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Abstract

We contrast two approaches to the problem of information gathering that may be

characterized as distributed processing and distributed problem solving. The former

is characteristic of most existing information gathering systems, while the latter is

central to research in multi-agent systems. We examine features of complex information

carrying environments and the information gathering task that demonstrate both the

utility of viewing information gathering as distributed problem solving and di�culties

with viewing it as distributed processing. We propose a new approach to information

gathering based on the distributed problem solving paradigm and its attendant body of

research in multi-agent systems and distributed arti�cial intelligence. This approach,

called Cooperative Information Gathering, involves concurrent, asynchronous discovery

and composition of information spread across a network of information servers. Top

level queries drive the creation of partially elaborated information gathering plans,

resulting in the employment of multiple semi-autonomous, cooperative agents for the

purpose of achieving goals and subgoals within those plans. The system as a whole

satis�ces, trading o� solution quality and search cost while respecting user-imposed

deadlines. We also survey current work on distributed and agent-based approaches to

information gathering.
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1 Introduction

Recent years have seen an explosion in the amount of information available in electronic

form, forcing the developers of information acquisition systems to re-evaluate their model of

the world. Vast amounts of electronic information are available at a multitude of sites to

anyone with access to the Internet. Some of that information is free, some of it is available for

a price, and all of it requires time and computational resources to search and access. Early

information retrieval (IR) systems assumed that users would supply both a query and corpus

(data source) against which the query is to run. Even though the user may have access to

multiple corpora, the user, rather than the IR system, is tasked with knowing which one

is most likely to contain the correct answer. If the response to a query is inadequate, then

either the query may be modi�ed or perhaps another corpus should be investigated, and

the entire process is iterated until the user's information need is satis�ed. That model is

appropriate when the number of corpora available to the user is quite limited. When a user

has access to a number of data sources as large as, say, the number of anonymous FTP sites

in the Internet (via, for example, Yahoo), it is no longer possible for a user to wade through

the sea of potentially relevant documents that are returned to determine whether the query

needs to be modi�ed in some subtle way or whether a complete and coherent answer to their

query exists somewhere in the current search results. Note that substantial e�ort is required

to both identify and retrieve relevant documents and to construct a meaningful response to

the query. The latter task may entail iterating over cycles of query re�nement and additional

retrieval (for example, because the retrieved data is not highly relevant, contains conicting

information, suggests a related topic that may be useful, etc.). In addition, heterogeneity

and lack of uniform structure in information databases, ranging from unstructured text to

highly structured relational data, rule out many of the existing approaches to gathering data

from diverse sources. Clearly, something more is required of the IR systems.

The problem as described seems amenable to a cooperative information gathering ap-

proach. Information Gathering (IG) involves pro-active acquisition of information from

heterogeneous sources in response to a complex query. Traditional IR is a limited sub-case

of such information gathering systems which must be able to reason with and draw infer-

ences from complex representations. In addition to the complexity of query speci�cation,

control of the acquisition process may itself be complex and dynamic in IG systems, whereas

queries in IR systems generally map onto static, pre-speci�ed retrieval plans. In this paper,

we draw upon a long tradition of work in distributed problem solving (DPS) to propose a

cooperative agent-based solution for information gathering. In response to a query, multiple

semi-autonomous agents can be released to search the distributed \information space" in a

cooperative manner for relevant items. A multi-agent approach to information gathering is

promising for a variety of reasons [16]:

� One advantage of multi-agent systems is concurrency, which is important in time con-

strained situations or when the search space is very large, as is the case with networked

information gathering. Query plans can often be decomposed into relatively indepen-

dent sub-plans with few interdependencies. Agents executing sub-plans can function

relatively autonomously, but can coordinate with other agents to exploit interdepen-

dencies when they exist.
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� When a system is dealing with enormous quantities of data, distributed computation

at the sites where the data resides may often be more e�cient than migrating data to a

centralized processing location. Instead of gathering data dispersed across networked

information servers at a centralized site and then evolving a coherent response to

a query, agents can reside at the data sources and perform distributed coordinated

retrieval to prune their data space and send substantially less data to the centralized

query system for further processing.

� Agent-based architectures o�er modularity, robustness and other advantages of dis-

tributed systems. For example, information agents can be constructed and maintained

separately to accomodate heterogeneity in access methods, data representations and

communication protocols that make it necessary to construct agents with specialized

knowledge. Agents can use other agents to provide abstractions of heterogeneous in-

formation sources. In addition, passive data sources like databases can be transformed

into information providing agents by wrapping them with intelligent interfaces [31],

making possible negotiation processes between retrieval agents and intelligent search

engines.

Cooperation between agents implies management of interdependencies between their ac-

tivities so as to integrate and evolve consistent clusters of high quality information from

distributed heterogeneous sources. Rather than simply retrieve sets of documents from

disparate sources that are relevant to a query, such agents perform a parallel search for

information to compose a coherent answer to a user's question. Cooperation is especially

important because:

� Users often provide vaguely worded or sparse queries, leading to an explosion in the

amount of information that is deemed potentially relevant. Agents that can dynam-

ically exploit relevant information unearthed by other agents can better focus their

search processes. Viewing partial results as information relevant to a query opens up

a rich set of possible subproblem interrelationships that may be bene�cially exploited.

� The amount of data that is relevant to even a precisely worded query may itself be too

vast. The agents can exploit cues and hints based on information discovered by other

agents at non-local sites to further narrow the set of relevant local data.

Given that the need to e�ciently search through networks of information servers is real,

the issues involved in using a team of cooperating semi-autonomous agents to search for the

desired information are yet to be explored. Large scale networks of distributed information

servers with complex interdependent data not only necessitate increased parallelism in search,

but also motivate the need for cooperative retrieval and dynamic construction of responses

to queries. The domain of such a search consists of multiple wide-area networks that are

composed of, among other things, information servers (see Figure 1). In response to a

query at a node, following some query planning, agents are dispersed to various regions in

the network where they plan their local actions, which may include spawning additional

agents to perform certain subtasks. This results in the formation of a search organization

for the purpose of satisfying a query [16]. Intelligent servers that receive queries and act

as regional planning sites, either further decomposing the search into subregions or sending

3



User

Computation
Server

Information
Server

Information
Server

Information
Server

Computation
Server

Information
Server

Computation
Server

Information
Server

Computation
Server

Information
Server

Computation
Server

Information
Server

network 1

network 2

network 4

network 3

Information
Server

Software
Agent

Software
Agent

Software
Agent

communication

Figure 1: An example milieu for distributed information retrieval

agents to local corpora for data retrieval. The e�ciency and the quality of the local search

activity of an agent can be a�ected by the partial results produced by other agents working

concurrently. Detecting interactions between decentralized search spaces and exploiting them

for improved control in distributed search is the core of the model proposed in this paper

for intelligent acquisition of distributed, heterogeneous information. Since the amount of

available information is seemingly limitless, yet money, time, and computational resources

are not, the agents' search is satis�cing; they return the most relevant information available

while staying within resource constraints. They must clearly coordinate with each other

to maximize coverage, and may need to negotiate with other agents to discover consistent

clusters of information. Results of these searches are communicated back to parent agents

and are synthesized into a coherent response to the query.

The complexity of the modern information carrying landscape requires a sophisticated

view where information is acquired rather than simply retrieved; where the process must

be dynamic, incremental, and constrained by resource limitations. We present a model of

information gathering designed speci�cally for such complex environments, a model of Coop-

erative Information Gathering (CIG). In the context of this model, information gathering is

a much more complex process than the submission of a well formed query to a single corpus

from which a complete response is ultimately obtained (as in the case of classical IR). Our

model requires that we take a much more sophisticated view of information servers (entities

in the network that mediate access to data). Users cannot be expected to translate their

information gathering needs into the native syntax of the myriad of existing IR systems,

nor to wait an indeterminate amount of time before some response to a query is produced.

Information servers must be able to handle both partial and fuzzy speci�cations of queries.

They must be capable of making partial and incomplete results available to users as the

search for information proceeds. For example, by providing meta-level information about

the status of their search for information, such as the amount, quality, and completeness

of information currently retrieved, or an estimate of the time to completion. To conduct
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such a search, information servers must be able to control the tradeo� between complete-

ness, quality, and precision of acquired information. This additional sophistication inevitably

leads to increased complexity in the interface to the information server. However, there is a

concomitant increase in the power and economy a�orded to the user.

