Corporate Memories as Distributed Case Libraries*

M.V. Nagendra Prasad
Dept. of Computer Science
University of Massachusetts

Ambherst, MA 01003, USA

nagendra@cs.umass.edu

Enric Plaza
IITA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research
Campus UAB, 08193, Bellaterra
Catalonia, Spain
enric@iiia.csic.es

Abstract

Rising operating costs and structural transformations such as resizing and globaliza-
tion of companies all over the world have brought into focus the emerging discipline
of knowledge management that is concerned with making knowledge pay off. Corpo-
rate memories form an important part of such knowledge management initiatives in
a company. In this paper, we discuss how viewing corporate memories as distributed
case libraries can benefit from existing techniques for distributed case-based rea-
soning for resource discovery and exploitation of previous expertise. We present two
techniques developed in the context of multi-agent case-based reasoning for accessing
and exploiting past experience from corporate memory resources. The first approach,
called Negotiated Retrieval, deals with retrieving and assembling “case pieces” from
different resources in a corporate memory to form a good overall case. The second
approach, based on Federated Peer Learning, deals with two modes of cooperation
called DistCBR and ColCBR that let an agent exploit the experience and expertise
of peer agents to achieve a local task.

*The first author would like to acknowledge the support by the National Science Foundation under
Grant Nos. IRI-9523419 and EEC-9209623. The second author’s research reported in this paper has been
developed at the IIIA inside the ANALOG Project funded by Spanish CICYT grant 122/93. The content
of this paper does not necessarily reflect the position or the policy of the US Government, the Kingdom
of Spain Government, or the Catalonia Government, and no official endorsement should be inferred.

1 Introduction

Rising operating costs and structural transformations such as resizing and globalization of
companies all over the world have brought into focus the emerging discipline of knowledge
management as one of the ways to raise productivity and profitability. Knowledge manage-
ment is concerned with creating, maintaining and exploiting “knowledge infrastructures”,
and “organizational knowledge cultures”, and “making knowledge pay oft” (Pasahow 1996).
Corporate Memories can play a crucial enabling role in making all this happen. Corporate
memory represents the collective data and knowledge resources of a company including
project experiences, problem solving expertise, design rationale etc.

In this paper, we discuss how viewing corporate memories as distributed case libraries
can benefit from existing techniques for distributed cases based reasoning for resource
discovery and exploitation of previous expertise. While it may not be the case that all
resources in a company are amenable to this view, insofar as we can view a resource as
a case base, we can exploit techniques developed in multi-agent systems and case-based
reasoning communities to build powerful tools for knowledge access and manipulation. We
present two techniques developed in the context of multi-agent case-based reasoning for
accessing and exploiting past experience from corporate memory resources, that by their
very nature are distributed. The first approach, called Negotiated Retrieval(Nagendra
Prasad, Lesser, & Lander 1995; 1996), deals with retrieving and assembling “case pieces”
from different resources in a corporate memory to form a good overall case. The second
approach, based on Federated Peer Learning(Plaza, Arcos, & Martin 1996), deals with two
modes of cooperation called DistCBR and ColCBR that let an agent exploit the experience
and expertise of peer agents to achieve a local task.

2 Corporate Memory

Corporate memory consists of the sum total of the information and knowledge resources
within an organization. Such resources are typically distributed and are characterized by
multiplicity and diversity: company databases, machine-readable texts, documentation
resources and reports, product requirements, design rationale etc.

A corporate memory facility that promotes an organization to leverage its existing
information and knowledge assets through effective reuse can be crucial to handling internal
and external pressures in an information-driven economy(Huynh, Popkin, & Stecker 1994).
A number of benefits can arise out of a well thought out and implemented corporate
memory infrastructure(CMI)(Huynh, Popkin, & Stecker 1994):

o Competitive pressures require quick and effective reactions to the ever changing mar-
ket situations. The gap between the evolving and continuously changing collective
information and knowledge resources of an organization and the employee awareness
of the existence of such resources and their changes can lead to losses in productivity.
CMI seeks to address this problem through “knowledge-empowerment of workers”,
thus enabling them to respond better to market opportunities.

e Timely availability of relevant information from resources accessible to an organi-

zation can lead to more informed decisions on the part of individuals (managers,
project leaders etc), thereby promoting the effectiveness and viability of decentral-
ized decision making.

e Promotes organizations to become learning systems and avoid repeating the same
mistakes(Sharp & Lewis). Information about past projects - protocols, design spec-
ifications, documentation of experiences: both failures and successes, alternatives
explored - can all serve as stimulants for learning, leading to “expertise transfer”
and “cross-project fertilizations” (Vanwelkenhuysen 1996) within and across organi-
zations.

Enablement of effective management of the know-how within a company mandates that
a CMI incorporate characteristics like(Huynh, Popkin, & Stecker 1994):

e Semantically rich and flexible access mechanisms
o Automated management of potentially large-scale resource sets

o Efficient management of change and reuse given the dynamic nature of corporate
information and knowledge resources

o Adaptability entailing learning from past experiences by recording them along with
their context and re-instantiating them in similar future contexts to gain a level of
predictability about these new situations.

The above requirements on CMI and the distributed nature of the resources compris-
ing a corporate memory system provide compelling reasons for treating it as a distributed
problem solving system. In the subsequent sections, we discuss the potential for dis-
tributed case-based reasoning approaches in dealing with access to corporate memory for
semantically related but physically dispersed data and knowledge.

3 Distributed Processing vs Distributed Problem Solv-
ing

The task of information gathering in a distributed setting can be viewed in general terms
as either distributed processing or distributed problem solving (DPS). Distributed pro-
cessing is characterized by complete independence of subproblems. Agents need nothing
other than local information to arrive at a subproblem solution of the required qual-
ity that can be synthesized with other agent subproblem solutions to arrive at a global
solution. Distributed problem solving, on the other hand, is characterized by the exis-
tence of interdependencies between subproblems assigned to the individual agents, lead-
ing to a need for them to cooperate extensively during problem solving. They rely on
communication to detect and exploit these interdependencies between subproblems. At
the start, agents have only partial and incomplete views of global solution requirements.
In spite of this deficiency in information, they may arrive at partial and tentative re-
sults that may be exchanged by the agents working on subproblems that are interdepen-
dent, to reduce the uncertainty that surrounds local problem solving. That is, agents

may exploit the interdependencies between subproblems to their benefit(Lesser 1990;
1991).

