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Abstract

Although learning is a cognitive task, machine learning algorithms, in general, fail to take advantage
of existing psychological limitations. In this paper, we examine three well-known cognitive biases: 1)
the tendency to rely on the most recent information, 2) the heightened accessibility of the subject of
a sentence, and 3) short term memory limitations. In a series of experiments, we modify a baseline
instance representation in response to these limitations and show that the overall performance of the
learning algorithm improves as increasingly more cognitive biases and limitations are incorporated into
the representation.

1 Introduction

Inductive concept acquisition has always been of primary interest for researchers in the field of machine
learning (see [Michalski, Carbonell, & Mitchell, 1983],[Michalski, Carbonell, & Mitchell, 1986],[Michalski,
& Kodratoff, 1990]). In this task, a system typically learns one or more concepts by analyzing a set of
examples (and possibly counterexamples) of the concepts. In fact, a number of systems for the acquisition
of concepts now exist (e.g., ID3 [Quinlan, 1979], ARCH [Winston, 1975], COBWEB [Fisher, 1987], UNIMEM
[Lebowitz, 1987]). Independently, psychologists, psycholinguists, and cognitive scientists have examined
the effects of numerous psychological limitations on human information processing. However, despite the
fact that concept learning is a basic cognitive task, most machine learning systems for concept formation
fail to exploit these limitations and make no attempt to model human concept learning.

In this paper, we show that the explicit encoding of known cognitive biases into the training instance
representation can improve the performance of the learning algorithm for cognitively- based learning tasks.
More specifically, we use a well-known concept acquisition system and focus on a single learning task
from the field of natural language processing (NLP). After training the system using a baseline instance
representation, we modify the representation in response to three cognitive biases: 1) the tendency to rely
on the most recent information, 2) the heightened accessibility of the subject of a sentence, and 3) short term
memory limitations. In a series of experiments, we compare each of the modified instance representations
to the baseline.

2 Finding the Antecedents of Relative Pronouns

Our task for the machine learning system is the following: Given a sentence with the relative pronoun
“who," learn to recognize the phrase or phrases that represent the relative pronoun’s antecedent. Finding
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the antecedents of relative pronouns is a crucial task for natural language systems because the antecedent
must be carried to the subsequent clause where it implicitly fills the actor role.1 Consider, for example, the
following:

Igor shook hands with the skater who beat him in the race.

A correct semantic interpretation of this sentence should include the fact that “the skater" is the actor of
“beat" even though the phrase does not appear in the embedded clause. Only after the natural language
system associates “the skater" with “who" can it carry the constituent across the clause boundary to make
this inference. Locating the antecedent of “who" may initially appear to be an easy problem because the
antecedent often immediately precedes the word “who." Unfortunately, this is not always the case, as shown
in S1 and S2 of Figure 1. Even when the antecedent does immediately precede the relative pronoun, it does
not appear in a consistent syntactic constituent. In S3, for example, the antecedent is the subject of the
preceding clause; in S4, it is the direct object; in S5, it is the object of a preposition. Furthermore, the
antecedent of “who" may contain more than one phrase. In S6, for example, the antecedent is a conjunction
of three phrases and in S7, either “our sponsors" or its appositive “Gatorade and GE" is a semantically valid
antecedent. Occasionally, there is no apparent antecedent at all (e.g., S8).

S1.  The woman from Philadelphia who played soccer was my sister.

S2.   I spoke to the man in the black shirt and green hat over in the  far corner 

        of the room who demanded to meet the skiers.

S3.  The  skater who won the medal was from Japan.

S4.   I saw the  skater who won the medal.

S5.   Igor ate dinner with the skater  who won the medal.

S6.   I'd like to thank Nike, Reebok, and Adidas,  who provided the uniforms.

S7.   I'd like to thank our sponsors, Gatorade and GE, who provide financial  support.

S�� �� �������� �	� ��
�� ��� 
	� �����

Figure 1: Antecedents of “who"

Despite these ambiguities, we will describe how a machine learning system can learn to locate the
antecedent of “who" given a description of the clause that precedes it. In effect, we are teaching the system
to recognize the “relative pronoun antecedent" concept. More importantly, we will show that performance
of the learning system improves as the instance description includes increasingly more cognitive limitations
and cognitive biases.