The purpose of this paper is two-fold: to assess the current state of Information Gath-

ering systems in relation to the distributed processing/problem solving spectrum, and to

explore possible synergy between Information Gathering (including Distributed Information

Retrieval) systems and existing DPS techniques to enable pushing these systems closer to

the distributed problem solving end of the spectrum. Once we have embarked on this jour-

ney, it will soon become apparent that existing IG models are left wanting. We begin by

looking at the distinction between distributed processing and distributed problem solving

in more detail. What features of a problem or problem solving make one of the paradigms

a more appropriate model than the other? Speci�cally, what types of constraints can exist

among subproblems and how can they be exploited bene�cially from both local and global

perspectives? We then present our model of CIG as an initial foray into intelligent informa-

tion acquisition and discuss the model in some detail using example situations. Distributed

Information Retrieval is often viewed as a distributed processing problem. Is that view ap-

propriate? How well does the distributed problem solving view �t, and is there some bene�t

in taking such an approach? Finally, we review the literature related to distributed and

agent-based information acquisition to assess the state of the art in this area and conclude

with a discussion of the implications of our model for CIG.

2 Distributed Processing vs. Problem Solving

The task of information gathering in a distributed setting can be viewed in general terms as

either distributed processing or distributed problem solving. Each view brings with it a set

of conditions or problem features for which it is most appropriate. Distribution implies the

decomposition of a problem into a set of subproblems to be solved by multiple processing

units such as CPUs or agents. We �nd it convenient to view the agent as the locus of problem

solving activity. Distributed processing is appropriate when subproblems are independent,

whereas distributed problem solving is appropriate when subproblems interact and where

there is some bene�t to be gained both locally and in terms of the global solution from agent

communication. This distinction is important in understanding the contribution of this

paper. Details of the distributed problem solving model will be discussed in later sections

on cooperative information gathering.

Given some computational problem P , the solution is obtained in a distributed manner

by �rst breaking the problem down into n subproblems pi for 1 � i � n, which are then

distributed among a set of agents. Each agent performs problem solving locally to arrive at

a solution to its own pi, and the local solutions are combined to arrive at a solution for the

original problem P . This process can be viewed as dynamically interwoven phases of prob-

lem decomposition, problem solving, and solution synthesis [19, 33]. As stated previously,

distributed processing is characterized by complete independence of subproblems. Agents

need nothing other than local information to arrive at a subproblem solution of the required

quality that can be synthesized with other agent subproblem solutions to arrive at a global
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solution.

Distributed problem solving, on the other hand, is characterized by the existence of inter-

dependencies between subproblems leading to a need for the agents to cooperate extensively

during problem solving, and by the potential for leaving some subproblems unsolved. For

example, it may be impossible to solve pj without �rst solving pi, or knowing the solution

to pi may simply make it easier to solve pj, or knowing the solution to pi may obviate the

need to solve pj . If one agent �nds a number of sites that are highly relevant to a query,

communicating those sites to other agents may facilitate their search for relevant informa-

tion. Agents rely on communication to detect and exploit these interdependencies between

subproblems. At the start, agents have only partial and incomplete global views of solution

requirements and the state of problem solving. In spite of this de�ciency in information,

agents can arrive at partial and tentative results that may be exchanged by the agents work-

ing on subproblems that are interdependent, to reduce the uncertainty that surrounds local

problem solving. That is, agents can exploit the interdependencies between subproblems to

their bene�t. This is the essence of the functionally accurate, cooperative (FA/C) paradigm

presented by Lesser et al. [37, 39] as an approach to distributed problem solving. In FA/C

systems, the interdependencies among subproblems motivate agents to augment their local

information with information about global problem solving activity in order to enhance the

e�ciency of the ongoing problem solving process. Once these interdependencies are uncov-

ered via communication of problem solving activities, such as receiving partial results or

meta-information, they can be exploited in a variety of ways to improve problem solving

both locally and globally.

As we have de�ned distributed processing and distributed problem solving, any given

problem may have features of both paradigms and will lie somewhere on the spectrum

between them. To place a problem instance on this spectrum we need to characterize the

nature of subproblem and/or agent interactions, both in terms of when they occur and

their implications. For example, if subproblems interact only at the time of global solution

synthesis, then local problem solving is completely independent and we are closer to the

distributed processing paradigm. Likewise, it may be that agents interact before problem

solving begins, perhaps to communicate some global data, but not during problem solving.

This communication step may alter agent behavior, but it does not represent the exploitation

of constraints derived from the interdependencies of dynamically generated partial results. A

system that uses this approach is the distributed version of INQUERY [3, 4] (to be discussed

later), where the set of statistics used to compute globally comparable relevance rankings

is obtained by pooling statistics from all corpora that will be searched. After the initial

computation and communication, retrieval at the various sites proceeds independently and

in isolation. These examples point to the fact that for distributed processing to be considered

distributed problem solving, interactions must be based on the dynamics of problem solving

(such as the current problem being solved and the current state of problem solving activity).

Finally, the tightness of the coupling between subproblems a�ects the placement of a task

on our spectrum. If the interdependencies that hold between subproblems are weak, then

the problem is more like distributed processing. For example, it may be the case that local

processing can proceed almost to completion, but agents must communicate to interpret

results. Likewise, strong interdependencies between subproblems are indicative of distributed

problem solving.
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3 Intelligent Information Retrieval

Recent trends in information retrieval show an evolution from relatively syntax-oriented

retrieval systems to more semantically guided systems [26, 43, 51] known as Intelligent In-

formation Retrieval (IIR) systems. These systems are guided by task-level requirements,

rather than just the syntax of the queries, to establish an association with and retrieve infor-

mation from the stored structures to which they have access [43]. In this report we go a step

further and propose a model for Cooperative Information Gathering (CIG), where a group

of potentially heterogeneous IIR agents are involved in simultaneous access and composition

of associated information spread across a network of information servers. Top level queries

drive the creation of partially elaborated information gathering plans, resulting in the em-

ployment of multiple semi-autonomous, cooperative agents for the purpose of achieving goals

and subgoals within those plans. The rest of this section will briey introduce IIR systems.

Intelligent Information Retrieval involves content-based access of information, where the

meaning and not just the syntax of a query is used to guide and control the retrieval pro-

cess. Abstractions and models of the data environment and user requirements are used

to relate the query to the information so as to facilitate a more pertinent and controlled

access to a large array of information repositories. For example, consider retrieving data

about transportation to a picnic spot. Domain knowledge about types of transportation is

used to form a query for retrieval from an information server. A transformation, such as

specialization, is performed on the concept \mode of transportation" to get a concept like

\rented car" or \bus" or \train". Further transformations may lead to \Hertz Rentals",

\Greyhound" and other transportation companies that are used to retrieve relevant data on

the availability of reservations. Consider another example from [45]: \�nd a mechanism that

converts a uniform rotary motion into a reciprocation in Atrobelovsky's design encyclope-

dia." The retrieval mechanism here should have a model of kinematic mechanisms. Simple

keyword-based systems cannot handle such queries.

Most of the models for IIR presented in the literature [43, 51] can be conceptually cap-

tured by the abstract models shown in Figure 2. Figure 2a shows an intelligent information

system where an \inference shell" is wrapped around the data repository. We will apply

the term information server to this combination of an inference engine and a data reposi-

tory. The inference shell contains the \knowledge" or \domain models" or \abstractions"

of the information and serves as an interface through which queries are �ltered and recast

to associate the task-level content in a query with the information. Although information

servers are typically thought of as passive processes, pressed into service for the purpose of

satisfying externally generated queries, they may take a much more active role. That is,

information servers may seek out and build connections with other servers in the network

that contain data related to the information maintained locally. This view treats informa-

tion servers as intelligent agents with their own goals, adding to both the richness and the

complexity of the environment. Figure 2b shows an intelligent information retrieval agent,

carrying user requirements and task-level knowledge, reaching a data repository to extract

information from it. The agent formulates a query based on abstractions of the contents

of the repository and its own task-level requirements to perform a content-based retrieval.

Figure 2c shows a hybrid model where the intelligent agent carries the user's requirements

and, possibly, abstract descriptions of the information sources it can access. The retrieval
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engine contains a more detailed model of its information database as well as mappings be-

tween this model and the abstract descriptions in the agents that can access it. Because

both the retrieval engine and the retrieval agent are intelligent, they can engage in a dialog

to negotiate the nature of their interaction. That can be bene�cial when access to the infor-

mation database, which is mediated by the retrieval engine, is costly. The retrieval agent can

employ its model of user requirements to determine how to trade o� expected completeness,

quality and precision of the results of its query based on the retrieval engine's model of the

database (its access methods, available indices, etc.). In addition, the hybrid view has the

advantage of separating the user and the task-level requirements from the conceptual model

of the data repository. Therefore, we adopt the hybrid view of IIR (Figure 2c) in our further

discussions.

