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Abstract

This paper shows that decision trees can be
used to improve the performance of case-
based learning (CBL) systems. We introduce
a performance task for machine learning sys-
tems called semi-flexible prediction that lies
between the classification task performed by
decision tree algorithms and the flexible pre-
diction task performed by conceptual clus-
tering systems. In semi-flexible prediction,
learning should improve prediction of a spe-
cific set of features known a priori rather
than a single known feature (as in classifi-
cation) or an arbitrary set of features (as
in conceptual clustering). We describe one
such task from natural language processing
and present experiments that compare so-
lutions to the problem using decision trees,
CBL, and a hybrid approach that combines
the two. In the hybrid approach, decision
trees are used to specify the features to be
included in k-nearest neighbor case retrieval.
Results from the experiments show that the
hybrid approach outperforms both the deci-
sion tree and case-based approaches as well as
two case-based systems that incorporate ex-
pert knowledge into their case retrieval algo-
rithms. Results clearly indicate that decision
trees can be used to improve the performance
of CBL systems and do so without reliance on
potentially expensive expert knowledge.

1 INTRODUCTION

The ability or inability of a natural language process-
ing (NLP) system to handle gaps in lexicon coverage
ultimately affects the system’s performance on novel

texts. Suppose, for example, that a natural language
system processes a text with the goal of summarizing
it or extracting relevant information, but unexpect-
edly encounters an unknown word. Rather than stop
and wait for a knowledge engineer to enter the miss-
ing lexical information, or skip the offending word al-
together, a robust sentence analyzer should infer the
necessary syntactic and semantic knowledge for the
unknown word and then continue processing the text.
Consider the following sentence for which an NLP sys-
tem finds no entry in its lexicon for “Malaysia:”!

Sanyo Electric Co. and Ford Motor Co. have agreed to set
up a joint venture by the end of this year to produce car
audio parts in Malaysia, they said Thursday.

Before the NLP system can continue beyond
“Malaysia,” it may need to know a specific set of fea-
tures for the unknown word including its

e part of speech (e.g., noun),
e general semantic class (e.g., location),
e specific semantic class (e.g., country),

e associated concepts (e.g., “Malaysia” may acti-
vate a company-location concept in this context),

e relationship to other entities in the sentence (e.g.,
the joint venture company will be located in
Malaysia),

e relationship to entities in a database (e.g., Ford
may be a party to another joint venture in
Malaysia), etc.

Although the exact types of knowledge required vary
tremendously from system to system, all NLP sys-
tems are faced with the problem of inferring a number
of predetermined features for each unknown word en-
countered in a text.

When viewed as a problem in machine learning, this
lexical acquisition task does not fit neatly into ex-
isting paradigms. Because it requires classification

! This sentence was taken from the TIPSTER joint ven-
tures corpus.



along multiple, sometimes related, dimensions, lexi-
cal acquisition isn’t simply a classification problem
of the type typically handled by decision tree algo-
rithms (Quinlan 1986). However, because the fea-
tures to be predicted are known beforehand, neither
is it a pure example of the flexible prediction task
(e.g., Fisher 1989; Fisher 1987) performed by concep-
tual clustering algorithms (Fisher 1987; Michalski &
Stepp 1983). Instead, the lexical acquisition problem
seems to fall naturally somewhere between the two,
in a paradigm we will call semi-flexzible prediction. In
semi-flexible prediction tasks, learning should im-
prove prediction of a set of features known a
priori rather than a single feature (as in classifica-
tion) or an arbitrary set of features (as in flexible
prediction). This paper describes a hybrid learning
technique for semi-flexible prediction tasks that com-
bines case-based learning (CBL)? and decision trees:
for each feature to be predicted, we rely on a decision
tree algorithm to choose the attributes to be included
in a simple k-nearest neighbor case retrieval mecha-
nism. We evaluate the approach on the lexical acqui-
sition task described above and show that the hybrid
learning algorithm outperforms a pure decision tree so-
lution, a k-nearest neighbors CBL algorithm, and two
CBL algorithms that ostensibly encode expert know-
ledge in their similarity functions. Given the results
of our experiments, we conclude that a combination of
case-based learning and decision tree algorithms may
offer a solution for semi-flexible, knowledge-based pre-
diction. In addition, we believe that the hybrid tech-
nique offers an automated alternative to the usually
time- and knowledge-intensive design of usable simi-
larity functions for case-based reasoning systems.

