and Lee [5] proposed a content structure modeling
technique where topics within text are learnt using unsupervised
methods, and a linear order of these topics is modeled using hidden
Markov models. Our work differs from theirs in that we do not con-
strain the dependency to be linear. Also their algorithms are tuned
to work on specific genres of topics such as earthquakes, accidents,
etc., while we expect our algorithms to generalize over any topic.

In TDT, researchers have traditionally considered topics as flat-
clusters [1]. However, in TDT-2003, a hierarchical structure of
topic detection has been proposed and [2] made useful attempts
to adopt the new structure. However this structure still did not ex-
plicitly model any dependencies between events.

In a work closest to ours, Makkonen [8] suggested modeling
news topics in terms of its evolving events. However, the paper
stopped short of proposing any models to the problem. Other re-
lated work that dealt with analysis within a news topic includes
temporal summarization of news topics [4].

3. PROBLEM DEFINITION AND NOTATION

In this work, we have adhered to the definition of event and topic
as defined in TDT. We present some definitions (in italics) and our
interpretations (regular-faced) below for clarity.

1. Story: A story is a news article delivering some information
to users. In TDT, a story is assumed to refer to only a single
topic. In this work, we also assume that each story discusses
a single event. In other words, a story is the smallest atomic
unit in the hierarchy (topic — event — story). Clearly, both
the assumptions are not necessarily true in reality, but we
accept them for simplicity in modeling.

2. Event: An event is something that happens at some specific
time and place [10]. In our work, we represent an event by
a set of stories that discuss it. Following the assumption of
atomicity of a story, this means that any set of distinct events
can be represented by a set of non-overlapping clusters of
news stories.

3. Topic: A set of news stories strongly connected by a seminal
event. We expand on this definition and interpret a topic as
a series of related events. Thus a topic can be represented
by clusters of stories each representing an event and a set of
(directed or undirected) edges between pairs of these clusters
representing the dependencies between these events. We will
describe this representation of a topic in more detail in the
next section.

4. Topic detection and tracking (TDT) :Topic detection de-
tects clusters of stories that discuss the same topic; Topic

tracking detects stories that discuss a previously known topic [3].

Thus TDT concerns itself mainly with clustering stories into
topics that discuss them.

5. Event threading: Event threading detects events within in a
topic, and also captures the dependencies among the events.
Thus the main difference between event threading and TDT
is that we focus our modeling effort on microscopic events
rather than larger topics. Additionally event threading mod-
els the relatedness or dependencies between pairs of events
in a topic while TDT models topics as unrelated clusters of
stories.

We first define our problem and representation of our model
formally and then illustrate with the help of an example. We are

given a set of n news stories S = {s1, -+, sn} on a given topic

T and their time of publication. We define a set of events £ =
{&1,-++ ,Em} with the following constraints:
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While the first constraint says that each event is an element in the
power set of S, the second constraint ensures that each story can
belong to at most one event. The last constraint tells us that every
story belongs to one of the events in £. In fact this allows us to
define a mapping function f from stories to events as follows:

f(si) = & iff 55 € & (@]

Further, we also define a set of directed edges E = {(&;,&;)}
which denote dependencies between events. It is important to ex-
plain what we mean by this directional dependency: While the ex-
istence of an edge itself represents relatedness of two events, the
direction could imply causality or temporal-ordering. By causal
dependency we mean that the occurrence of event B is related to
and is a consequence of the occurrence of event A. By temporal or-
dering, we mean that event B happened after event A and is related
to A but is not necessarily a consequence of A. For example, con-
sider the following two events: ‘plane crash’ (event A) and ‘subse-
quent investigations’ (event B) in a topic on a plane crash incident.
Clearly, the investigations are a result of the crash. Hence an ar-
row from A to B falls under the category of causal dependency.
Now consider the pair of events ‘Pope arrives in Cuba’(event A)
and ‘Pope meets Castro’(event B) in a topic that discusses Pope’s
visit to Cuba. Now events A and B are closely related through their
association with the Pope and Cuba but event B is not necessarily
a consequence of the occurrence of event A. An arrow in such sce-
nario captures what we call time ordering. In this work, we do not
make an attempt to distinguish between these two kinds of depen-
dencies and our models treats them as identical. A simpler (and
hence less controversial) choice would be to ignore direction in the
dependencies altogether and consider only undirected edges. This
choice definitely makes sense as a first step but we chose the former
since we believe directional edges make more sense to the user as
they provide a more illustrative flow-chart perspective to the topic.