INTELLIGENT
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    ENGINE

INFORMATION
   DATABASE

a. Intelligent
    Database

b. Intelligent Agent
   Communicating
   with a Database

INTELLIGENT
  RETRIEVAL
      AGENT
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   DATABASE

INTELLIGENT
  RETRIEVAL
      AGENT

INFORMATION
   DATABASE

INTELLIGENT
  RETRIEVAL
    ENGINE

c. Hybrid Architecture

Figure 2: Conceptual Models for Intelligent Information Retrieval

4 CIG as Distributed Problem Solving

The proliferation of network-based information systems motivates the need for distributed

information acquisition systems. However, the huge number of available resources makes it

impractical for users to specify direct mappings from their needs to the available resources.

This necessitates an intelligent retrieval component to IR systems that we argue is best mod-

eled as a search process that is informed by the results of queries to information servers. The

nature of these two requirements leads to the need for developing models and technology for

Cooperative Information Gathering. Most existing approaches deal with either Distributed

Information Retrieval or Intelligent Information Retrieval but there is little that deals with

CIG. The central aim of this paper is to provide a model of CIG as a distributed prob-

lem solving process and consequently borrow from existing methods in multi-agent systems

(MAS) to provide the technology for CIG systems.

Let us start by introducing a conceptual model of DPS as a search problem. Consider

a classical AND-OR goal tree as a representation of the search space of a problem-solving

system. From an information gathering perspective, we can think of a goal/task node in

such a tree as an information query specifying required goal speci�cation parameters and

their characteristics, optional goal speci�cation parameters and their characteristics, solution

output parameters and their characteristics, and the level of e�ort (resources and available

time) to be invested in producing solutions that meet the requirements. Goals can be related

to one another through goal-subgoal relationships and to data and resources via constraining
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interrelationships. Figure 3 (from [39]) shows an example of such a goal tree. Solutions

to high-level sibling goals, like Gk�1 and Gk, or more distant goals, like G1;1 and Gk;2,

can have constraints between them. These interrelationships can be independent of the

speci�c solution(s) to a goal or highly dependent on the exact character of the solution(s).

Constraints for goals at a particular level can have implications for achieving goals at both

lower and higher levels. Goals may be related through a complex chain of interdependencies.

For example, G1 and Gk�1 are interdependent through Gk. It is important to note here that

the entire goal structure need not have been elaborated before problem solving begins. The

structure can be dynamic and can evolve with the agents' emerging composite view of the

problem solving process. The elaboration can be top-down, based on the higher-level goals

of the agents, or bottom-up, driven by the data, or a combination of both. Furthermore,

there are no restrictions on the consistency of the goal structure.

G1 G2 Gk-1 Gk Gn
. . . . . . . . . . . .

G1,1 G1,2 G1,3
Gk,1 Gk,2

Gk,1,1 Gk,1,4
Gk,2,2

Gk,2,1

d1 dj dj+1 dz
. . . . . . . . . . . . . . .. . . . . . .

and

or

and

or

and

resources

data

G

Figure 3: A goal tree: The G's represent goals and the d's represent data produced by queries

to information servers. The double headed arrows between goals indicate that the goals are inter-

dependent. The arrows between data and goals indicate that the data is required for that goal's

solution.

We further ground this discussion by introducing an example from the Information Gath-

ering domain. Figure 4 shows the goal tree for updating an environmental database by

gathering information from relevant on-line sources. Note that we kept the goal tree simple

for ease of exposition; actual goal trees are generally much more complex for non-trivial

IG tasks. The database maintains up-to-date information about companies and universities

involved in environment related work, job information in related areas and any environment-

related news briefs. Acquiring company and university information involves locating relevant

information and then retrieving and indexing the information appropriately. At the lowest

level, this process involves gathering data from information repositories like \Environmen-

tal Route Net" and the \Amazing Environmental Organization Webdirectory". In case of

unstructured information, there is a need for generating descriptors that map the content of

the retrieved material into the semantics of the domain.
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Figure 4: Goal tree for Updating an Environmental Database

In view of this model, one can see the complications involved in performing \e�cient"

problem solving, even in a single agent scenario. How does the agent detect interrelationships

between sibling goals at various levels of the tree so that, for example, solving one goal before

another goal can facilitate the later goal's solution quality. The goal interrelationships can

be of various types such as facilitates, enables, overlaps, hinders, favors, and so on [11, 14, 40]

(these interrelationships will be discussed in detail later). In terms of our goal representation,

a facilitates interrelationship implies that the values of a solution output parameter of the

facilitating goal can, in some way, determine an optional goal speci�cation parameter of the

facilitated goal. The facilitated goal could have pursued its activity without these optional

parameters, but having them available will contribute to an improved search during the

goal achievement process. The solution or partial result from the facilitating goal provides

constraints on the solution of the facilitated goal and consequently make it possible to achieve

this goal with fewer resources and/or higher quality. Similarly, an enables interrelationship

implies that the enabling goal produces a solution output parameter value that determines

a required goal speci�cation parameter of the enabled goal. An overlaps interrelationship

exists between two goals that share determinants of some of their solution output parameters.

A favors interrelationship implies that a plan for achieving a goal can be used to achieve

another favored goal through minor modi�cations (e.g. changing a query slightly so that

the new query can produce results that not only satisfy one goal but also another subgoal).

Detecting and the using of such goal interrelationships for e�cient coordination is a hard

problem in complex AI systems [55].

Figure 4 contains facilitates, enables and overlaps interrelationships between various sub-
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goals. There is a facilitates interrelationship from GI
1
to GI

32
because information on the

names of companies and universities involved in environment-related activities can provide

\key words" for more re�ned retrieval from a large news-wire text database. An overlaps

exists between GI
1
and GI

3
because some of the news briefs provide information on companies

and some of the companies maintain a list of all news briefs related to their organization.

An overlaps interrelationship says that the two agents involved may be doing similar work

and can hence bene�t by sharing their partial results. Enables between GI
11

to GI
12

indicates

that an agent has to locate databases related to environmental companies and universities

before it can extract appropriate information and update the local environmental database.

Now consider the case where a goal tree is distributed across multiple agents, none of

which may have a complete global view of the tree. Each of the agents can model only a part

of the global goal structure based on its role in the overall problem solving process. This

increases the complexity of the situation discussed above. Figure 5 (from [39]) illustrates

an example where the goal tree from Figure 3 is distributed across two agents. Detection

of coordination relationships by the agents now becomes more di�cult due to their partial

view of the goal tree.

G1 G2
Gk-1 Gk

. . . .

G1,1 G1,2
Gk,1

Gk,1,1
Gk,1,2

and

or

and

1 1 1 1

1 1
1

1 1

G1,3
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Gk,1,3 Gk,1,4
Gk,2,2

Gk,2,1
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or

and

G1
Gk

Gn
. . . . . 

and

2 2 2

2 2 2

2
2

2

2

d1 dj dj+1 dz
. . . . . . . . . . . . . . .. . . . . . .

resources

data

Agent 1 Agent 2

G
1 G

2

Figure 5: A distributed goal tree: The goal tree of Figure 3 is distributed with partial replication

between two agents. The dotted arrows indicate interdependencies among goals and data in di�erent

agents.

Continuing with our example in Figure 4, let us distribute the goal tree across three

agents such that Agent 1 needs to achieve GI
1
, Agent 2 needs to achieve GI

2
, and Agent 3 is

in charge of GI
3
. Just as goals are distributed across agents, the agents may be distributed

across the network. Each of the agents may travel to di�erent information carrying sites that

are relevant to the completion of their particular goals. Such a multi-agent system possesses

a number of desirable qualities such as concurrency, robustness, and separation of concerns

that make distribution attractive, especially when the amount of information to be accessed is

large and time is a limited resource (which is true of today's Internet and user characteristics,

but these aspects will soon become so acute that any viable system has to take them into
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consideration). However, distribution also gives rise to the need for e�ective management

of interrelationships between activities distributed across agents, so as to derive maximum

bene�t from multi-agent architectures. Cooperation among agents is crucial. Agent 1 could

search for information on companies and universities involved in environmental activities

with complete disregard for Agent 3's search for relevant news briefs. However, without

prior information on relevant companies, Agent 3 may be forced to perform an exhaustive

search through its corpora. On the other hand, if Agent 1 �nds company information and

shares it with Agent 3, then Agent 3 can perform a much more focused and e�cient search

(perhaps through the use of a company name index). In other words, cooperation between

the agents is required to utilize the facilitation relationship between goal GI
1
and goal GI

32

and thus achieve improved performance. Other questions that arise when the goal tree is

distributed include the following. What kind of protocols are needed to detect the existence

of interrelationships? How are inconsistencies between the redundant data of Agent 1 and

Agent 3 (with an overlaps interrelationship between their goals) resolved?

