
Information Extraction as a Basis for

High-Precision Text Classification

ELLEN RILOFF and WENDY LEHNERT

University of Massachusetts

We describe an approach to text classification that represents a compromise between traditional

word-based techniques and in-depth natural language processing. Our approach uses a natural

language processing task called “mforrnation extraction” as a basis for high-precision text

classification. We present three algorithms that use varying amounts of extracted information to

classify texts. The relevancy signs tures algorithm uses linguistic phrases; the uugmen ted rele -

ua ncy signatures algorithm uses phrases and local context; and the case-based text classzfzcatzon

algorzth m uses larger pieces of context. Relevant phrases and contexts are acquired automati-

cally using a training corpus We evaluate the algorithms on the basis of two test sets from the

MUC-4 corpus All three algorithms achieved high precision on both test sets, with the aug-

mented relevancy signatures algorithm and the case-based algorithm reaching 100 % precision

with over 60’% recall on one set Additionally, we compare the algorithms on a larger collection of

1700 texts and describe an automated method for empirically deriving appropriate threshold

values. The results suggest that information extraction techniques can support high-precision

text classification and, m general, that using more extracted information improves performance.

As a practical matter, we also explain how the text classification system can be easily ported

across domains.

Categories and Subject Descriptors: H.3. 1 [Information Storage and Retrieval] Content

Analysis and Indexin~ H.3.3 [Information Storage and Retrieval]: Information Search and

Retrieval; 1.2.7 [Artificial Intelligence]: Natural Language Processing

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Information extraction, text classification

1. INTRODUCTION

Traditional approaches to information retrieval use keyword searches and

statistical techniques to retrieve relevant documents (e.g., Salton [1989] and

Turtle and Croft [1991]). Statistical techniques take advantage of large

document collections to identify words that are useful indexing terms auto-

matically. These techniques are popular because they can be fully automated

This research was funded by NSF grant EEC-9209623, supporting the Center for Intelligent

Information Retrieval at the University of Massachusetts.

Authors’ address: Department of Computer Science, University of Massachusetts, Amherst, MA

01003; email: {riloffi lehnert}@cs umass.edu.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is oven that copying M by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01994 ACM 1046 -8188 /’94/0700-0296 $03,50

ACM TransactIons on Information Systems, Vol 12, No 3, July 1994, Pages 296-333

High-Precision Text Classiflcatlon . 297

and can sift through large volumes of documents with relative ease. In

general, however, word-based techniques have several limitations:

Synonymy. Different words and phrases can express the same concept. For

example, the words “make,” “manufacture,” and “produce” all refer to the

concept of production.

Polysemy. Words can have multiple meanings. For example, the word

“post” can refer to the name of a newspaper, a vertical support in carpentry,

entering a transaction in accounting, or sending a message in computing

[Mauldin 1991].

Phrases. Some words are good indexing terms only in specific phrases. For

example, the phrase “passed away” means that someone died, but the words

“passed” and “away,” used independently, are not generally associated with

dying.

Local Context. Some words and phrases are good indexing terms only in

specific local contexts, For example, to retrieve texts about bank robberies,

the word “robbery” alone is not enough; the object of the robbery must be a

bank.

Global Context. Some documents do not contain any words or phrases that

are good indexing terms. The relevance of a document may depend on the

entire context of a sentence, paragraph, or even whole text. For example, the

sentence “an armed man took the money and fled” refers to a robbery.

Together, these words clearly describe a robbery, even though none of the

words is a good indexing term by itself.

Synonymy is a well-known limitation of word-based techniques because it

can make it difficult to find relevant documents. Some IR systems access a

thesaurus or an on-line dictionary to alleviate this problem (e.g., Mauldin

[1991]). Word-sense disambiguation techniques have been used to investigate

the issue of polysemy (e.g., Krovetz and Croft [1989]). The last three points

address issues of linguistic context. Some IR systems have tried automatic

phrase-indexing methods that use multiple words together as indexing terms

(e.g., Dillon [1983], Fagan [1989], and Croft et al. [1991]). But these ap-

proaches only approximate phrasal recognition and provide a weak sense of

context. By using multiple words or phrases to index a document, IR systems

capture some global context but typically do not represent the relationships

between words beyond co-occurrence statistics.

As an alternative to traditional IR systems, there has been a great deal of

work recently on knowledge-based information retrieval systems (e.g., Good-

man [1991], Hayes and Weinstein [1991], Mauldin [1991], and Rau and

Jacobs [1991]). Knowledge-based IR systems rely on an explicit knowledge

base, such as a rule base [Hayes and Weinstein 1991], semantic network

[Goodman 19911, patterns [Rau and Jacobs 1991], or case frames [Mauldin
1991]. Many of these systems have achieved good success in limited domains.

However, knowledge-based approaches typically require an extensive manual

knowledge-engineering effort to create the knowledge base. Manual knowl-

ACM Transactions on Information Systems,Vol 12,No 3, July 1994.