To make the idea of event threading more concrete, consider the
example of TDT3 topic 30005, titled ‘Osama bin Laden’s Indict-
ment’ (in the 1998 news). This topic has 23 stories which form 5
events. An event model of this topic can be represented as in figure
1. Each box in the figure indicates an event in the topic of Osama’s
indictment. The occurrence of event 2, namely ‘Trial and Indict-
ment of Osama’ is dependent on the event of ‘evidence gathered
by CIA’, i.e., event 1. Similarly, event 2 influences the occurrences
of events 3, 4 and 5, namely ‘Threats from Militants’, ‘Reactions



from Muslim World” and ‘announcement of reward’. Thus all the
dependencies in the example are causal.

Extending our notation further, we call an event A a parent of B
and B the child of A, if (A, B) € E. We define an event model
M = (€,E) to be a tuple of the set of events and set of dependen-
cies.

Threats from
Islamic militants ~ (3)

Reactions from
Muslim world ~ (4)

Evidence
gathered by

CIA (1)

Trial and
Indictment of
Osama (2)

* | CIA announces reward

)

Figure 1: An event model of TDT topic ‘Osama bin Laden’s
indictment’.

Event threading is strongly related to topic detection and track-
ing, but also different from it significantly. It goes beyond topics,
and models the relationships between events. Thus, event thread-
ing can be considered as a further extension of topic detection and
tracking and is more challenging due to at least the following diffi-
culties.

1. The number of events is unknown.
2. The granularity of events is hard to define.
3. The dependencies among events are hard to model.

4. Since it is a brand new research area, no standard evaluation
metrics and benchmark data is available.

In the next few sections, we will describe our attempts to tackle
these problems.

4. LABELED DATA

We picked 28 topics from the TDT2 corpus and 25 topics from
the TDT3 corpus. The criterion we used for selecting a topic is that
it should contain at least 15 on-topic stories from CNN headline
news. If the topic contained more than 30 CNN stories, we picked
only the first 30 stories to keep the topic short enough for annota-
tors. The reason for choosing only CNN as the source is that the
stories from this source tend to be short and precise and do not tend
to digress or drift too far away from the central theme. We believe
modeling such stories would be a useful first step before dealing
with more complex data sets.

We hired an annotator to create truth data. Annotation includes
defining the event membership for each story and also the depen-
dencies. We supervised the annotator on a set of three topics that
we did our own annotations on and then asked her to annotate the
28 topics from TDT2 and 25 topics from TDT3.

In identifying events in a topic, the annotator was asked to broadly
follow the TDT definition of an event, i.e., ‘something that happens
at a specific time and location’. The annotator was encouraged to
merge two events A and B into a single event C if any of the sto-
ries discusses both A and B. This is to satisfy our assumption that
each story corresponds to a unique event. The annotator was also
encouraged to avoid singleton events, events that contain a single

news story, if possible. We realized from our own experience that
people differ in their perception of an event especially when the
number of stories in that event is small. As part of the guidelines,
we instructed the annotator to assign titles to all the events in each
topic. We believe that this would help make her understanding of
the events more concrete. We however, do not use or model these
titles in our algorithms.

In defining dependencies between events, we imposed no restric-
tions on the graph structure. Each event could have single, multi-
ple or no parents. Further, the graph could have cycles or orphan-
nodes. The annotator was however instructed to assign a depen-
dency from event A to event B if and only if the occurrence of B
is ‘either causally influenced by A or is closely related to A and
follows A in time’.

From the annotated topics, we created a training set of 26 topics
and a test set of 27 topics by merging the 28 topics from TDT2 and
25 from TDT?3 and splitting them randomly. Table 1 shows that the
training and test sets have fairly similar statistics.

