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Abstract

Conditional Random Fields (CRFs) are undi-

rected graphical models, a special case of which

correspond to conditionally-trained finite state

machines. A key advantage of CRFs is their

great flexibility to include a wide variety of ar-

bitrary, non-independent features of the input.

Faced with this freedom, however, an impor-

tant question remains: what features should be

used? This paper presents an efficient feature

induction method for CRFs. The method is

founded on the principle of iteratively construct-

ing feature conjunctions that would significantly

increase conditional log-likelihood if added to

the model. Automated feature induction en-

ables not only improved accuracy and dramatic

reduction in parameter count, but also the use

of larger cliques, and more freedom to liber-

ally hypothesize atomic input variables that may

be relevant to a task. The method applies to

linear-chain CRFs, as well as to more arbitrary

CRF structures, such as Relational Markov Net-

works, where it corresponds to learning clique

templates, and can also be understood as super-

vised structure learning. Experimental results

on named entity extraction and noun phrase seg-

mentation tasks are presented.

1 Introduction

Many tasks are best performed by models that have the

flexibility to use arbitrary, overlapping, multi-granularity

and non-independent features. For example, in natural

language tasks, the need for labeled data can be drasti-

cally reduced by using features that take advantage of do-

main knowledge in the form of word lists, part-of-speech

tags, character n-grams, capitalization patterns, page lay-

out and font information. It is difficult to capture such

inter-dependent features with a generative probabilistic

model because the dependencies among generated vari-

ables should be explicitly captured in order to reproduce

the data. However, conditional probability models, such as

conditional maximum entropy classifiers, need not capture

dependencies among variables on which they condition, but

do not generate. There has been significant work, for in-

stance, with such models for greedy sequence modeling in

NLP, e.g. (Ratnaparkhi, 1996; Borthwick et al., 1998).

Conditional Random Fields (CRFs) (Lafferty et al., 2001)

are undirected graphical models, trained to maximize the

conditional probability of the outputs given the inputs.

When the edges among the output variables form a linear

chain, they correspond to conditionally-trained finite state

machines. While based on the same exponential form as

maximum entropy models, they have efficient procedures

for complete, non-greedy finite-state inference and train-

ing. CRFs have achieved empirical success recently in POS

tagging (Lafferty et al., 2001), noun phrase segmentation

(Sha & Pereira, 2003) and table extraction from govern-

ment reports (Pinto et al., 2003).

Given these models’ great flexibility to include a wide ar-

ray of features, an important question that remains is what

features should be used? Some features are atomic and pro-

vided, but since CRFs are log-linear models, one will also

want to gain expressive power by using some conjunctions.

Previous standard approaches build large set of feature con-

junctions according to hand-built, general patterns. This

can result in extremely large feature sets, with millions of

features, e.g. (Sha & Pereira, 2003).

However, even with this many parameters, the feature set

is still restricted. For example, in some cases capturing a

word tri-gram is important, but there is not sufficient mem-

ory or computation to include all word tri-grams. As the

number of overlapping atomic features increases, the dif-

ficulty and importance of constructing only select feature

combinations grows.

This paper presents a feature induction method for

arbitrarily-structured and linear-chain CRFs. Founded on

the principle of constructing only those feature conjunc-



tions that significantly increase log-likelihood, the ap-

proach builds on that of Della Pietra et al. (1997), but is

altered to work with conditional rather than joint probabili-

ties, and with a mean-field approximation and other modifi-

cations to improve efficiency specifically for a conditional

model. In comparison with traditional approaches, auto-

mated feature induction offers both improved accuracy and

significantly reduction in feature count; it enables the use of

richer, higher-order Markov models; and offers more free-

dom to liberally guess about which atomic features may be

relevant to a task.

We present results on two natural language tasks. The

CoNLL-2003 named entity recognition shared task con-

sists of Reuters news articles with tagged entities PERSON,

LOCATION, ORGANIZATION and MISC. The data is quite

complex, including foreign person names (such as Yayuk

Basuki and Innocent Butare), a wide diversity of locations

(including sports venues such as The Oval, and rare loca-

tion names such as Nirmal Hriday), many types of orga-

nizations (from company names such as 3M, to acronyms

for political parties such as KDP, to location names used to

refer to sports teams such as Cleveland), and a wide vari-

ety of miscellaneous named entities (from software such as

Java, to nationalities such as Basque, to sporting competi-

tions such as 1,000 Lakes Rally).