In the next section, we first outline a simplified ver-
sion of the lexical acquisition problem that will be used
as the semi-flexible prediction task in all experiments.
We then briefly describe the instance representation
used across all solutions. Section 3 compares solutions
to the problem using a decision tree algorithm, three
case-based learning variations, and the hybrid CBL-
decision tree algorithm. We conclude with a discus-
sion of related work the contributions of this research
(section 4).

2 LEARNING THE DEFINITION
OF UNKNOWN WORDS

In the experiments of section 3, we use a semi-flexible
prediction task that is a simplification of the the lexical
acquisition task described above:

2The term “case-based learning” is essentially equiva-
lent to “instance-based learning” (Aha, Kibler, & Albert
1991; Aha 1989), but the former term is preferred here be-
cause it implies the possibility of a case adaptation phase.

Given the context in which an unknown
word occurs, learn just three features of the
unknown word — the word’s

1. part of speech,

2. general semantic class, and

3. specific semantic class.

In addition, we focus only on learning the definitions
of open class words and assume that information for
all closed class words is known. Closed class words are
function words like prepositions, auxiliaries, articles,
and connectives, whose meanings vary little from one
domain to another. All other words (e.g., nouns, verbs,
adjectives) are open class words. Focusing on open
class words is a legitimate simplification of the original
problem because it is likely that the lexicon employed
by any natural language processing system will contain
entries for all closed class words.?

In addition, all training and test instances are lists of
attribute-value pairs and are derived from sentences in
the TIPSTER JV corpus. This corpus currently con-
tains over 1300 texts that recount world-wide activity
in the area of business joint ventures. The next sec-
tion describes the instance representation used for this
language learning problem.

2.1 THE INSTANCE REPRESENTATION

Each training instance is a list of 38 attribute-value
pairs and represents the definition of a single open class
word as well as the context in which it occurs. Figure 1
shows the training instance for the word “venture”
in a sentence taken directly from the TIPSTER JV
corpus. Features are divided into three groups: word
definition features, local context features, and global
context features. First, there are 5 word definition
features that encode information about the unknown
word: the word itself, its part of speech, general and
specific semantic attributes, and morphology. Values
for the part of speech (p-o-s), general attribute (gen-
att), and specific attribute (spec-att) are taken from
taxonomies developed for use with the corpus and con-
tain 18, 17, and 45 entries, respectively. “Venture,”
for example, is a noun modifier (nm)* and has been
assigned the most general semantic attribute, entity,
but no specific semantic attribute. It has no associated
morphological information.

Next, we represent the context via 20 local context fea-
tures and 13 global context features. The local context
features describe semantic and syntactic knowledge for
the two words preceding (prevl and prev2) and the

3The UMass NLP systems that process texts in the do-
mains of Latin American terrorism, business joint ventures,
and microelectronics, for example, rely on the same set of
approximately 130 closed class words.

*The noun modifier(nm) category covers both adjec-
tives and nouns that act as modifiers. We reserve the noun
category for head nouns only.



Word definition features

word: venture

p-o-s: noun modifier

gen-att: entity

spec-att: nil

morphol: nil
Local context features
prev2 prevl foll fol2
word: a word:  joint word: firm word: with
p-o-s:  article p-o-s:  noun modifier p-o-s:  noun p-o-s:  prep
gen-att: nil gen-att: entity gen-att: jv-entity gen-att: nil
spec-att: nil spec-att: nil spec-att: nil spec-att: nil
concept: nil concept: nil concept: nil concept: nil

IToyoz‘a Motor Corp.II has set upLa joint venture firm with Yokogawa Electric Corp. ...

S

subject verb

last constit direct object

gen-att: jv-entity

spec-att: company-name
generic-company-name

concept: nil

concept: nil

gen-att: main
spec-att: past

syntactic-type: verb gen-att: nil

gen-att: main | |spec-att:nil
spec-att: past concept: nil
concept: nil

Global context features

Figure 1: Case for “venture”

two words following (foll and fol2) the current word.
Again, we draw from the taxonomies to describe each
word’s part of speech, and general and specific at-
tributes. We also include a feature that indicates the
domain-specific concept activated by each word in the
current context. Most knowledge-based sentence an-
alyzers rely on such domain-specific concept activa-
tion to indicate when important information has been
encountered. In the terrorism domain, for example,
“killed” should activate a terrorist-murder concept in
the sentence, “Terrorists killed President Gorka,” but
not in the sentence, “The cancer had effectively been
killed.” There are currently 11 possible values for con-
cept attributes. In Figure 1, none of the words in the
local context of “venture” activates a domain-specific
concept.