Feature Training set | Test set
Num. topics 26 27
Avg. Num. Stories/Topic 28.69 26.74
Avg. Doc. Len. 64.60 64.04
Avg. Num. Stories/Event 5.65 6.22
Avg. Num. Events/Topic 5.07 4.29
Avg. Num. Dependencies/Topic | 3.07 292
Avg. Num. Dependencies/Event | 0.61 0.68
Avg. Num. Days/Topic 30.65 34.48

Table 1: Statistics of annotated data

5. EVALUATION

A system can generate some event model M’ = (€', E') using
certain algorithms, which is usually different from the truth model
M = (&,E) (we assume the annotator did not make any mis-
take). Comparing a system event model M' with the true model
M requires comparing the entire event models including their de-
pendency structure. And different event granularities may bring
huge discrepancy between M’ and M. This is certainly non-trivial
as even testing whether two graphs are isomorphic has no known
polynomial time solution. Hence instead of comparing the actual
structure we examine a pair of stories at a time and verify if the
system and true labels agree on their event-memberships and de-
pendencies. Specifically, we compare two kinds of story pairs:

e Cluster pairs (C'(M)): These are the complete set of un-
ordered pairs (s;, sj) of stories s; and s; that fall within the
same event given a model M. Formally,

C(M) = {(si, sj)lsi;s5 € SN f(si) = f(s5)}  5)
where f is the function in M that maps stories to events as

defined in equation 4.

e Dependency pairs (D(M)): These are the set of all ordered
pairs of stories (si, s;) such that there is a dependency from
the event of s; to the event of s; in the model M.

D(M) = {(si,;)|(f(si), f(s5)) € B} (6)

Note the story pair is ordered here, so (si, s;) is not equiva-
lent to (s, s;). In our evaluation, a correct pair with wrong
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Figure 2: Evaluation measures

direction will be considered a mistake. As we mentioned ear-
lier in section 3, ignoring the direction may make the prob-
lem simpler, but we will lose the expressiveness of our rep-
resentation.

Given these two sets of story pairs corresponding to the true
event model M and the system event model M', we define recall
and precision for each category as follows.

o Cluster Precision (CP): It is the probability that two ran-
domly selected stories s; and s; are in the same true-event
given that they are in the same system event.

cp P(f(si) = f(s)If (s:) = f'(s5))
|C(M) nC(M)|

= AT/ AT T 7
Cn)] @

where f’ is the story-event mapping function corresponding
to the model M.

o Cluster Recall(CR): It is the probability that two randomly
selected stories s; and s; are in the same system-event given
that they are in the same true event.

CR = P(f'(si) = f'(s)If(si) = f(s5))

o) n o] ©

|C(M)]

o Dependency Precision(DP): It is the probability that there is

a dependency between the events of two randomly selected

stories s; and s; in the true model M given that they have a

dependency in the system model M'. Note that the direction
of dependency is important in comparison.

DP P((£(si), f(s3)) € E|(f'(s1), f'(s5)) € E")

ID(M) N D(M)
D)) ®

o Dependency Recall(DR): It is the probability that there is
a dependency between the events of two randomly selected
stories s; and s; in the system model M’ given that they have
a dependency in the true model M. Again, the direction of
dependency is taken into consideration.

DR = P((f'(s1), f'(s;)) € E'l(f(si), f(s5)) € E)
(M) N D(MY]
= DD (10

The measures are illustrated by an example in figure 2. We also
combine these measures using the well known F1l-measure com-
monly used in text classification and other research areas as shown
below.

2x CP xCR
F = 22—~ ~=
¢ CP+CR
2x DP x DR
DF = DP + DR
2x CF x DF
W= ~Ccr+DF (an

where CF' and DF are the cluster and dependency F1-measures
respectively and JF' is the Joint F1-measure (JF') that we use to
measure the overall performance.

6. TECHNIQUES

The task of event modeling can be split into two parts: clustering
the stories into unique events in the topic and constructing depen-
dencies among them. In the following subsections, we describe
techniques we developed for each of these sub-tasks.

6.1 Clustering

Each topic is composed of multiple events, so stories must be
clustered into events before we can model the dependencies among
them. For simplicity, all stories in the same topic are assumed to
be available at one time, rather than coming in a text stream. This
task is similar to traditional clustering but features other than word
distributions may also be critical in our application.

In many text clustering systems, the similarity between two sto-
ries is the inner product of their #f-idf vectors, hence we use it as
one of our features. Stories in the same event tend to follow tempo-
ral locality, so the time stamp of each story can be a useful feature.
Additionally, named-entities such as person and location names are
another obvious feature when forming events. Stories in the same
event tend to be related to the same person(s) and locations(s).

In this subsection, we present an agglomerative clustering algo-
rithm that combines all these features. In our experiments, how-
ever, we study the effect of each feature on the performance sepa-
rately using modified versions of this algorithm.