298 . E. Riloffand W. Lehnert

edge engineering is a time-consuming and tedious process that may require

several years of effort by experts who are highly experienced with the domain

and the task. To achieve similar success in a new domain, the entire knowl-

edge-engineering process must be repeated.

Both traditional IR techniques and knowledge-based techniques have

been applied to the problem of text classification (e.g., see Maron [19611,

Borko and Bernick [1963], and Hoyle [1973] for traditional IR approaches and

Goodman [1991], Hayes and Weinstein [1991], and Rau and Jacobs [1991] for

knowledge-based approaches). Text classification is an information retrieval

task in which one or more category labels is assigned to a document. This

task assumes a predefine, long-term set of user interests (categories) which

is different from the standard information retrieval task that assumes dy-

namically changing user needs (queries) [Belkin and Croft 1992]. However,

both tasks share many of the same problems because they are primarily

concerned with identifying relevant documents from large collections of raw

text.

Our approach to text classification is a departure from standard IR tech-

niques in several ways. First, we use a natural language processing task

called information extraction as a basis for text classification. Although

in-depth natural language processing can be prohibitively expensive and

brittle, information extraction is a more tractable and robust technology.

Using natural language processing, we can overcome many of the limitations

imposed by word-based techniques. In particular, we consistently achieve

high precision because our approach is sensitive to context. Linguistic phrases

and the context surrounding the phrases are recognized easily and handled

naturally. Additionally, the system can classify texts that would be inacces-

sible to word-based techniques because they do not contain any key words

or phrases.

Second, our approach is knowledge based because it relies on a domain-

specific dictionary to drive the information extraction system. However, the

text classification algorithms are domain independent, and the domain-

specific dictionary can be acquired automatically, given an appropriate train-

ing corpus. Therefore, the complete text classification system is fully train-

able and can be easily scaled up or ported to new domains. By automating the

construction of a knowledge-based text classification system, we have greatly

reduced the knowledge-engineering bottleneck typically required for such

systems, while still benefiting from a knowledge-based approach.

Finally, the emphasis of our research is on high-precision text classifica-

tion. In many real-world applications, users are satisfied to receive a small

number of relevant documents, as long as they can be reasonably confident

that the documents were classified accurately. The algorithms that we will

describe allow the user to specify how conservative or liberal the algorithms

should be about assigning categories. In general, there is usually a tradeoff

between retrieving as many relevant texts as possible and retrieving relevant

texts with good accuracy. Liberal algorithms are more eager to classify texts

as relevant but may misclassify many texts as a result. Conservative algo-

rithms are more reluctant to classify texts as relevant so they generally

ACM Transactions on Inf~rmation Systems,Vol. 12, No. 3. July 1994.

High-Precision Text Classification o 299

produce fewer false hits, but may fail to recognize many relevant documents.

Although our text classification algorithms can achieve a broad range of

results, our approach is particularly well suited for applications in which the

accuracy of the classifications is more important than recognizing every

relevant document.

In Section 2, we give a brief introduction to information extraction, the

CIRCUS sentence analyzer, and the MUC-4 task and corpus on which our

experiments are based. Section 3 presents three text classification algorithms

that are based on an underlying information extraction system. These algo-

rithms are distinguished by the amount of extracted information that they

use to classify texts. The relevancy signatures algorithm uses linguistic

expressions that represent phrases; the augmented relevancy signatures algo-

rithm uses linguistic expressions in combination with local extracted infor-

mation; and the case-based text classification algorithm uses multiple pieces

of extracted information to represent larger natural language contexts. We

evaluate each of the algorithms on the basis of two blind test sets from the

MUC-4 corpus. Section 4 describes a more comprehensive set of experiments

to compare the algorithms on a larger test set. We also present an automated

method for deriving empirically an appropriate set of threshold values for

each algorithm. Section 5 briefly describes what is needed to port the text

classification system across domains, and Section 6 concludes with a discus-

sion of the novel aspects of this work.

2. INFORMATION EXTRACTION

When considering a technology to support high-precision text classification,

natural language processing (NLP) is one of the first things that comes to

mind. It seems reasonable to believe that we could produce accurate classifi-

cations if we could actually understand the documents. However, in-depth

natural language processing is an expensive endeavor that can strain compu-

tational resources. And the state of the art in natural language processing is

such that we do not yet have practical NLP systems that can generate

in-depth analyses of unconstrained text.

As an alternative to full-blown natural language processing, some re-

searchers in the NLP community have turned their attention to information

extraction. Whereas in-depth natural language processing requires a com-

plete analysis of a document, information extraction is a more focused and

well-defined task. The goal of an information extraction system is to extract

specific types of information from a document. For example, in the domain of

terrorism, an information extraction system might extract the names of all

perpetrators, victims, physical targets, and weapons involved in a terrorist

attack. The main advantage of this task is that portions of a text that are not

relevant to the domain can be effectively ignored. This simplifies the job of

the NLP system considerably. Information extraction is less computationally

expensive than full-blown natural language processing because many phrases

and even entire sentences can be ignored if they are not relevant to the

domain. And since the system is only concerned with the domain-specific

ACM Transactions on Information Systems, Vol. 12, No. 3. July 1994.