In this paper, the information and knowledge resources comprising a corporate memory
of an organization are viewed as distributed case bases. Doing so lets us map techniques for
distributed problem solving into tools for knowledge manipulation in corporate memories.

The first technique is based on a method proposed by Nagendra Prasad, Lesser and
Lander(Nagendra Prasad, Lesser, & Lander 1996) for retrieval from distributed case bases.
This method can be seen as an instantiation of aspects of the cooperative information gath-
ering(CIG)(Oates, Nagendra Prasad, & Lesser 1994) approach to intelligent information
gathering from networked information resources. This approach relies on the “FA/C”
paradigm(Lesser 1991) previously developed as a framework for distributed problem solv-
ing. Oates, Nagendra Prasad and Lesser(Oates, Nagendra Prasad, & Lesser 1994) provide
an extensive discussion as to why it is better to treat information gathering in a networked
environment as distributed problem solving. In a CIG task, potentially useful constraints
may exist between different pieces of information. The discovery and exploitation of such
constraints is necessarily a dynamic and incremental process that occurs during problem-
solving and entails communication of partial results among agents in a timely and selective
manner, to augment each agent’s local view with a more global view. Given the incomplete
nature of the local views of the individual agents, another important aspect of CIG is the
explicit recognition of the role of solution and control uncertainty. Coupled with the fact
that resources and time for conducting a search are limited in real-life problems, this leads
to the notion of satisficing search. Another aspect of CIG is the explicit recognition and
exploitation (or avoidance) of redundancy, leading to increased robustness or decreased
resource demands depending on the context and the structure of the domain.

The second technique is the Federated Peer Learning-based cooperative Case-based
Reasoning (Plaza, Arcos, & Martin 1996). Two modes of cooperative case-based reason-
ing are discussed: DistCBR where an agent can delegate its authority to another peer
agent to solve a problem and ColCBR where an agent maintains authority while exploit-
ing the experience of a peer agent. While remote evaluation capability supports DistCBR,
ColCBR mode is supported by remote programming (or mobile code) capability of the un-
derlying representation and communication framework. These modes let an agent exploit
the collective memory in a distributed environment in a lazy, on-demand way.

In the following section, we first discuss why some of the resources comprising a cor-
porate memory can be viewed as case bases. We then briefly discuss the Negotiated
Retrieval Algorithm and the Federated Peer Learning-based cooperative Case-based Rea-
soning modes. Readers interested in further details are urged to refer to (Nagendra Prasad,

Lesser, & Lander 1996; Plaza, Arcos, & Martin 1996).

4 Retrieval and Reasoning in Distributed Cases-bases

A Case-based Reasoning (CBR) system uses lazy “generalization” from past similar cases
to the present task. Past similar cases are retrieved through similarity estimates between
the current problem P and the precedent cases C'B that the system has access to. The
crucial assumption in a CBR system is that the more similar the current problem P is

to a precedent C € CB , the more similar the solution of P is to the solution of C. In
recent times, CBR techniques have enjoyed an immense popularity among researchers and
practitioners of Al, building intelligent tools for a number of applications(Aamodt & Plaza
1994). Techniques for distributed case-based reasoning are being developed with the aim
of leveraging the insights gained from building and using such applications but at the same
time coping with the distributed nature of the knowledge available in many applications.
Viewing Corporate Memories as Distributed Case Libraries (or Distributed Case Bases)
provides us with ways to exploit these techniques to develop semantically rich and flexible
tools for knowledge management in distributed environments.

4.1 Corporate Memories as Distributed Case Bases

In its most general form, a case base is a source of complex data stored in specific formats.
A number of knowledge and data sources that comprise a corporate memory could be
defined as case bases in this sense. Case bases could arise from formated records of useful
employee experience and/or expertise. Alternately, Case-Knowledge Engineers or content
experts could design case bases of relevant experience by populating them with collections
of records in appropriate formats. Certain unstructured databases like text databases can
also be converted to case bases by generating semantic descriptors characterizing each
of its documents. Much of the work in information extraction and text summarization
concentrates on generating such descriptors(Lehnert et al. 1992). Given such descriptor
generating capabilities, any set of databases with inter-related data can be treated as dis-
tributed case bases. Another promising alternative involves creation of metadata(Weibel
1995) that is an informative record attached to a document (structured or unstructured).
A typical metadata record could contain elements like subject, author, title, object type,
relationship to other elements, coverage etc(Weibel 1995)!. Development of metadata be-
comes especially feasible if the authors of a resource or a document could be encouraged to
create such a description. Perhaps some of the most important sources of distributed case
bases available to a corporation beyond its organizational boundaries are the distributed
digital libraries with mutually related information, like PARTNET(Partnet) on the In-
ternet. PARTNET is WWW-accessible distributed electro-mechanical component library
developed by the University of Utah’s Mechanical Engineering Department as a resource
to connect designers and engineers with parts suppliers. In this paper, we view a case
base as not just a passive data store but an active one that can reason about its contents
and their appropriateness in the context of a query. Thus, when we use the term “agent”
and a case base interchangingly, we mean that the agent is an active case-based reasoning
entity that can reason about its local case knowledge.

!Metadata Workshop held on March 1-3, 1995, in Dublin, Ohio addressed the issue of appropriate
metadata elements for document-like objects and identified an initial set of thirteen elements called the
Dublin Core(Weibel 1995).