6.1.1 Agglomerative clustering with
time decay (ACDT)

We initialize our events to singleton events (clusters), i.e., each
cluster contains exactly one story. So the similarity between two
events, to start with, is exactly the similarity between the corre-
sponding stories. The similarity wsum(s1, s2) between two sto-
ries s1 and s2 is given by the following formula:

wsum(s1, $2) = wicos(s1, s2) + waLoc(s1, s2) + wzPer(s1, s2)
(12)

Here w1, w2, ws are the weights on different features. In this work,
we determined them empirically, but in the future, one can con-
sider more sophisticated learning techniques to determine them.
cos(s1, s2) is the cosine similarity of the term vectors. Loc(s1, s2)
is 1 if there is some location that appears in both stories, otherwise
itis 0. Per(si1, s2) is similarly defined for person name.

We use time decay when calculating similarity of story pairs,
i.e., the larger time difference between two stories, the smaller their
similarities. The time period of each topic differs a lot, from a few
days to a few months. So we normalize the time difference using
the whole duration of that topic. The time decay adjusted similarity



sim(s1, s2) is given by

_ oty —to|
T

sim(s1, s2) = wsum(sy, s2)e (13)

where t1 and ¢ are the time stamps for story 1 and 2 respectively.
T is the time difference between the earliest and the latest story in
the given topic. « is the time decay factor.

In each iteration, we find the most similar event pair and merge
them. We have three different ways to compute the similarity be-
tween two events £, and &,:

e Average link: In this case the similarity is the average of the
similarities of all pairs of stories between &, and &, as shown
below:

zSu €€u ZSU €&y sim(su, S")
|€ullEvl

sim(Eu, &) = (14)

e Complete link: The similarity between two events is given
by the smallest of the pair-wise similarities.

sim(Ey, &) = . egmisn ce
u uscv v

stm(Sy, Sv) (15)
o Single link: Here the similarity is given by the best similarity
between all pairs of stories.

sim(€u, &) = max  sim(Su, Sv) (16)

Su€&u,8vEEY

This process continues until the maximum similarity falls below
the threshold or the number of clusters is smaller than a given num-
ber.

6.2 Dependency modeling

Capturing dependencies is an extremely hard problem because
it may require a ‘deeper understanding’ of the events in question.
A human annotator decides on dependencies not just based on the
information in the events but also based on his/her vast repertoire
of domain-knowledge and general understanding of how things op-
erate in the world. For example, in Figure 1 a human knows ‘Trial
and indictment of Osama’ is influenced by ‘Evidence gathered by
CIA’ because he/she understands the process of law in general.

We believe a robust model should incorporate such domain knowl-
edge in capturing dependencies, but in this work, as a first step, we
will rely on surface-features such as time-ordering of news stories
and word distributions to model them. Our experiments in later sec-
tions demonstrate that such features are indeed useful in capturing
dependencies to a large extent.

In this subsection, we describe the models we considered for cap-
turing dependencies. In the rest of the discussion in this subsection,
we assume that we are already given the mapping f' : S — £ and
we focus only on modeling the edges E’. First we define a couple
of features that the following models will employ.

First we define a 1-1 time-ordering function¢ : § — {1,.-- ,n}
that sorts stories in ascending order by their time of publication.
Now, the event-time-ordering function ¢. is defined as follows.

te E—{1,---,m} st

VEuw, €0 €€ te(€u) <te(£s) = min t(su) < min t(s,)
(17

In other words, t. time-orders events based on the time-ordering of
their respective first stories.

We will also use average cosine similarity between two events as
a feature and it is defined as follows.

Esuesu Esvesv cos(Su, Sv)

Angim(gu,gv) = |£ ||£ |

(18)

6.2.1 Complete-Link model

In this model, we assume that there are dependencies between all
pairs of events. The direction of dependency is determined by the
time-ordering of the first stories in the respective events. Formally,
the system edges are defined as follows.

E = {(Eu,&) | te(£) < te(£)} (19)

where t. is the event-time-ordering function. In other words, the
dependency edge is directed from event &, to event &,, if the first
story in event &, is earlier than the first story in event £,. We point
out that this is not to be confused with the complete-link algorithm
in clustering. Although we use the same names, it will be clear
from the context which one we refer to.