300 . E, Rlloffand W. Lehnert

portions of the text, some of the most difficult problems in NLP are simplified

(e.g., part-of-speech tagging and ambiguity resolution). As a result, informa-

tion extraction is a practical and feasible technology that has achieved

success in the last few years [Lehnert and Sundheim 1991; MUC-3 Proceed-

ings 1991; MUC-4 Proceedings 1992; MUC-5 Proceedings 1993].

2.1 Selective Concept Extraction Using CIRCUS

Selective concept extraction is a natural language processing technique that

supports information extraction. This technique is essentially a form of text

skimming that selectively processes text that is relevant to a domain. Selec-

tive concept extraction is implemented in a conceptual sentence analyzer

called CIRCUS [Lehnert 1991]. The backbone of CIRCUS is a domain-specific

dictionary of concept nodes. Concept nodes are structures that extract rele-

vant information from a sentence.

A concept node is triggered by an individual word but is activated only in

certain linguistic contexts. Each concept node has a set of enabling conditions

that specify a linguistic context that must be present in order for the concept

node to be activated. For example, in the domain of terrorism, our dictionary

contains two concept nodes that are triggered by the word “murdered. ” The

first one, $murder-active$, is activated if the verb “murdered” appears in an

active construction, such as “the terrorists murdered the mayor.” The second

concept node, $murder-passive$, is activated only if the verb “murdered”

appears in a passive construction, such as “three peasants were murdered by

guerrillas.” A concept node may be triggered by several different words. For

example, $murder-passive$ is also triggered by the word “killed” so it is also

activated by phrases such as “three peasants were killed by guerrillas.” If a

sentence contains multiple trigger words, then CIRCUS may produce multi-

ple concept nodes for the sentence. If a sentence contains no trigger words,

then CIRCUS will produce no output for that sentence. Instantiated concept

nodes are the only output generated by CIRCUS.

A concept node definition specifies a set of slots that extract information

from text. Each slot extracts a particular type of information and contains a

syntactic expectation that predicts where the information will be found in a

clause. For example, $murder-passive$ contains two slots: a uictim slot and a

perpetrator slot. Since $murder-passive$ is activated only in a passive con-

struction, the concept node predicts that the victim is the subject of the verb

“murdered” and that the perpetrator is the object of the preposition “by.”

Figure 1 shows the concept node definitions for $murder-active$ and

$murder-passive$.

Each slot also has a set of hard and soft constraints that specify semantic

preferences for the types of fillers that can legitimately fill the slot. The hard

constraints must be satisfied in order for the slot to be filled, but the soft

constraints act only as preferences for fillers. Therefore, a slot may be filled

even if a soft constraint is violated. Figure 2 shows a sample sentence and the

resulting instantiated concept node produced by CIRCUS.

ACM Transactions on Information Systems, Vol 12, No. 3, July 1994

High-Precision Text Classification . 301

I

Name: $MURDER-ACTIVE$

Trigger Word: murdered

Variable Slots: ((perpetrator (*SUBJECT* 1))

(wctim (* DOBJ* l)))

Slot Constraints: ((class perpetrator *SUBJECT*)

(class victim *DOBJ*))

Constant Slots: (type murder)

Enabling Conditions: ((active))

$MURDER-PASSIVE$

murdered

E
(perpetrator (*PP* (is-prep? ‘(by)))))

Fig. 1. Two concept node definitions.

L
Sentence: Three peasants were murdered by guerrillas.

Fig. 2. An instantiated concept node.

Since concept nodes are the only form of CIRCUS output, a good dictionary

of concept nodes is crucial for effective information extraction. The

UMass/MUC-4 system [Lehnert et al. 1992] used two dictionaries: a part-of-

speech dictionary containing 5436 lexical definitions, including semantic

features for domain-specific words, and a dictionary of 389 concept node

definitions for the terrorism domain. The concept node dictionary was manu-

ally constructed for MUC-4, which is described in the next section. In Section

5 we will explain how these concept node definitions can be acquired auto-

matically [Riloff 1993a; Riloff and Lehnert 1993a].

2.2 The MUC-4 Task and Corpus

Our interest in information extraction was motivated by the DARPi~-

sponsored message-understanding conferences. These conferences are com-

petitive performance evaluations designed to assess the state of the art in

text analysis. The Fourth Message Understanding Conference (MUC-4) was

held in June, 1992. Seventeen research labs from both academia and industry

participated in MUC-4. Each site had to develop a system to extract informa-

tion about terrorism in Latin America from newswire articles. An extensive

set of domain guidelines defined what constituted “terrorism.” In general, a

text was defined as relevant only if it mentioned a specific terrorist incident

that occurred in one of seven Latin American countries. General descriptions

of terrorist events (e.g., “there have been many bombings. .“), events that

happened more than two months prior to the newswire date, and terrorist

events involving military targets and personnel were not considered relevant.

The MUC-4 systems had to generate one or more “templates” for each text.