On this task feature induction reduces error by 40% (in-

creasing F1 from 73% to 89%) in comparison with fixed,

hand-constructed conjunction patterns. There is evidence

that the fixed-pattern model is severely overfitting, and that

feature induction reduces overfitting while still allowing

use of large, rich knowledge-laden feature sets.

On a standard noun phrase segmentation task we match

world-class accuracy while using far less than an order of

magnitude fewer features.

2 Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et al., 2001)

are undirected graphical models (also known as random

fields) used to calculate the conditional probability of val-

ues on designated output nodes given values assigned to

other designated input nodes. The term “random field” has

common usage in the statistical physics and computer vi-

sion. In the graphical modeling community the same mod-

els are often known as “Markov networks”; thus condi-

tional Markov networks (Taskar et al., 2002) are the same

as conditional random fields.

Let O be a set of “input” random variables whose values

are observed, and S be a set of “output” random variables

whose values the task requires the model to predict. The

random variables are connected by undirected edges indi-

cating dependencies, and let C(O,S) be the set of cliques

of this graph. By the Hammersley-Clifford theorem (Ham-

mersley & Clifford, 1971), CRFs define the conditional

probability of a set of output values given a set of input

values to be proportional to the product of potential func-

tions on cliques of the graph,

PΛ(s|o) =
1

Zo

∏

c∈C(s,o)

Φc(sc,oc),

where Φc(sc,oc) is the clique potential on clique c,

(a non-negative real value, often determined by an ex-

ponentiated weighted sum over features of the clique,

Φc(sc,oc) = exp(
∑K

k=1 λkfk(sc,oc))), and where Zo

is a normalization factor over all output values, Zo =
∑

s′

∏

c∈C(s′,o) Φc(s
′
c,oc), also known as the partition

function.

In the special case in which the output nodes of the graph-

ical model are linked by edges in a linear chain, CRFs

make a first-order Markov independence assumption, and

thus can be understood as conditionally-trained finite state

machines (FSMs). CRFs of this type are a globally-

normalized extension to Maximum Entropy Markov Models

(MEMMs) (McCallum et al., 2000) that avoid the label-

bias problem (Lafferty et al., 2001). Voted perceptron se-

quence models (Collins, 2002) are approximations to these

CRFs that use stochastic gradient descent and a Viterbi ap-

proximation in training. In the remainder of this section we

introduce the likelihood model, inference and estimation

procedures for linear-chain CRFs.

Now let o = 〈o1, o2, ...oT 〉 be some observed input data

sequence, such as a sequence of words in a text document,

(the values on T input nodes of the graphical model). Let

S be a set of FSM states, each of which is associated with

a label, l ∈ L, (such as PERSON). Let s = 〈s1, s2, ...sT 〉
be some sequence of states, (the values on T output nodes).

The cliques of the graph are now restricted to include just

pairs of states (st−1, st) that are neighbors in the sequence;

connectivity among input nodes, o, remains unrestricted.1

Linear-chain CRFs thus define the conditional probability

of a state sequence given an input sequence to be

PΛ(s|o) =
1

Zo

exp

(

T
∑

t=1

K
∑

k=1

λkfk(st−1, st,o, t)

)

,

where Zo is a normalization factor over all state sequences,

fk(st−1, st,o, t) is an arbitrary feature function over its

arguments, and λk (ranging from −∞ to ∞) is a learned

weight for each feature function. A feature function may,

for example, be defined to have value 0 in most cases, and

have value 1 if and only if st−1 is state #1 (which may

have label OTHER), and st is state #2 (which may have

label LOCATION), and the observation at position t in o

is a word appearing in a list of country names. Higher λ

1Since the values on the input nodes, o, are known and fixed,
arbitrarily large and complex clique structure there does not com-
plicate inference.



weights make their corresponding FSM transitions more

likely, so the weight λk in this example should be posi-

tive since words appearing in the list of country names are

likely to be locations.