3 COBWEB and the Representation of Training Instances

For our experiments we chose COBWEB [Fisher, 1987] › a well-known concept formation system that
is one of a relatively small number of concept acquisition systems designed to model some aspects of
human concept learning.2 Given a set of training instances, COBWEB discovers a classification scheme
that covers the instances. Instead of forming concepts at a single level of abstraction, however, COBWEB
organizes instances into a classification hierarchy where leaves represent instances and internal nodes
represent concepts that increase in generality as they approach the root of the tree. In addition, COBWEBÖs
construction of the hierarchy is cognitively economical in that new objects are incrementally added to the
hierarchy as they arrive. To evaluate the concepts it creates, COBWEB employs the category utility metric
[Gluck, & Corter, 1985] › a measure developed in psychological studies of basic level categories. As a result,
the hierarchies constructed by COBWEB account for prototypicality effects and basic level phenomena

1In practice, the antecedent of “who" sometimes fills semantic roles other than the actor.
2The COBWEB3 system was provided by the kind folks at NASA, Ames.

2



observed in humans ([Jolicoeur, Gluck, & Kosslyn, 1984], [Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976], [Rosch, et al., 1976]).

COBWEB takes as input a set of training instances described as a list of attribute-value pairs. Because
the antecedent of a relative pronoun usually appears as one or more phrases in the clause preceding “who,"
the attribute-value pairs in each training case represent the constituents that precede “who." At first glance,
it may seem that only syntactic information needs to be encoded. However, finding the antecedent of a
relative pronoun actually requires the assimilation of syntactic and semantic knowledge. For this reason,
each constituent attribute-value pair takes the following form:� The attribute describes the syntactic class and position of the phrase.� The value provides its semantic classification.

Consider, for example, the sentences in Figure 2. In the training instance for S1, we represent “the man"
with the attribute-value pair (s human) because it is the subject of the sentence and the noun “man" is
human. We represent “from Oklahoma" with the pair (s-pp1 location) because it is the first prepositional
phrase that follows the subject and “Oklahoma" is a location. All noun phrases are described by one of
seven general semantic features: human, proper-name, location, entity, physical-target, organization, and
weapon.3 When clauses contain conjunctions and appositives, each phrase is labelled separately. In S2, for
example, the real direct object of “thank" is the conjunction “Nike and Reebok." However, in our instance
representation, “Nike" is tagged as the direct object (do) and “Reebok" as the first noun phrase that follows
the direct object (do-np1).4 For verb phrases, we currently note only the presence or absence of a verb using
the values t and nil, respectively.

S1: ���� ���� ����� ��������� ��� ���    

constituents: ( s human ) ( s-pp1 location ) ( v nil ) 

antecedent: ( antecedent ((s)) )

S2:                    �!� �"����� �#$��� ���%� �&��'��� ��� ���    

constituents: ( s human ) ( v t ) ( do proper-name ) ( do-np1 proper-name )

antecedent:  ( antecedent ((do do-np1)) ) 

S3:                    �!� �"����� ��(� )*��)��� ��� �+,� ��� ���    

constituents: ( s human ) ( v t ) ( do entity ) ( do-np1 proper-name )

antecedent:  ( antecedent ((do-np1) (do do-np1) (do)) ) 

Figure 2: Training Cases

In addition to the constituent attribute-value pairs in every training instance, we include information
about the correct antecedent in the form of an antecedent attribute-value pair.5 The value of the antecedent
attribute is a list of the constituent attributes that represent the location of the antecedent or (none) if no
antecedent can be found. In S1, for example, the antecedent of “who" is “the man." Because this phrase is
represented as the constituent pair (s human), the value of the antecedent attribute is (s). Sometimes, however,
the antecedent is actually a conjunction of constituents. In these cases, we represent the antecedent as a list

3These features are specific to the domain from which the training instances were extracted.
4In a separate paper that focuses on this learning task from the NLP perspective, we explain this representational decision in detail.

In general, NLP systems do not reliably handle complex conjunctions and appositives. They can, however, accurately locate lower
level phrases like individual noun phrases, verbs, and prepositional phrases. As a result, we let the the machine learning system
recognize conjunctions and appositives and allow the NLP system that generates the training instances to ignore these tasks.

5COBWEB is often used to perform unsupervised learning. However, many applications of COBWEB, including our own, encode
pseudo-supervisory information as part of the instance representation.
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of the constituent attributes associated with each element of the conjunction. Look, for example, at sentence
S2. Because “who" refers to the conjunction “Nike and Reebok," the antecedent is described as (do do-np1).
S3 shows yet another variation of the antecedent attribute-value pair. In this example, an appositive creates
three semantically equivalent antecedent values, all of which become part of the antecedent feature: 1) “GE"
— (do-np1) , 2) “our sponsor" — (do), and 3) “our sponsor, GE" — (do do-np1).