6.2.2 Simple Thresholding

This model is an extension of the complete link model with an
additional constraint that there is a dependency between any two
events &, and &, only if the average cosine similarity between
event &, and event &, is greater than a threshold T'. Formally,
{(Eu, &) | AvgSim(Eu, &) > T
N te(Eu) < te(Ew)} (20)

6.2.3 Nearest Parent Model

In this model, we assume that each event can have at most one
parent. We define the set of dependencies as follows.
{(Eu, &) | AvgSim(Ey,Ey) > T
N te(Ey) = te(Eu) + 1} 2D
Thus, for each event &,, the nearest parent model considers only
the event preceding it as defined by ¢ as a potential candidate. The

candidate is assigned as the parent only if the average similarity
exceeds a pre-defined threshold T'.

6.2.4 Best Similarity Model

This model also assumes that each event can have at most one
parent. An event &, is assigned a parent &, if and only if &, is
the most similar earlier event to &, and the similarity exceeds a
threshold 7'. Mathematically, this can be expressed as:

E' = {(&u, &) ]| AvgSim(Ey,E) > T
AvgSim(€w, Ev)}

E =

E =

n &, = arg max
Ewite(Ew)<te(Ey)

(22)

6.2.5 Maximum Spanning Tree model

In this model, we first build a maximum spanning tree (MST) us-
ing a greedy algorithm on the following fully connected weighted,
undirected graph whose vertices are the events and whose edges B
are defined as follows:

E={(,&)}N wu &)= AvgSim(Eu, &)  (23)

Let M ST(E) be the set of edges in the maximum spanning tree of
E’. Now our directed dependency edges E are defined as follows.

{(Eur EN(Euy &) € MST(E) N to(E) < te(Ey)
N AvgSim(€y, &) > T} 24)

E =



Thus in this model, we assign dependencies between the most sim-
ilar events in the topic.

7. EXPERIMENTS

Our experiments consists of three parts. First we modeled only
the event clustering part (defining the mapping function f') using
clustering algorithms described in section 6.1. Then we modeled
only the dependencies by providing to the system the true clusters
and running only the dependency algorithms of section 6.2. Finally,
we experimented with combinations of clustering and dependency
algorithms to produce the complete event model. This way of ex-
perimentation allows us to compare the performance of our algo-
rithms in isolation and in association with other components. The
following subsections present the three parts of our experimenta-
tion.

7.1 Clustering

We have tried several variations of the AC' DT algorithm to study
the effects of various features on the clustering performance. All
the parameters are learned by tuning on the training set. We also
tested the algorithms on the test set with parameters fixed at their
optimal values learned from training. We used agglomerative clus-

Model bestT | CP | CR | CF | P-value
cos+1-Ink 0.15 041 ] 056 | 043 | -
cos+all-Ink 0.00 0.40 | 0.62 | 045 | -
cos+Loc+avg-lnk 0.07 0.37 1 0.74 | 045 | -
cos+Per+avg-lnk 0.07 0.39 | 0.70 | 0.46 | -
cos+TD+avg-Ink 0.04 0.45 | 0.70 | 0.53 | 2.9e-4*
cos+N(T)+avg-lnk - 041 | 0.62 | 0.48 | 7.5¢-2
cos+N(T)+T+avg-Ink 0.03 0.42 | 0.62 | 0.49 | 2.4e-2*
cos+TD+N(T)+avg-Ink - 0.44 | 0.66 | 0.52 | 7.0e-3*
cos+TD+N(T)+T+avg-Ink | 0.03 0.47 | 0.64 | 0.53 | 1.1e-3*
Baseline(cos+avg-Ink) 0.05 0.39 | 0.67 | 046 | -

Table 2: Comparison of agglomerative clustering algorithms
(training set)

tering based on only cosine similarity as our clustering baseline.
The results on the training and test sets are in Table 2 and 3 respec-
tively. We use the Cluster F1-measure (CF) averaged over all topics
as our evaluation criterion.