4.2 Negotiated Retrieval
4.2.1 Overview

Most of the literature on information gathering deals with locating, gathering and select-
ing the best response to a query from among a multitude of responses from different data
repositories(Arens et al. 1993; Bowman et al. 1994; Oates, Nagendra Prasad, & Lesser
1994). Nagendra Prasad, Lesser and Lander(Nagendra Prasad, Lesser, & Lander 1995;
1996) introduced a different model of response to a query where no single source of in-
formation may contain the complete response to a query; necessitating piecing together
mutually related partial responses from disparate and possibly heterogeneous sources. A
complex query is presented to a set of agents, each of which is responsible for retriev-
ing information relevant to a part of the query. The agents negotiate to piece together
a mutually acceptable response to the query. This type of retrieval, defined as Negoti-
ated Retrieval(Nagendra Prasad, Lesser, & Lander 1995; 1996), adopts the above view of a
query to a set of distributed case bases in the corporate memory context. More specifically,
a response to a query involves assembling related pieces of information from different case
bases to form a composite case. The agents have to cooperatively retrieve mutually ac-
ceptable responses while negotiating compromises to resolve conflicts. Each agent retrieves
subcases from its local case base and all agents together assemble a mutually acceptable
overall case from these subcases to produce a response to the user’s information needs.

Information requirements of many real life applications rely on such distributed case
bases. Let us illustrate this with an example: a management consultancy firm is faced
with the need to quickly build a cross-functional team by drawing from an organization-
wide talent pool for the purpose of helping an inventor research the market for a product,
analyze pros and cons of the competition, and locate interested venture capitalists. We
can imagine an automated assistant for querying a multi-agent system that assembles
the team by letting each agent access its own resume database of various experts for a
particular aspect of the project: technical, management, sales, etc. In assembling the
team, the agents need to consider interactions between the requirements of experts for
different aspects like for example, all experts willing to work on that type of project or
all technical experts on the team being familiar with a particular computing environment.
The distributed case bases in this example are the resume databases for different expertise,
with descriptor generators that extract features like “project_types_ willing to_workon” and
“famaliar_computing_environments”.

4.2.2 Negotiated Retrieval Algorithm

Below, we briefly present a summary of the Negotiated Retrieval Algorithm. Interested
reader is referred to (Nagendra Prasad, Lesser, & Lander 1995; 1996) for a more formal
treatment and empirical studies.

Negotiated Retrieval is viewed as a distributed constraint optimization problem where
each agent has a set of subcase consistency constraints in addition to the local case base.
These constraints arise in a number of ways:

o Constraints could arise from useful context information attached to the metadata

specification of a resource or documents or as qualifiers attached to particular ele-
ments of the metadata.

o Constraints could arise from the domain-specific knowledge an agent has about the
requirements of the context in which its local subcases can usefully participate.

e Constraints could also be derived from queries that may be required to specify them
in addition to user’s information needs.

A case can be viewed as a set of feature-value pairs. The set of constraints that an
agent has may be defined on both “local” and “non-local” features. Local features of an
agent are those features that the agent uses to represent its local subcases. Non-local
features are those features that some other agent uses to represent its local cases. Thus,
a constraint can be viewed as a relationship between subcases of one or more case bases
and 1s enforced through interrelationships between features of these subcases.

A case has a number of associated attributes that involve measures of certain charac-
teristics of a case and are functions of the feature values of a case. Examples of attributes
include reliability, quality, uncertainty and cost. In addition to being acceptable to all
agents, it 1s desirable that a case be optimized along the attribute set. These requirements
lead to organization of an agent’s constraints as soft constraints and hard constraints where
the former set represents solution preferences and the later set represents those constraints
that are relaxed only as a result of explicit recognition by the agents that the set is too
constrained to lead to a mutually acceptable solution. Relaxing a soft constraint may
only involve penalties in terms of loss of optimality in the desirable attributes. For exam-
ple, relaxing a soft constraint may lead to less robust solutions. Softness of a constraint
represents its degree of flexibility. On the other hand, hard constraints are generally not
relaxed except with an explicit understanding that the resulting responses satisfy the query
specifications only partially or are consistent with only a subset of the agents.

A partial case is a partially evolved response to a query. A partial case is obtained
by composing the subcases from one or more agents but it is not yet acceptable to all
agents (perhaps because it needs more subcases or because other agents have not checked
it against their consistency constraints). Projection of a partial case on to a set of features
is the set of feature-values pairs in the partial case for that set of features.

The agents execute the Negotiated Retrieval Algorithm (NRA) as follows:

Phase I: Local Retrieval

If an agent received feedback from other agents about previous violations, it first
assimilates it (details of the assimilation process are provided later). Some of the
agents, using the relevant portions of the user query and the presently available infor-
mation on the problem-solving state (including previously tried solutions, conflicts
they caused and feedback in the form of advice on violated constraints from other
agents), retrieve the seed subcases around which the rest of the case evolves. Other
agents have too poor a local view to perform retrieval without additional help and
hence wait to extend partially assembled cases. If a seed agent fails to retrieve a case,
it can relax some local constraints until it finds a case or gives up at certain point. In
general, a locally retrieved subcase is re-instantiated in the present problem context

during this phase. Re-instantiation could also involve adaptation of the retrieved
subcase to the new context.

Phase II: Sub-case Integration, Partial Case Extension and Conflict De-
tection

Agents try to “merge” the local subcases to form larger partial cases. It involves
checking for consistency and interactions among the sub-cases retrieved by different
agents. In the situation where the agents are trying to physically represent the
overall episode at a single central repository, the agents can easily obtain the relevant
information for consistency checking by looking at the other agents’ sub-cases in the
central repository. However, integration need not necessarily lead to a combination
of the sub-cases at a single physical location. In this situation, the agents have to
exchange projections of partial cases. For example, agent A; wanting a consistency
check on one of its partial cases by A, has to send to A,, a projection of that partial
case with respect to the relevant features of the constraints at agent A,. Projection
information alone is sufficient for Agent A, to check for the consistency of that
partial case with respect to its constraints (more details can be found in (Nagendra
Prasad, Lesser, & Lander 1996)). If constraints are not violated then the subcases
are considered “merged” due to their mutual consistency. Those agents who could
not retrieve subcases due to insufficient information in Phase I, try to extend these
partial cases by adding their subcases. An agent intending to extend a partial case
obtains an appropriate projection of that partial case to serve as an anchor for the
local subcase retrieval.