More generally, feature functions can ask powerfully arbi-

trary questions about the input sequence, including queries

about previous words, next words, and conjunctions of all

these. Nearly universally, however, feature functions fk do

not depend on the value of t other than as an index into o,

and thus parameters λk are tied across time steps, just as

are the transition and emission parameters in a traditional

hidden Markov model (Rabiner, 1990). Feature functions

may have values from −∞ to ∞, although binary values

are traditional.

CRFs define the conditional probability of a label se-

quence based on total probability over the state sequences,

PΛ(l|o) =
∑

s:l(s)=l
PΛ(s|o), where l(s) is the sequence

of labels corresponding to the labels of the states in se-

quence s.

Note that the normalization factor, Zo, is the sum of the

“scores” of all possible state sequences,

Zo =
∑

s∈ST

exp

(

T
∑

t=1

K
∑

k=1

λkfk(st−1, st,o, t)

)

,

and that the number of state sequences is exponential in the

input sequence length, T . In arbitrarily-structured CRFs,

calculating the normalization factor in closed form is in-

tractable, and approximation methods such as Gibbs sam-

pling or loopy belief propagation must be used. In linear-

chain-structured CRFs, which we have here for sequence

modeling, the partition function can be calculated effi-

ciently in closed form, as described next.

2.1 Inference in Linear-chain CRFs

As in forward-backward for hidden Markov models

(HMMs), inference can be performed efficiently by dy-

namic programming. We define slightly modified “forward

values”, αt(si), to be the probability of arriving in state si

given the observations 〈o1, ...ot〉. We set α0(s) equal to the

probability of starting in each state s, and recurse:

αt+1(s) =
∑

s′

αt(s
′) exp

(

K
∑

k=1

λkfk(s′, s,o, t)

)

.

The backward procedure and the remaining details of

Baum-Welch are defined similarly. Zo is then
∑

s αT (s).
The Viterbi algorithm for finding the most likely state se-

quence given the observation sequence can be correspond-

ingly modified from its HMM form.

2.2 Training CRFs

The weights of a CRF, Λ = {λ, ...}, are set to maximize

the conditional log-likelihood of labeled sequences in some

training set, D = {〈o, l〉(1), ...〈o, l〉(j), ...〈o, l〉(N)},

LΛ =
N
∑

j=1

log
(

PΛ(l(j)|o(j))
)

−
K
∑

k=1

λ2
k

2σ2
,

where the second sum is a Gaussian prior over parame-

ters (with variance σ2) that provides smoothing to help

cope with sparsity in the training data (Chen & Rosenfeld,

1999).

When the training labels make the state sequence unam-

biguous (as they often do in practice), the likelihood func-

tion in exponential models such as CRFs is convex, so there

are no local maxima, and thus finding the global optimum

is guaranteed.2

It is not, however, straightforward to find it quickly. Pa-

rameter estimation in CRFs requires an iterative proce-

dure, and some methods require fewer iterations than oth-

ers. Iterative scaling is the traditional method of train-

ing these maximum-entropy models (Darroch et al., 1980;

Della Pietra et al., 1997), however it has recently been

shown that quasi-Newton methods, such as L-BFGS, are

significantly more efficient (Byrd et al., 1994; Malouf,

2002; Sha & Pereira, 2003). This method approximates the

second-derivative of the likelihood by keeping a running,

finite-sized window of previous first-derivatives. Sha and

Pereira (2003) show that training CRFs by L-BFGS is sev-

eral orders of magnitude faster than iterative scaling, and

also much faster than conjugate gradient.

L-BFGS can simply be treated as a black-box optimization

procedure, requiring only that one provide the value and

first-derivative of the function to be optimized. Assuming

that the training labels on instance j make its state path

unambiguous, let s
(j) denote that path, and then the first-

derivative of the log-likelihood is

δL

δλk

=





N
∑

j=1

Ck(s(j),o(j))



−





N
∑

j=1

∑

s

PΛ(s|o(j))Ck(s,o(j))



−
λk

σ2

where Ck(s,o) is the “count” for feature k given s

and o, equal to
∑T

t=1 fk(st−1, st,o, t), the sum of

fk(st−1, st,o, t) values for all positions, t, in the sequence

s. The first two terms correspond to the difference between

the empirical expected value of feature fk and the model’s

expected value: (Ẽ[fk] − EΛ[fk])N . The last term is the

derivative of the Gaussian prior.