Model CP | CR CF | P-value
cos+1-Ink 0431049 | 039 | -
cos+all-Ink 0.43 | 0.62 047 | -
cos+Loc+avg-Ink 0371 073 | 045 | -
cos+Per+avg-Ink 044 |1 062 | 045 | -
cos+TD+avg-Ink 048 | 0.70 | 0.54 | 0.014*
cos+N(T)+avg-Ink 041 | 0.71 0.51 | 0.31
cos+N(T)+T+avg-Ink 0.43 | 0.69* | 0.52 | 0.14
cos+TD+N(T)+avg-Ink 0.43 | 0.76 0.54 | 0.025%
cos+TD+N(T)+T+avg-lnk | 0.47 | 0.69 | 0.54 | 0.0095*
Baseline(cos+avg-Ink) 0.44 | 0.67 0.50 | -

Table 3: Comparison of agglomerative clustering algorithms
(test set)

P-value marked with a * means that it is a statistically significant
improvement over the baseline (95% confidence level, one tailed
T-test). The methods shown in table 2 and 3 are:

o Baseline: tf-idf vector weight, cosine similarity, average link
in clustering. In equation 12, wy = 1, w2 = w3 = 0. And
a = 0inequation 13. This F-value is the maximum obtained
by tuning the threshold.

e cos+1-Ink: Single link comparison (see equation 16) is used
where similarity of two clusters is the maximum of all story
pairs, other configurations are the same as the baseline run.

o cos+all-Ink: Complete link algorithm of equation 15 is used.
Similar to single link but it takes the minimum similarity of
all story pairs.

e cos+Loc+avg-Ink: Location names are used when calculat-
ing similarity. w2z = 0.05 in equation 12. All algorithms
starting from this one use average link (equation 14), since
single link and complete link do not show any improvement
of performance.

® cos+Per+avg-lnk: ws = 0.05 in equation 12, i.e., we put
some weight on person names in the similarity.

o cos+TD+avg-Ink: Time Decay coefficient &« = 1 in equation
13, which means the similarity between two stories will be
decayed to 1/e if they are at different ends of the topic.

e cos+N(T)+avg-Ink: Use the number of true events to control
the agglomerative clustering algorithm. When the number
of clusters is fewer than that of truth events, stop merging
clusters.

o cos+N(T)+T+avg-Ink: similar to N(T) but also stop agglom-
eration if the maximal similarity is below the threshold T'.

e cos+TD:+N(T)+avg-Ink: similar to N(T) but the similarities
are decayed, o = 1 in equation 13.

o cos+TD+N(T)+T+avg-Ink: similar to TD+N(Truth) but cal-
culation halts when the maximal similarity is smaller than
the threshold T'.

Our experiments demonstrate that single link and complete link
similarities perform worse than average link, which is reasonable
since average link is less sensitive to one or two story pairs. We
had expected locations and person names to improve the result, but
it is not the case. Analysis of topics shows that many on-topic
stories share the same locations or persons irrespective of the event
they belong to, so these features may be more useful in identifying
topics rather than events. Time decay is successful because events
are temporally localized, i.e., stories discussing the same event tend
to be adjacent to each other in terms of time. Also we noticed
that providing the number of true events improves the performance
since it guides the clustering algorithm to get correct granularity.
However, for most applications, it is not available. We used it only
as a “cheat” experiment for comparison with other algorithms. On
the whole, time decay proved to the most powerful feature besides
cosine similarity on both training and test sets.

7.2 Dependencies

In this subsection, our goal is to model only dependencies. We
use the true mapping function f and by implication the true events
V. We build our dependency structure E' using all the five mod-
els described in section 6.2. We first train our models on the 26
training topics. Training involves learning the best threshold T'
for each of the models. We then test the performances of all the
trained models on the 27 test topics. We evaluate our performance



using the average values of Dependency Precision (DP), Depen-
dency Recall (DR) and Dependency F-measure (DF). We consider
the complete-link model to be our baseline since for each event, it
trivially considers all earlier events to be parents.

Table 4 lists the results on the training set. We see that while all
the algorithms except MST outperform the baseline complete-link
algorithm , the nearest Parent algorithm is statistically significant
from the baseline in terms of its DF-value using a one-tailed paired
T-test at 95% confidence level.

Model bestT | DP | DR | DF | P-value
Nearest Parent | 0.025 0.55 ] 0.62 | 0.56 | 0.04*
Best Similarity | 0.02 0.51 | 0.62 | 0.53 | 0.24

MST 0.0 0.46 | 0.58 | 048 | -
Simple Thresh. | 0.045 | 0.45 | 0.76 | 0.52 | 0.14
Complete-link | - 0.36 | 0.93 | 048 | -

Table 4: Results on the training set: Best 7" is the optimal value
of the threshold 7'. * indicates the corresponding model is sta-
tistically significant compared to the baseline using a one-tailed,
paired T-test at 95% confidence level.