Finally, the global context features represent the state
of the parser at the unknown word and include seman-
tic information for each major syntactic constituent
(i.e., subject, verb, direct object) and for the most
recent low-level constituent, last constit. Last con-
stit refers to the most recent noun phrase, preposi-
tional phrase, or verb phrase, and often overlaps with
one of the major syntactic constituents. Note that all
features for the direct object are empty because that
constituent has not yet been recognized at the point
of the unknown word.

The intent of this representation of global and local
context is to include an attribute-value pair for essen-
tially every piece of knowledge that the parser might
access to determine the definition of an unknown word

when one is encountered as it analyzes a text. In par-
ticular, the representation is based on the kinds of
knowledge available to the CIRCUS conceptual sen-
tence analyzer (Lehnert 1990) that was used to process
the TIPSTER JV corpus. A more detailed description
of the instance representation, the taxonomies, and the
semi-automated method used to generate the training
instances is described in (Cardie 1993).°

Every training instance in the experiments below is
based on the the 38-attribute feature set described
here. In all test instances, however, we omit the p-
o-s, gen-att, and spec-att word definition features
we are trying to predict. These features represent the
part of speech and semantic classes of the unknown
word and will be inferred by the learning algorithm.
In the next section, we present experiments using de-
cision tree, CBL, and hybrid solutions to the unknown
word problem and compare them to each other and to
additional performance baselines.

5In that paper we learn 4 features for each unknown
word instead of 3 and focus on the task from a natural lan-
guage processing perspective. As a result, there are minor
differences in the instance representations described in each
paper. Verbs, for example, take on semantic features in the
representation used here, but do not in (Cardie 1993).



3 COMPARING THE DECISION
TREE, CBL, AND HYBRID
APPROACHES

In each of the following experiments, we draw the
training and test instances from a base set of 2056 38-
attribute instances, one for each occurrence of an open
class word in 120 sentences of the TIPSTER JV cor-
pus. In addition, all experiments use a 10-fold cross
validation evaluation scheme in which we randomly
choose a different, non-overlapping set of 205 test cases
from this base set and use the remaining instances for
training in each of 10 runs. We emphasize that the
same 10 training and test set combinations were used
in the 10-fold cross validation of each experiment be-
low.

3.1 DECISION TREE APPROACH

The decision tree approach to the semi-flexible pre-
diction problem described in section 2 consists of gen-
erating 3 decision trees, one for each class of know-
ledge to be learned for an unknown word — its part
of speech (p-o-s), general semantic attribute (gen-
att), and specific semantic attribute (spec-att). We
will refer to these as the missing features of the un-
known word. To generate the decision tree for feature
z, we present the training instances to the C4.5 deci-
sion tree system (Quinlan 1992) after removing the 3
missing features and augmenting the training instance
with the value for z as its supervisory class informa-
tion. The missing features were also removed from the
test instances.

Table 1 shows the average performance of C4.5 in pre-
dicting each of the missing features across 10 runs and
compares it to two baselines.® The first baseline in-
dicates the expected accuracy of a system that ran-
domly guesses a legal value for each missing feature
based on the distribution of values across the test set.
The second baseline shows the performance of a sys-
tem that always chooses the most frequent value as a
default. Chi-square significance tests on the associated
frequencies show that the decision tree approach per-
forms significantly better than both of the baselines

(p=.01).
3.2 CASE-BASED APPROACH

In CBL, the case base is effectively a set of training
examples, each of which describes a single problem-
solving episode. After training, when a new problem
arises, a case retrieval algorithm compares the new
problem to those stored in the case base, finds the
most similar training case, and then uses it to solve
the current problem. In the case-based solution to the

In all experiments described in this paper, we allow
mismatches between the noun and noun modifier parts of
speech because the parser can fix these errors.

Table 1: Results for the Decision Tree Approach (%

correct )
Missing || Decision | Random | Default
Feature Tree Selection
p-o-s 89.0 34.3 81.5
gen-att 66.0 15.9 25.6
spec-att 69.9 24.7 45.3

NLP problem described above, we create a flat case
base of training instances, each of which contains all
38 attribute-value pairs. Then, given a test case from
which the 3 missing features have been removed, the
case retrieval algorithm searches the case base, finds
the training cases that best match it, and then uses
them to predict values for the missing features of the
unknown word. We use the following case retrieval
algorithm for this task:

1. Compare the test case to each case in the case base,
counting the number of features that match (i.e.,
match = 1, mismatch = 0). Do not include the miss-
ing features in the comparison. Only give partial
credit (.5) for matches on nil’s.”