If any violations are detected during a merge or an extend operation due to poor or
infeasible values on local or non-local features, go to Phase III; else exit.

Phase III: Conflict Resolution through Negotiation

Each agent categorizes its violated local constraints into pre-enumerated classes of
violations and uses a set of conflict resolution strategies associated with each of
these categories to generate a set of advice as feedback to itself and the other agents
involved in the partial case that led to the conflicts. The set of advice could range
from domain independent strategies to highly domain specific ones(Nagendra Prasad,

Lesser, & Lander 1996):

1. Some of the agents may do their local retrieval using similarity measures based
on “closeness” of the retrieval requirements to the cases in the archive. Such
agents can be advised to broaden their search by obtaining cases with poorer
similarity values or different similarity measures.

2. Some of agents may retrieve a case and massage it using an adaptation strategy
to fit the new situation. An agent could advise another agent to modify the
retrieved case in a different way — use a different adaptation strategy.

3. In systems where it is possible for agents to be associated with some knowledge
of the importance of a particular feature’s values and constraints for the overall
case, this knowledge can serve as basis for generating advice to relax a soft

constraint involving certain parameters. Alternately, the advice can be in the
form of changes to the values or ranges of certain features in order to obtain
better local solutions.

4. An agent detecting lack of progress either locally or at other agents (based on
the projections it receives from those agents) could advise some of them to
relax their hard constraints. This is expected to take the retrieval process to
qualitatively different regions of the case base. Just as with soft constraints,
the choice of which constraint to relax is based on system-wide knowledge or
generic strategies associated with some or all of the agents about the importance
of various types of constraints for the overall case.

5. Some of the agents may have capabilities to analyze particular features of the
solution space that lead them to recognize opportunities for more efficient cus-
tomized search strategies. They can together decide to play out specific roles in
this kind of customized search. Lander(Lander 1994) presents a good example
of a customized search called linear compromise where agents, upon recognizing
the linear nature of their solution space, decide to exchange end points and ex-
trapolate between them to find the intersection point as a mutual compromise
solution.

Upon generating feedback, goto Phase I.

Assimilation of feedback advice from other agents enhances an agent’s view of the non-
local requirements. An agent assimilating feedback can indulge in a process as complex as
the generation of feedback. It may involve relaxing a constraint or adding a new constraint
to the local set of constraints. Assimilation may be context-sensitive, leading to constraints
that are applicable only in specific contexts or to specific types of partial cases at the local
agent. In addition, the assimilation process may also involve transformations where an
agent uses the feedback from other agents to generate its own local constraints rather than
directly incorporate the feedback.

The Negotiated Retrieval Algorithm is an asynchronous parallel distributed constraint
optimization search to obtain a good overall episode assembled from case pieces. The
asynchronous nature of the search arises from the fact that an agent could be in any phase
of the NRA for a given case evolution at a given time. More than one partial case could be
evolving simultaneously and an agent could be in different phases of Negotiated Retrieval
for different partial cases at any given time. The NRA algorithm is very general and a
system may go through only some or all of these phases to achieve coherent retrieval of
good overall cases.

Another feature of Negotiated Retrieval Algorithm is its ability to work with heteroge-
neous agents. While we cast NRA as constraint optimization search, it is not essential that
the agents represent these constraints in any particular form - they could be procedural or
declarative and in multiple forms. Internally, the agents could be using disparate knowl-
edge organizations or problem solving control organizations. Agent detects constraint
violations based on projections that basically represent information about the features
that this agent as well as some other agents know about. The only requirement is the
ability of an agent to translate a projection or feedback into its local language or from its

local language to the language of another agent. These types of translation mechanisms
are commonly called “wrappers”(Genesereth, , & Ketchpel 1994) and are used to enable
a set of heterogeneous or stand alone systems to function as a multi-agent system.

4.2.3 CBR-TEAM: A multi-agent design system

In this section, we present a brief summary of the CBR-TEAM system(Nagendra Prasad,
Lesser, & Lander 1996) that uses negotiated retrieval to compose coherent design cases.
Note however, that our experience with negotiated retrieval is still rudimentary and we
will be able to give further insights into its effectiveness in future.

CBR-TEAM, whose core is derived from TEAM(Lander 1994), is a parametric design
system that uses a set of heterogeneous cooperative agents for designing steam condenser
components. It consists of three agents - motor-agent, pump-agent and vbelt-agent -
that are responsible for the design of the motor, pump and vbelt components of a steam
condenser. The user gives a problem specification that consists of minimum head size for
the pump in the required design. The agents in CBR-TEAM retrieve and use suitable
members from libraries of manufacturer-specified models for designing their components
and use the negotiated retrieval strategy to arrive at mutually acceptable designs. When
the components of the individual agents are being assembled, violation of constraints due
to mismatches on shared parameters lead to information exchange followed by redesign.
Interface parameters are those features of a component that are shared by more than one
agent. All the relevant agents have to reach an agreement on the values of the shared
parameters.

During the initial phase of retrieval, the agents may have only partial information on
the requirements of other interacting components. So, each of the agents chooses the lowest
cost component based on the information available to it. Trying to assemble these compo-
nents into an overall design may lead to conflicts due to mismatches in the parameters that
are shared by two or more components. For example, motor and pump components have
required-pump-power as a shared parameter and both motor-agent and pump-agent
impose their own set of constraints on this parameter. A mismatch on this parameter
involves one agent assigning a value to the parameter that violates the constraints in an-
other agent. When a conflict is detected, the agent detecting it sends feedback to the other
agents involved. In CBR-TEAM, feedback involves communicating the relevant violated
explicit constraints, all of which are single-parameter numerical-valued constraints. When
an agent receives feedback from others, it assimilates the feedback. Assimilation involves
adding the feedback constraints to the set of local constraints to effect further searches
from there on. The agents iteratively perform further rounds of retrieval using the pre-
vious information and the new requirements from other agents to get better cases to be
assembled into a design that does not produce the same conflict.