After training, we use the resulting hierarchy to predict the antecedent of “who" in new contexts. Given a
new instance to classify, COBWEB retrieves the most specific concept that adequately describes the instance.
Then, the antecedent of the retrieved concept guides selection of the antecedent for the novel case. Given
the test instance in Figure 3, for example, COBWEB retrieves an instance that specifies do as the location
of the antecedent. Therefore, we choose the contents of the do constituent — “the hardliners" — as the
antecedent in the novel case. Sometimes, however, COBWEB retrieves a concept that lists more than one
option as the antecedent. In these cases, we choose the option that appeared most often in the underlying
instance(s) and whose constituents overlap with those in the current context. (For a description of better,
but more complicated heuristics, see [Cardie, 1992].)

Novel instance:[It] [was] [the hardliners] [in Congress]  who...

(s entity)  (v t)  (do human)  (do-pp1 entity) 

Antecedent of Retrieved Instance: ((do))

Antecedent of  Novel Instance: (do) = "the  hardliners"

Figure 3: Instance Retrieval

4 The Baseline Experiments

We tested this baseline instance representation by extracting all examples of “who" from 3 sets of 50 texts
from the MUC-3 corpus.6 In each of 3 experiments, 2 sets were used for training and the third reserved
for testing. The results are shown in Figure 4 and indicate that, using the baseline instance representation,
COBWEB can find the correct antecedent of “who" an average of 59% of the time. In the next two sections,
we modify this baseline instance representation in response to three cognitive biases and show the results
of these modifications on COBWEBÖs performance.

Training Sets (# instances) Test Set (# instances) Baseline Rep

set1 + set2   (170)

set2 + set3   (159)

set1 + set3   (153)

set3   (71)

set1   (82)

set2   (88)

63%

47%

66%

Exp #

1

2

3

Figure 4: Baseline Results (% correct)

6The MUC-3 corpus consists of 1500 texts (e.g., newspaper articles, TV news reports, radio broadcasts) containing information
about Latin American terrorism and was developed for use in the Third Message Understanding System Evaluation and Message
Understanding Conference [Sundheim, May,1991].
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5 Incorporating the Recency Bias

In processing language, people consistently show a bias towards the use of the most recent information
(e.g., [Kimball, 1973], [Frazier, & Fodor, 1978], [Gibson, 1990]). In particular, the mechanisms people use
for finding the antecedents of pronouns and missing subjects have been investigated in a series of recent
experiments (see [Nicol, 1988]). The results show that in locating antecedents during language processing,
people consider all noun phrases preceding the pronoun starting with the most recent noun phrase and
working backwards to the most distant noun phrase.

We translate this recency bias into representational changes for the training instances in two ways.
First, we label the constituent attribute-value pairs with respect to the relative pronoun. This establishes
a right-to-left labelling rather than the left-to-right labelling of the baseline. In Figure 55, for example, “in
Congress" receives the attribute pp1 because it is a prepositional phrase one position to the left of “who."
Similarly, “the hardliners" receives the attribute np2 because it is a noun phrase two positions to the left
of “who." Notice, however, that the subject of the sentence retains its original s attribute. We based this
decision on studies that indicate that the subject of a sentence remains highly accessible even at the end of
a sentence (e.g., [Gernsbacher, Hargreaves, & Beeman, 1989]). In addition, this new right-to-left labelling
tags the antecedents in both “it was the hardliners in Congress, who..." and “I heard from the hardliners in
Congress, who..." with the same attribute (i.e., np2). In the baseline representation, the antecedents in each
example retain distinct attributes › do and v-pp1, respectively.

Sentence:[It] [was] [the hardliners] [in Congress] who...