In table 5 we present the comparison of the models on the test
set. Here, we do not use any tuning but set the threshold to the
corresponding optimal values learned from the training set. The re-
sults throw some surprises: The nearest parent model, which was
significantly better than the baseline on training set, turns out to be
worse than the baseline on the test set. However all the other mod-
els are better than the baseline including the best similarity which
is statistically significant. Notice that all the models that perform
better than the baseline in terms of DF, actually sacrifice their re-
call performance compared to the baseline, but improve on their
precision substantially thereby improving their performance on the
DF-measure.

We notice that both simple-thresholding and best similarity are
better than the baseline on both training and test sets although the
improvement is not significant. On the whole, we observe that the
surface-level features we used capture the dependencies to a rea-
sonable level achieving a best value of 0.72 DF on the test set.
Although there is a lot of room for improvement, we believe this is
a good first step.

Model DP | DR | DF | P-value
Nearest Parent 0.61 | 0.60 | 0.60 | -

Best Similarity 0.71 | 0.74 | 0.72 | 0.04*
MST 0.70 | 0.68 | 0.69 | 0.22
Simple Thresh. 0.57 | 0.75 | 0.64 | 0.24
Baseline (Complete-link) | 0.50 | 0.94 | 0.63 | -

Table 5: Results on the test set

7.3 Combining Clustering and Dependencies

Now that we have studied the clustering and dependency algo-
rithms in isolation, we combine the best performing algorithms and
build the entire event model. Since none of the dependency algo-
rithms has been shown to be consistently and significantly better
than the others, we use all of them in our experimentation. From
the clustering techniques, we choose the best performing Cos+T7D.
As a baseline, we use a combination of the baselines in each com-
ponents, i.e., cos for clustering and complete-link for dependencies.

Note that we need to retrain all the algorithms on the training
set because our objective function to optimize is now JF, the joint
F-measure. For each algorithm, we need to optimize both the clus-
tering threshold and the dependency threshold. We did this empir-
ically on the training set and the optimal values are listed in table
6.

The results on the training set, also presented in table 6, indicate
that cos+TD+Simple-Thresholding is significantly better than the
baseline in terms of the joint F-value JF, using a one-tailed paired T-
test at 95% confidence level. On the whole, we notice that while the
clustering performance is comparable to the experiments in section
7.1, the overall performance is undermined by the low dependency
performance. Unlike our experiments in section 7.2 where we had
provided the true clusters to the system, in this case, the system
has to deal with deterioration in the cluster quality. Hence the per-
formance of the dependency algorithms has suffered substantially
thereby lowering the overall performance.

The results on the test set present a very similar story as shown
in table 7. We also notice a fair amount of consistency in the perfor-
mance of the combination algorithms. cos+TD+Simple-Thresholding
outperforms the baseline significantly. The test set results also point
to the fact that the clustering component remains a bottleneck in
achieving an overall good performance.

8. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a new perspective of modeling
news topics. Contrary to the TDT view of topics as flat collec-
tion of news stories, we view a news topic as a relational structure
of events interconnected by dependencies. In this paper, we also
proposed a few approaches for both clustering stories into events
and constructing dependencies among them. We developed a time-
decay based clustering approach that takes advantage of temporal-
localization of news stories on the same event and showed that it
performs significantly better than the baseline approach based on
cosine similarity. Our experiments also show that we can do fairly
well on dependencies using only surface-features such as cosine-
similarity and time-stamps of news stories as long as true events
are provided to the system. However, the performance deteriorates
rapidly if the system has to discover the events by itself. Despite
that discouraging result, we have shown that our combined algo-
rithms perform significantly better than the baselines.

Our results indicate modeling dependencies can be a very hard
problem especially when the clustering performance is below ideal
level. Errors in clustering have a magnifying effect on errors in de-
pendencies as we have seen in our experiments. Hence, we should
focus not only on improving dependencies but also on clustering at
the same time.

As part of our future work, we plan to investigate further into
the data and discover new features that influence clustering as well
as dependencies. And for modeling dependencies, a probabilistic
framework should be a better choice since there is no definite an-
swer of yes/no for the causal relations among some events. We also
hope to devise an iterative algorithm which can improve clustering
and dependency performance alternately as suggested by one of
the reviewers. We also hope to expand our labeled corpus further
to include more diverse news sources and larger and more complex
event structures.
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