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Abstract

As part of research on sophisticated control for sensor interpretation, we have developed a planning-

based control scheme for blackboard systems. A planner's goal/plan/subgoal structure provides

explicit context information that can be used to index and apply large amounts of context-speci�c

control knowledge. The key obstacle to using planning for the control of problem solvers is the need

to deal with uncertain and dynamically changing situations without incurring unacceptable over-

head. We have addressed these problems in several ways: our planner is script-based, planning and

execution are interleaved, plans can invoke information gathering actions, plan re�nement is con-

trolled by plan-speci�c focusing heuristics, and the system's focus-of-attention can be dynamically

shifted by the refocusing mechanism. Refocusing makes it possible to postpone focusing decisions

and maintain the opportunistic control capabilities of conventional blackboard systems. Planning

with refocusing results in a view of the control process as both a search for problem solutions and a

search for the best methods to determine these solutions. The planner has been implemented in the

RESUN interpretation system and has been used with a simulated aircraft monitoring application

and a system for understanding household sounds. Our experience con�rms that the combination of

control plans with context-speci�c focusing heuristics provides a modular framework for developing

and maintaining complex control strategies. In experiments, we have been able to achieve signi�-

cant performance improvements as a result of the ability to encode sophisticated control strategies

despite the overhead of the planning mechanism.
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1 Introduction

One of the major problems facing any arti�cial intelligence (AI) system is the control problem: what

should the system do next? Control decisions in AI systems are uncertain because these systems do

not have the knowledge that would allow them to choose the right action to take at each decision

point. This is due to the lack of (tractable) optimal decision procedures for AI problems and/or

uncertainty in the information that is necessary to make optimal decisions (e.g., models of the state

of the world, applicability of operators). As a result, AI problem solving often involves heuristic

search [33]. When we refer to \AI problem-solving systems" in this paper, we are speci�cally

referring to systems that solve problems via heuristic search.

The performance of AI problem solvers that use heuristic search is dependent on the knowledge

they can apply to control search. In some domains, \sophisticated control strategies" may be re-

quired to achieve acceptable levels of performance. By this we mean (in part) control that involves

large amounts of highly context-speci�c heuristic search knowledge. In order to use sophisticated

control strategies a problem-solving system must be able to encode and apply signi�cant amounts

of control knowledge without this knowledge overwhelming the problem solver and causing unac-

ceptable overhead. Also of concern are issues of knowledge acquisition and engineering|i.e., does

the framework make it easy to identify and maintain appropriate control knowledge. Thus, when

we speak about whether or not a problem solver \supports" the use of sophisticated control strate-

gies, we are talking about the notion of heuristic adequacy (being \e�cient enough to be useful in

practice" [36]) rather than any absolute ability/inability to implement particular search strategies.

In this paper we will examine the use of planning-based
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approaches for the control of AI

problem-solving systems and we will present a new planning-based control framework that was

developed for the RESUN interpretation system. The RESUN control planner grew out of e�orts to

extend the range of problem solving strategies that are available to sensor interpretation systems.

Sensor interpretation involves the determination of high-level explanations of sensor and other

observational data. Interpretation can be di�cult because there may be combinatorial numbers of

alternative possible explanations of the data, the correctness of each interpretation hypothesis will

be uncertain, creating each hypothesis may be computationally expensive, and the volume of data

is often too great for complete examination [4].

Interpretation problems have typically been approached using blackboard systems. The black-

board model of problem solving is appropriate for sensor interpretation because blackboards sup-

port the incremental and opportunistic styles of problem solving that are required for such prob-

lems [3, 5, 8, 28]. However, despite the power of the blackboard model, most blackboard-based

interpretation systems have used a very limited range of strategies for resolving hypothesis uncer-

tainty. Speci�cally, they have used variations of incremental hypothesize and test that indirectly

resolve uncertainty through the aggregation of evidence for the hypotheses. By constrast, strate-

1

We use the term \planning-based" here to distinguish our sense of the term \planning" from the more restricted

sense in which it is used in \classical planning" research|see [36]. By planning, we will mean \deciding on a course

of action before acting" [11] (at least on a partial course of action) and developing an explicit goal/plan/subgoal

structure as part of the control process.
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gies like di�erential diagnosis

2

can directly resolve the sources of uncertainty about interpretation

hypotheses [4, 5].

In part, the strategy limitations of blackboard-based interpretation systems are a result of inad-

equate representations of evidence and uncertainty [4, 5, 28]. For instance, the ability to use more

sophisticated strategies for resolving uncertainty requires that a system be able to identify when

these strategies are applicable. This means that an interpretation system must understand the

reasons why its hypotheses are uncertain (including the relationships between competing and coop-

erating hypotheses). The RESUN system provides this information by associating symbolic source

of uncertainty (SOU) statements with its hypotheses. These SOUs are derived from RESUN's

model of the uncertainty in (abductive) interpretation inferences [4, 5].

RESUN's SOUs make it possible to use a wide range of strategies for resolving uncertainty.

However, we found that existing blackboard control mechanisms did not support the type of goal-

directed (context-speci�c) reasoning that is necessary to deal e�ectively with such a range of inter-

pretation strategies. For example, the process of making control decisions requires that the system:

consider why its overall goals remain unmet, use the SOUs to post subgoals representing what

must be accomplished to meet its goals, select the best subgoals to devote it resources to, choose

from among numerous alternative methods for satisfying those subgoals, determine how to spe-

cialize these methods to the particular situation, coordinate sequences of actions to implement the

methods, and perhaps even reconsider its goal and method decisions as problem solving proceeds.

The RESUN control planner was developed to enable sophisticated interpretation strategies to

be driven from RESUN's model of uncertainty. A planning mechanism was chosen because of its

ability to support the use of context-speci�c control knowledge. The selection and re�nement of

goals and plans can be handled by plan-speci�c focusing knowledge while the goal/plan/subgoal

structure instantiated by a planner provides detailed and explicit information about the context of

decisions. This results in a modular representation of control knowledge that makes it possible to

e�ciently index and apply large amounts of control knowledge. It also eases the task of encoding

and updating this knowledge. The application of planning mechanisms to control problem-solving

systems can be viewed as a logical step in the evolution of AI control from being implicit and

re
exive toward being more explicit and deliberative. Experience with knowledge-based systems

suggests that the use of explicit control mechanisms supports the development, understanding, and

maintenance of systems with sophisticated control strategies [2, 13].

We believe that a planning-based control mechanism can support the use of sophisticated control

strategies and this will be a major focus of the paper. However, relatively few AI problem solvers

have used planning mechanisms. Why? Because planning is a highly goal-directed process, it

can be di�cult for planners to deal with uncertain and dynamically changing situations (without

having unacceptable overhead from replanning). As we will see, the RESUN planner addresses these

2

For interpretation problems, incremental hypothesize and test means that hypothesis uncertainty is resolved

by attempting to con�rm the existence of all the data that would have resulted if the hypothesis were correct.

Di�erential diagnosis means that hypothesis uncertainty is resolved by attempting to discount the possible alternative

explanations for a hypothesis' supporting evidence. The possibility of alternative explanations for data is the key

source of interpretation uncertainty since interpretation is based on abductive inference [5].
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problems in several ways. The primary innovation of the framework is its refocusing mechanism.

Refocusing makes it possible for the planner to maintain the opportunistic control capabilities of

more conventional blackboard problem-solving systems.

In the next section we will examine the issues involved in the control of AI problem-solving

systems and the use of planning-based approaches to provide this kind of control. Section 3 provides

a detailed look at the RESUN control planner. This is followed in Section 4 by a summary of the

results of our experiences and experiments with RESUN. In Section 5 we then review a number of

speci�c planning and control mechanisms to show how our work relates to other AI research. The

paper concludes with a summary of the contributions of the framework and directions for future

research.

2 Control of AI Problem Solvers

2.1 Basic Issues

AI systems have typically made control decisions in a two-stage process. Davis [13] terms these the

retrieval and the re�nement stages. The retrieval stage determines the actions that the systemmight

take next given the current state of problem-solving. The re�nement stage selects the action(s)

that actually will be taken next (out of those identi�ed by the retrieval stage). Retrieval is usually

implemented with a �xed knowledge indexing scheme that is appropriate for the characteristics

of the problem|e.g., data-directed, goal-directed, di�erence-directed, etc. Re�nement involves

heuristic decisions about the \best" course of action in the situation (heuristic control knowledge

may also be applied in the retrieval stage, but this makes it more di�cult to understand and

modify).

Traditionally, AI systems used monolithic evaluation functions to make re�nement-stage deci-

sions. A single (\global") evaluation function computed a numeric rating for each of the retrieval-

stage alternatives, which re
ected that alternative's \likelihood" to succeed. One of the key prob-

lems with this approach is what Doyle [14] termed the \inaccessibility of control information." All

the reasoning being done by the evaluation function is implicit in the function's computations and

the resulting numeric rating. This can make it di�cult to encode (and maintain) sophisticated

heuristic control knowledge because users have trouble understanding complex rating functions|

especially when they incorporate ratings associated with hypotheses and data objects.

Implicit control reasoning also makes it di�cult to reconsider control decisions. Because of

the uncertainty inherent in their decisions, AI systems must be able to reconsider decisions and

select alternative(s) to pursue|i.e., they must be able to revise their decisions. This is usually

done through backtracking or Truth Maintenance System (TMS) mechanisms. However, if the

only thing that a revision process has to work with is the �nal numeric rating of each alternative,

it cannot take failures into consideration when revising a decision. Because it cannot understand

the factors that went into the ratings it can do little more than select the next most highly rated

alternative. However, this alternative may also be likely to fail if its relatively high rating results
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from the same factors as an already failed choice. Note also that dependency-directed backtracking

mechanisms do not solve this aspect of the decision revision problem [4].