A template is essentially a large structure with a predefine set of slots, one

for each type of information to be extracted from the text. For example, the

MUC-4 templates had slots for the names of perpetrators, victims, physical

ACM Transactions on Information Systems,Vol. 12, No. 3, July 1994.

302 . E. Riloffand W. Lehneri

targets, weapons, dates, locations, etc. For each relevant terrorist incident in

a text, the system had to instantiate a template with information about the

incident. Each instantiated template contained information pertaining to a

single terrorist incident. If a text described multiple relevant events, then the

system was supposed to generate multiple templates. If a text described no

relevant terrorist events, then the system was supposed to generate a dummy

template containing no information.

DARPA provided the MUC-4 participants with a corpus of 1500 texts and

associated answer keys to use for development purposes. The answer keys

were instantiated templates that had been manually encoded by the partici-

pants of MUC-31 and MUC-4. Each answer key contained the correct infor-

mation corresponding to a relevant terrorist incident reported in a text, that

is, the information that should be extracted. DARPA also supplied an

additional 200 texts and associated answer keys as test sets for the final

MUC-4 evaluation. This entire set of 1700 texts and corresponding answer

keys served as the testbed for the experiments described in this article.

For the purpose of text classification, the answer keys serve only as a set of

correct classifications for each text. If a text has instantiated key templates

associated with it in the corpus, then it should be classified as a relevant text.

If a text has no instantiated key templates associated with it (i.e., only a

dummy template) then it should be classified as an irrelevant text. This is a

binary classification problem: a text is either releuant to the terrorism

domain or irrelevant. The texts were selected by keyword search from a

database of newswire articlesz because they contained words associated with

terrorism. However, many of them did not mention any relevant terrorist

incidents. Of the 1700 texts in the MUC-4 corpus, only 53% described a

relevant terrorist event.3

Because many of the texts in the corpus were irrelevant, the MUC-4

systems had to distinguish the relevant from the irrelevant texts. Although

the MUC-4 task was information extraction, information detection4 (i.e, text

classification) was an implicit subtask. To be successful in MUC-4, the

information extraction systems also had to be good at detection. Our MUC-4

system did not use a separate text classification module. Instead, we ex-

tracted information from every text and relied on a discourse analysis module

to discard irrelevant templates. This strategy was very effective,5 but it was

expensive. A reliable text classification module could have filtered out irrele-

1MUC-3 was the Third Message Understanding Conference held in 1991 [MUC-3 Proceedings

1991].

2The database was constructed by the Foreign Broadcast Information Service (FBIS) of the U.S.

government [MUC-4 Proceedings 1992]

3For our text classification experiments, we counted all of the texts with “optional” templates as

relevant texts.

4DARPA has recently initiated a competitive performance evaluation called TREC that focuses

explicitly on the task of znj%rmation detectzon [Harm an 1993].

5The MUC-4 systems were evaluated on the basis of two blind test sets, TST3 and TST4. Our

MUC-4 text-filtering scores were 91% recall with 940? precision on TST3, and 91% recall with

82’% precision on TST4 [MUC-4 Proceedings 1992].

ACM TransactIons on Information Systems, Vol. 12, No 3, July 1994,

High-Precision Text Classification . 303

vant texts, so we would not have needed to apply our complete NLP system to

every text.G Furthermore, a text classification module could have improved

accuracy by preventing irrelevant texts from slipping through to discourse

analysis, which often had trouble recognizing irrelevant event descriptions.

Furthermore, our discourse analysis module was domain specific and not

portable across domains. Our MUC-4 experience convinced us that text

classification is useful not only for stand-alone applications, but also as a

partner for other natural language processing tasks.

3. THREE TEXT CLASSIFICATION ALGORITHMS BASED ON

INFORMATION EXTRACTION

Our work on text classification was motivated by three observations about

how humans classify documents:

(1)

(2)

(3)

A human reader will inevitably find some texts difficult to classify

because those texts fall into gray areas with respect to the domain

specifications. On the other hand, many documents are straightforward to

classify because they fall squarely within the domain guidelines. A hu-

man can quickly and easily pick out these texts. 7 Our goal is to simulate

this human process of recognizing the texts that are most likely to be

relevant. By focusing on the relatively straightforward texts instead of

the borderline cases, we are willing to miss some relevant texts in

exchange for good accuracy on the ones that we do classify as relevant.

Often, a single relevant sentence is enough to classify a text as relevant.

In some cases, as soon as an important expression is identified, a text can

be accurately classified. For example, in the domain of terrorism, the

expression “was shot to death” is a strong indicator of relevance. If a text

in the MUC-4 corpus contains this expression, then we can quickly and

confidently classify the text as relevant.

Once a relevant sentence is identified, the remainder of the text can be

ignored. As soon as we find a relevant sentence, the text should be

classified as relevant regardless of what appears in the remainder of the

text.g

—
6The text classification algorithms described in this article would still require CIRCUS to extract

information from the texts, but our complete MUC-4 system contained additional components for

discourse analysis that would not need to be invoked.