2When the training labels do not disambiguate a single state
path, expectation-maximization can be used to fill in the “miss-
ing” state paths. For example, see Teh et al. (2002)



3 Efficient Feature Induction for CRFs

Typically the features, fk, are based on some number of

hand-crafted atomic observational tests (such as word is

capitalized, or word is “said”, or word appears in lexi-

con of country names)—and a large collection of features

is formed by making conjunctions of the atomic tests in

certain user-defined patterns, (for example, the conjunc-

tions consisting of all tests at the current sequence position

conjoined with all tests at the position one step ahead—

producing in one instance, current word is capitalized and

next word is “Inc”).

Conjunctions are important because the model is log-

linear, and the only way to represent certain complex de-

cision boundaries is to project the problem into a higher-

dimensional space comprised of other functions of multiple

variables.

There can easily be over 100,000 atomic tests (many based

on tests for the identity of words in the vocabulary), and ten

or more shifted-conjunction patterns—resulting in several

million features (Sha & Pereira, 2003). This large number

of features can be prohibitively expensive in memory and

computation; furthermore many of these features are irrel-

evant, and others that are relevant are excluded.

In response, we wish to use just those conjunctions (i.e.

feature-function-enabling cliques) that will significantly

improve performance. We start with no features, and over

several rounds of feature induction: (1) consider a set of

proposed new features (both atomic observational tests and

conjunctions), (2) select for inclusion those candidate fea-

tures that will most increase the log-likelihood of the cor-

rect state path s
(j), (3) train weights for all included fea-

tures, and (4) iterate to step (1) until a stopping criteria is

reached.

The proposed new features are based on the hand-crafted

observational tests, consisting of singleton tests, and bi-

nary conjunctions of singleton tests with each other, and

with other features currently in the model. The later al-

lows arbitrary-length conjunctions to be built. The fact that

not all singleton tests are included in the model gives the

designer great freedom to use a very large variety of ob-

servational tests and a large window of time shifts. Noisy

and irrelevant features—as measured by lack of likelihood

gain—will simply never be selected for inclusion in the

model.

As in the previous section, we begin by describing fea-

ture induction for the general case of arbitrarily-structured

CRFs, and then focus on linear-chain CRFs.

3.1 Feature Induction for Arbitrarily-Structured

CRFs

To measure the effect of adding a new feature, we define the

new conditional model with the additional feature g with

weight µ to have the same form as the original model (as if

this new candidate feature were included along side the old

ones):

PΛ+g,µ(s|o) =
PΛ(s|o) exp

(

∑

c∈C(s,o) µ g(sc,oc)
)

Zo(Λ, g, µ)
;

(1)

Zo(Λ, g, µ)
def
=
∑

s′
PΛ(s′|o) exp(

∑

c∈C(s,o) µ g(sc,oc))
in the denominator is simply the additional portion of nor-

malization required to make the new function sum to 1 over

all output values.

Following (Della Pietra et al., 1997), we efficiently assess

many candidate features in parallel by assuming that the λ
parameters on all old features remain fixed while estimat-

ing the gain, G(g), of a candidate feature, g. The gain of a

feature is defined as the improvement in log-likelihood the

feature provides,

GΛ(g) = max
µ

GΛ(g, µ) = max
µ

LΛ+gµ−LΛ−(µ2/2σ2).

(2)

Note that the µ that gives maximum gain must be found.3

As will be further explained below, in conditional probabil-

ity models—unlike binary-featured joint probability mod-

els (Della Pietra et al., 1997)—the optimal value of µ can-

not be calculated in closed-form. An iterative procedure,

such as Newton’s method must be used, and this involves

calculating LΛ+gµ with a new µ for each iteration—thus re-

peatedly performing inference, with a separate Zo for each

training instance.4 (Remember that an “instance” here is a

set of values for all the nodes in a graph.)