2. Keep the k highest-scoring cases.

3. Of these, return the case(s) whose word matches the
unknown word, if any exist (i.e., prefer instances of
the unknown word seen during training). Otherwise,
return all k& cases.?

4. Let the retrieved cases vote on the values for the miss-
ing features.

The case retrieval algorithm is essentially a k-nearest
neighbors (k-nn) matching algorithm with a bias to-
ward examples of the unknown word encountered dur-
ing training. Table 2 shows the averaged results of the
case-based runs (for k=1, 5, 10) and compares them to
the decision tree results. Significant differences in per-
formance with respect to the decision tree approach
are indicated in the table by *’s. Generally, the de-
cision tree performs better than the CBL approach
for k=1, worse than the CBL approach for k=10, and
is indistinguishable from the case-based approach for
k=5.

The problem with the CBL solution as presented is
the difficulty of defining a similarity function for case
retrieval that can be used to accurately predict all of
the missing features of the unknown word. The k-nn
routine in the case retrieval algorithm described above
(stepl) assumes that all features are equally important
for predicting each of the missing features. But intu-
itively it seems that accurate prediction of each class

"This is because a nil value indicates that an attribute
did not apply in the current context and the matching pro-
cess should focus on relevant features rather than omitted
features.

8More than k cases will be returned if there are ties.



Table 2: Results for the Baseline Case-Based Approach (% correct). (* and ** indicate significance with respect to

the decision tree results, * — p = .01 and ** — p = .05.)

Missing || Case-Based | Case-Based | Case-Based || Decision
Feature (k=1) (k = 5) (k = 10) Tree
p-o-s 86.6* 88.8 89.4 89.0
gen-att 58.5% 66.2 69.1% 66.0
spec-att 62.9% 70.4 72.2%* 69.9

of missing information for the unknown word may ac-
tually rely on very different subsets of the feature set.
In fact, it is well known that k-nn algorithms perform
poorly in the presence of irrelevant features (Aha, Ki-
bler, & Albert 1991; Aha 1989).

One method for optimizing the similarity metric for
each missing feature is to employ expert knowledge.
We can incorporate informed intuitions about the na-
ture of each class of missing knowledge into the case
retrieval algorithm by letting an expert decide which
features to include in the k-nn calculations. Some suc-
cessful part of speech taggers, for example, make deci-
sions based only on knowledge of the words in a win-
dow to either side of the unknown word. This implies
that the k-nn routine should only include the local
context features in its calculations. Adding the global
context features may only hurt performance. On the
other hand, the semantic features of an unknown word
seem to depend partially on local context and partially
on knowledge about the global state of the sentence.
For example, the semantic class of a noun that follows
a verb may depend on the semantic class of the clause’s
subject. Therefore, when predicting semantic features,
it might be better first to find the most similar cases
using the local context features and then choose from
these the cases that match best along both the local
and global context dimensions.

We incorporated these observations into two variations
of the baseline CBL system. The first variation, re-
ferred to as the “p-o-s” CBL system, was designed
to improve p-o-s prediction and uses only the local
context features in its k-nn comparisons. The second
variation, referred to as the “semantic class” CBL sys-
tem, was designed to improve prediction of the gen-
att and spec-att features. It submits those cases ini-
tially selected using just local context features to an
additional k-nn filter that includes the global context
features as well. Like the baseline CBL system, both
intuitive variations also prefer cases whose word fea-
ture matches the unknown word.

Table 3 shows the results of the intuitive CBL vari-
ations and compares them to the baseline CBL algo-
rithm and the decision tree results. Only the results
for k=10 are shown, but runs using k=1, 5 exhibited
similar behavior. All results are averaged over 10 runs.
Also shown in the table are annotations for statistical

significance. (*’s indicate the performance of all case-
based systems as compared to the decision tree results
and ¢’s indicate performance of the intuitive CBL vari-
ations as compared to the CBL baseline.) As expected,
focusing on local features improved part of speech pre-
diction and the semantic class CBL variation improved
performance across the general and specific semantic
attributes. However, the p-o-s CBL method also un-
expectedly improved the prediction of both semantic
class attributes.