To deal with these issues, a number of researchers have advocated that the process of making

control decisions be viewed as a problem solving task in itself and that this process be made more

explicit|e.g., [9, 12, 13, 21, 27]. This involves providing a body of explicit meta-level (heuristic)

knowledge about the domain and actions that is used to guide the re�nement process. With

such knowledge, a system can \reason explicitly" about control because the meta-level knowledge

explicitly identi�es the factors that in
uence control decisions. For production (rule-based) systems,

Davis [13] proposed that explicit meta-level knowledge might take the form of a set of meta-

rules. Meta-rule conditions would refer to key features of the problem solving situation. Meta-rule

\actions" would then state preferences for (domain) rules whose characteristics are appropriate for

the current situation. The meta-rules would be applied during the con
ict-resolution (re�nement)

stage of a production system to select the object-level rule(s) to be �red.

The addition of meta-rules allows a system to reason explicitly in making re�nement decisions,

but problems remain. One problem is that there may be multiple meta-rules that are applicable

in any given situation. While this could be handled through a meta-rule re�nement process (e.g.,

using meta-meta-rules), the \advice" from multiple meta-rules is typically combined by resorting

to numeric ratings|e.g., using meta-rule actions like \rules whose premise mention x are likely

(.6) to be useful." Davis believes that this approach is \e�ective where decisions can be made by

combining the contributions of a number of independent mechanisms." Still, it eliminates many of

the advantages of the meta-rule format since the object-level factors explicitly considered by the

meta-rules are lost in the conversion to numeric ratings. In addition, this approach can make it

di�cult to realize a particular strategy since the ratings from various meta-rules will have to be

balanced. Other problems with the meta-rules format (and any other form of meta-level knowledge)

relate to the potential for greatly increased control overhead due to the need to retrieve and apply

what might be a very large number of meta-rules.

In order to take full advantage of meta-level knowledge such as meta-rules, there must be

additional structure to the knowledge that identi�es the context in which the knowledge applies

in order to index (and partition) the knowledge [4, 13]. Davis recognizes this as a solution to the

overhead problem and suggests that meta-rules be associated with the (domain action) retrieval

properties|e.g., goals. However, we would like to go further and eliminate meta-rules con
icts as

well when appropriate|i.e., when we don't need to numerically combine advice from independent

factors. If su�ciently detailed contexts can be speci�ed then there only needs to be a single piece of

meta-level knowledge for any context. We believe that this type of approach has many advantages

(modularity and explicit resolution of strategy con
icts).

Another critical issue for control in many AI problem solvers is the need to integrate both

data-directed (event-directed) and goal-directed control factors. Early blackboard systems relied

heavily on data-directed control mechanisms in order to provide opportunistic control capabilities:

the ability to rapidly shift the focus-of-attention of the system based on factors such as developing

solution quality or the appearance of new data. Opportunistic control allows a system to deal with
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uncertain and dynamic situations because the system can re-direct its e�orts as necessary|instead

of being limited to a predetermined (and possibly inappropriate) strategy. However, there has been

a steady evolution of blackboard control toward more goal-directed mechanisms [7]. The reason for

this is clear: without (explicit) goal-directed control it is di�cult for a system to identify actions

critical to meeting its overall goals (especially when a sequence of actions is necessary to accomplish

some goal [12]). Thus, a key issue is how to make control more goal-directed without sacri�cing

opportunism.

2.2 Planning for Control

In this section we will look at how planning-based approaches to control can address the issues

raised in the previous section. First of all, it is important to understand that \classical planning"

research [36] is not generally appropriate for the control of problem-solving systems because it

involves strategic planning: determining a complete sequence of actions that solve a problem prior

to taking any actions. Strategic planners are not useful for applications in which blackboard systems

would typically be used because the situations are too uncertain and/or dynamic to permit problem

solving actions to be completely pre-planned. In other words, the problem with classical planners is

that they are neither opportunistic nor reactive [36]. Recently there has been a signi�cant amount of

research on reactive planning [16, 18] and on the interleaving of planning and execution [26]. As we

will see, these types of approaches can make planning appropriate for the control of problem-solving

systems.

One of the key motivations for using a planning-based control framework is that the

goal/plan/subgoal hierarchy that is instantiated by a planner provides detailed and explicit context

information for control decisions. In other words, control decisions result from planner focusing

decisions and when focusing decisions are made, it is clear from the hierarchy exactly what the

context of the decision is: the purpose of the decision in terms of the goals and subgoals to which

it pertains, the relationships among the various decision alternatives, etc. Having detailed and

explicit context for each decision facilitates the implementation of sophisticated control strategies

and explicit control reasoning. This is because the context information can be used to structure

and index the control knowledge.

Another way in which planning facilitates explicit control reasoning is that it separates the

process of determining how it is possible to accomplish a goal from the process of deciding how it

is best to accomplish the goal (in the current situation). In other words, the plans represent the

\methods" that the system can use to try to achieve its goals while the focusing knowledge that

selects plans and goals represents the \strategies" the system should use in particular situations.

This separation makes it easier to encode complex control strategies since the control reasoning

does not have to simultaneously consider both what actions might be used in satisfying a goal

and what the best way to proceed is. In addition, the uncertain, heuristic portion of the control

knowledge is to some extent now separated out into the heuristics.

It should be noted that these two components of planning control decisions (e.g., identifying the

plans that are applicable to a goal and choosing one) are not quite the same as the retrieval and
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re�nement stages of conventional control methods described above|though they are analogous. A

key di�erence between a planning-based control approach and that of most other control frameworks

is in the way that control decisions|in the sense of decisions about the domain action to take

next|are made. In conventional systems, decisions are made by directly identifying potential

actions and selecting from among them|i.e., retrieval and re�nement. In a planning framework,

action decisions result from a sequence of planner focusing decisions that are made during plan

expansion and re�nement. This is because domain actions correspond to primitive plans|the

leaves of the planning tree. As a result, there is a search process inherent in the selection of system

actions whenever planning-based control is used. With complex decisions, searching for the best

action may be more appropriate than trying to directly consider all the relevant factors.

Yet another important capability that a planning-based system has is the ability to coordinate

sequences of actions to meet goals. In part, this ability is related to the separation of methods and

strategies. Having explicit plans for accomplishing goals keeps the system's actions focused on the

goals that it has decided to pursue. Decisions have a more pervasive e�ect on the actions of the

system because they are represented explicitly and they a�ect all lower-level decisions. Revision

of decisions is likewise more e�cient since reconsideration of goal and plan decisions can a�ect an

entire sequence of potential actions.

Because planning-based control is highly goal-directed and creates detailed system subgoals, it

provides capabilities that most agenda-based blackboard frameworks lack. For example, a planning-

based system can control the amount of data that undergoes (any) processing and can actively

direct data gathering. These are important capabilities for interpretation problems, which may

involve passive sensors that continuously generate large amounts of data and active sensors whose

operation may be controlled by the interpretation system. Recent work on the BB1 framework [24]

does provide a mechanism that blackboard systems might use to deal with large amounts of data

being generated by sensors. Here, the control component provides �lters to autonomous processors

that limit the data that is passed on to the main reasoning component. However, with the kind

of detailed planning we propose, the control component itself can provide much �ner control by

directly considering the data to be examined. We will provide examples of such strategies in the

next section.

3 The RESUN Control Planning Mechanism

The planner that we developed for control in the RESUN interpretation system maintains the

advantages of planning frameworks that were outlined in the previous section while it addresses the

problems that planners can have in dealing with uncertain and dynamically changing situations.

Speci�cally, the RESUN planner is opportunistic and reactive.

3

In the �rst subsection of this

3

Opportunistic control and reactive planning/control are related, but distinct concepts. In part this is because

reactive control is typically studied in domains with real-time constraints. Opportunstic control means being able

to take advantage of new information or situations to change strategies and improve problem solving performance.

Reactive control means being able to \react in an acceptable amount of time to any changes that occur in the

world" [36]. To be opportunstic in a domain with real-time constraints requires that a system be reactive. However,

6



section we will discuss the need for explicit goals in planning-based systems and the way that

RESUN identi�es its goals. The next subsection will illustrate the basic planning mechanism. In

Sections 3.3 and 3.4 we will examine the focusing and refocusing mechanisms that are critical to

the successful use of the basic planning mechanism. The �nal two subsections of this section look

in more detail at the kinds of actions that are used in the system and the way control plan schemas

are de�ned.

3.1 Goals and Interpretation Uncertainty

Since planning involves problem reduction [33], a planning-based approach to control requires that

the subgoals the system must accomplish if it is to satisfy its overall goal be made explicit (and

those subgoals must be decomposable). RESUN supports the creation of explicit subgoals through

its model of the uncertainty in (abductive) interpretation inferences. This model allows the system

to create a set of symbolic statements, SOUs, that represent the sources of uncertainty in the

evidence for a hypothesis. Interpretation is then implemented as an incremental process of resolving

particular sources of uncertainty in the hypotheses. When the level of uncertainty in a hypothesis

must be reduced, the SOUs associated with the hypothesis are used to post subgoals for resolving

uncertainty. Through the planning process, these subgoals drive the system to pursue methods and

take actions that are appropriate for the current situation. The overall problem solving process

is driven by a symbolic representation of the reasons why the system's termination goals remain

unsatis�ed.

The examples in this section will be from the simulated aircraft monitoring application that we

have been using to experiment with RESUN. In aircraft monitoring, data from acoustic and radar

sensors must be correlated and integrated in order to identify and track aircraft moving through a

speci�ed region. Interpretation of the data is complicated by the occurrence of non-aircraft signals

due to noise or ghosting, by incomplete or imprecise sensor data, and by the need to deal with large

amounts of data from passive sensors. Termination requires that the system not only su�ciently

resolve its uncertainty about potential aircraft that have been identi�ed, but that it also have

examined enough data to be su�ciently certain that there are not additional, unidenti�ed aircraft.