With this daunting prospect in mind, we make the feature

gain calculation significantly more time-efficient for CRFs

and for large training sets with two further reasonable and

mutually-supporting approximations:

1. During the iterative gain calculation procedure, we

use a type of mean field approximation to avoid joint

inference over all output variables, and rather make

each state a separate, independent inference problem.

In particular, when inferring the distribution over val-

ues of each output node s, we assume that distribu-

tions at all other output nodes are fixed at their max-

imum likelihood values, (e.g. for sequence problems,

their Forward-Backward-determined values). Early in

3Experiments using the derivative of likelihood with respect
to µ did not perform as well as gain, presumably because some
initially-steep hills actually have lower peaks.

4In Della Pietra et al’s (1997) feature induction procedure
for non-conditional probability models, the partition function Z
could be calculated just once for each Newton iteration since it
did not depend on a conditioning input, o, but we cannot. How-
ever, as they do, we can still share Zo across the gain calculation
for many candidate features, g, since we both assume that the pa-
rameters on old features remain fixed.



training it may be helpful to use the true values of the

neighbors instead, as in pseudo-likelihood methods.

The calculation of the partition function, Z, for each

inference problem thus becomes significantly simpler

since it involves a sum over only the alternative val-

ues for a single output node, s—not a sum over all

alternative configurations for the entire graph, which

is exponential in the number of output nodes in the

graph.

2. The first assumption allows us to treat each output

node s as a separate inference problem, and thus gives

us the option to choose to skip some of them. In many

tasks, the great majority of the output nodes are cor-

rectly labeled, even in the early stages of training. (For

example, in a named entity extraction task, nearly all

lowercase words are not named entities; the model

learns this very quickly, and there is little reason to

include inference on these words in the gain calcula-

tion.)

We significantly increase efficiency by including in

the gain calculation only those output nodes that are

mislabeled by the current model, (or correctly labeled

only within some margin of the decision surface).

It is not that joint inference over all output variables is in-

tractable (after all, it is performed both during estimation

of the λs and a test time), but rather that performing full,

joint inference repeatedly inside an inner loop to estimate

µ would be extremely time-consuming and unnecessarily

inefficient.

3.2 Feature Induction for Linear-Chain CRFs

The feature induction procedure is now described in more

detail for the specific case of linear-chain CRFs. Below we

also describe three additional important modeling choices,

(indicated with 1∗, 2∗, 3∗).

Following equation 1, the new linear-chain CRF model

with additional feature g having weight µ has cliques con-

sisting only of adjacent pairs of states:

PΛ+g,µ(s|o) =
PΛ(s|o) exp

(

∑T

t=1 µ g(st−1, st,o, t)
)

Zo(Λ, g, µ)
;

Zo(Λ, g, µ)
def
=
∑

s′
PΛ(s′|o) exp(

∑T

t=1 µ g(s′t−1, s
′
t,o, t))

in the denominator is again the additional portion of nor-

malization required by the candidate feature.

With the mean field approximation we instead perform

µ-aware inference on individual output variables s sepa-

rately. Furthermore, we can drastically reduce the number

of new features evaluated by measuring the gain of courser-

grained, agglomerated features. In particular, if it is less

important to explore the space of features that concern FSM

Input: (1) Training set: paired sequences of feature vectors and
labels; for example, associated with the sequence of words in the
English text of a news article: a binary vector of observational-
test results for each word, and a label indicating if the word is a
person name or not. (2) a finite state machine with labeled states
and transition structure.
Algorithm: (1) Begin with no features in the model, K = 0.
(2) Create a list of candidate features consisting of observational
tests, and conjunctions of observational tests with existing fea-
tures. Limit the number of conjunctions by only building with a
limited number of conjuncts with highest gain (Eqs 2 or 4). (3)
Evaluate all candidate features, and add to the model some sub-
set of candidates with highest gain, thereby increasing K. (4)
Use a quasi-Newton method to adjust all the parameters of the
CRF model so as to increase conditional likelihood of the label
sequences given the input sequences; but avoid overfitting too
quickly by running only a handful of Newton iterations. (5) Go to
step 2 unless some convergence criteria is met.
Output: A finite state CRF model that finds the most likely label
sequence given an input sequence by using its induced features,
learned weights and the Viterbi algorithm.