71n an informal experiment, we asked two graduate students to scan 100 MUC-4 texts and pick

out any texts that they could identify quickly and confidently as relevant. The first student took

15 minutes to go through all 100 texts and achieved 837. recall and 96% precision. The second

student took 30 minutes and achieved 8670 recall and 9470 precision. In this small amount of

time, the students could not possibly have read all of the documents. Their results support our

claim that, in this domain at least, many documents can be accurately classified by text

skimming.

‘Points 2 and 3 are not always true, especially when the domain description contains many

exceptions. Our algorithms assume that these exceptional cases are relatively infrequent in the

corpus.

ACM Transactions on Information Systems, Vol 12, No. 3, July 1994

304 . E. Riloffand W. Lehnert

With these observations in mind, we developed three algorithms that use

information extraction as a basis for classifying texts. For each algorithm, a

document is first processed by CIRCUS, which generates a set of instantiated

concept nodes as the representation of the text. These concept nodes are then

given as input to the text classification algorithm.

3.1 The Relevancy Signatures Algorithm

Although keywords are useful as a first approximation for discriminating

between relevant and irrelevant texts, they do not capture the natural

language context surrounding a word. Although some words are good indica-

tors of relevance in almost any context, other words are good indicators of

relevance only in specific contexts. For example, the word “dead” is a common

word in the MUC-4 corpus, but it is not used exclusively in relevant texts.

Many texts in the MUC-4 corpus describe military incidents that are not

terrorist in nature. For example, phrases involving the word “dead refer

frequently to military casualties, such as “the attack left 15 dead” or “there

were 49 dead and 50 wounded.” On the other hand, certain expressions

involving the word “dead” are highly indicative of terrorism in the MUC-4

corpus. For example, the expression “was found dead” has an implicit conno-

tation of foul play, which often implies terrorist activity in Latin American

countries. In fact, every occurrence of “was found dead” in the MUC-4 corpus

appears in a relevant text. Therefore, although the word “dead” is not a good

keyword by itself, it is useful for recognizing relevant texts when it appears

in certain expressions.

We see a similar phenomenon associated with the word “casualties.” The

word “casualties” is often used in military event descriptions and is therefore

not a good keyword for terrorism. However, certain linguistic expressions

involving the word “casualties” are good indicators of relevance. For example,

the phrase “no casualties” is often used in terrorist event descriptions to

inform the reader that there were no civilian casualties in an attack. When

we collect statistics for these two expressions in the MUC-4 corpus, we find

that only 41% of the texts that contain the word “casualties” alone are

relevant, but 81% of the texts that contain the expression “no casualties” are

relevant. Clearly, the word “casualties” by itself is not a good keyword for

terrorism, but the phrase “no casualties” is useful for identifying relevant

texts.

IIi researchers have experimented with phrase-based indexing approaches

that use word proximity, text structure, syntactic information and frequency

data to recognize phrases approximately (e.g., Dillon [1983] and Fagan [1989]).

But natural language processing capabilities can recognize phrases in a more

robust fashion by recognizing syntactic relationships, such as active and

passive verb constructions, conjunctions, and prepositional phrases. Fagan

[19891 reported that syntactic analysis would have generated better phrases

for indexing and eliminated many of the false hits produced by his system.

The releuancy signatures algorithm [Riloff and Lehnert 1992] was our first

attempt to use natural language processing to classify texts on the basis of

ACM TransactIons on Information Systems, Vol. 12. No, 3, July 1994

High-Precision Text Classification . 305

linguistic expressions instead of isolated keywords. We represent linguistic

expressions as “signatures,” use statistical techniques to identify signatures

that are highly correlated with relevant documents, and then use these

signatures as indices to classify new texts.

3.1.1 Relevancy Signatures. A signature is a pair consisting of a word

and a concept node that it triggers, which together represent a set of lin-

guistic expressions. For example, consider the signature (murdered, $murder-

passive$). The word “murdered” triggers the concept node $murder-

passive$, which is activated only when the verb “murdered” appears in a

passive construction. Together the pair represents all passive constructions of

the verb “murdered,” such as “was murdered,” “were murdered,” “have been

murdered.” Using this representation, we can distinguish among different

linguistic expressions involving the same word. For example the signature

(dead, $found-dead-passive$) represents expressions such as “was found

dead,” but the signature (dead, $left-dead$) represents expressions such as

“left 23 dead.”

A relevancy signature is a signature that is highly correlated with rele-

vance for a domain. If a new text contains a relevancy signature then, by

definition, it contains a linguistic expression that is highly correlated with

relevance for the domain. In the next section, we describe how we generate a

good set of relevancy signatures using a training corpus and how we use

them to classify new texts.

3.1.2 The Algorithm. The relevancy signatures algorithm has two parts: a

training phase and a classification phase. During training, we generate a set

of relevancy signatures based on a training corpus. During classification, we

use the relevancy signatures as indices to classify new texts. Figure 3 shows

the steps involved in the training phase.

We hand off each text in the training set to CIRCUS, which generates a set

of instantiated concept nodes. For each instantiated concept node, we create a

signature by pairing the concept node with the word that triggered it. Then

we compile statistics for each signature to determine how often it appeared in

a relevant text. More specifically, for each signature we estimate the condi-

tional probability that a text is relevant, given that it contains the signature.