Thus in the case of DPS, agents have to make their decisions facing additional uncertain-

ties due to a lack of complete information about the unfolding problem-solving process. The

global goals to be achieved have certain utility measures like quality of solution and time (to

complete a set of tasks to achieve the goal). Agents have to coordinate their contributions

to the problem-solving process so as to maximize the global utility that they are able to

achieve. We assume that the agents in such a system possess certain abilities. Based on its

partial views, each of the agents is endowed with the ability to predict global implications (at

least approximately) of doing a certain task (or achieving a certain sub-goal) at a particular

time. This problem is complicated by the existence of non-local e�ects (like facilitates and

enables), that embody interactions between non-local parts of the goal tree (that can belong

to di�erent agents). Thus, augmenting local partial views by information from other agents

leads to more informed local decisions by an agent. This brings us to another important

ability of the agent | the ability to communicate with other agents for the purpose of de-

tecting interrelations between various parts of the goal structure. These abilities critically

a�ect, both qualitatively and quantitatively, aspects of local planning decisions for problem

solving control.

The process of distributed problem solving is described in [33] as taking place in four

stages: problem formulation, focus-of-attention, allocation, and achievement (see Figure 6

which has been slightly modi�ed from [33]). The discussion of goal trees up to this point

has treated them as static structures. However, as is clear from Figure 6, goal structures

are very dynamic entities that evolve and change as problem solving proceeds. The problem

formulation stage involves identi�cation of the set of goals or tasks required to solve a given

problem. Problem formulation can be a top-down decomposition of the original problem

into a set of subproblems, a bottom-up process that composes supergoals in a data-driven

manner, or a reorganization to choose an alternative set of goals/tasks in response to a failure.

Di�erent agents and sets of agents may employ di�erent types of problem formulation in

parallel. In addition, an agent or set of agents may enter this stage more than once, employing

di�erent types of problem formulation each time. When resources are limited or constraints

exist among goals, there is a need to determine which goals to work on next. In the focus-

of-attention stage, a subset of the goals from the initial problem-solving structure is chosen

so that resources may be devoted to their achievement. In the allocation stage, the active
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goals chosen during focus-of-attention are assigned to one or more agents. Finally, during the

achievement stage agents attempt to achieve goals for which they are responsible, and then

synthesize a global solution from their local solutions and the solutions obtained by other

agents. Note that Figure 6 does not show a single sequential path from problem formulation

to focus-of-attention to allocation to achievement. Rather, it may be the case that an earlier

stage needs to be revisited in order for problem solving to continue. For example, if an agent

has more than one allocated goal it may focus attention locally to decide on an appropriate

order. Also, an agent may not be able to directly achieve its assigned goals and therefore

needs to further decompose or compose them via problem formulation. It should be clear

from the preceding discussion that each stage may involve a single agent, such as focusing

attention locally, or it may be distributed over a set of agents, as when agents negotiate

over goal allocation. In addition, within an agent or set of agents the various stages may be

occurring asynchronously with di�erent collections of goals. Agents involved in this process

move through the various stages in a dynamic manner, concurrently and asynchronously,

until the global goal is su�ciently satis�ed given time and resource constraints.

                STAGE 1
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Figure 6: A goal-based view of the stages of Distributed Problem Solving

CIG can be viewed within the framework of DPS as discussed above. In response to a

query, one or more agents are released onto the network, each responsible for one or more

corpora. Each agent treats its information seeking process as a cooperative planning ac-

tivity. The global solution is the response to the query, and it is a composition of the

information retrieved and transformed appropriately by domain knowledge in the agents.

Problem decomposition involves assigning subgoals to agents. The subgoals assigned to each

agent involve seeking information relevant to global goals of the retrieval process. There may
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be interrelationships between the subgoals assigned to the agents and this may necessitate

sharing partial results of their search to enhance the e�ciency of the overall retrieval pro-

cess. Subproblem composition involves combining the returned information into a coherent

response to the original query. It is also possible to use the DPS framework when the agents

involved in information gathering are self-interested. In that case, agents enter into contracts

to solve information gathering goals.

4.1 Subproblem Interaction

One of the primary reasons for needing a distributed planning approach to CIG is the exis-

tence of interactions between various subproblems and subgoals1 during the search process.

The acquisition process at one information server can be a�ected by the acquisition at an-

other server at a di�erent site. These e�ects can be at various levels, either through the

high-level semantics of the problem-solving domains or more directly at the level of the con-

tent of the information acquired. One of the underlying assumptions of this model is the

availability of mappings from the information retrieved into the semantics of the domains in-

volved. For structured data (like relational tables) this may not be a di�cult task. However,

for unstructured data like ascii documents, we assume the availability of means to generate

\descriptors" which are representative of the content of the documents in terms of a set of

domain primitives 2.

Various kinds of goal interrelationships like facilitates, enables, overlaps and subsumes

that exist between subproblems can be exploited in a variety of ways. For example, the

uncertainty that may arise from incomplete local information can be reduced through detec-

tion and subsequent exploitation of overlaps and subsumes interrelationships. However, this

process involves providing the agent with a more complete global view, and that entails com-

munication costs. Hence an agent should communicate only relevant portions of its local view

of the problem solving process to help form a more coherent view of the emerging global

problem solving process in other agents. Partial solutions and meta-information received

from other agents may lend support to a local solution or may point to an inconsistency in

an agent's local processing. Carver et al. [8] [7, 5, 6] address the problem of resolving un-

certainty in the sensor interpretation domain. When subproblems overlap, communication

among agents may reduce the amount of redundant work performed and therefore reduce

the time required to achieve a global solution. Also, it may be the case that a solution or

partial solution generated by one agent may facilitate (i.e. serve to focus or constrain) the

problem solving of another agent and thereby reduce the amount of computation required

[12]. The problem solving process of one agent in some way assists another agent in its

problem solving, perhaps by making the other agent more certain of its local solution or

by restricting the space of potential solutions that must be considered. The end e�ect is a

\better" or higher quality global solution. The constraints arising out of goal/solution in-

terrelationships may also play a crucial role in exploiting parallelism among the agents. For

example, an agent with a facilitates interrelationship from another agent can simultaneously

develop a plan with the understanding that when the relevant results are received, it may

1We use the terms goals, subproblems and tasks interchangably. The idea is that a goal represents an

intention to solve a particular subproblem or task.
2See [34, 42, 49, 50] for some of the recent progress on this aspect.
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need to iteratively repair or modify its partially developed plan. Alternatively, the agent

could perform some other task while awaiting the receipt of information.

Figure 7 shows an example that highlights these issues in the document retrieval domain

(modi�ed from [13]). For a given query, there may be many sources of relevant information.

Product reviews often exist on-line, or may be obtained from publishers for a fee in paper

or electronic format. Relevant reviews may be found on-line in the review section of the

TidBits newsletter, in the Info-Mac archives, or in discussions about the product in Usenet

news groups. The query may be satis�ed by dispatching agents to locate and retrieve the

required review. Each agent may employ di�erent access methods (such as WAIS, ftp,

http, telnet, etc.), and the access methods may have recourse to the same information at a

variety of physical locations (such as the main TidBits archive ftp.tidbits.com, or its various

mirrors). Interrelationships exist between some of the goals of the agents involved. Locating

a paper review \enables" its retrieval, i.e. paper reviews may be obtained by �rst �nding

a citation, and then either �nding the actual article or obtaining it from the publisher.

Finding a citation via Uncover \facilitates" the goal of getting the article faxed to the user.