Figure 1: Outline of the algorithm for linear-chain CRFs.

transitions, and more important to explore the space of fea-

tures that concern observational tests, (1∗) we can define

and evaluate alternative agglomerated features, g(st,o, t),
that ignore the previous state, st−1. When such a feature

is selected for inclusion in the model, we can include in

the model the several analogous features g(st−1, st,o, t)
for st−1 equal to each of the FSM states in S, or a subset

of FSM states selected by a simpler criteria. Using these

assumptions, the marginal probability of FSM state s at

sequence position t (given a new candidate feature g and

weight µ) is

PΛ+g,µ(s|o, t) =
PΛ(s|o, t) exp (µ g(st,o, t))

Zot
(Λ, g, µ)

.

where Zot
(Λ, g, µ)

def
=
∑

s′ PΛ(s′|o, t) exp(µg(s′t,o, t)),
and where PΛ(s|o, t) is the original marginal probabil-

ity of FSM state s at position t (known in Rabiner’s

(1990) notation as γt(s)), calculated by full dynamic-

programming-based inference and fixed parameters Λ, us-

ing “forward” α and “backward” β values analogously to

HMMs: PΛ(s|o, t) = αt(s|o)βt+1(s|o)/Zo.

Using the mean field approximation and the agglomerated

features, the approximate likelihood of the training data us-

ing the new candidate feature g and weight µ is L̂Λ+gµ =




N
∑

j=1

Tj
∑

t=1

log
(

PΛ+gµ(s
(j)
t |o(j), t)

)



−
µ2

2σ2
−

K
∑

k=1

λ2
k

2σ2
;

(3)

and L̂Λ is defined analogously, with PΛ instead of PΛ+gµ

and without −µ2/2σ2.

However, rather than summing over all output variables

for all training instances,
∑N

j=1

∑Tj

t=1, we significantly



gain efficiency by including only those M tokens that are

mislabeled by the current model, Λ, (or alternatively to-

kens with true label probability within some margin). Let

{o(i) : i = 1...M} be those tokens, and o(i) be the in-

put sequence in which the ith error token occurs at position

t(i).

Then algebraic simplification using these approximations,

equations 2 and 3 gives ĜΛ(g, µ) =

M
∑

i=1

log

(

exp
(

µ g(st(i),o(i), t(i))
)

Zo(i)(Λ, g, µ)

)

−
µ2

2σ2

= MµẼ[g] −
M
∑

i=1

log
(

EΛ[exp(µ g)|o(i)]
)

−
µ2

2σ2
,

The optimal value of µ cannot be solved in closed form, but

Newton’s method typically finds it in about 10 iterations.

There are two additional important modeling choices: (2∗)

Because we expect our models to still require several thou-

sands of features, we save time by adding many of the fea-

tures with highest gain each round of induction rather than

just one;5 (including a few redundant features is mildly

wasteful, but not harmful). (3∗) Because even models with

a small select number of features can still severely overfit,

we train the model with just a few BFGS iterations (not to

convergence) before performing the next round of feature

induction.

Figure 1 outlines the inputs, steps and output of the overall

algorithm.

4 Experimental Results

Experimental results show the benefits of automated fea-

ture induction on two natural language processing tasks:

named entity recognition, where it reduces error by 40%,

and noun phrase segmentation, where it matches world-

class accuracy while reducing feature count by significantly

more than an order of magnitude.

4.1 Named Entity Recognition

CoNLL-2003 has provided named entity labels PERSON,

LOCATION, ORGANIZATION, MISC, and OTHER, on a

collection of Reuters newswire articles in English about

various news topics from all over the world. The train-

ing set consists of 946 documents (203621 tokens); the test

set (CoNLL testa) consists of 216 documents (51362 to-

kens).

On this data set we use several families of atomic obser-

vational tests: (a) the word itself, (b) part-of-speech tags

and noun phrase segmentation tags imperfectly assigned by

5Although we avoid adding features with equal gains, which
are usually different names for exactly overlapping features.