An interpretation system for aircraft monitoring creates track hypotheses that represent possi-

ble aircraft and their movements over time. Track hypotheses are supported by vehicle hypotheses

representing possible aircraft \sightings," which are in turn supported by sensor data. The sym-

bolic SOUs associated with hypotheses represent the reasons for uncertainty in the hypotheses due

to factors such as: incomplete support, possible alternative explanations for support, partial sat-

isfaction of constraints, and competing interpretations of the data. At the problem solving level,

termination uncertainty involves factors such as: potential answer (aircraft track) hypotheses that

are too uncertain to be accepted, areas in the region to be monitored for which no data has been

being reactive does not guarantee that a system will be opportunstic|except in a very weak sense. Note also that

the concept of reactive planning is useful even in domains without real-time constraints. This is because reactive

planning implicitly includes the notion of controlling the deliberation (control reasoning) of a planner. Controlling

the overhead of a planner is a key concern when using planning-based control mechanisms and it is this sense in

which we talk about the RESUN planner being reactive.
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Initialize current-focus-points to the top-level plan-version

repeat: repeat: Pursue-Focus on each element of current-focus-points

until null(current-focus-points)

set current-focus-points to next-focus-points

until null(next-focus-points)

Pursue-Focus(focus-point)

case on type-of(focus-point):

plan-version Focus on variables to be used in plan expansion which have multiple-valued values

and select a set(s) of bindings to pursue.

Create a new plan-version for each selected alternative set of bindings.

Expand each selected plan-version and post its next active subgoals.

Focus on each plan-version's subgoals to select the subset of the subgoals to pursue next.

Match each selected subgoal against the relevant de�ned control plans.

For each subgoal with multiple matching plan types, focus on the matching plans to select

the plan(s) to use to pursue the subgoal.

Create a new plan-version for each selected plan type and add it to next-focus-points.

primitive Execute the function associated with primitive to get status and results.

Update plans to select new focus element for next-focus-points:

propagate status and results of primitive to matching subgoal

and then up the control plan hierarchy to identify in-progress plan-versions.

Figure 1: The basic control planning loop.

examined, and sensor data that has not been ruled out as being from an additional aircraft. The

aircraft monitoring application and the model of uncertainty used in RESUN are described in more

detail in [4, 5].

3.2 Plan Expansion and Re�nement

The RESUN approach to planning can be described as script-based, incremental planning aug-

mented with context-speci�c focusing and refocusing mechanisms. Script-based planning means

that the methods which the system can use to satisfy its goals (and subgoals) are de�ned as a

set of control plan schemas. There are two classes of control plans: primitive and non-primitive.

Primitive control plans correspond to actions that the system can take to immediately satisfy some

goal. Non-primitive control plans specify a sequence of subgoals which, if they can be satis�ed,

accomplish the plan goal.

Incremental planning means that planning and execution are interleaved. That is, plans are

only expanded and re�ned to the point where the next action (primitive plan) that can be ex-

ecuted is identi�ed. This action is then executed and its results used to update the planning

structure prior to further planning. The basic RESUN control planning loop is detailed in Fig-

ure 1. The planning process creates a hierarchical graph structure like that shown in Figure 2.

This plan re�nement/expansion structure consists of instantiations of plans, plan-versions, and

subgoals (plan-versions represent alternative versions of a single plan instantiation due to the se-

lection of alternative bindings of the plan variables|for the sake of readability, they are not shown

in Figure 2).
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Figure 2: An example of the structure created by planning (for simplicity, plan-versions are not

included). Numbers above the nodes indicate the order of creation.
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The initial (top-level) subgoal in Figure 2, Have-Reduced-Hyp-Uncertainty, has been posted by

expansion of a higher-level plan for meeting the termination goals (based on the model of overall

problem solving uncertainty). Here the system has chosen to try to next reduce the uncertainty

in a particular possible answer hypothesis: track-hyp

2

. When the subgoal is posted, two plans

are identi�ed that are capable of satisfying the subgoal: Eliminate-Hypothesis-SOUs and Reduce-

Hypothesis-SOUs. These two plans di�er in how much work they do to resolve uncertainty each

time they are called|i.e., they di�er in grain size (this will be discussed further in Section 3.4).

Because there are alternative methods for satisfying this subgoal, the focusing mechanism is invoked

to decide which plan(s) to pursue. For this example, we have assumed that the focusing knowledge

selects Eliminate-Hypothesis-SOUs as the \better" choice. This results in an instantiation of the

Eliminate-Hypothesis-SOUs plan (whose de�nition is given later in Figure 3) being created and

placed onto the list of focus points to be pursued next (actually it is the initial plan-version of this

plan instantiation that is placed onto the list of focus points).

When the Eliminate-Hypothesis-SOUs focus point is pursued, initial expansion results in the

posting of a single subgoal, Have-Hyp-SOU. The system �nds a primitive plan, Identify-Hypothesis-

SOU, that can accomplish the subgoal. An instantiation of this primitive is created (with its ?hyp

variable bound to track-hyp

2

) and added to the list of focus points. When this focus point is

pursued, the function that implements the primitive is executed. This action returns a list of the

SOUs currently associated with the hypothesis track-hyp

2

(actually it returns a multiple-valued

value as explained in Section 3.3). The list of SOUs is bound to the ?sou variable of the primitive

and the primitive's status is set to \�nished." This initiates the process of updating the status of

higher-level subgoals and plans. Here, the list of SOUs is bound to the ?sou variable of the Have-

Hyp-SOU subgoal (and its containing plan) and the status of this subgoal becomes \�nished."

With the change in status of its subgoal, the state of the Eliminate-Hypothesis-SOUs plan

changes. However, it is not yet �nished, so the plan is again added to the list of focus points.

When this focus point is pursued, further expansion of the plan will result in the subgoal Have-

Reduced-Hyp-SOU being posted. Since this subgoal has the variable ?sou as an input variable and

?sou is bound to a list of SOUs, the focusing mechanism must be invoked to select the value(s) of

?sou to be used in posting the new subgoal(s) (i.e., to select the \best" version(s) of this plan).

For this example, we have assumed that focusing selects the partial-support SOU as the single best

SOU to be resolved next (this SOU represents uncertainty in the hypothesis track-hyp

2

due to an

incomplete set of supporting vehicle hypotheses). Following the focusing decision, a subgoal whose

?sou variable is bound to the partial-support SOU is posted. There is a single plan, Extend-Track,

that can satisfy this new subgoal, so an instantiation of the plan is created and added to the list of

focus points.

Initial expansion of Extend-Track results in the subgoal Have-Extension-Region being posted.

Two plans (primitives) match the newly posted subgoal (representing alternative methods for iden-

tifying the regions in which to look for data to extend Track-Hyp

2

). We have assumed that focusing

selects the \complete tracking" primitive plan. Execution of the primitive results in two possible

bindings for ?region so focusing is applied prior to further expansion of Extend-Track. At this
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point, the example shows a situation in which both alternative bindings have been chosen to be

pursued. In this case, the system is postponing its decision in order to gather more information

about the available data before choosing how to extend the track. We will return to this later when

we cover the refocusing mechanism.

This example illustrates the basic operations of the control planner, but it has barely touched on

the focusing and refocusing mechanisms. Furthermore, because it shows planning as a depth-�rst

search process the notion of focus points within the planning structure may not appear to be very

useful. In the remainder of this section, we will see how the RESUN planner allows multiple plans

and subgoals to be pursued in parallel and how refocusing makes it possible to opportunstically

change focus points.

The example does illustrates the advantages of planning-based control for coordinating se-

quences of actions to meet a goal. In order to resolve a track partial-support SOU, a sequence

of actions is necessary (determine where to look for data to extend the track, perform the in-

ferences necessary to create a vehicle hypothesis, etc.) In a conventional (non-planning-based)

blackboard control scheme each of these actions will have to be separately considered and sched-

uled. One problem with this is that it can be di�cult to judge the importance of the actions

without an understanding of the role they play in ful�lling some goal|e.g., because the \quality"

of intermediate-level hypotheses may be poor from a purely data-directed perspective [12]. An-

other problem with this approach is that it can incur substantial overhead since the decision about

whether to continue with the sequence is e�ectively being reconsidered on each control cycle. By

contrast, in a planning-based approach like RESUN's, the decision to extend the track is made at

one level in the structure and only decisions about how to actually implement the plan need be

made during the planning cycles below the initial decision.

The basic design of the RESUN control planner resulted from the requirement of reactive

planning for controlling a problem-solving system. One way that planning can be made more

reactive is by making the planning process more tractable (than classical planners). Making a

planner script-based makes the planning process more tractable because the use of plan schemas

limits the \reasoning about actions" that is a major source of combinatorial complexity in classical

planners [36]. However, it is important to note that planning is still a combinatorial problem due

to uncertainty about the best plans to use to satisfy subgoals and the best plan-versions (method

instances) to be pursued. In other words, script-based planning still involves search.

Another way that planning is made more reactive is by enabling a planner to deal with un-

certainty about the outcome of actions and uncertainty about the exact state of the world. The

RESUN planner deals with this uncertainty through incremental planning and by maintaining only

a partial model of the state of the world. Forming complete plans prior to executing them is not

possible for control in applications like interpretation where the outcome of actions is uncertain

and where external agents can a�ect the world [26]. Our control planner is a reactive planner, in

part, because it interleaves planning with execution and bases further expansion of its plans on

the outcome of earlier actions. Likewise, while classical planners maintain a complete model of the

state of the world, this is inappropriate for most problem solving domains. In the RESUN planner,
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only partial models of the world are maintained through the bindings of plan variables. The plans

contain only the world state information that they require and this is updated as necessary through

the use of explicit information gathering actions.

3.3 Heuristic Focusing

As our discussion of the example of Figure 2 showed, the heuristic focusing mechanism controls the

plan re�nement process whenever there are alternative ways to re�ne the plans|i.e., it controls

the planner's search process. Focusing decisions may have to be made at three di�erent points in

the planning process. To provide context and structure to the heuristic knowledge, we partition

focusing knowledge into three corresponding classes of heuristics: subgoal, match, and variable.

Subgoal focusing heuristics select among the active subgoals for a plan instance when a control

plan schema's grammar speci�es that certain subgoals may be satis�ed in parallel. Each subgoal

heuristic is associated with a speci�c parallel subgoals construct (e.g., a :SHUFFLE) in the sequence

grammar of a particular control plan schema. Subgoal heuristics are useful because even when it is

possible for subgoals to be pursued in parallel, it may be preferable to sequence the subgoals|e.g.,

due to uncertainty whether certain subgoals can be satis�ed given the current situation. Rather

than encode this kind of heuristic knowledge in the plan grammar, it is encoded in subgoal focusing

heuristics so that the system has more 
exibility in applying the knowledge.