The formula is:

(
text is relevant

)

N
Pr

slg, = REL-TEXTS
.

text contains sigl N hlg,

where N,,g, is the number of occurrences of the signature sig, in the training

set, and N,,~< ~ R~L.TExTs is the number of occurrences of the signature sig,

in relevant texts in the training set. The epsilon is used loosely to denote the

occurrences of the signature that “appeared in” relevant texts. Table I shows

12 signatures, their estimated conditional probabilities based on a training

set of 1500 texts, and examples of sentences that will generate the signa-

tures.

ACM Transactions on Information Systems, Vol. 12. No. 3, July 1994.

306 . E. Riloff and W, Lehnert

TRAINING

CLASSIFICATION

Fig. 3, Flowchart for the Relevancy Signatures Algorithm.

Table I. Sample Signatures and Conditional Probabilities

Signature I Prob. \ Examples

<assassination. $murder$> .84 I the assassination of Hector Oqueli

<assassinations, $murder$> .49] there were 2,978 political assassinations in 1988

<bombed, $bornbing-passive$ > .80 I public buildings were bombed

<bombed, $bombing-active$>

<casualties. $no-iniurv$

> I ..51 I terrorists bombed two facilities I

.----- .-.——, ---- ----—.. .

e<dead, $found-dead-passive$ >

T
.81

.41

1.00

.61

.47

1.00

the attack resulted in no casualties

the officer reported 17 casualties

the mayor was found dead

the attack left 9 people dead

the armv sustained 9 dead
+

terrorists set a restaurant on fire I. -,
1 1

<fire, $shooting$ > .87 the guerrillas opened fire

<fire. $weaDon$ > .59 I two helicopters were hit by rifle fire

The probabilities in Table I are not always intuitive. For example, 84% of

texts containing the word “assassination” were relevant, but only 4970 of

texts containing the word “assassinations” were relevant. On the surface, it

would seem that singular and plural forms of the same word should be

equally useful as indexing terms. However, this is not necessarily the case. In

our domain of terrorist event descriptions, a text is only relevant if it

describes a specific terrorist incident. The singular form, “assassination,” is

often used to report a specific assassination of a person or group of people.

But the plural form, “assassinations, “ is often used in reference to assassina-

tions in general, e.g., “The FMLN has claimed responsibility for many kidnap-

pings and assassinations.”

Table I also shows a surprising result for the word “bombed .“ The passive

form of the verb “bombed” is more highly correlated with relevant texts than

the active form. When we look through the MUC-4 corpus for an explanation,

we find that the active verb form is often used in military event descriptions,

but the passive form is more common in terrorist event descriptions. These

distinctions would be difficult if not impossible for a person to anticipate. One

ACM Transactions on Information Systems,Vol. 12, No 3, July 1994.

High-Precision Text Classification . 307

of the main advantages of our approach is that these distinctions are identi-

fied automatically using statistics generated from a training corpus.

To select a final set of relevancy signatures, we use two thresholds: R and

M. We define a “relevancy signature” as a signature that appears at least M

times in the training corpus with conditional probability greater than or

equal to R. The relevancy threshold R ensures that a signature is selected as

a relevancy signature only if it is highly correlated with relevance. For

example, R = 0.85 specifies that at least 85% of the occurrences of the

signature in the training set came from relevant texts. Consequently, if the

signature appears in a new text, then the new text is likely to be relevant.

The frequency threshold M ensures that we do not consider a signature to be

“reliable” unless we have seen it at least M times. For example, if a

signature appears only once in the training set, then we do not have enough

evidence to make any assumptions (positive or negative) about its general

utility.

Both thresholds are inputs specified by the user. By adjusting the thresh-

olds, the user can manipulate a tradeoff. Increasing R and M tightens the

criteria for reliability, and fewer signatures will be labeled as relevancy

signatures. As a result, fewer texts will be classified as relevant. However,

the relevancy signatures are then presumably very dependable, so the result-

ing relevant classifications are likely to be accurate. On the other hand, if we

decrease R and M, then we loosen the criteria for reliability, and more

signatures will be labeled as relevancy signatures. Although more texts will

be classified as relevant, we also expect to see more false hits.

The second step of the algorithm is the classification phase shown in Figure

3. Given a new text to classify, first we process the text using CIRCUS, which

generates a set of instantiated concept nodes. Then we create a list of

signatures by pairing the concept nodes with their trigger words. If any of the

signatures is a releuancy signature, then we classify the text as relevant.

Otherwise, we classify the text as irrelevant. An important aspect of this

algorithm is that the presence of a single relevancy signature is enough to

classify a text as relevant.