Without induction With induction

Prec Recall F1 Prec Recall F1

PER 91.8 46.7 61.9 93.2 93.3 93.2
LOC 94.1 80.5 86.7 93.0 91.9 92.4
ORG 92.0 48.5 63.5 84.9 83.9 84.4
MISC 91.7 66.7 77.2 83.1 77.0 80.0

Overall 92.7 60.7 73.3 89.8 88.2 89.0

Figure 2: English named entity extraction.

an automated method (c) 16 character-level regular expres-

sions, mostly concerning capitalization and digit patterns,

such as A, A+, Aa+, Aa+Aa*, A., D+, .*D.*, where A,

a and D indicate the regular expressions [A-Z], [a-z]

and [0-9] respectively, (d) 8 lexicons entered by hand,

such as honorifics, days and months, (e) 35 lexicons (ob-

tained from Web sites), such as countries, publicly-traded

companies, surnames, stopwords, and universities, people

names, organizations, NGOs and nationalities, (f) all the

above tests, time-shifted by -2, -1, 1 and 2, (g) the sec-

ond time a capitalized word appears, the results of all the

above tests applied to that word’s first mention are copied

to the current token with the tag firstmention, (h) some ar-

ticles have a header, such as BASEBALL, SOCCER, or FI-

NANCE; when present, these are noted on every token of

the document.6

Observational features are induced by evaluating candi-

date features consisting of conjunctions of these observa-

tional tests. Candidates are generated by building all pos-

sible conjunctions among the the 1000 atomic and existing

conjunction-features with the highest gain. CRF features

consist of observational tests in conjunction with the iden-

tities of the source and destination states of the FSM.

A first-order CRF was trained for about 12 hours on a 1GHz

Pentium with a Gaussian prior variance of 10, inducing

1000 or fewer features (down to a gain threshold of 5.0)

each round of 10 iterations of L-BFGS. Performance re-

sults for each of the entity classes can be found in Figure 2.

The model achieved an overall F1 of 89% using 80,294 fea-

tures. Using the same features with fixed conjunction pat-

terns instead of feature induction results in F1 73% (with

about 1 million features).

There is evidence that the fixed-conjunction model is

severely overfitting. Experiments with some alternative

hand-engineered and selective conjunction patterns may

perform better; however, one of the goals of automated

feature induction is to avoid the need for this type of te-

dious and expensive manual search in structure space. Fur-

ther supporting evidence of overfitting, a simpler CRF that

uses word identity only, with no other features, n-grams or

conjunctions of any kind overfits less and reaches 80% F1.

6Complete source code, including all lexicons and exact reg-
ular expressions for features can be found at
http://www.cs.umass.edu/∼mccallum/mallet.



Index Feature

0 inside-noun-phrase (ot−1)
5 stopword (ot)
20 capitalized (ot+1)
75 word=the (ot)
100 in-person-lexicon (ot−1)
200 word=in (ot+2)
300 capitalized (firstmentiont+1)

& capitalized (firstmentiont+2)
500 word=Republic (ot+1)
711 word=RBI (ot) & header=BASEBALL (ot)
1027 header=CRICKET (ot) & English-county (ot)
1298 company-suffix-word (firstmentiont+2)
4040 location (ot) & POS=NNP (ot)

& capitalized (ot) & stopword (ot−1)
4945 moderately-rare-first-name (ot−1)

& very-common-last-name (ot)
4474 word=the (ot−2) & word=of (ot)

Figure 3: Sampling of features induced for the named en-

tity recognition task. Index shows the order in which they

were added.

Feature induction seems to allow the use of more rich and

knowledge-laden features without such significant overfit-

ting. Note, however, that our performance of 89% is not

best on the CoNLL-2003 shared task competition. We are

currently investigating the use of different types of features

used by others (such as character n-grams), as well as is-

sues of overfitting independent from feature induction.

A sample of conjunctions induced appears in Figure 3. For

example, feature #1027 helps model the fact that when an

English county is mentioned in an article about the game

of cricket, the word is actually referring to an ORGANIZA-

TION (a team), not a LOCATION (as it would be otherwise).