Match focusing heuristics select which plan(s) to pursue when there are multiple control plan

schemas whose Goal Forms unify with a particular subgoal's Goal Form. In other words, they

select among competing methods for satisfying a subgoal. Each match heuristic is associated with

a speci�c subgoal of a particular control plan schema (plan type).

Variable focusing heuristics select which binding(s) for plan variables should be pursed when

there are multiple possible bindings for a variable. This means that they select among competing

plan-versions|i.e., competing instances of a method. Each variable heuristic is associated with a

speci�c set of variables of a particular control plan schema. Variable focusing is invoked whenever

there are competing bindings for a variable that is used in a subgoal to be posted or in a subgoal

grammar condition. Competing variable bindings are represented as special units called multiple-

valued values. Actions return multiple-valued values whenever focusing should be invoked to select

a plan parameter value. In e�ect, a multiple-valued value is a representation of uncertainty about

the correct binding for a parameter.

In our control planning framework, focusing is viewed as a meta-level process that operates on

top of the basic planner. That is, focusing decision points are not explicitly denoted in the control

plans, but occur as part of the control of the planning process. For example, instead of a plan

such as: (:SEQUENCE Identify-Available-Sensors, Choose-Sensor, Activate-Sensor) we leave the

sensor choice step implicit in the focusing meta-process: (:SEQUENCE Identify-Available-Sensor,

Activate-Sensor). This approach eliminates the need to write these meta-steps into the plans and

it means that all meta-reasoning is handled in a consistent manner, outside of the control plans.

Because of this, it is easy to apply the refocusing mechanism to all three types of focusing decisions.
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Were variable focusing handled in the control plans, the more complex re-focusing operations would

be di�cult to implement.

One drawback of this approach is that it may create confusion over the type of value that

should be returned by certain actions since the value determines whether focusing will be applied

or not (i.e., depending on whether the value is a multiple-valued value or not). For example, the

action that satis�es the subgoal Identify-Available-Sensor would di�er from the one that satis�es

the subgoal Identify-Available-SensorS when multiple sensors are identi�ed. With the subgoal,

Identify-Available-Sensor, the multiple sensors must be represented as a single multiple-valued

value rather than as a set. This may not seem to be the natural way of thinking about such an

action, but if we think of the plan in terms of goals rather than actions, our format becomes more

reasonable. Thus, the two steps Identify-Available-Sensors and Choose-Sensor really accomplish

the goal of having a sensor that can be activated, so our plans would be written as: (:SEQUENCE

Have-Available-Sensor, Have-Activated-Sensor). See [31] for a di�erent view of this same issue.

As we stated earlier, we believe that a planning approach to control provides an excellent

framework for de�ning and applying complex heuristic control knowledge. We index our heuristic

focusing knowledge by plan schema, by decision type, and by the particular instance of that deci-

sion type within the plan schema. In addition, heuristics may examine the planning structure to

determine the exact goal or purpose of the decision they are making. This allows us to structure

the control knowledge based on the exact purpose of each focusing decision|in terms of its role

in satisfying the system goals and subgoals. As a result, focusing nondeterminism can be limited

to individual heuristics and handled through the refocusing mechanism (which supports intelligent

backtracking).

For example, one type of control decision that interpretation systems must repeatedly make is

to select sensor data to undergo interpretation. Interpretation systems that use a global decision

scheme would have, in e�ect, heuristic knowledge for selecting data that would be written something

like: \prefer acoustic data in time slices with low data density" (though this heuristic may be

embedded in the rating functions of the system rather than being explicitly represented). The

problem with general, global heuristics like this is that we may end up with con
icting heuristics.

We have been able to implement a number of highly context-speci�c data selection strategies using

our focusing framework. These heuristics make it clear that there is no single way to categorize

the \goodness" of data without reference to the speci�c purpose the data is to be put to.

One example of where di�erent strategies should be used for di�erent contexts is in the selection

of data for identifying possible additional aircraft versus the selection of data for resolving uncer-

tainty about an already identi�ed potential aircraft. For acoustic sensors, two characteristics of

the data that help to determine whether the data is desirable to examine are: the relative loudness

with which the data is sensed and the density of data for a particular time slice. However, the

relative importance of these characteristics really depends on the purpose the data is to be put to.

For instance, loudly sensed data tends to have less uncertainty about position and frequency, but

under many conditions (e.g., a battle�eld) \noise" is just as likely to be loudly sensed as aircraft.

On the other hand, the lower the data density in a time-slice, the less likely it is that randomly
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selecting a cluster from the time-slice will yield \noise" data. We have implemented a range of data

selection strategies that use di�erent purpose/goal-dependent criteria to evaluate the data|e.g.,

when resolving position uncertainty versus when looking for additional aircraft.

Other context-speci�c strategies we have written limit the amount of frequency spectrum data

that is processed in providing additional evidence for interpretation hypotheses. When identifying

potential aircraft or when looking for additional evidence for a very uncertain track hypothesis, the

system should try to identify as complete a frequency spectrum for the aircraft as possible since

this results in the least uncertainty from this set of data. However, tracking aircraft over time

can provide even better evidence than spectral completeness due to the fact that spectra are often

not completely sensed (so there is residual uncertainty resulting from a single spectrum). We have

taken advantage of such an approach by via heuristics that select plans that work in a data-directed

way and process complete spectra when attempting to identify new aircraft or when working on

highly uncertain track hypotheses, but select goal-directed plans that identify key portions of the

spectra to process when tracking reasonably supported aircraft.

Another goal-directed strategy that we have implemented is able to limit the amount of data

that the system examines to meet its termination criteria. We introduced this strategy to show

how a highly goal-directed control mechanism is able to deal with large amounts of noisy data.

The strategy is to limit the system to (completely) examining only every \nth" data time-slice.

The basis for the strategy is that data from an actual aircraft will extend over a number of time

slices. Thus, in order to be reasonably certain that all possible vehicles have been identi�ed, it

is not actually necessary to examine all of the data since the data not initially examined will be

identi�ed and interpreted through the tracking process (i.e., forming a complete vehicle track). Of

course, this strategy may miss vehicles that travel quickly around the boundary of the area being

monitored, but these can be identi�ed by additional processing of any data that is close to the

boundaries or examining only the boundaries of the time-slices that are being \ignored."

The ability to encode goal-directed strategies that can reason in detail about the current sit-

uation has allowed us to deal with another issue that causes problems for most blackboard-based

interpretation systems: the possibility of missing data as a result of signals being missed by sensors

or faulty transmission of information from the sensors. The possibility of missing data is di�cult for

data-directed systems to deal with because it greatly expands the search space so its consideration

must be carefully controlled. As a result, blackboard-based interpretation systems have typically

ignored the possibility of missing data at the cost of a certain amount of brittleness. Based on

RESUN's explicit model of uncertainty and context-speci�c focusing heuristics, we have been able

to successfully implement strategies that consider the possibility of missing data. This is done by

making missing data assumptions only under particular conditions and doing it only as part of a

plan which \understands" that this assumption has been made and must be veri�ed (preventing

uncontrolled expansion of the search space as a result of the assumption).

The context-speci�c nature of the focusing heuristics means that the expression of focusing

knowledge is highly modular. This makes it much easier to encode and modify control knowledge

than it is in systems based on global focusing schemes (e.g., blackboard scheduler functions). In
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addition, the explicit subgoals in the plan schemas being written by the system user help the

user to identify what control knowledge he must provide to the system because they identify the

points where focusing decisions may have to be made. For example, if a developer must supply

a set of global (meta-level) heuristics for identifying good data, he can never be sure that he has

covered all the situations that might occur. When using a planning approach, however, much more

information is available because the subgoals that select data can be identi�ed and the possible

contexts in which these subgoals might appear can be determined from the de�ned plans.

3.4 Refocusing for Opportunistic Planning

The heuristic focusing mechanism described in the previous section provides the foundation for

controlling the planner's search. However, this mechanism has limited capabilities for dealing

with the uncertainty in the focusing decisions themselves because it cannot reconsider its decisions.

When there is uncertainty about decision choices the only thing that can be done using the heuristics

alone is to pursue multiple choices and hope that the correct choice is within the set. Search paths

can be pruned by eliminating choices, but decisions cannot be reconsidered to add new choices.

In addition, choices can only be pruned when one of the alternatives succeeds or fails|decisions

cannot be based on the relative \quality" of the developing alternatives.

The most signi�cant innovation in the RESUN planner is its refocusing mechanism. In e�ect,

the refocusing mechanism provides the RESUN system with an intelligent, nonchronological back-

tracking scheme [4]. While the planner needs to have backtracking capability, we have not used

an implicit backtracking mechanism in this planner. For example, chronological backtracking is

not used because it would be inappropriate in a reactive planner. Also, backtracking should not

be driven by failures alone. Methods may require long sequences of actions and it can become

clear that they are not optimal long before they actually fail (they may even succeed but produce

\poor" results). Our refocusing mechanism allows the system to set backtrack points so that it can

control which focusing decisions may be reconsidered and can direct this reconsideration (i.e., shift

its focus-of-attention) based on a wide range of conditions. In addition, because of the way that

refocusing conditions are tested, this mechanism allows our planner to have opportunistic control

capabilities.

The refocusing mechanism is activated when a focusing heuristic posts a refocus unit along with

its decision choices. Focusing heuristics instantiate refocus units in order to de�ne the decision point

as a backtrack point and to de�ne the conditions under which backtracking and reconsideration

of the decision will occur. A refocus unit is associated with the particular decision point in the

planning structure where it was created. Each refocus unit consists of a condition, a handler, and

a removal condition. The condition is used to determine when to invoke the handler. The handler

is used to reconsider the decision point focus decision (the original focusing heuristic is not simply

applied again). The removal condition is used to determine when the refocus unit is no longer

appropriate.