3.3 HYBRID APPROACH

The preceding experiments show that it is possible to
use informed intuitions to discard irrelevant attributes
from the feature set and thus improve performance
of the k-nn case retrieval algorithm. Given that fea-
ture set specification is a notoriously time-consuming
and knowledge-intensive task however (Quinlan 1983),
it would be better if the feature set could be chosen
systematically and automatically. This problem is ad-
dressed in the hybrid approach to semi-flexible predic-
tion in which decision trees aid in the definition of a
similarity metric that focuses on an appropriate subset
of features by isolating the attributes most important
for accurate prediction of each class of missing know-
ledge. In the hybrid approach, we let C4.5 select the
features to be included for k-nn case retrieval:

1. For each training set used in the decision tree experi-
ments (section 3.1), note the features that occurred in
the corresponding C4.5 decision tree.® This essentially
produces, for each of the missing attributes, a list of
all features that C4.5 found useful for predicting its
value.

2. Run the baseline case retrieval algorithm (section 3.2)
with the following modification: instead of invoking
the case retrieval algorithm once for each test case,
run it three times, once for each missing attribute to
be predicted. In the retrieval for attribute a, however,
include only the features C4.5 found to be important
for predicting @ in the k-nn calculations.'®

®We use the pruned decision trees produced by C4.5
for this experiment as well as for the original decision tree
experiments. Note also that as part of the 10-fold cross
validation scheme, we created 10 decision trees for each
missing feature — one for each training set. We use these
same decision trees for the current experiment.

10We actually only compare each test case to the entire
case base once (not three times) and use the results of that



Table 3: Results for Intuitive CBL Variations (% correct, & = 10). (* and ** indicate significance with respect to
the decision tree results, * — p = .01 and ** — p = .05. ¢ and ©¢ indicate significance with respect to the baseline CBL

system, ¢ — p = .01 and o0 — p = .05.)

Missing || Case-Based Case-Based Case-Based | Decision
Feature (p-0-s) (semantic class) (baseline) Tree
p-o-s 91.4%¢ 90.4** 89.4 89.0
gen-att 73.9%¢ 72.1%6 69.1% 66.0
spec-att 75.0%0 74.2%00 72.2%* 69.9

When predicting the part of speech of the unknown
word, for example, only those features C4.5 found to
be important for p-o-s prediction are included in the
k-nn matching routine (step 1 of the case retrieval al-
gorithm). In contrast to the expert knowledge required
to devise the intuitive CBL approaches, case retrieval
is automatically tuned in the hybrid system by using
C4.5 for feature specification. The feature sets pro-
posed by C4.5 reduce the number of attributes used in
the case retrieval algorithm from 35 to an average of 14
(p-o0-s), 11 (gen-att), and 15 (spec-att) features.!?

Table 4 shows the average performance of the hybrid
approach across 10 runs and compares it to identical
runs for the baseline CBL system and the best of the
intuitive T approaches, i.e., the approach that relied
only on local context features. Again, only results for
k=10 are shown although results for k=1, 5 were much
the same. The table also compares the results to a
system that randomly chooses the features to be used
in the k-nn calculations while controlling for feature
set size (i.e., we use the same number of features that
were used in the corresponding run for the hybrid ap-
proach). In all but one case, the hybrid approach sig-
nificantly outperforms the other approaches (p = .05).
The only exception was prediction of the gen-att fea-
ture, for which the p-o-s CBL system did as well as the
hybrid approach. As noted above, however, the p-o-s
CBL system that focused on local context features was
designed to improve prediction of part of speech, not
general semantic class.

In spite of the promising performance demonstrated
by the hybrid learning system, there are problems with
our current approach. The speed of the algorithm de-
grades linearly with the size of the case base and mod-
ifications would be required before the approach could
be tested using a hierarchical case base. Methods de-
scribed in (Aha, Kibler, & Albert 1991) to reduce the
storage requirements of T algorithms provide an al-
ternative to construction of a hierarchical case base,
however. In addition, it is not feasible to tune the
case retrieval mechanism (i.e., to determine the rele-

comparison for each of the three k-nn calculations.

1 These are averages across the 10 experiments run for
each missing feature as part of the 10-fold cross validation
evaluation.

vant attributes associated with each missing feature)
after every incoming instance because the costs asso-
ciated with running a decision tree algorithm are too
great. Instead, one might wait until the case base was
relatively stable before employing the hybrid CBL ap-
proach or tune the similarity metrics only occasion-
ally. In both solutions, however, we lose some of the
inherent advantages associated with the incremental
nature of CBL algorithms. Finally, we should test the
approach on additional data sets, or find a method for
automatically recognizing problems that will respond
favorably to this hybrid technique.