4.3 Federated Peer Learning

Plaza, Arcos and Martin(Plaza, Arcos, & Martin 1996) discuss two modes of cooperation
among case-based reasoning (CBR) agents where an agent can leverage the learning ca-

pabilities or past experience of peer agents? to achieve a task or solve a problem. These
modes are developed within the Federated Peer Learning (FPL) framework (Plaza, Arcos,
& Martin 1996) that aims to study cooperative problem solving among agents possessing
either same or different capabilities and incorporating potentially different knowledge and
problem solving behaviors based on their individual learning and experience. Cooperative
problem solving in such a system can result in bringing wide range of experience to bear
on a task at hand in an agent. The approach taken here to achieve cooperation is through
communication using the Noos representation language developed at IITA for integrating
learning and problem solving(Arcos & Plaza 1996). Plural Noos is an extension of Noos
that allows communication and mobile (or “migrating”) tasks and methods (to achieve
these tasks) among agents that use Noos as a representation language. In particular, we
will show two modes of cooperation among CBR agents: Distributed Case-based Reason-
ing (DistCBR) ® and Collective Case-based Reasoning (ColCBR). Intuitively, in DistCBR
cooperation mode an agent A; delegates its authority to another peer agent A; to solve a
problem — for instance when A; is unable to solve it adequately. In contrast, ColCBR
cooperation mode mazntains the authority of the originating agent: an agent A; can trans-
mit a mobile method to another agent A; to be executed there. That is to say, A; uses
the experience accumulated by other peer agents while maintaining the control on how the
problem is solved.

Each of the cooperating agents in Dist CBR and ColCBR is capable of solving the overall
task by itself (most of time) unlike in Negotiated Retrieval where agents are specialists at
specific subtasks.

4.3.1 Representation and Communication

The approach taken to develop cooperative CBR is to extend Noos, a representation
language for integrating learning and problem solving that has been used to develop several
CBR systems. In this section we first present some basic notions of the language, and later
the Plural extension that supports communication and cooperation among CBR agents
using Noos.

Noos is a reflective object-centered representation language designed to support knowl-
edge modeling of problem solving and learning(Arcos & Plaza 1994; 1996). Noos is based
on the task/method decomposition principle and an analysis of knowledge requirements
for methods — and it is related to knowledge modeling frameworks like KADS (Wielinga
et al. 1993) or components of expertise (Steels 1990). A method models a way to solve
a task. A method can be elementary or can be decomposed into subtasks. These new
(sub)tasks can be achieved by their corresponding methods in the same way. For a given
task there may be multiple alternative methods (alternative ways to solve the task). For

2By peer agents we mean agents that are capable of solving the task that another agent has at hand.

3Note that this mode of cooperation unfortunately carries the same name as our use of the term
distributed case-based reasoning for agents more generally doing case-based reasoning in a distributed
manner. The name for this mode of cooperation was introduced in (Plaza, Arcos, & Martin 1996) where
cooperative CBR was used for agents more generally doing case-based reasoning in a distributed manner.
In order to avoid confusion, in this paper, we use the acronym DistCBR for this specialized FPL coopera-
tion mode and the terms cooperative CBR and distributed case-based reasoning are used interchangeably
for the more general situation of agents doing case-based reasoning in a distributed manner.

instance, a CBR method(Aamodt & Plaza 1994) is decomposed into retrieve, select and
reuse subtasks and there are several possible methods to access stored cases, select one of
them according to some criteria, and finally reuse the solution. Retrieval methods allow
Noos to inspect and analyze previous specific situations in the episodic memory. The reuse
methods re-instantiate solutions to precedent problems in the current context or construct
new solutions using the precedent solutions and the current problem. Decision-taking in
Noos is modeled by a preference language that allows the specification of the conditions
under which an alternative is better than the others. Reasoning about preferences permits
an agent to select a method from a set of alternatives or to choose to cooperate with an
agent from a set of associate agents (more on this later).

Noos is a representation language based on descriptions. A description is formed by
a collection of features. The values of features are constants or other descriptions. This
approach is close to the ¢-term formalism (Ait-Kaci & Podelski 1993). Domain knowledge
is represented in Noos by descriptions of the concepts in that domain. Descriptions have a
correspondence to labeled graph representations as shown in Figure 1 that is a description
of an experiment in the chromatography domain(Plaza, Arcos, & Martin 1996).

1V

v%—’Glycogen—Phosphorilase

\¢ w-» Liza-Ramada MAnimal
s Sample_1057

J'OL{}Z_E) Muscle

. \\e .. .
Experiment10 e Precipitation

V> Step 1073 | Acetic-Acid

s\ Teagen;

pamé

sten? Ton-Exchange
Plan_1066 — L= Step_1080

-
=
-
=
=
[
=\
=
A
=

Deae-Cellulose

resip
e, na o Affinity
25 /
Step_1085
resin 5-Amp-Sepharose

Figure 1: A case description in CHROMA.

Methods are also represented as descriptions. The features of a method description
represent the subtasks into which that method is decomposed. Methods are defined by
refinement from a set of built-in methods. The set of built-in methods in Noos are those
of a general-purpose language plus some constructs enabling introspection. The uniform
representation of methods as descriptions is what allows Plural Noos to transmit both
entity descriptions and methods in the same way over the network.

4.3.2 Agent Communication with Plural Noos

Plural provides a seamless extension of Noos to support distributed scoping and reference
for all the basic Noos constructs. An agent in Plural is a particular Noos application with
a network address, and the acquaintances of an agent are those agents with addresses
known to it — as in the actors model. The CBR cooperation modes use three Plural

Noos capabilities: network references, remote evaluation, and mobile methods. Using
Plural Noos, arbitrary Noos descriptions (of entities and methods) can be transmitted
over the network from one agent to another. In particular, cases and CBR methods can
be transmitted from a CBR agent to another.