An overlaps interrelationship exists between Agent 1's \Get from Seller" goal and Agent 2's

\Use Uncover" goal. This is due to the fact that once an agent accessing the seller's archive

�nds a particular citation, Agent 2 can avoid the search for that same citation at the Uncover

database. Another source of information that is not exploited in the example above is the

increasingly popular World Wide Web (WWW). We can think of the web of citations or the

web of hyper-text links associated with a document as a web of consistency constraints. That

is, documents linked in this way may contain related information and that information should

be consistent, but often it is not. For example, during the process of retrieval of product

reviews discussed above, two sites may quote di�erent prices for the product. Product review

information at an FTP site accessed via the WWW may contain outdated prices, whereas a

link to the seller database in an html document may in fact contain the latest prices. When

inconsistencies are uncovered, agents need to work to resolve the associated uncertainty so

that a cluster of consistent documents containing \correct" information is presented to the

user. In this case, the agents may choose to use the seller database information to override

other sources.

Our multi-agent Case Based Reasoning system based on Negotiated Retrieval is another

example of a sophisticated system exploiting constraints generated by sharing results of a

partial search [41]. More speci�cally, a response to a query involves assembling related pieces

of information from di�erent case bases to form a composite case. The agents have to co-

operatively retrieve mutually acceptable responses while negotiating compromises to resolve

conicts. Each agent retrieves subcases from its local case base and all agents together as-

semble a mutually acceptable overall case from these subcases to produce a response to the

user's information needs. Information acquired by an agent can be related to the require-

ments of information acquisition in another agent. Thus, agents augment their local views

through selective and timely communication of partial results among themselves.

4.2 Satis�cing

Although the amount of information available on the Internet is seemingly boundless, the

resources available to search that information typically are not. For any given query, rather
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Figure 7: A goal tree for retrieving Macintosh-related product reviews

than performing an exhaustive search, one must attempt to locate the \best" response possi-

ble given time and resource constraints. That is, the information gathering process must be

satis�cing along various dimensions like precision, quality, etc [38]. As a motivating exam-

ple, consider Figure 1 above. A user has access to multiple networks, each of which contains

its own data sources, information servers, and servers devoted to computation. The links

to each of the networks may have di�erent bandwidths, reliability, and costs of usage. For

any given local network, as well as from a global perspective, some data sources may be

more relevant than others for the query at hand. Again, the cost and speed of access to the

individual data sources and network resources may vary. It may be the case that local users

are given preferential treatment, and costs or retrieval time may be lowered by sending an

agent to a speci�c network rather than performing remote access. Finally, individual com-

munication lines, networks, information sources, and servers may be subject to intermittent

failures or may not even be operational at the time that the query is submitted, and their

cost structure could be dynamic and based on uctuating market demand.

What are the implications of performing information gathering in such a complicated,

unpredictable environment with limited resources? First, management of resources must be

an integral part of the process. Simply charging ahead blindly, stopping the search when

resources have been exhausted is likely to lead to very poor results. Planned activity under

time and resource constrained situations is a hard problem needing sophisticated, knowledge-

intensive techniques [1, 22, 56, 57]. Many questions need to be addressed about the e�cient

usage of resources. Which regions and which information sources are most promising (and

should therefore be explored �rst)? How should the trade-o� between speed and cost of

communication and utility of data at the various sites be managed? How many agents

should be allocated to each region? What amount of parallel e�ort should be expended to

reduce the impact of single point failures in the network? When, where, and how should

partial results be integrated? Should the integration take place at a global, centralized
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site or in a hierarchical fashion beginning with regional sites? The unpredictability of the

environment implies that a complete, centrally generated plan may often lead to failure.

Some amount of planning must take place regionally in order to deal with unexpected failures

or to opportunistically focus the e�orts of agents; to e�ectively deal with the dynamics in

each region.

By explicitly representing and reasoning about resource constraints, we bolster our con-

�dence that a \good" response to the query will be obtained relative to the amount of e�ort

expended. If communication is expensive and slow, we may access nearby data with low

expected quality �rst, rather than trying distant data sources of higher quality that may

require more time than is available. When more time is allocated to the search process, the

scope of the search can be broadened to include higher quality sources, while retaining some

amount of e�ort on inexpensive low quality sources. In this way we are assured that some

response will be attained and, if our planning is reasonable, we will include some amount of

very high quality information in the response.

4.3 Redundancy

Redundancy in distributed search { overlapping information that pertains to di�erent as-

pects of a query; replication of data at multiple sites; the possibility of deriving the same

conclusion from di�erent sets of data { raises a host of issues. Advantages of redundancy in-

clude increased robustness of the system in environments with failure-prone components and

increased exibility in responses. Redundancy can play a role in the reduction of uncertainty

when dealing with erroneous or incomplete information. On the other hand, redundancy has

the disadvantage of increased resource usage and possibly increased total processing times.

For example, the Internet may contain \mirror" sites for certain data repositories or it may

contain redundant data from di�erent sources for the same task. When information is avail-

able for a fee from multiple providers, an information marketplace develops. In that case,

accessing an information server for the same data at di�erent times may lead to di�erent

costs due to market inuences on pricing. Data from di�erent sources may be of di�erent

quality or may be di�erently organized. A particular task could possibly do with low quality

data that perhaps could be locally acquired. Thus, recognizing the role of redundant data

and computation could be important for exploiting the possibilities that such redundancy

o�ers in a CIG system. Redundancy could be permitted if the control costs outweigh the

bene�ts of avoiding it. Alternatively, if we are dealing with faulty systems or poor quality

data, redundancy could help resolve uncertainty in the retrieved data by providing additional

constraints.

5 Related Work

We now review some existing work in the Information Gathering literature. We divide the

work into two kinds: Distributed Information Retrieval approaches, which rely on relatively

knowledge-poor techniques to acquire information from distributed sources, and Information

Gathering approaches, which rely on knowledge-rich, content-oriented techniques. We also

review some of the work in Intelligent Information Retrieval. Its relevance arises from the

fact that each of the nodes in a CIG network may be an IIR system. Throughout the
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presentation, our primary interests are in determining the nature of the local processing

performed by the agent or an intelligent information source and how they might participate

in an information gathering task in a cooperative manner. Note that this review is only

representative, and is not intended to be exhaustive.

5.1 Distributed Information Retrieval

As the Internet evolved from a test bed for experimentation in data communication proto-

cols and remote login into a medium for collaborative data-sharing, the need for research

on approaches to resource discovery on the net became obvious. Bowman et al. [2] give

a good review of the problems and approaches involved in the task of \scalable Internet

resource discovery". Information, which can possibly be incomplete and inconsistent, needs

to be gathered from diverse and heterogeneous sources. Bowman et al. suggest exploiting

the semantics of speci�c resource discovery applications based on data typing. The authors

discuss ways to deal with huge loads on the Internet using methods like data caching, server

replication and self-instrumentation. In order to assist users in dealing with enormous vol-

umes of data, they propose content-based searching algorithms and specialized servers for

dealing with particular user communities. However, the kind of domain speci�city they ex-

ploit in their content-based search algorithms and resource discovery engines is weak domain

knowledge like �le types, gross syntactic and structural features of documents, or keyword

based attribute extraction. IG, however, is potentially very knowledge intensive.

Distribution of the INQUERY system [3, 4], on the other hand, is concerned with per-

formance in searching distributed text corpora. The approach to Distributed IR currently

planned for the INQUERY system (as with most other IR systems attacking the problem of

distribution) clearly falls under the distributed processing rubric. The response to a query

in a distributed environment is generated by transmitting the query to INQUERY systems

local to the individual information carrying sites. Each INQUERY system �nds relevant

documents in the local database, and the simple union of all documents found serves as the

response to the query. The local systems work in total isolation with only local data. None

of the processing performed at any of the individual sites has any impact on the processing at

any other site. The subproblems, �nding relevant documents at a single site, do not interact.

There is a single exchange of information prior to the start of problem solving. The statis-

tics used to compute a document's relevance are based on the composition of the database

in which the document resides. Therefore, relevance rankings of documents from di�erent

databases are not directly comparable. To overcome this problem, each system transmits its

statistics to a centralized location that creates an aggregate, normalized set of statistics used

by all of the local systems for relevance ranking for the current query only. The subproblem

solutions, sets of documents, are combined in a simple unidirectional synthesis step. While

these interactions indicate that the approach taken by INQUERY is not a pure instance of

distributed processing, the type, weakness, and timing of the interactions indicates that it

does not stray far from that side of the spectrum.