4 RELATED WORK AND
CONCLUSIONS

4.1 RELATED WORK IN LEXICAL
ACQUISITION

Although the problem of automating lexical acquisi-
tion has been addressed before, previous approaches
often focus on learning either syntactic or limited se-
mantic knowledge but not both (e.g., (Brent 1990;
Grefenstette 1992; Resnik 1992; and Zernik 1991)).
Moreover, the approaches tend to fall into one of two
categories: statistically-based methods that acquire
(usually syntactic) lexical knowledge (e.g., (Brent
1991; Church & Hanks 1990; Hindle 1990; Resnik
1992; Yarowsky 1992; and Zernik 1991)), or know-
ledge-intensive methods that acquire syntactic and/or
semantic lexical knowledge, but rely heavily on hand-
coded world knowledge (e.g., (Berwick 1983; Granger
1977; Hastings et al. 1991; Lytinen & Roberts 1989;
and Selfridge 1986)) or hand-coded heuristics that de-
scribe how and when to acquire new word definitions
(e.g., Jacobs & Zernik 1988 and Wilensky 1991). Our
approach differs from all of these in that

o it uses a novel combination of two existing machine
learning paradigms

o the same learning algorithm and instance representa-
tion are used to simultaneously learn both syntactic
and semantic lexical knowledge

e the approach does not rely on hand-coded heuristics,
and

e relatively little training is needed.'?

2For a more detailed description of this work from an
NLP perspective, see (Cardie, 1993). In that paper, we



Table 4: Results for Hybrid Approach (% correct). (
system. The hybrid system significantly outperforms all other variations, p = .05.)

indicates results not significantly different than the hybrid

Missing Hybrid Case-Based | Case-Based | Random | Decision
Feature | (DT 4+ CBL) | (baseline) (p-0-s) Features Tree
k=10 k=10 k=10 k=10
p-o-s 92.5 89.4 91.4 89.7 89.0
gen-att 73.4 69.1 73.9" 62.9 66.0
spec-att 76.7 72.2 75.0 71.1 69.9

4.2 ADDITIONAL RELATED WORK AND
CONCLUSIONS

In this paper, we have compared three approaches to
problems in semi-flexible prediction: decision trees,
case-based learning, and a hybrid technique that com-
bines the two. In the hybrid approach, decision
trees specify the features to be included in k-nearest
neighbor case retrieval. In related work, (Aha 1989)
presents a method for learning concept-dependent at-
tribute relevancies in a case-based paradigm. He dy-
namically updates the similarity function for each con-
cept by modifying an attribute weight vector associ-
ated with the concept in response to classification per-
formance. Here we use decision trees essentially to cre-
ate an attribute weight vector for each concept where
the weights are either 0 or 1. However, one possibility
which we have not yet explored is to use the position
of an attribute in the decision tree to derive attribute
weights between 0 and 1. This would make our weight
vector more similar to Aha’s real-valued weights that
range between 0 and 0.5. In addition, Aha’s method
differs from ours in that (1) it is completely incremen-
tal, i.e., the similarity function for each concept must
be updated for every incoming instance, and (2) it is
designed for boolean-valued concepts rather than the
multi-valued concepts used here. Although, in theory,
the incremental method seems ultimately more appro-
priate, it may not be feasible when the number of con-
cepts to be learned is large and/or there are multi-
valued concepts involved.

Given the results of the experiments outlined in sec-
tion 3 that compare the decision tree, cased-based, and
hybrid approaches to semi-flexible prediction, we con-
clude that the hybrid technique performs significantly
better than the pure decision tree and CBL algorithms
for a language learning task. It also performed bet-
ter than two CBL systems that incorporated expert
knowledge for the feature specification task. This re-
sult has important implications for work in case-based
paradigms because it clearly indicates that decision

incorporate the hybrid learning algorithm described here
into a working sentence analyzer that processes text from
a variety of corpora. We then evaluate the approach for
learning the definitions of unknown words in two practical
language processing applications.

tree algorithms can be used to improve the perfor-
mance of some CBL systems without reliance on po-
tentially expensive expert knowledge. On one hand,
these results may not seem surprising since previous
research has found the converse to be true — (Skalak
& Rissland 1990) show that a case-based reasoning sys-
tem can successfully perform the feature specification
task for a decision tree classification system. However,
(Almuallim & T 1991) show that ID3 (Quinlan 1986)
is not particularly good at selecting a minimum set of
features from an original set containing possibly many
irrelevant attributes. While their results may hold in
general, we claim that there is at least one important
class of problem for which decision tree algorithms can
perform feature specification reasonably well.
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