Network references extend Noos references to agents over the net. Syntactically, a
reference to a feature in an agent-i like (>> feature of entity) once transmitted to a
new agent agent-j becomes a network reference equivalent to (>> feature of entity
at agent-i) in agent-j; and an identifier of an entity in agent-i like entity55, once
transmitted to a new agent, becomes a network reference like entityb5@agent-i in
agent-j. Network references are transmitted over the network: if entity55@agent-i
1s a value of the feature my-friend of entity99 in agent-j and a new agent has the
reference (>> my-friend of entity99 at agent-j),it will get the original network ref-
erence entitybb@agent-i. Network references avoid the problem of maintaining state
when objects with state are copied over the network. State is local to agents, and when a
description is referenced by another agent, a network reference is transmitted.

If we view a Noos description as a labeled graph, transmission of a description starts
at a selected node (for example, the root in Figure 1) and “copies” the graph to the
destination as follows: if a graph node is a constant, (like a number or a string) a fresh
copy is produced. Otherwise a network reference to that node is created. Since Noos
performs lazy evaluation, not all the nodes in a graph are transmitted when the root
is referenced, but only those needed by remote references. Path equality (sharing) and
circularities in the graph are preserved.

Remote evaluation allows an agent to use a method owned by another agent — as in
remote procedure call (RPC). Specifically, remote evaluation allows an agent agent-i to
ask another agent agent-j to execute a specific method method-k@agent-j for a given
problem-nof agent-i, as in the expression (noos-eval (method-k@agent-j problem-n)
at agent-j). In this process, agent-j receives the network reference problem-n@agent-i
and applies method-k to it. During evaluation, further references in agent-j to features
of problem-n@agent-i are interpreted as network references that automatically lead to
communication to agent-i asking for the value of that feature. Agent-1i is responsible for
inferring that value and transmitting its network reference to agent-j.

For some cooperation modes it is necessary to support so-called mobile code or ma-
grating programs. Mobile methods are supported by Plural Noos through the capability
for transmitting method descriptions. A mobile method description is first defined in an
originating agent agent-i. Then, the Plural Noos construct jump can be used to bind
the mobile method with the appropriate references and to instantiate the method at the
destination agent.

When a method jumps to a remote agent, the whole task/method decomposition of the
mobile method is “copied” in the following sense: the name of the built-in of which the
method is a refinement is transmitted, as well as its subtasks. Recursively, the methods
defined in the originating agent for those subtasks are also “copied”. The references of the
mobile method in the originating agent are transformed to network references as explained
previously.

4.3.3 Two Modes of Cooperation for CBR Agents

Cooperation among CBR agents involves exploiting the set of precedents in the collective
memories of all the agents for use in similarity-based reasoning. There are two general
ways to do so: DistCBR and ColCBR. Intuitively, both DistCBR and ColCBR are based
on solving a problem by reusing the knowledge learned by other CBR agents. Given an
agent (the originator) trying to solve a problem, the difference between both modes is in
the similarity-based reasoning method used: that of the originator or that of the CBR
agent that is helping the originator.

e DistCBR is based on an agent A; transmitting the problem and the task to be
achieved to another agent A;. Agent A; uses its own CBR method and its case base
CBj to achieve the task and send the results back to agent A;. In case of failure,
a failure token is sent back and A; can iterate the cooperation tasks with the next
agent of its preference.

e ColCBR is based on an agent A; transmitting the method that is to be used to solve
a task, in addition to the problem and the task to be achieved, to another agent A;.
Agent A; will use its case base C'B; and the method sent by A; to achieve the task
and send back the results. In other words, the originator is using the memory of the
other agents as an extension of its own — as a collective memory — by means of
being able to impose on other agents the use of its own CBR methods. In case of
failure, a failure token is sent back and A; can iterate the cooperation tasks with the
next agent of its preference.

From the standpoint of implementing these cooperation modes, we can say that Dist CBR
is supported by the remote evaluation capability and ColCBR is supported by remote pro-
gramming (or mobile code) capability of Plural Noos.

4.3.4 Multi-agent Protein Purification

We now discuss the application of the two cooperation modes introduced above in a system
that recommends chromatography techniques to purify proteins from tissues and cultures.
There are a number of proteins and associated chromatography techniques currently in use
in a larger number of industrial chemical labs. Each of these labs may face its own subset
of problems that it routinely solves and in the process it develops expertise for handling
them. It may also face problems that seldom occur at its location but occur frequently
at other locations — leading to the developemnt of expertise at those locations. Different
locations may thus have different methods for case-based reasoning that rely on knowledge
modeling analysis of their particular problems and local expertise and biases. This gives
rise to the need for cooperation to exploit peer expertise.

Our multi-agent CBR system consists of a number of CHROMA agents that can rec-
ommend chromatography techniques for protein purification. Each CHROMA agent can
be configured using Noos. It allows the configuration of a CBR system through a knowl-
edge model analysis of the domain(Arcos & Plaza 1994; 1996). Such a configuration is
done with the component blocks provided by Noos — like generic retrieval methods —
that are refined (or biased) in order to incorporate the domain knowledge that has been

modeled. In CHROMA, the domain knowledge is used to characterize which features are
more important for judging the similarity between a current problem and a precedent
case. Noos allows the expression of such knowledge by means of retrieval methods and
preference methods. Such an abstraction permits one to ignore implementation details
like the indexing algorithms and, most importantly, permits the communication of such
methods among CBR agents(Arcos & Plaza 1994; 1996). This allows a CBR agent to not
only exploit the cases in its own case-base but also those cases known by other agents.