3.1.3 Experimental Results. To evaluate the performance of the relevancy

signatures algorithm, we used the 1500 texts from the MUC-4 development

corpus for trainingg and set aside the remaining 200 texts for testing. These

200 texts consist of two sets of 100 texts each, TST3 and TST4, which were

used for the final MUC-4 evaluation and were therefore blind with respect to

both our NLP system and our text classification algorithms. First, we pro-

cessed each text in the training set using CIRCUS and compiled statistics for

each signature. Next, we tested the algorithm on the two sets, TST3 and

TST4. Since the relevancy signatures algorithm depends on two thresholds,

R and M, we tried a variety of threshold settings. The range of threshold

values was based on our experience with the algorithm and the corpus, but

the values were admittedly arbitrary. We varied R from 0.70 to 0.95 in

9These were the DEV, TST1, and TST2 texts.

ACM Transactions on Information Systems, Vol. 12, No. 3, JUIY 1994.

308 . E. Riloffand W. Lehnert

increments of 0.05, and we varied M from O to 20 in increments of 1.

Therefore, we ran the algorithm 126 times on each test set. In Section 4, we

describe a more comprehensive set of experiments that addresses specifically

the problem of how to find good threshold values empirically.

Figare 4 shows the scatterplots for TST3 and TST4. Each data point

represents one application of the algorithm using a specific set of threshold

values. Each scatterplot, therefore, contains 126 data points, but different

threshold settings often produce the same results. So many of the data points

are collapsed into a single point on the graph. We evaluated the algorithm on

the basis of two standard information retrieval metrics: recall and precision.

Recall measures the percentage of relevant texts that are correctly classified

as relevant by the algorithm. Precision measures the percentage of texts

classified as relevant that actually are relevant.

In general, the data points toward the right side of the graphs correspond

to threshold settings with lower values of R and M. The most obvious

pattern in these graphs is the recall/precision tradeoff. As we increase R and

M, we sacrifice recall in exchange for better precision. With lower thresholds,

we get high recall of over 90% but only modest precision (799% at the highest

recall setting for TST3 and 6370 at the highest recall setting for TST4). It is

important to interpret the precision results with respect to the number of

relevant texts in each test set. Although each test set contains 100 texts,

TST3 contains 69 relevant texts, but TST4 contains only 55 relevant texts.

These numbers represent a baseline against which precision should be as-

sessed. For example, a constant algorithm that classifies euery text as

relevant will achieve 69% precision on TST3 and 55~0 precision on TST4.

Therefore, the precision levels at the high-recall end are not terribly impres-

sive since they are only slightly above this baseline. On the left side of

graphs, the data points correspond to higher threshold values and hence

higher levels of precision. We achieve 100% precision with 3070 recall for

TST3 and 9370 precision with 24% recall for TST4. In between these ex-

tremes, both graphs show many data points that achieve over 80% precision

with up to 50 YOrecall.

Figure 4 also shows a table with some of the “highlights” from the graphs.

The columns display the best recall and precision scores with respect to

different metrics. The column labeled Recall shows the scores corresponding

to the data point that achieved the highest recall. Similarly, the column

labeled Precision contains the scores for the data point that achieved the

highest precision. The Recall and Precision columns represent the extreme

ends of the spectrum, but it is also interesting to look at data points in

between. The F-measure, a standard information retrieval metric that com-

bines recall and precision into a single number, was used in the final MUC-4

evaluation [MUC-4 Proceedings 1992]. The F-measure accepts a /3-value that

adjusts the relative weighting (importance) of recall and precision. For exam-

ple, D = 1.0 gives recall and precision equal weighting, P = 0.5 makes recall

half as important as precision, and f? = 2.0 makes recall twice as important

ACM Transactions on Information Systems, Vol. 12, No 3, July 1994

High-Precision Text Classification . 309

TST3

100

90

80

70

~ 60
.-
.$ 50

& 40

30

Z()

10

0

0 102030405060708090100

recall

TST4

100

90

80

70

$ 60
.-
; 50
u
& 40

30

20

10

0
0 10203040506070 8090100

recall

Test Set Recall F(2) IF(l) F(.5) F(.3) F(.2) Precision

TST3 91 79 91 79 90 83 77 90 67 94 67 94 30 100

TST4 95 63 93 67 85 73 76 79 58 84 36 91 24 93

Fig. 4. Relevancy signatures results on TST3 and TST4.

as precision. The formula for the F-measure is

(p2+l.o)x PxR
F(P)=

132x P+li?

where P is precision and R is recall. For each of the test sets, we identified

the data points that produced the best F-measures using 5 different values of

/3: 2.0, 1.0, 0.5, 0.3, 0.2. The beta values cover a spectrum from highly

weighted recall (@ = 2.0) at one end to strongly weighted precision (~ = 0.2)

at the other end. Since our algorithms focus on high precision, we are mostly

interested in the latter end of the spectrum. Figure 4 shows that relevancy

signatures achieve good performance on TST3 across the board. We achieve

1007. precision on TST3 with 30% recall and still achieve 94% precision with

67% recall. Relevancy signatures also get high precision (> 90%) on TST4,

but only at lower recall values. These results imply that relevancy signatures

can be effective at high-precision text classification. However, because the

thresholds may have to be set fairly high to achieve good precision across

different tests sets, consistent high precision may be possible only at rela-

tively low recall levels.