Using the refocusing mechanism, we can extend the focusing mechanism to allow decisions to

be postponed and/or reconsidered. Focusing decisions can now be viewed as being in one of three
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classes: absolute, postponed, or preliminary. Absolute focus heuristics operate as described in

Section 3.3|they do not use refocus units. These heuristics simply select one or more paths to be

pursued with any pruning being made through the plan updating process.

In other cases, focusing heuristics may not be able to select the \best" alternatives given the

information they have available. Instead, they may need to partially expand each of several com-

peting options to gather more speci�c information about the situation before being able to select

the best alternative. Postponed focus heuristics select multiple options to be pursued and post a

refocus unit. The refocus unit e�ectively monitors the expansion of the alternatives to recognize

when su�cient information is available to make a better decision. At that point, the initially se-

lected choices are reconsidered and pruned (the handler may only partially prune the alternatives

and post another refocus unit for further reconsideration).

By postponing the focusing decision in this manner, the planner can integrate information about

the quality of the data (i.e., data-directed control factors) with its goal-directed focusing knowledge.

Another way of looking at postponed focusing decisions is that the system is actually performing a

search to �nd the best method (or method instance) to use. We will return to the notion of explicit

method search later in this section.

In still other cases, focusing heuristics may be able to choose a single \best" choice to pursue,

but recognize that their decision rests on certain assumptions about the situation or the likely

e�ectiveness of the choice. Should these assumptions turn out to be incorrect, the choice should

be reconsidered. Preliminary focus heuristics select a single choice and post a refocus unit. The

refocus unit e�ectively monitors the situation to make certain that the assumptions underlying

the initial choice remain reasonable. Should this not be the case, the refocus unit handler will be

invoked to consider whether the original alternative should be continued or whether a di�erent one

of the original possible choices is now better|given the changed situation.

An example of a situation in which postponed focusing might be used is shown in the later

re�nement of the control plan in Figure 2. There are two possible bindings for the variable ?region|

i.e., two regions the track could be extended into (at either end of the existing track). Typically, the

system will be uncertain about how to proceed because it cannot be sure which region will contain

the best data for extending the track. To handle this situation, the focus decision may be postponed

by selecting both options to be re�ned further and posting a refocus unit. The refocus unit will

cause the alternatives to be reconsidered once they have been re�ned to a point where information

about the actual data is available (but before the data is completely selected and inference actions

taken). This point is identi�ed to the system by the refocus unit condition that was de�ned by the

focusing heuristic. When this condition becomes true, the refocus handler is invoked to evaluate

the alternative regions again and select the single best one to pursue further and actually use to

extend the track.

The track extension situation again illustrates the kind of detailed, context-speci�c control

decisions which the system is capable of. While we talked as if a track extension decision would

always be postponed due to uncertainty about the correct decision, this is not the case. In some

situations, the system's goals may give it a de�nite preference. For example, the aircraft may have
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the potential to attack friendly forces or time may be running out to determine an answer, so it

is of primary importance to determine the aircraft's most recent positions (i.e., track it ahead in

time). Even in situations where there is no goal-based preference, it may not be worth incurring

the overhead of a search to determine the better choice. This will depend upon whether the search

overhead is likely to be more than o�set by better constraining the track (and thereby reducing

uncertainty about further extensions). Thus the heuristic that we implemented took into account

the system goals plus the uncertainty in the existing track in deciding whether to postpone the

decision and perform a search. It also was able to recognize that if it should �nd during the search

that interpretation work has already been done in one of the regions of interest, then it is worth

pursuing that region �rst because of the time saved by not doing low-level interpretation. Because

the focusing heuristic that decides whether to delay a decision about track extension is speci�c

to the plan where this decision must be made and because the refocusing condition is determined

by the heuristic when it executes, the process of arriving at a decision can be very speci�c to the

particular tracking situation.

One place in which preliminary focusing might be used is in conjunction with a plan like

Eliminate-Hypothesis-SOUs shown in Figures 2 and 3. The grammar for this plan contains an

iteration construct that may result in the plan executing for an extended period of time while it

attempts to resolve the uncertainty in one particular hypothesis. Pursuing a single hypothesis to

the exclusion of all other alternatives is not always a good idea, however, because it could result

in the system missing other important domain activities or losing the opportunity to gather useful

data. In fact, in Figure 2 we showed two di�erent plans that were applicable to the Have-Reduced-

Hyp-Uncertainty subgoal and mentioned that they di�ered in grain-size. Reduce-Hypothesis-SOUs

does not include an iteration. It selects a single SOU in the hypothesis, attempts to resolve it, and

then returns to its containing plan which decides what problem solving uncertainty to work on next.

This gives the system more 
exibility because it is frequently reconsidering which problem solving

uncertainties it should work on. However, this can result in a signi�cant amount of control overhead

if the same hypothesis should be pursued for a number of cycles. With the refocusing mechanism,

overhead can be reduced by using the large-grained Eliminate-Hypothesis-SOUs method|without

losing opportunistic capabilities. A preliminary focus decision is used that limits the amount of

e�ort expended on this plan by posting a refocus unit whose condition becomes true after a set limit

on the amount of time has been expended. The handler could then re-examine the new situation

and determine whether or not to continue pursuing the same hypothesis.

The refocusing mechanism can also be used to implement opportunistic control|i.e., dynamic,

data/event-directed control decisions. This is accomplished by extending the refocusing mechanism

so that refocus units are activated in a \demon-like" fashion and their conditions can refer to

characteristics of the available data as well as the characteristics of the planning structure and the

hypothesis structure. This makes it possible for the system to shift its focus-of-attention between

competing goals and methods in response to the characteristics of the developing plans and factors

such as data availability. For example, the Eliminate-Hypothesis-SOUs could be interrupted if new

data should become available within a critical region (as well as if a �xed amount of time has been
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Plan De�nition:

Plan Name Eliminate-Hypothesis-SOUs

Description Iteratively eliminates sources of uncertainty from the hypothesis

?hyp while the degree-of-belief in ?hyp is less than ?min-belief.

Goal Form (Have-Reduced-Hyp-Uncertainty ?hyp ?min-belief)

Input Variables (?hyp ?min-belief)

Output Variables ()

Internal Variables (?sou)

Grammar (:ITERATION (< (BELIEF ?hyp) ?min-belief)

(:SEQUENCE Have-Hyp-SOU Have-Reduced-Hyp-SOU))

Subgoal De�nition:

Subgoal Name Have-Hyp-SOU

Goal Form (Have-Hyp-SOU ?hyp ?sou)

Input Variables (hyp)

Output Variables (sou)

Figure 3: An example control plan de�nition.

devoted to it as mentioned above). Active data gathering actions (see Section 3.6) can also use this

mechanism to \suspend" a primitive plan while waiting for the sensor to generate the data and

then reactivate the primitive plan once the data becomes available.

Because of the search process inherent in constructing plans, a planning-based approach to

control extends the search view of control (as compared with a conventional retrieval-re�nement

approach). Instead of just a search for the correct answer, the control process now also involves an

explicit search for the best methods to use to determine the answer. This comes out clearly in the

postponed focusing example mentioned above where the system performs a search for the best way

to extend a track. In addition, the method search view of control leads us to view opportunism as

arising naturally from explicit method search instead of as some some special form of control that

must be added to a system (e.g., through special opportunstic knowledge sources). Opportunism

simply results from the use of particular types of conditions that cause the system to redirect its

method search.

It may also be of interest to note that the notion of opportunism that we have di�ers somewhat

from that in the BB1 paradigm [22] (discussed in Section 5). In that system, opportunistic actions

are allowed to post new \subgoals" for the system. While these new subgoals are implicitly part

of the overall problem solving goal of the system, the exact role of the subgoal need not be made

explicit via connection to existing goals and plans. Because RESUN's refocus units are associated

with particular focus decisions, all that they can do is refocus the planner within its existing

subgoals. This seems to be the correct approach given a planning-based control mechanism since

the top-level goal of the system is intended to embody the overall system goal. Thus it makes little

sense to have subgoals being posted that are \independent" of the top-level goal and it is not clear

how one would judge the merits of such a subgoal without an understanding of its role in the overall

system goal.

3.5 Plan Schema De�nitions
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Non-primitive control plan schemas are de�ned using speci�cations like those in Figure 3. The

Goal Form clause speci�es the goal that can be satis�ed by successfully completing the plan.

Goal Forms are predicate expressions where the variables are denoted with a leading \?." Each

instantiation of a control plan schema maintains a local environment with bindings for the variables

listed in the Input Variables, Output Variables, and Internal Variables clauses. The Input Variables

and Output Variables clauses denote the status of the variables in the Goal Form expression. Input

Variables are bound upon instantiation of a plan from the corresponding locations in a unifying

(sub)goal expression. Output variables must be bound upon successful completion of the plan.

This allows plans to return information to higher level plans (this is discussed more below).

The sequence of subgoals that can be used to realize the goal of the plan is de�ned by the

Grammar clause of the schema. This clause uses a shu�e grammar that can represent sequential,

concurrent, conditional, and iterated subgoal subsequences. For example, the Grammar clause

in Figure 3 speci�es that two subgoals, Have-Hyp-SOU and Have-Reduced-Hyp-SOU, must be

sequentially satis�ed (Have-Hyp-SOU must have been satis�ed before Have-Eliminated-Hyp-SOU

is attempted to be satis�ed) and that this process will be iteratively continued until the degree-of-

belief in the hypothesis pointed to by the variable ?hyp is greater than or equal to the belief goal

represented in ?min-belief. Other grammar operators not appearing in the �gure schema include:

:SHUFFLE, :LIST-SHUFFLE, :CONDITIONAL, and :XOR (see [4]).

For each subgoal listed in the Grammar clause of a plan de�nition, a corresponding subgoal

de�nition form must be provided. Subgoal de�nitions identify the Goal Form, Input Variables, and

Output Variables for each subgoal. The function of each of these clauses is analogous to the function

of the corresponding clauses in the plan de�nitions. The Goal Form is a predicate expression which

represents the goal that must be accomplished to satisfy the plan subgoal. The Goal Form is used

to identify those control plans that could be used to satisfy the subgoal. This is done by unifying

the instantiation of the subgoal Goal Form (in a particular instantiation of a control plan) with the

Goal Forms of the set of de�ned control plan schemas.