Baseline Representation: (s entity)  (v t)  (do human)  (do-pp1 entity)  (antecedent ((do))) 

Right-to-Left Labelling:  (s entity)  (v t)  (np2 human)  (pp1 entity) (antecedent ((np2)))

Duplicate Information:  (s entity)  (v t)  (do human)  (do-pp1 entity) (most-recent entity) 

-./0123425.6678 .06.2.80/569 -/:1676;6:1 --;399

Figure 5: Incorporating the Recency Bias

Alternatively, given the baseline instance representation, we can incorporate the recency bias by includ-
ing more than one attribute-value pair for the most recent information. Figure 5 also shows this second
representational change. The most recent constituent,“in Congress," is represented three times: 1) as a con-
stituent attribute-value pair — (do-pp1 entity), 2) as the most recent constituent — (most-recent entity), and
3) via its part of speech — (part-of-speech prep-phrase). In this representation, we also allow the antecedent
attribute-value pair to refer to the more general most-recent constituent rather than the equivalent, but more
specific, constituent attribute-value pair. If, for example, the antecedent in Figure 5 had been do-pp1, it
would become most-recent in the new representation.

B<=>?@A>

set3

(71)
63%

set1

(82)

set2

(88)

CDE

FFE

Training

G>H=

T>=H G>H

set1+set2

(170)

set2+set3

(159)

set1+set3

(153)

Exp

#

1

2

3

MR1:

R-to-L

MIJKMILMR2:

Redundant

75% 83% 84%

62%

66%

65% 73%

71% 74%

Figure 6: Experiments Using the Recency Bias (% correct)

The results of experiments that use each of these representations separately and in a combined form are
shown in Figure 6. In this table, the MR1 representation used the right-to-left labelling, the MR2 repre-
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sentation included extra information about the most recent constituent, and the MR1+MR2 representation
combined both the right-to-left labelling and the duplicate information format. In general, it is clear that
incorporating the recency bias into the instance representation improves performance. On average, the
right-to-left labelling increased the percentage of correctly identified antecedents from 59% to 68% while
duplication of recent information increased the percentage correct to 73%. The best results, however,
occurred using the combined representation, where the percentage correct increased to an average of 77%.

6 Incorporating the Short TermMemory Bias

Psychological studies have determined that people can remember at most seven plus or minus two facts
at any one time ([Miller, 1956]). More recently, Daneman and Carpenter ([Daneman, & Carpenter, 1980],
[Daneman, & Carpenter, 1983]) show that working memory capacity affects a subject’s ability to find the
referents of pronouns over varying distances. Also, King and Just [King, & Just, 1991] show that differences
in working memory capacity can cause differences in the reading time and the comprehension of certain
classes of relative clauses. COBWEB, however, clearly does not make use of short term memory limitations
in that each training and test instance has to be normalized with respect to all attributes across the training
instances. For the baseline representation, this normalization resulted in instances of 35 attribute-value
pairs as compared to an average of 5 attribute-value pairs in the original, unnormalized instances.

In an attempt to incorporate short term memory (STM) limitations, we ran a series of experiments using
instances with successively fewer features. We let n = 1,2,3,4,5,7,9,15,20, and 50, and included in the training
and test instances only those attributes that occurred at leastn times in the training set. When this STM cutoff
was applied to the baseline representation, the performance of the learning algorithm gradually declined
as n increased. The percentage correct declined from 63% to 37%, from 47% to 19%, and from 66% to 41%
for experiments 1, 2, and 3, respectively. Although the STM cutoff did not improve performance for the
MR1 training sets, the decline in percentage correct was not nearly so drastic. For experiment 1 (originally
75% hit rate), the percentage correct never dropped below 69%. For experiment 2, results ranged from 62%
(with no cutoff) to 49%; and in experiment 3 (originally 66% correct), results ranged from 51% to 67%.

The results of the STM cutoff for the instance representations of MR2 and MR1+2 are shown in Figure 7.
In these experiments, the STM bias actually improved COBWEBÖs performance. In the MR2 experiments,
the original hit rate for experiment 1 increased from 83instance) to 87from 65instance). In experiment 3,
the percentage correct increased from 71the original representation to 76the MR1+2 instance representation.
There were increases from 8487instance) for experiments 1 and 3, respectively. Performance for experiment
2, however, declined.
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Figure 7: STM Bias Results
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7 Conclusions

There is evidence from recent studies in psycholinguistics that some language learning tasks are not distinct
from the general cognitive task of concept learning [Mc Donald, & MacWhinney, 1991]. Our machine
learning results for the relative pronoun antecedent task appear to corroborate these studies. It is clear that
further experimentation is required to explore the effects of additional cognitive limitations, to determine
the biases that work well together, and to find the correct parameters for those biases. However, based
on the experiments presented in sections 4 through 6, we conclude that explicit incorporation of cognitive
biases into the instance representation can greatly improve learning algorithm performance at least for some
cognitvely-based tasks.
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