Huhns et al. [24] present a method for learning and updating the relevance of corpora

to individual topics of interest via meta-knowledge. Meta-knowledge is kept (learned and

updated) by each user on the network and is a 4-tuple of the form [User1; User2; Keyword;

CertaintyFactor]. For example, [Smith; Jones; compilers; 0:8] says that user Smith has high
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con�dence that user Jones can supply articles on compilers that Smith will �nd interesting

(relevant). A query of the form \�nd all articles related to compilers" will include queries to

Jones and other users as indicated by Smith's meta-knowledge. The returned articles will be

ordered according to the certainty factors of the associated users. In addition to text, meta-

knowledge can be returned in response to a query. For example, [Jones;Doe; compilers; 0:5]

may be supplied as a response. User Smith can then combine the certainty factors to

arrive at something like [Smith;Doe; compilers; 0:4]. Another way that meta-knowledge is

propagated is by receipt of a query. If Doe receives a query from Smith about compilers, Doe

may rightfully assume that Smith will soon become knowledgeable on the topic. Therefore,

Doe may assume [Doe; Smith; compilers; 0:1]. The certainty factor is low since Doe does not

know if Smith's knowledge will be interesting. The primary item of interest in this article is

the direct way in which the authors represent and deal with uncertainty about the relevance

of information as a function of its source. The level of uncertainty is used to order the

search process (best �rst) and is updated as the data sources themselves change. However,

information gathering can exploit more than just relevance knowledge.

Knoblock and Levy [30] seek to improve the e�ciency of information retrieval from large

numbers of distributed databases by taking advantage of information that is only available

at run-time. Given that access to information sources has an associated cost, either in time

or money, it is important to identify relevant sources and to retrieve as little information

as possible to satisfy a query. Most approaches to this problem depend on information

that is statically available from the query. However, there are a number of reasons why

it may be di�cult to prune the number of candidate information sources at compile-time.

For example, although agents' domain models may describe properties of classes of objects

in the domain, they usually do not contain information about speci�c individuals in the

domain. That is, there is no way to reason about how query execution should proceed for

possible instantiations of query variables. However, such information may be obtained at run-

time (via additional queries) as variable bindings are established. The authors claim that

obtaining and using information available at run-time can reduce the cost of information

retrieval in distributed environments, and they present an algorithm for extending query

planning algorithms to do so. This approach acknowledges the importance of partial results

in focusing the search for information that is central to the CIG model. However, the

information retrieval process, including the use of partial results, occurs within a single

centralized query planner.

5.2 Intelligent Information Retrieval

Ram and Hunter [43] take the view that content-based IIR, as opposed to syntax-based

IR, requires inference, leading to a combinatorial explosion of potential inferences. Since

computational resources are limited, some method of controlling inference must be employed.

The authors treat information acquisition as a planful activity driven by speci�c desires to

retrieve or infer knowledge or information. Those speci�c desires, termed knowledge goals,

serve to restrict the space of possible inferences in a dynamic manner that is dependent

on what is already known by the system and what it is trying to learn. KG's represent

information needs, and as such focus information gathering in both a top-down and bottom-

up manner. Gaps or inconsistencies in the system's knowledge may lead to new KG's and
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thus new information gathering needs. This last point makes it apparent that IIR systems

must be able to reason about their problem solving processes and partial solutions if they are

to be able to characterize desirable knowledge (formulate KG's), such as the need to �ll gaps

or account for conicts. Two systems serve as examples of the authors' theories | the AQUA

story understanding system and the IVY di�erential diagnosis system. AQUA employs KG's

in an iterative manner to �rst explore the text and then �ne tune its understanding via the

detection and resolution of anomalies, the construction of a causal explanation for events

in the story, etc. Likewise, IVY uses KG's to incrementally re�ne its ability to diagnose

structured descriptions of lung tumor pathology images. Feedback from human experts

drives KG generation in an attempt to explain and rectify failures based retrospectively

on information contained in past cases and actively on as yet unseen cases. Note that

this approach is very similar in spirit to the goal-based view of distributed problem solving

depicted in Figure 6.

Rus and Subramanian [45], discuss the idea of domain-oriented information capture and

access using knowledge intensive modules. Given an electronic data environment, the task

is to capture the data by acquiring partial models of it and to access the data as guided by

the models. The construction of information agents from structure detectors and navigators

is described. Structure detectors (sensors) decide if a set of data has a speci�ed abstract

property. Once a desired property is located, navigators (e�ectors) decompose the data

into more detailed units. Navigators use discerned structure to drive their search. It is

envisioned that libraries of structure detectors and navigators can be created to facilitate

the construction of special purpose information retrieval agents. An example agent (the

BibAgent) is described that searches the Internet for technical reports in response to a

query. The structure detector uses the Unix \ls" command to locate potentially relevant

directories. The navigator then selects speci�c directories to explore further. It can exploit

knowledge of bibliographic data �les (.bbl and .bib �les) to retrieve complete bibliographic

references. The agent incrementally builds a roadmap of the Internet indexed by queries.

Fikes et al. [20] have embarked on a project to develop network-based information brokers

that can access information from a multitude of diverse information sources on the Internet.

Information sources are autonomous, exhibit heterogeneity in access methods and content,

contain structured and unstructured data, may return incomplete or irrelevant information,

and are subject to change over time. Based on these observations, an argument is made

that e�ective search requires domain-speci�c information brokers. The information broker

architecture contains the following components. Domain and source models describe the

broker's domain of expertise and the contents of the information sources that it can access. A

\formulator" module helps users form queries, and comprises a product description browser,

a query-by-reformulation assistant, and an alternatives advisor. There are also modules for

planning, executing and presenting the results of queries. Although centralized and described

in terms of modules, this architecture is very similar to distributed agent-based architectures

described in Section 5.3.

Rissland and Daniels [44] outline an approach to IR that makes use of more knowledge-

intensive methods developed within the framework of Case-Based Reasoning (CBR). CBR

systems excel at retrieval of highly relevant cases and symbolic reasoning about problem

cases. However, they typically have small case bases. IR systems, on the other hand,

often have access to very large databases, but typically use knowledge-poor (e.g. statistical)
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techniques for relevance assessment. Rissland and Daniels built a hybrid system that uses

a standard CBR analysis to �nd cases within a (traditionally small) case base relevant to a

user's query. Based on the set of relevant cases obtained, a modi�ed version of INQUERY's

relevance feedback mechanism selects and weights terms for inclusion in a query that is sent

to a larger text corpus. The authors demonstrated that the quality of documents retrieved

by the hybrid system is better than those returned by standard IR methods alone. The

results clearly demonstrate that traditional IR methods can bene�t from the addition of

more knowledge-intensive techniques involving symbolic reasoning.

Kirk et al. describe the Information Manifold (IM), an IIR system whose architecture is

based on a rich domain model that allows the semantic content and the physical properties

of information sources to be described and queried [28]. The IM's representation language

is based on Horn rules. The authors show that within their language, it is possible to

e�ciently and completely determine the set of relevant information sources for a given query.

The language also allows relational databases to be modeled, and can express queries with

negations and descriptions of relations between information sources. The IM comprises a

WWW client with a Mosaic-like interface and a knowledge base for organizing and querying

information sources. The two components are tightly integrated so that the user can easily

switch between hypertext browsing, information space browsing (via descriptions of the

contents of information sources), and integration of information about new sources into the

knowledge base.

IIR bears the same relationship to CIG as AI bears to MAS. IIR deals with the local

processing capabilities and their ampli�cation through the use of intelligent information

acquisition techniques. Each IIR system, along with its coordination module, can form a

cooperating IG system. The CIG model presented in this paper deals with the coordination

module. However, note that the delineation between the coordination module and the local

processing module may be blurred in many existing MAS systems.

5.3 Information Gathering

Following the lead of Oren Etzioni's software robots (softbots), Voorhees [52] describes an

information gathering system composed of corpusbots and userbots. Each corpusbot serves

as the system's model of a single collection of documents (corpus). The corpusbot contains all

corpus dependent parameters, controls access to the corpus, and provides topic designators

that abstract and summarize the corpus. Each userbot serves as the system's model of a

single user. The userbot keeps the user's system preferences (such as the appropriate recall

vs. precision tradeo�), a list of topics of interest or expertise for the user, and a dynamic

list of known corpusbots and userbots. The userbot also contains a set of scripts that are

arbitrary, parameterized programs for data access. Scripts are tagged with keywords that

indicate their function and can be searched and retrieved by other userbots. A user with a

question about corporate tax law can locate a userbot known to be an expert in tax matters

and can search for a script in that userbot tagged with the word \corporate." Distributing

a query over several agents may be accomplished by dividing the list of known corpusbots

and userbots among the agents. A userbot can interact with other userbots and corpusbots

to help guide its search.