Primitive plans are de�ned using speci�cations similar to those for non-primitive plans. The

speci�cations of primitive plans include the Goal Form, Input Variables, Output Variables, and

Constraints clauses just as for non-primitive plans. Primitive plans also include a Function clause

that identi�es the (Lisp) function that implements the primitive plan (action). This function is

passed the bindings for the Input Variables of the primitive and returns both a status value and a

list of bindings for the Output Variables of the primitive (if any).

A number of clauses are permitted in RESUN plan schema de�nitions that do not appear

in the example of Figure 3. One set of clauses relate to the speci�cation of constraints on the

values of variable bindings in a plan instantiation. Rather than use general constraints that cannot

be e�ciently operationalized, constraint information is partitioned into categories that can be

interpreted with special mechanisms. Six categories of constraints have been identi�ed as being

useful so far and are part of the current implementation: plan In-constraints, plan In-bindings, plan

Out-bindings, subgoal Out-constraints, subgoal In-bindings, and subgoal Out-bindings. Examples

of plan In-constraints, plan In-bindings, and subgoal Out-bindings are shown in Figure 4. The plan
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Plan De�nition:

Plan Name Complete-Track-Answer-Hyp

Goal Form (Have-Reduced-PS-HYP-SOU ?track-answer-sou ...)

In-constraints (and (typep ?track-answer-sou 'uncertain-answer-ps-sou)

(typep (uncertain-answer-ps-sou-answer-hyp ?track-answer-sou) 'track-hyp))

In-bindings ((track-hyp . (uncertain-answer-ps-sou-answer-hyp ?track-answer-sou))

(status . :unknown))

Subgoal De�nition:

Subgoal Name Have-Extended-Track-Ext

Goal Form (Have-Reduced-Ext-SOU ?track-ext ... ?extended-track-ext ?status)

Out-bindings ((track-ext . (if (eq ?status :failed) ?track-ext ?extended-track-ext)))

Figure 4: Examples of constraint clauses in control plan de�nitions.

In-constraints clause allows additional constraints to be placed on the goals that are considered

to match the plan by allowing the speci�cation of predicates that Input Variables' bindings must

meet. In Figure 4 the plan In-constraints limit the acceptable bindings of ?track-answer-sou.

Similarly, the subgoal Out-constraints clause allows additional constraints to be placed on what are

considered satisfactory results for a subgoal's matching plan. The In-bindings and Out-bindings

clauses constrain and operationalize the relations between the variables of the plan. They specify

the values that variables must have at particular points in the expansion of the plan in terms of

the current bindings of other variables. In Figure 4 the plan In-bindings obtain an element out

of a structure that is bound to ?track-answer-sou and initialize the internal variable ?status. The

subgoal Out-bindings in the �gure determine an appropriate value for ?status based on the results

of pursuing the subgoal.

Another form of condition that can be used in the control plan speci�cations is the plan Pre-

condition. Preconditions di�er from In-constraints in that they should be based on factors other

than the values of subgoal parameters (Preconditions are only checked after a plan meets its In-

Constraints). However, they are not intended to guarantee that a plan will succeed. There is an

obvious tradeo� between the complexity of the preconditions and the possibility of plan failure.

Very complex preconditions could be used to guarantee that a plan would succeed (barring unantic-

ipated changes in the world). This may require, though, that the precondition do nearly the same

work as would be required for achieving the solution (without actually generating a solution). Fur-

thermore, placing signi�cant reasoning into Preconditions would cause this reasoning to fall outside

of the control of the focusing heuristics and refocusing mechanism. Finally, complex Preconditions

can adversely a�ect the modularity of the plans.

In the control plans that we have de�ned, we have used few preconditions. Instead, we have

written plans in which the preceding steps of the containing plan implicitly satisfy the \precon-

ditions" of the sub-plans or else the \evaluation" of these conditions is simply handled through

the planner's search process. Consider, for example, a plan that selects acoustic sensor data to be

used to extend an existing Track hypothesis. One way to de�ne this plan would be without any

Precondition clause. In this case, the plan would �rst take actions to determine the available sen-
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sors and then examine the characteristics of their data to �nd some data|if any|that meets the

criteria. This plan will fail if there are no acoustic sensors available or if there are acoustic sensors,

but none of them have acceptable data. These failures would be handled by the heuristic focusing

process which allows the user to de�ne backtrack points to reconsider decisions when failures occur.

Alternatively, one might include a Precondition clause for this plan that con�rms that there are at

least some currently working acoustic sensors. This is the type of condition that is intended to go

into the Precondition clause; one that involves a computationally simple action that would reduce

the possibility of the plan failing.

On the other hand, the Precondition clause for this plan could be extended so that it not only

checks if there is an active sensor, but actually examines the sensor data to see if there is data for

the time of interest and the region of interest. This would guarantee the success of the plan, but it

would be extremely wasteful because it has to do much of the work of the plan|without producing

information in a form necessary to complete the plan. Also, the order in which sensors and data

points are examined could not be controlled as it could be using the focusing mechanism during

planning. Thus, there is a tradeo� between the sophistication of preconditions and the ability to

de�ne intelligent and 
exible control strategies. Preconditions, when used, should embody easily

veri�ed conditions that would de�nitely rule out the applicability of a method. They should not

involve a search process|e.g., seeing whether there exists some sensor that has data with particular

characteristics.

Failure conditions are another form of plan condition that are not used in the example speci-

�cation in Figure 3. Failure conditions provide a method for the plan writer to deal with subgoal

interactions that cause an in-progress plan to fail. A Failure condition is a predicate that will

become true when an instance of the plan is de�nitely not going to successfully complete. When

a control plan has an associated Failure condition, the predicate will be evaluated prior to each

expansion of an instantiation of the plan to verify that the plan instance is still viable. Using these

conditions, the system can be prevented from expending e�ort on a plan instance once conditions

become such that the plan must eventually fail. For example, the Failure clause can be used to

deal with subgoals whose goals need to remain satis�ed during some portion of the plan, once they

have been achieved. The Failure condition for such a plan would include predicates that determine

the current stage of the plan and determine whether the necessary subgoals have been undone

(by other plans). This approach allows more 
exibility than would the de�nition of a protection

interval since it might allow for achieved goals to be temporarily undone if permissible and would

keep suspended plans from interfering with active plans. Failure conditions have not been exploited

in the current set of aircraft monitoring plans.

The other side of subgoal interactions is when the actions to satisfy one subgoal results in

other subgoals being satis�ed as well. To account for these serendipitous events, we allow the

speci�cation of Satisfaction conditions within each subgoal de�nition. Satisfaction conditions are

evaluated when a subgoal is instantiated and are then instantiated as demons that act whenever an

active subgoal is satis�ed. In general, satisfaction conditions are applicable to all subgoals except

those that are guaranteed not to be satis�ed by an independent process. This is the case for all
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information gathering goals|i.e., any goal that is done only for the results it returns and that

has no side-e�ects. The subgoal Have-Hyp-SOU in Figure 3 is such a goal. Failure to specify

satisfaction conditions does not change the semantics of a plan, it merely means that goals may be

achieved multiple times by the control process.

In classical planners, detecting and handling subgoal interactions is a major source of complex-

ity [36]. Because of the uncertainty in most problem solving domains, we limit the consideration of

subgoal interactions during the plan expansion and re�nement process. While the focusing heuris-

tics may reason about potential interactions (like resource interactions), subgoal interactions are

generally handled by replanning when interactions actually occur|instead of trying to detect and

prevent them. This is the purpose of the Failure and Satisfaction conditions. A similar approach

has been used in other reactive planners|e.g. Firby's RAP system [16]. It is important to real-

ize, however, that this approach requires the kind of intelligent backtracking capabilities that are

provided by our refocusing mechanism.

3.6 Actions

Incremental planning makes it possible to deal with the uncertainty about the outcome of actions

that is an inherent part of most problem-solving systems. Because each plan is expanded only to

the point where the next action resulting from the plan can be identi�ed prior to executing that

action, the outcome of actions is able to in
uence later plan expansion. One way that RESUN

actions can in
uence further plan expansion is through their execution status: actions may succeed

or they may fail. A failed action will cause its matching subgoal and the subgoal's containing

plan to fail unless the failure is handled via the refocusing mechanism. Successful actions can

also in
uence later plan expansion by returning results that are used to bind plan variables. Plan

variable bindings a�ect the subgoals that are posted by later plan expansion via the variables in

the subgoal forms. Plan variable bindings may also a�ect plan expansion via the plan grammar

constructs that include conditions (:ITERATION, :XOR, :CONDITIONAL) since these conditions

may reference the current values of plan variables.

Each RESUN action can be categorized into one of three classes: inference actions, information

gathering actions, and data gathering actions. Inference actions are the standard domain problem

solving actions|e.g., making evidential inferences that create or modify hypotheses on the inter-

pretation blackboard. Inference actions are taken primarily for their side-e�ects|e.g., making an

evidential inference that results in the creation or modi�cation of hypotheses. However, inference

actions may also return results that in
uence later planning. For example, even when interpretation

inferences \fail," they still generate (negative) evidence for hypotheses. It may be important for

further planning to know that negative evidence resulted from an inference action, so the system

may not want to consider an action to have \failed" (in the sense that its matching subgoal and

containing plan will also be considered to have failed) but simply know the type of results produced.

Inference actions correspond to the knowledge sources (KSs) in a conventional blackboard sys-

tem. However, the functions that implement inference actions are not identical to the functions

that would be used to implement standard blackboard system KSs. A KS has two major com-
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ponents: a precondition and an action. Inference action functions only include the action portion

of the KS. The precondition portion of a KS determines the applicability of the KS and creates

bindings of KS variables to be used in instantiating KSs (creating knowledge source instantiations

(KSIs)). In a planning-based system, the precondition functionality of a KS is accomplished by the

planning process: inference actions are only selected when they can satisfy subgoals that planning

has determined are appropriate and variable binding occurs via the uni�cation of goal forms.