Feature #1298 indicates that the first time this capitalized

word was used in the article, it was followed by a company-

indicating suffixed, such as “Inc.”; often a company name

will be introduced with its full, formal name at the begin-

ning of the article, but later be used in a short form (such as

“Addison Wesley Inc.” and later “Addison Wesley”). Fea-

ture #4474 probably indicates that an organization name

will appear at index t + 1—the pattern matching phrases

such as “the CEO of” or “the chairperson of”.

4.2 Noun Phrase Segmentation

Noun phrase segmentation consists of applying tags BE-

GIN, INTERIOR, OUTSIDE to English sentences indicating

the locations and durations of noun phrases, such as “Rock-

well International Corp.”, “a tentative agreement”, “it”, and

“its contract”. Results reported here are on the data used for

the CoNLL-2000 shared task, with their standard train/test

split.

Several systems are in a statistical tie (Sha & Pereira,

2003) for best performance, with F1 between 93.89% and

94.38%. (Kudo & Matsumoto, 2001; Sha & Pereira, 2003;

Zhang et al., 2002). All operate in very high dimensional

space. For example, Sha and Pereira (2003) present results

with two models: one using about 800,000 features, and

the other 3.8 million features. The CRF feature induction

method introduced here achieves 93.96% with just 25,296

features (and less than 8 hours of computation).

The benefit is not only the decreased memory footprint, but

the possibility that this memory and time efficiency may

enable the use of additional atomic features and conjunc-

tion patterns that (with further error analysis and experi-

mentation on the development set) could yield statistically-

significant improved performance.

5 Related Work

Conditionally-trained exponential models have been used

successfully in many natural language tasks, including doc-

ument classification (Nigam et al., 1999), sequence seg-

mentation (Beeferman et al., 1999), sequence tagging (Rat-

naparkhi, 1996; Punyakanok & Roth, 2001; McCallum

et al., 2000; Lafferty et al., 2001; Sha & Pereira, 2003)—

however, all these examples have used hand-generated fea-

tures. In some cases feature set sizes are in the hundreds of

thousands or millions. In nearly all cases, significant hu-

man effort was made to hand-tune the patterns of features

used.

The best known method for feature induction on expo-

nential models, and the work on which this paper builds

is Della Pietra et al. (1997). However, they describe a

method for non-conditional models, while the majority of

the modern applications of such exponential models are

conditional models. This paper creates a practical method

for conditional models, also founded on the principle of

likelihood-driven feature induction, but with a mean-field

and other approximations to address tractability in the face

of instance-specific partition functions and other new diffi-

culties caused by the conditional model.

The method bears some resemblance to Boosting (Freund

& Schapire, 1997) in that it creates new conjunctions (weak

learners) based on a collection of misclassified instances,

and assigns weights to the new conjunctions. However, (1)

the selection of new conjunctions is entirely driven by like-

lihood; (2) even after a new conjunction is added to the

model, it can still have its weight changed; this is quite sig-

nificant because one often sees Boosting inefficiently “re-

learning” an identical conjunction solely for the purpose

of “changing its weight”; and furthermore, when many in-

duced features have been added to a CRF model, all their

weights can efficiently be adjusted in concert by a quasi-

Newton method such as BFGS; (3) regularization is man-

ifested as a prior over weights. A theoretical comparison

between this induction method and Boosting is an area of

future work.



Boosting has been applied to CRF-like models (Altun et al.,

2003), however, without learning new conjunctions and

with the inefficiency of not changing the weights of fea-

tures once they are added. Other work (Dietterich, 2003)

estimates parameters of a CRF by building trees (with

many conjunctions), but again without adjusting weights

once a tree is incorporated. Furthermore it can be expen-

sive to add many trees, and some tasks may be diverse and

complex enough to inherently require several thousand fea-

tures.

6 Conclusions

Conditional random fields provide tremendous flexibility

to include a great diversity of features. The paper has pre-

sented an efficient method of automatically inducing fea-

tures that most improve conditional log-likelihood. The

experimental results are quite positive.

We have focused here on inducing new conjunctions (or

cliques) of the input variables, however the method also

naturally applies to inducing new cliques of the output vari-

ables, or input and output variables combined. This corre-

sponds to structure learning and “clique template” learn-

ing for conditional Markov networks, such as Relational

Markov Networks (Taskar et al., 2002), and experimental

exploration in this area is a topic of future work.
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