Knoblock and Arens [29] discuss an architecture for information gathering agents that is
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the closest in spirit to our approach. Each of the agents contains a detailed domain model,

the models of the information sources available to it, and the relationships between domain

models and the contents of information sources. On receiving an information request, an

agent identi�es the appropriate information sources, reformulates the query using a series of

transformation operators, generates an access plan to retrieve the data and sends requests for

retrieval to other agents. The agents can improve their performance by caching frequently

retrieved data or expensive data. When they are not processing queries they can also gather

information that aids future retrievals; for example, learning about the contents of informa-

tion sources and building abstract descriptions of them to aid in query reformulation.

However, in both of these works, there is no notion of exploiting the dependencies be-

tween agents working on di�erent aspects of an information acquisition task. Cooperating

to enhance e�ciency of a resource-limited information acquisition process or negotiating to

dynamically resolve conicts and inconsistencies in the acquired data, leading to further

search or retrieval, may be important aspects of IG systems in the future. Only recently,

Decker et al. [16], Decker and Sycara [17], Birmingham et al. [18], Davies and Edwards [10],

Foner [21], Kuokka and Harada [32], and Karakoulas and Ferguson [27] have started making

some early but promising forays in this direction.

The MACRON architecture [16] is being designed as an instantiation of the principles

of CIG. It incorporates capabilities to exploit subproblem interdependencies, manage the

uncertainty inherent in multi-agent search, intelligently trade-o� solution quality for resource

limitations, and either exploit or avoid redundancy as needed. MACRON consists of an

overall organizational architecture and three types of autonomous agents:

� DECAF reasoning agents, consisting of several subcomponents like a planner, coordi-

nation module, real-time scheduler and an execution monitor. The planner instantiates

the set of tasks to be achieved for the particular information gathering activity and the

scheduler produces a schedule of execution for these tasks. The coordination module

manages the interdependencies between the tasks of di�erent agents and posts con-

straints to the local scheduler in order to exploit such interdependencies. The function

of the execution monitor is apparent from its name. Any deviations from the expected

execution time line leads to feedback to the planner and scheduler to either re-plan or

reschedule as needed.

� Low level network retrieval agents interface with information repositories and retrieve

information as requested by higher level DECAF agents.

� User interface agents communicate with the user and pass on his or her requirements

to the appropriate DECAF agents.

From an organization point of view, the agents in MACRON form a matrix organization

[16] where the interface agents transform a query and pass it on to functional units that

comprise sets of DECAF agents that specialize in dealing with particular types of information

resources. Agents in a functional unit in turn schedule low level retrieval tasks and delegate

them to the retrieval agents. Implementation of the MACRON system is in its infancy (circa

March 1996) but it is hoped that it will serve as a test-bed for validating many of the ideas

proposed in the CIG model.
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Decker and Sycara [17] present a system that bears similarities to MACRON. User queries

are delegated to specialized task agents that in turn could communicate with information

gathering agents as a part of their task execution. An information gathering agent has

a planner that instantiates task structures, a scheduler and an execution monitor. Each

of these agents can retrieve information from a number of databases and compose it to

form or update a local database that is more appropriate for answering queries by the task

agents. The agents communicate using KQML messages. Future plans for the system include

additional high level coordination among the task planning agents, making the system more

faithful to the CIG model proposed in this paper.

The University of Michigan Digital Libraries project [18] uses a distributed agent archi-

tecture that is populated by user interface agents, mediator agents and collection interface

agents. User interface agents provide a gateway between users and other agents. In addi-

tion, they publish pro�les of the users for other agents to exploit. Mediator agents perform

a variety of functions like delegating the query to appropriate collection interface agents,

monitoring the progress of a query, allocating resources and coordinating agent activities.

Collection agents provide communication wrappers for information repositories and publish

their conspectus, which are descriptions of their contents and capabilities.

Davies and Edwards [10] are developing an agent-based approach to knowledge discovery

in distributed databases. Although their problem domain involves mining highly structured

data, as opposed to unstructured text, all of the issues that we address within the CIG model

will appear in their domain. In their architecture, individual agents have access to local data

and may communicate with other agents to share acquired knowledge, either to focus the

search of other agents or to synthesize a globally coherent theory. The user interacts with the

system via a user interface, which may in turn communicate with a supervisory agent that

coordinates the activities of the discovery agents. The user can a�ect the search in a variety of

ways, including directing agents to new data sources, altering high level discovery goals, and

critiquing acquired knowledge. One goal of the project is to use existing relevant technology;

for example, KQML, KIF, Ontolingua, Agent Oriented Programming, and Inductive Logic

Programming algorithms (to perform the actual knowledge discovery).

The large number of proposed agent-based approaches to information gathering has

spawned interest in mechanisms for helping agents (or, more generally, information providers

and consumers) with similar information needs to �nd each other. Foner [21] proposes mech-

anisms whereby agents can organize themselves into \clumps" based on the similarity of their

information needs. Agents communicate with other agents in their proximity, exchanging

information about their own needs and the needs of their neighbors. Given some measure of

similarity between needs, agents can perform a type of gradient ascent by iteratively join-

ing clumps whose information needs are most similar to their own and communicating with

their new neighbors. Kuokka and Harada [32] take a more centralized approach in which

information producers and consumers advertise their needs to an intelligent \matchmaking"

service. Their approach is thought to be appropriate for domains in which the needs of both

producers and consumers of information change rapidly, because all parties can continuously

issue modi�cations that will be made available immediately to interested parties. Simi-

larly, Karakoulas and Ferguson [27] propose market-based approaches to joining information

producers and consumers. Their System of Information Gathering Market Based Agents

(SIGMA) relies on market dynamics to ensure robust behavior of collections of agents in the
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face of changes in the available information and the needs of users.

While it is the case that these projects are still in their infancy, they hold out promise

as models of CIG-type information systems. These systems view information gathering as a

dynamic process where partial results of a search drive further activity and coordinate agent

activities in order to bene�cially exploit interdependencies between their tasks.

5.4 Enabling Technology

The motivation for the CIG approach presented in this paper is simply the welter of infor-

mation carrying sites, data formats, and access methods that are currently available. That

is, the problems that we address are quite real and are in need of solutions today. While

environments such as the one depicted in Figure 1 that motivate our work already exist, that

is not enough. CIG assumes the existence of intelligent semi-autonomous agents as well as

support within the environment for the operation of such agents. One exciting aspect of the

CIG approach is the availability of technology that facilitates the development of both intel-

ligent agents and supporting structures within the environment, allowing them to interact

in exactly the manner we require. This section describes existing technology that is relevant

to bringing the CIG vision into existence.

For the CIG approach to be successful, it must be possible for agents to adapt to changing

demands from both the environment and the user. No single coordination mechanism or

organizational structure will su�ce in environments as complex as those for which CIG is

envisioned. Generic mechanisms for the elaboration of task structures, the formation of

organizational structures, and the coordination of multiple agents are crucial. All of these

functions must be available dynamically, as the state of the environment and the state of

problem solving changes over time. Decker and Lesser's work on the TAEMS architecture

[13] and Generalized Partial Global Planning [11] are relevant here.

Telescript technology, developed by General Magic, Inc. [54], provides the tools required

to build an intelligent agent-based foundation for a global electronic marketplace. Telescript

abandons the traditional remote procedure calling (RPC) model of client/server interaction

for the remote programming (RP) approach. Agents, collections of data and procedures, can

actually execute on remote machines as complete \programs", allowing them to exist and

operate regardless of the state of the user and machine from which they originated. The

Telescript world comprises a number of electronic places that correspond to individuals or

organizations, known as the place's authority, in the physical world. One or more Telescript

agents can exist in each place, typically for the purpose of conducting some transaction

related to the place itself. For example, there may be a PUBLIC LIBRARY place occupied

by a LIBRARIAN agent and one or more additional agents whose authorities are high school

students researching term papers. Both places and agents are written in the Telescript

programming language. Agents travel from place to place by obtaining a ticket that describes

and constrains their trip and then executing the GO instruction. Agents occupying the same

place can interact by executing the MEET instruction and presenting a petition that describes

the nature of the desired meeting. Agents can communicate with other agents not in the

current place by obtaining a connection (as in the RPC model). Security is addressed in this

environment via three di�erent mechanisms. First, the Telescript language is interpreted,

denying agents direct access to local computational resources. All agent actions are mediated
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by the Telescript engine. Second, an agent's authority and identity are obtained and validated

from the agent's telename via cryptographic mechanisms. Lastly, all agents have permits that

limit their capabilities, such as the places they may visit, the amount of time they may exist,

and the amount of money (as measured by teleclicks) they may spend.