Learning in CBR is lazy: a CBR system imposes a partial order among (a relevant
subset of) the past examples based on the current problem. The solution of a problem is
determined by the solution of the case(s) that is maximal in the partial ordering established
by preferences. Thus, solutions proposed by the system are a function of the individual
experience of the CBR system plus the domain knowledge given by the system designers
during the knowledge modeling stage. The CBR method in a CHROMA agent is configured
as follows:

1. Goal-driven Retrieval This is a generic method that selects from memory all
cases obeying a constraint declared as pattern. Intuitively, it retrieves all cases
subsumed by (all cases that match) the pattern. Domain knowledge in CHROMA
requires that only cases whose protein feature has the same value as in the current
problem are retrieved. This form of retrieval is called goal-driven retrieval (since the
protein is the goal in our process) and can be represented by a general method called
retrieve-by-determination.

2. Domain Selection Criteria This component is a preference method that imposes
a partial order among retrieved cases. In CHROMA there are three basic preferences:

Preference n.1 Domain knowledge in CHROMA states that usually the most im-
portant criterion for similarity is having the same value for a feature in the
source and in the current problem.

Preference n.2 This preference method relies on the species feature i.e. the
species of the sample tissue or culture from which the protein is purified. This
preference discriminates the retrieved cases that are indistinguishable using
preference n.1.

Preference n.3 This method is a preference based on the kingdom taxon of the
source. It is used to discriminate among the retrieved cases that are not distin-
guishable by the preceding preference methods.

3. Reuse Finally, the reuse method re-instantiates the purification plan of the most
relevant precedent chosen using the above domain preferences.

In the multi-agent extension of CHROMA, each laboratory has a specific agent that can
support this CBR method or a similar one. Different CBR methods can be derived by
supplementing or substituting the general preference criteria with specific ones arising out
of the kinds of problems an agent regularly solves. For instance, for a given tissue, the
species criterion could be more relevant than the source criterion. Thus, each CBR agent
possesses selection criteria adapted to its own experience.

We have seen that CBR methods are decomposed into three main tasks: retrieval,
selection and reuse. The multiagent CHROMA application specifies the reuse task to be
local to the agent involved in solving a problem, while retrieval and selection tasks can
be delegated to other agents. In DistCBR an agent A; has a new method encompassing
the retrieval and selection tasks; this retrieve&select method is declared public.
Another agent A; can specify to the agent A; to apply that method to a current problem
and A; will receive as result, the network reference of the best precedent case C?** in A;
memory. Then A; can access the information of C?*** in A; (essentially the solution) and
reuse or adapt that information to the current problem.

In Dist CBR, the precedent case C?*** was selected using the criteria embodied in A4;
retrieve&select method. On the other hand, in ColCBR an agent A; uses its own
CBR method on any federated agent—in essence accessing and using the memory of the
another agent as if it was its own, and hence the name of collective memory. In ColCBR
an originating agent A; can transmit its retrieve&select method to another agent A;
who is responsible for using it on its own memory and experience and sending back the
best precedent case CP*** to A;. Here C?** is the best according to the criteria of A; and
the experience of A;.

In fact, the way ColCBR is performed is slightly more complex. In ColCBR we want
to find the best precedent case in the collective memory of all the peer agents, but each
agent may respond with the best case from its case base. The agent can not give any
assurances about the goodness of the case with respect to the entire collective memory of
all the agents. So, the following ColCBR method is used to select the the best precedent

case:

1. Retrieve & Select This mobile method is sent to the peer agents, and each of the
peers responds with the network reference of the (locally) best precedent case CPest.

2. Global Select The originating agent uses the preference criteria to rank the set of
locally best cases CP*** in order to select the globally best one(s).

3. Reuse The (globally) best precedent case is reused as before by the originating
agent.

4.4 Discussion

The Negotiated Retrieval and the FPL-based cooperative CBR represent two attempts at
exploiting previous experience, distributed within a corporation, for solving new problems.
Each of the two approaches brings with it a set of conditions and problem features for which
it is most appropriate.

Negotiated Retrieval is based on a model where the response to a query is derived
from composing partial responses from distributed case bases. Tasks like assembling cross-
functional teams or assembling a set of documents for various aspects of a project from the
documentation set available from previously executed projects (to let a project leader de-
rive leads from them for the present project) or accessing a set of relevant components from
manufacturer-specified online component catalogues for various design assembly stages rep-
resent a few examples where NRA provides a useful tool for the users. On the other hand,

DistCBR and ColCBR represent attempts to benefit from the collective experience of peers
in a corporation. Each of the peer agents can solve the task on hand by itself. However,
their experiences are different and diverse and thus each of them can potentially bring
some unique experience to the task. Exploiting this diversity and richness is what these
two modes of cooperation attempt to do. Tasks like a project manager’s agent exploiting
the experience of its peers for project cost estimates or an agent exploiting the experience
of a group of expert agents for a new marketing initiative are examples where these modes
of cooperation can come in handy?.

DistCBR and ColCBR rely on knowledge modeling to flesh out a domain to capture
the recursive structure of task-method-subtasks relationships and manage the conflicts and
preferences among subtasks or submethods. This represents a knowledge intensive ap-
proach to cooperative CBR. On the other hand, Negotiated Retrieval is a search-intensive
approach to cooperative CBR where preferences and harmful interactions are managed by
augmenting the retrieval of individual subcases with search during integration.

Lastly, DistCBR and ColCBR have certain specific representational requirements like
agent control being organized to be able to work with descriptions in Noos language. Thus
resources in a corporate memory setting have to be augmented with such capabilities to be
able to exploit these two modes of cooperation. However, this is not a serious limitation
because Noos is a very general and powerful representation language. Negotiated Retrieval
is designed to work with heterogeneous agents that can be equipped with “wrappers” to
achieve cooperative communication without having to change the representations of their
internal problem solving control.