Unlike inference actions, information gathering actions are taken solely for the results that they

return and should not have any side-e�ects. They are invoked by control plan schemas at those

points where the system needs information about current state of the world|e.g., the SOUs in a

hypothesis, the availability of data or sensors, etc. Results from these actions are bound to variables

that will be used in later subgoals. The primitive/action Identify-Hypothesis-SOU of Figure 2 was

an information gathering action that was used to integrate symbolic uncertainty information into

the planning process.

The use of explicit information gathering actions enhances the reactivity of the planner in

two di�erent ways. First, tractability of the planner is enhanced because the system does not

maintain a complete world model (this is a major source of complexity in classical planners due

to the frame problem [36]). The RESUN planner maintains only partial state information through

the variable bindings in the individual plans; each plan models just what it needs to know about

the world and keeps it su�ciently up-to-date with information gathering actions. The second

way in which information gathering actions enhance reactivity is by giving the system a way to

deal with the possibility of external agents a�ecting the world|e.g., sensors continuously making

new data available to an interpretation system. Even when state-based approaches can be made

computationally tractable, they cannot deal well with dynamic and unpredictable domains.

Data gathering actions are used to instruct active sensors to gather additional data. These

actions can be used to tune the parameters and the positioning of appropriate sensors in order

to gather the best possible evidence to resolve particular uncertainties. For example, an aircraft

monitoring system could adjust the dwell time of a radar unit in order to get the most precise

position data for an aircraft if that is a key uncertainty that the system needs to resolve. The

ability to make e�ective use of active gathering of data requires a system that understands what

it is that it wants to use the data for. The goals and subgoals of the planning structure provide

this information. While data gathering actions are also domain actions in one sense (as opposed

to the information gathering actions that are used by planning only) and might just be considered

as inference actions, one of the reasons that we have set them apart from normal inference actions

is that they may take a substantial amount of time to complete. As we mentioned in Section 3.4,

our refocusing mechanism can be used to change the focus-of-attention of the system while it is

waiting for a data gathering action to complete so that the system is not idled.

4 Status and Experimental Results

We originally implemented the RESUN control architecture described in this paper using a sim-

ulated aircraft monitoring application [3, 4]. The implementation is in Common Lisp on a Texas
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Instruments Explorer using GBB [17] for the domain blackboard. Aircraft monitoring is an appro-

priate application for evaluating this architecture because it has characteristics that are di�cult

for other blackboard control frameworks to handle because they require highly context-speci�c,

goal-directed control: many potential alternative interpretations of data (due to the modeling of

ghosting, noise, and signals missed by sensors); complex interactions among competing hypotheses;

the availability of a wide variety of methods for resolving uncertainty (hypothesize and test, dif-

ferential diagnosis, etc.); passive sensors continuously generating large amounts of data; and active

sensors that can be controlled by the system. The current interpretation methods are de�ned in

terms of more than 30 control plans with about 100 subgoals and approximately 40 primitives.

More recently, the RESUN framework has been used in the development of the IPUS (Integrated

Processing and Understanding of Signals) signal understanding testbed [30]. IPUS is currently being

applied to the understanding of household sounds such as would be required by a robot. While this

is also an interpretation application, it is di�erent enough from aircraft monitoring that certain

features of the RESUN mechanism have been more fully exercised. One of the key di�erences is

that in IPUS the basic data from sampling the environment can be processed multiple times using

a number of algorithms and parameter settings. Reprocessing of data must be tightly controlled;

driven by particular uncertainties in the developing high-level models [32].

As we said in the introduction, the question of how well a problem solver supports the use of

sophisticated control strategies is largely an issue of heuristic adequacy. Because of this, it is di�cult

to make de�nitive statements about the RESUN control planner from any limited set of experiments.

Nevertheless, some conclusions can be drawn from our experiences to this point. First, the RESUN

framework can indeed be used to encode context-speci�c, goal-directed strategies that would be

di�cult to implement using conventional (non-planning-based) blackboard control mechanisms.

Second, these kinds of \sophisticated strategies" can be applied without incurring unacceptable

overhead|at least for interpretation applications. In other words, the increased cost of control was

more than o�set by the ability to better constrain the search for correct interpretations. Third,

the refocusing mechanism does make it possible to obtain opportunstic control capabilities from a

planner. Fourth, the framework is useable in practice on realistic problems. A description of the

aircraft monitoring experiments is contained in [4].

One purpose of the experiments was to evaluate whether or not the RESUN framework could

be used to implement sophisticated interpretation strategies and to analyze the importance of the

di�erent features of the system. In part we judged the appropriateness of the framework by showing

that the system could be used to implement a wide range of strategies for resolving uncertainty

(based on the SOUs). Furthermore, we have not yet come up with any strategies in either aircraft

monitoring or IPUS that we wanted to implement, but could not. We have, however, identi�ed

several additional plan sequencing constructs that would make it easier to write certain strategies.

Another way that we judged the framework was by showing that strategies could be written that

make the system's actions very responsive to: the termination criteria (i.e., the overall system goals),

the amount and the characteristics of the data, the a priori likelihoods of alternative explanations

of data, and the need for timely actions in real-time situations. In analyzing the performance of the
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system, we �nd that the major source of performance improvements comes from the ability to use

highly context-speci�c, goal-directed control knowledge. However, both explicit method searches

(via postponed focusing decisions) and opportunistic refocusing are crucial in allowing the use of

goal-directed control since there are situations in which such control would perform very poorly.

A key issue for the use of sophisticated control strategies and deliberative control mechanisms

is whether the increased cost of control is worth it|i.e., whether the cost of such control is more

than o�set by better constraining the search. To evaluate this question, we ran experiments using

sophisticated strategies that we compared against benchmark experiments in which the strategies

did not make use of any of the sophisticated features of our framework. We attempted to make

these benchmark control strategies correspond to the kinds of strategies that are used in more

conventional blackboard systems|e.g., the (earlier versions of the) Distributed Vehicle Monitoring

Testbed (DVMT) [29], a system that used a similar vehicle monitoring task. The experiments

showed that with relatively simple data scenarios, the application of context-speci�c strategies

could reduce CPU time by more than 20% and the number of hypotheses created (a measure of

the amount of the search space being explored) could be reduced by 45%. With more complex

data scenarios involving a good deal of noise, CPU time could be reduced by more than 50% using

highly goal-directed strategies for limiting the amount of data examined by the system. Thus,

for this interpretation application at least, the cost of more sophisticated control is justi�ed. The

experiments also demonstrated that postponed focusing with a resulting method search can be used

to improve performance despite increasing the control costs.

Another way of judging the performance of a control mechanism is in terms of control over-

head: the amount of CPU time spent reasoning about what to do next as a percentage of the total

CPU time its take to solve the problem (which includes the time to actually take actions as well).

However, while we often talk about overhead, it is important to remember that the appropriateness

of a set of control strategies is really dependent on the overall performance of the system; there is

no absolute level that de�nes acceptable or excessive overhead. In addition, comparisons between

systems is problematic since overhead depends in part on the relative costliness of actions in par-

ticular application domains, and because few implementations have been optimized. Despite these

caveats, it may still be useful to look at overhead �gures from our experiments. In the benchmark

strategy experiments, overhead ranged from 12 to 19%. In the experiments that used complex

control strategies, overhead reached 30 to 35%. Overhead was lower in both cases when using

larger data sets. IPUS uses much more computationally intensive KSs than the aircraft monitoring

application|i.e., numeric signal processing algorithms like Fast Fourier Transforms. Experiments

with IPUS have produced control overhead of around 10%. Thus, this data suggests what one

would expect: sophisticated control is most likely to be e�ective (appropriate) for problems that

involve large search spaces (e.g., large amounts of interpretation data) and in which the cost to

search is high (e.g., computationally expensive KSs).

One of the most exciting conclusions from the experiments was con�rmation that the com-

bination of explicit control plans with context-speci�c focusing heuristics provides an extremely


exible framework for developing interpretation strategies. The modularity of the control plans
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and the focusing heuristics has made it easy to write highly context-speci�c, goal-directed strate-

gies as compared with systems using global focusing mechanisms (e.g., conventional blackboard

scheduling functions). It also supports the incremental development of complex control strategies.

Another related issue is that for the knowledge acquisition phase, having planning-based control

makes it easier to recognize when the system's control strategies/methods are inadequate since this

results in planning failures. With agenda-based blackboard control schemes, it can be di�cult to

determine whether adequate strategies have been de�ned because a system may take actions even if

they do not contribute to solutions. One limitation of the current system is that it does not include

any default backtracking strategies that could deal with the possibility of inadequate methods. We

believe that the modularity of the framework should make it relatively easy to implement such

strategies since they can be de�ned independent of the rest of the control knowledge.

5 Related Research

As we noted earlier, \classical planning" research is not directly applicable to the control of problem

solvers because it involves strategic planning. Strategic planning represents one extreme on the

continuum between completely deliberative control and completely re
exive control. One response

to the combinatorics of classical planning and its problems in dealing with uncertain and dynamic

situations has been to go to the other extreme and argue that planning is not needed at all. In the

reactive control or situated action approach [1, 34], actions result from rules or procedures whose

invocation is based solely on properties of the immediate situation. This is equivalent to having

a totally data/event-directed control mechanism and it seems clear from research on blackboard

systems that this approach is insu�cient for much problem solving [7, 12, 22, 25]. An intermediate

approach that has received much recent attention is often referred to as reactive planning [16, 18].

Proponents of this approach recognize the limitations of planning based on complete world models

and perfectly predictable actions, but they argue that planning is still necessary for intelligent

control.

One approach to reactive planning is Firby's RAP system [16, 20]. RAPs (Reactive Action

Packages) are similar to our control plans and the RAP expansion process is similar to RESUN's

basic planning process. The RAP system emphasizes the importance of checking the state of the

world via conditions associated with the RAPs that are, again, very similar to the Precondition and

Satisfaction conditions of our control plan schemas. The major drawback of the RAP approach is

its lack of focusing mechanisms: there is no framework for encoding knowledge to make decisions

when multiple RAPs are applicable to a subgoal, no way to control the instantiation of RAPs, and

no opportunistic mechanisms for suspending or terminating RAPs.