The Telescript vision clearly provides a path to �lling in the missing pieces of our CIG

model. The Telescript language makes it possible to construct software agents that travel

from place to place, from network to network (Figure 1), in search of information relevant

to a query. The fact that intelligent software agents interact in various information bearing

electronic places with the proprietors of those places, which are themselves software agents,

�ts well with the conceptual model in Figure 2c that we adopted. The intelligent retrieval

engine in that �gure may simply be a Telescript agent that mediates access to some cor-

pus. Resource bounds for agents are made explicit within Telescript, facilitating the use of

satis�cing search.

The Java programming language is another technology that may be very important in

the implementation of future CIG systems [25]. Java allows applets, such as intelligent

information retrieval agents, to be transferred between machines on the Internet, much as

Telescript agents travel between electronic places. Although Java was not designed explicitly

to provide the infrastructure for an electronic marketplace (as Telescript was) its inherent

exibility and increasingly widespread acceptance make it an attractive candidate for the

implementation of CIG systems. Every Java-aware browser on the Internet (of which there

are literally millions) is a potential intelligent retrieval agent or intelligent search engine

given the right Java applet.

One key aspect of the CIG paradigm is the construction of a complete and coherent

answer to a query based on data gathered from a variety of sources, including unstructured

text. For an agent to reason about the content of a document and how it �ts into the

evolving response to a query, the agent must be able to identify portions of the text that

are relevant to the query. It is insu�cient to simply know that the document as a whole

is relevant. Recent work in information extraction is providing the tools that make the

identi�cation of relevant items of information within a document possible [9]. Information

extraction systems are typically rule-based systems that convert unstructured documents

into a case-frame representation. For example, a document on terrorism might have slots

for the names of the perpetrators and their targets, the instrument used, the location of the

attack, etc. Given an explicit representation of the relevant information in a document, an

information retrieval agent can reason about its place in the overall response to a query.

As should be clear from earlier sections of this paper, research in DAI has produced an

extensive body of work aimed directly at issues such as guiding the distributed search pro-

cess of multiple agents. Overall, the CIG picture becomes fairly clear: there is a crying need

for technology that addresses information acquisition in complex, distributed environments;

products such as Telescript can provide the foundation for intelligent semi-autonomous soft-

ware agents; and DPS research provides the mechanisms for successfully guiding and con-

trolling the activities of multiple, distributed agents to e�ciently manage the complexity

involved in complex information gathering systems.
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6 Implications and Conclusion

Information Gathering, whether centralized or as it is being handled by newer systems in a

distributed setting, has traditionally been a one-shot process: a query is formulated, relevant

corpora are identi�ed and interrogated, and the sum of the individual responses is presented

as the result of the query. Unfortunately, the complexity of today's networked environments

limits the scope of such a model. Among the contributing factors to this complexity are

heterogeneity in both hardware and software, uncertainty arising from single point failures,

varying costs of access to both network transport and information itself, and the tremendous

number of sites carrying potentially useful data. Relevant information in this environment

is hard won, and cannot simply be \retrieved" as if from some amorphous distributed en-

cyclopedia with a complete and accurate index. In the previous sections, we attempted to

convince the reader that distributed information acquisition tasks characterized by complex,

heterogeneous and unstructured data environments can instead be viewed as a distributed

problem-solving task within the FA/C paradigm. The bene�ts of such a view not only stem

from the fact that it provides a comprehensive conceptual model for the myriad of methods

being proposed for IIR, but also from the fact that the view provides a direct map from

the wealth of existing methods in MAS to the IG domain. These methods have evolved

over more than a decade, since the time the FA/C paradigm was �rst proposed [37]. Below,

we discuss various techniques and systems from MAS that may have direct bearing on CIG

viewed as a DPS task. These methods were originally proposed in contexts di�erent from

information gathering, and most of them were developed as techniques to study, understand

and exploit various aspects of the FA/C paradigm.

At the risk of being repetitive, we will �rst summarize the highlights of the FA/C

paradigm along with their relevance to the IR task. Complex distributed search spaces

are characterized by various soft and hard constraining goal/task interrelationships. The

ability to exploit these interrelationships to avoid negative interactions and take advantage

of positive interactions can enhance search quality by providing better solutions in less time.

In a CIG task, potentially useful constraints may exist between di�erent pieces of infor-

mation, either via content or as a function of problem solving activity. The discovery and

exploitation of such constraints is necessarily a dynamic and incremental process that oc-

curs during problem-solving and entails communication of partial results among agents in

a timely and selective manner to augment each agent's local view with a more global view.

Given the incomplete nature of the local views of the individual agents, another important

aspect of the FA/C paradigm is the explicit recognition of the role of solution and control

uncertainty. Coupled with the fact that resources and time for conducting a search are lim-

ited in real-life problems, this leads to the notion of satis�cing search. The environment in

an information acquisition task is characterized by the fact that the supply of available data

is almost limitless, whereas time, money and computational resources are not. Rather than

being able to develop an exhaustively complete and accurate response to a query, interme-

diate results from disparate sources must be pieced together to form consistent clusters of

information that can be incrementally re�ned to form a more accurate solution depending

on the extent of available resources and time. Another aspect of the FA/C paradigm is

the explicit recognition and exploitation or avoidance of redundancy, leading to increased

robustness or decreased resource demands depending on the context and the structure of the
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domain.

We now briey review a few implemented aspects of the FA/C paradigm that have direct

relevance to the CIG task. Decker and Lesser [11, 12, 14] provide detailed studies of quan-

titative trade-o�s involved in explicit recognition and exploitation of task interrelationships

for use in multi-agent coordination. Von Martial's work [40] on coordination in multi-agent

planning, which uses favors goal interrelationships and temporal interactions, is also rele-

vant here. Garvey and Lesser [22] discuss design-to-time algorithms which basically endow

the local problem solver with abilities to deal with real-time considerations and goal inter-

dependencies. Such a scheduler is, perforce, satis�cing in the solutions it provides and relies

on the use of approximate processing techniques. Carver and Lesser [8, 7, 5, 6] present RE-

SUN and its distributed derivative DRESUN as architectures that explicitly recognize and

resolve uncertainties associated with the partial, evolving solutions in the interpretation do-

main. Interpretation is viewed as an incremental process of resolving sources of uncertainty

(SOUs) through directed and intentional accrual of evidence. For example, uncertainty may

arise because current evidence only paritially matches an expected model, con�rming evi-

dence has not yet been established, evidence in support of conicting hypotheses exists, etc.

From among a number of SOUs at a given time step, the next SOU is selected and pursued,

which involves acting to resolve the uncertainty represented by this SOU. Each action may

in turn result in the instantiation of further SOUs. This cycle is repetitively performed until

the termination criteria are achieved. This seamless integration of data-driven bottom-up

and goal-driven top-down processes opens up a huge set of opportunities for information

acquisition systems. Information on hand can in turn serve to instantiate and actively direct

further retrieval to resolve the de�ciencies in the partial data. Other work in MAS, though

not directly falling under the umbrella of the FA/C approach, could act as enabling tech-

nologies for multi-agent based CIG. The contract net [48, 47] is a top-down work allocation

scheme among agent sets, where an agent wanting to delegate or contract out a piece of

work for some reason announces the work to the agent set. The agents with capabilities to

accomplish it respond with a bid, and the announcing agent allocates the work to the agent

with the best bid. The contract net framework can be used to enforce a problem-dependent

organization among a set of DPS agents. Along another direction is the work on sel�sh

agents [46, 58]. Unlike the agents discussed previously, a sel�sh agent places self-interest

above any \global" requirements and cooperates to the extent of serving its own interests.

In a market economy of information servers [53] as suppliers and \free-lancing" agents as

consumers, the sel�shness assumption may become essential because these agents may not

have been engineered from a single source.

In closing, we hope that this paper encourages IR system designers to take a radically

new view of information gathering as a distributed problem solving activity. While there

are intelligent agent-based systems in existing literature, the distinguishing feature of our

proposal is cooperative retrieval, whereby the agents explicitly communicate with each other

to control the distributed information acquisition process through detection and exploitation

of interrelationships between the goal structures in various agents. We also suggest that

existing methods in MAS can serve to leverage future implementations of IG systems based

on this view.
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