5 Conclusions

Corporate Memory forms an important enabling component in any knowledge manage-
ment strategy of a company. In this paper, we propose that such memories be viewed
as distributed case bases in order to facilitate exploitation of techniques from multi-agent
systems and case-based reasoning to build flexible and powerful tools for knowledge ac-
cess and manipulation. Negotiated Retrieval deals with piecing together partial responses
from different sources to evolve a coherent response to a query. It augments CBR agents
with distributed constraint optimization search capabilities to avoid harmful interactions
among case pieces and assemble “good” candidate overall responses from partial responses
of individual agents. FPL-based cooperative CBR proposes two cooperation modes among
CBR agents for exploiting “collective memories” of peer agents. In DistCBR, an agent
transmits the task to be achieved to another agent, and the host agent uses its CBR meth-
ods and its local case base to achieve the task for the originating agent. In ColCBR, an
agent transmits the task to be achieved and the method to be used to achieve this task to
another agent, and the host agent uses its local case base along with the received method

“In these examples, when we talk of agents we mean computational agents that develop their case
bases from the experiences of different employees and are equipped with automated tools for exploiting
such experience like case-based reasoning tools. However, the methods presented here would also be
applicable for mixed-initiative systems where computational agents and humans are treated as “agents”
in an integrated multi-agent system.

to achieve the task for the originating agent. Both Negotiated Retrieval and FPL-based
cooperative CBR are appropriate for different kinds of tasks and complement each other as
tools for effective knowledge management, to be invoked for problems and tasks for which
they are appropriate. As we gain further insights into the mechanisms for distributed
case-based reasoning systems through our future research agenda, we hope to translate
these into tools for knowledge management in the corporate memory context.

References

Aamodt, A., and Plaza, E. (1994). Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. Artificial Intelligence Communications

7(1):39-59. <http://www.iiia.csic.es/People/enric/ AICom_ToC.html>.

Ait-Kaci, H., and Podelski, A. (1993). Towards a meaning of LIFE. J. Logic Programming
16:195-234.

Arcos, J. L., and Plaza, E. (1994). Integration of learning into a knowledge modelling
framework. In Steels, L.; Schreiber, G.; and de Velde, W. V., eds., A Future for Knowledge
Acquisition, number 867 in Lecture Notes in Artificial Intelligence. Springer-Verlag. 355-
373.

Arcos, J. L., and Plaza, E. (1996). Inference and reflection in the object-centered repre-
sentation language Noos. Journal of Future Generation Computer Systems. To appear.

Arens, Y.; Chee, C. Y.; Hsu, C.; and Knoblock, C. A. (1993). Retrieving and inte-
grating data from multiple information sources. International Journal of Intelligent and
Cooperative Information Systems 2:127-158.

Bowman, M. C.; Danzig, P. B.; Manber, U.; and Schwartz, M. F. (1994). Scalable
internet resource discovery: Research problems and approaches. Communzications of the

ACM.

Genesereth, M. R.; ; and Ketchpel, S. P. (1994). Software agents. Communications of
the ACM 37(7).

Huynh, M.; Popkin, L.; and Stecker, M. (1994). Constructing a corporate memory
infrastructure from internet discovery technologies. White paper, Marble Associates, Inc.
<http://www.marble.com/cgi-bin/list-whitepapers>.

Lander, S. E. (1994). Distributed Search in Heterogeneous and Reusable Multi-Agent
Systems. Ph.D. Dissertation, Dept. of Computer Sceince, University of Massachusetts,
Ambherst.

Lehnert, W.; Cardie, C.; Fisher, D.; McCarthy, J.; Riloff, E.; and Soderland, S. (1992).
University of massachusetts: Description of the circus system as used for muc-4. In

Proceedings of the Fourth Message Understanding Conference (MUC-4), 282-288.

Lesser, V. R. (1990). An Overview of DAI: Distributed Al as Distributed Search. Journal
of the Japanese Society for Artificial Intelligence 5(4):392-400.

Lesser, V. R. (1991). A retrospective view of FA/C distributed problem solving. IEEE
Transactions on Systems, Man, and Cybernetics 21(6):1347-1362.

Nagendra Prasad, M. V.; Lesser, V. R.; and Lander, S. E. (1995). On retrieval and
reasoning in distributed case bases. In 1995 IEEE International Conference on Systems
Man and Cybernetics.

Nagendra Prasad, M. V.; Lesser, V. R.; and Lander, S. E. (1996). Retrieval and reasoning
in distributed case bases. Journal of Visual Communication and Image Representation,
Special Issue on Digital Libraries 7(1):74-87.

Oates, T.; Nagendra Prasad, M. V.; and Lesser, V. R. (1994). Cooperative Informa-
tion Gathering: A Distributed Problem Solving Approach. Computer Science Technical
Report 94-66, University of Massachusetts.

Partnet: The Distributed Component Information System. <http://part.net>.

Pasahow, E. (1996). Insider’s viewpoint. Computer Industry Daily.

Plaza, E.; Arcos, J. L.; and Martin, F. (1996). Cooperation Modes among Case-based
Reasoning Agents. In Proc. ECAI’96 Workshop on Learning in Distributed Artificial
Intelligence Systems. <http://www.iiia.csic.es/Projects/FedLearn/CoopCBR.html>.

Sharp, C., and Lewis, N. Information Systems and Corporate Memory: Design for Staff
Turn-over. Australian Journal of Information systems 1(1).

Steels, L. (1990). Components of expertise. AI Magazine 11(2):28-49.

Vanwelkenhuysen, J. (1996). Corporate Memory. <http://www.inria.fr/
acacia/personnel /jvanwelk /projects/cm-project.html>.

Weibel, S. (1995). Metadata: The Foundations of Resource Description.
D-lib Magazine: The Magazine of the Digital Library Forum. <http://www.
dlib.org/dlib/July95/07weibel.html>.

Wielinga, B.; van de Velde, W.; Schreiber, G.; and Akkermans, H. (1993). Towards
a unification of knowledge modelling approaches. In David, J. M.; Krivine, J. P.; and
Simmons, R., eds., Second generation Ezpert Systems. Springer Verlag. 299-335.