Another approach to reactive planning is the Procedural Reasoning System (PRS) of George�

and others [18, 19]. PRS is also a script-based, incremental planner and like RESUN it is both

opportunistic and reactive. The main di�erence is in the way that plans and control knowledge are

invoked. Both plan schemas and (meta-level) control knowledge are stored in knowledge areas (KAs)

which function very much like control KSs in the BB1 system (see below). PRS di�ers from BB1,

though, in directly selecting (domain) actions and in using a more complex KA invocation scheme
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than an agenda. PRS also includes a database of its beliefs about the world and it views plan and

subgoal instantiations as statements of intention. Because these internal models can be referred

to in KA invocation conditions, \metalevel KAs" in PRS can do re
ective reasoning to choose

among multiple relevant KAs, decide whether additional reasoning (overhead) is acceptable, etc.

However, because the application of all control knowledge is event/state-triggered, it seems likely

that PRS would be less e�cient for indexing and applying large amounts of application-speci�c

control knowledge (e.g., at nearly every decision point) than RESUN's \hardwired" mechanisms.

On the other hand, because metalevel KAs can be interrupted, PRS is able to place an upper bound

on its response time|an important feature for applications like robot control.

Relatively few \problem-solving systems" have made use of planning-based control. One early

example is McDermott's NASL system [31]. NASL was a script-based, incremental planner, but

it was neither opportunistic nor reactive. Planning was controlled by choice rules that were in-

dexed/retrieved like plan schemas. The main focus of NASL was to explore a view of planning

that is di�erent from the conventional search view. McDermott saw human problem solving as a

process of: \try something, wait until an error has been made, and then correct it." As a result,

choice rules always selected a single plan to achieve a task (goal) and choice decisions could not be

reconsidered (e.g., through backtracking). Instead, \planning errors" were dealt with by attempt-

ing to \restate" a task. \Execution errors" resulted in \error-correcting" subtasks being added to

the failed task. These error-correcting subtasks were treated just like any other task|i.e., as a

problem to be solved. NASL used a theorem proving mechanism for plan retrieval, but McDermott

recognized that this was inappropriate because plan retrieval needed to be simple and e�cient.

Clancey's work on NEOMYCIN was an attempt to provide more structure to Davis' meta-rules

format through a planning-based mechanism. Control knowledge in NEOMYCIN was de�ned in

terms of tasks [9, 10] which were made up of a sequence of conditional actions represented as meta-

rules. A prime motivation for NEOMYCIN was the recognition that similar \strategies" (what we

have called \methods") were being repeatedly encoded in meta-rules that were relevant to di�erent

situations. The task/meta-rule format provides a more abstract and explicit representation of

possible control methods than meta-rules alone and is somewhat similar to our control plan/subgoal

format. However, in the task/meta-rule framework, meta-rules directly invoke subtasks|i.e., the

meta-rules not only identify the applicable methods, but also encode the strategies for selecting the

methods. As a result, the framework does not support method search nor intelligent backtracking

as the RESUN framework does.

The desirability of planning for control of problem-solving systems was recognized early on

in blackboard system research. For example, Hearsay-II included special mechanisms that al-

ways scheduled certain knowledge sources together [28]. The goal-directed blackboard architecture

of Corkill and Lesser [12] included subgoaling and precondition-action backchaining mechanisms

(that are an implicit part of any planning frameworks), but did not construct plans. The incremen-

tal planning approach of Durfee and Lesser [15] for a blackboard-based vehicle monitoring system

builds abstract models of the data and uses these models to develop plans that guide the selection

of knowledge sources. Planning in their approach e�ectively occurs at two di�erent levels of ab-
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straction. First, the data abstraction model is analyzed to identify the possible alternative vehicle

tracks and their relative likelihoods so that plans for incrementally constructing these tracks can

be formed. These plans consist of \intermediate-level" goals to develop appropriate supporting

vehicle hypotheses. A second level of planning is then used to choose knowledge source sequences

to meet these intermediate-level goals. Because both the data abstraction model and the planning

mechanism here are closely tied to vehicle tracking, though, their application is limited.

The BB1 system [22, 23, 24, 35] is the �rst blackboard framework to use a true planning-based

approach to control and it remains one of the most sophisticated blackboard control frameworks.

The control planning mechanism of BB1 extends the blackboard model with a separate control

blackboard and control knowledge sources. BB1 maintains the opportunism of classic blackboard

models because the identi�cation of possible domain and control actions is done in a data/event-

directed fashion via a (single) agenda. Because it is based on an agenda mechanism, planning in BB1

is somewhat di�erent from planning in RESUN and classical planners. Re�nement of BB1 control

plans does not result in the direct identi�cation of actions. Instead, re�nement of BB1 control plans

results in the posting of \foci." Associated with each of the foci is a set of \heuristics" that are

used to rate the potential actions on the agenda. Thus, the lowest level \subgoals" in BB1 plans

(i.e., the foci) are often somewhat general and may in
uence the selection of several actions|e.g.,

\prefer actions that do work in region x."

BB1's control plans provide a more explicit and modular representation of strategy knowledge

than the other blackboard control frameworks mentioned above. However, control reasoning is

typically less explicit than in RESUN. This is because goal and strategy con
icts are often resolved

via numeric ratings calculations|action ratings are a combination of the ratings from each of

multiple active foci|rather than explicit decisions. BB1 could \directly" select actions if the foci

gave a non-zero rating to only a single action and if control KSs were added that dynamically

changed the combination functions to explicity resolve all \goal con
icts." However, BB1 would

be less e�cient than RESUN for this style of control (e.g., actions would have to be identifed by

searching the agenda whereas they are directly linked to RESUN subgoals). In part this is because

BB1 and RESUN have taken di�erent approaches to maintaining opportunistic control capabilities

in a planning mechanism: an agenda mechanism vs. refocusing. BB1 is more general and 
exible

than RESUN, but potentially less e�cient for RESUN's particular style of control.

6 Conclusions and Future Research

Based on our experience with two complex interpretation domains, we have found the RESUN

control architecture to be very powerful. We have been able to successfully encode numerous

sophisticated control strategies. For example, we have been able to implement strategies that:

require detailed reasoning about the state of problem solving (like di�erential diagnosis), limit the

amount of data that is processed, and control the portion of the search space that is examined (so

that more realistic models of the domain that include the possibility of missing data can be used).

The modularity of the framework has made it relatively easy to incrementally construct and debug
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these strategies. We have also found that this kind of planning mechanism can in fact be used in

realistic domains without incurring excessive overhead.

The RESUN control planner maintains the traditional capabilities of planning approaches, but

also supports opportunistic control. Among the key advantages of planning-based control are: the

goal/plan/subgoal tree provides explicit context for decisions, the selection of actions is driven by

explicit subgoals, sequences of actions can be coordinated to satisfy goals, control knowledge is

separated into method and strategy components, and control (domain action) decisions result from

plan re�nement decisions (which may involve a search process). Because of these characteristics,

control decisions are highly context-speci�c and control knowledge is very modular. This helps

support more eplicit control reasoning, and eases the creation and re�nement of complex strategies.

The refocusing mechanism is one the key innovations in RESUN. Refocusing gives the system

the ability to postpone focusing decisions until it can gather more information about the particular

situation by performing a search for the best methods (plans) to pursue. The ability to perform

explicit method searches allows the system to control its overhead because the system can reason

about the appropriate balance between decision uncertainty and the overhead of the method search.

This view of control makes it clear that problem solvers are not just performing a search for \the

answer," but are also searching to �nd the best methods to use to determine the answer. The

refocusing mechanism also provides RESUN with opportunistic control capabilities since refocusing

conditions can include data/event-related factors and refocus units are handled like interrupts (the

posting of a refocus unit is e�ectively like adding a temporary, special-purpose BB1 control KS).

Using the refocusing mechanism for opportunistic control means that opportunism results from the

ability to dynamically refocus the method search.

Though the RESUN control planning framework has been presented here within the context

of sensor interpretation and blackboard systems, we feel that it is has more general applicability.

The RESUN focusing and refocusing mechanisms provide a kind of \language" for expressing

control knowledge: decision-speci�c (plan/subgoal) heuristics, postponed decisions allowingmethod

search, and opportunistic shifts of focus-of-attention. We found that this way of structuring control

knowledge was natural and appropriate for developing complex strategies. A key issue that must be

resolved to use a planning-based approach for other problem solving domains is whether it possible

to construct explicit subgoal hierarchies for these domains. In RESUN, these subgoals were largely

supplied by the symbolic model of uncertainty in interpretation inferences.

A number of research directions are currently being explored. One of the most important is

the development of an appropriate non-procedural language for expressing focusing heuristics|

particularly those for real-time problem solving. As part of this research, we are trying to un-

derstand how to represent the factors that a�ect control decisions and the relationships between

alternative choices. In addition, since focusing decisions may involve making choices about the best

decision procedure to use and may require that evidence be gathered to make this choice, we are

studying the extension of the planning paradigm to the focusing decision level.

Sophisticated real-time control may also require the use of a meta-level process that selects focus

points to pursue based on their resource requirements (the current approach is to cyclically allocate
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one plan expansion cycle to each focus point). Another issue which remains to be explored is that of

actually modifying system goals when dealing with resource limitations in real-time interpretation.

For example, when the time allotted to produce an answer is running out, the system might want

to accept a lower level of belief for \answer" hypotheses so that it can provide a broad, but less

in-depth, solution. This requires a meta-level process that adjusts the parameters in the top-level

goal form and then propagates these changes and updates plan states. Currently we simply use

focusing heuristics that key o� of the goals and resources to determine how to proceed|rather

than adjusting the goals.

We have also developed a distributed version of the RESUN system [6]. The goal/plan/subgoal

structure (along with RESUN's symbolic model of uncertainty) provides the system with a rich

language for communicating with other agents about the state of its problem solving. Another area

of interest that we are current pursuing is the development of a parallel architecture implementation

of RESUN. The ability to have multiple active focus points due to concurrent subgoals and parallel

method search provides a good basis for implementing parallelism.
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