3.1.4 A Simple Word-Based Algorithm. Relevancy signatures perform

quite well on TST3 and TST4, but we were curious to see whether a

ACM Transactions on Information Systems, Vol 12, No, 3, July 1994.

310 . E. Rlloffand W. Lehnert

word-based approach would do just as well, or perhaps better. To address this

question, we tested a simple algorithm that uses single words to classify

texts. This algorithm is similar to the relevancy signatures algorithm except

that the statistics are compiled for individual words, instead of for signatures.

For each wordl” that appears in the training set, we count how many times it

appears in the training set and how often it appears in a relevant text in the

training set. Then for each word we estimate the conditional probability that

a text is relevant given that it contains the word. The formula is

[

text is relevant

1

N
Pr

word, ● REL-TEXTS

text contains word, – N word,

where NWOrd is the number of times that word, appeared in the training set,

and N~~~dt ~ REL. TEXTS is the number of times that word, appeared in

relevant texts in the training set. We then use two thresholds, R and M, to

select a set of words that are highly correlated with relevance. We consider a

word to be a relevant word if (1) its conditional probability is greater than or

equal to R and (2) it appeared at least M times in the training set. Finally,

we classify a new text as relevant if it contains any of the relevant words.

We tested this algorithm using the same training and test sets as before.

We varied R from 0.70 to 0.95 in increments of 0.05, and we varied M from O

to 50 in increments of 5. Figure 5 shows the results of this algorithm on TST3

and TST4. The relevant words algorithm performs quite well on TST3,

particularly at the high-precision end, where it consistently achieves 90% or

higher precision for recall levels under 50%. However, precision falls quickly

at the high-recall end, down to 69% at 100% recall (where there are multiple

data points) and even below 69% at other points. Remember that 69%

precision is the baseline for TST3, so the algorithm is classifying every text

as relevant for the data point at 100% recall, 69% precision.

On TST4, the simple word-based algorithm has much more difficulty.

Precision levels are low across the board except at the extreme low-recall end,

where there are data points with both high and low precision. The data points

are so scattered because the algorithm is classifying very few texts as

relevant. For example, the leftmost data point toward the bottom of the TST4

graph corresponds to 3.6% recall and 67% precision. But 3.6% recall of 55

relevant texts means that the algorithm classified correctly only 2 relevant

texts. Since the precision is 677., the algorithm must have classified a total of

3 texts as relevant. When this single misclassified text is correctly classified,

the precision jumps to 100%. At low recall levels, changing the classification

of a single text can have a dramatic impact on precision, and as a result,

precision is extremely volatile. We conclude that this simple word-based

algorithm can achieve good performance on some texts but cannot consist-

1“To gwe this algorithm the same advantages that the relevancy signatures algorithm had, we

ran each text through our preprocessor first Among other things, the preprocessor normalizes

date expressions and incorporates a small phrasal lexicon so that lexlcalized expressions are

treated as single words.

ACM Transactions on Information Systems, Vol 12, No 3, July 1994

High-Precision Text Classification . 311

TST3

100

90

80

70

s 60
.-
.: 50

& 40

30

20

10

0
0 102030405060708090100

recall

TST4

.x

.; 50
a
& 40

30

20

10

0

0 102030405060708090100

recall

Test Set Recall F(2) F(1) F(.5) F(.3) F(.2) Precision

TST3 100 74 100 74 94 8(I 72 91 57 95 57 95 16 100

TST4 100 57 100 57 95 61 58 74 40 85 40 85 13 100

Fig. 5. Simple keyword algorithm on TST3 and TST4.

ently obtain high precision. The difference between our word-based approach

and the information extraction approaches will become even more pro-

nounced in the next two sections.

3.2 The Augmented Relevancy Signatures Algorithm

Relevancy signatures identify key phrases and expressions that are strongly

associated with relevance for a domain. However, they are susceptible to false

hits when a key phrase occurs in an irrelevant context. For example, consider

the following two sentences:

(a) A car bomb exploded.

(b) The foreign debt crisis exploded.

Both of these sentences are represented by the signature (exploded, $explo-

sion$). But (a) describes a terrorist event, and (b) does not. Metaphorical

expressions are pervasive in language and can cause false hits during text

classification. Expressions like “killing the agreement,” “death to communism,”

and “an attack on freedom” are prevalent in the MUC-4 corpus.

In short, relevancy signatures can fail when a correct classification depends

on additional context surrounding a phrase. Even without metaphorical

ACM Transactions on Information Systems, Vol. 12, No, 3, July 1994,

312 . E. Rlloffand W. Lehnetl

language, contextual distinctions can be a common source of false hits. For

example, consider these two sentences:

(a) The peasants were attacked by the rebels.

(b) Kent Jr. was attacked by three other Pavon Prison inmates.

Once again, both sentences are represented by the same signature,

(attacked, $attack-passive$), but (a) describes a terrorist incident while (b)

does not. The identity of the perpetrator (rebels vs. inmates) is critical in

distinguishing a terrorist event from a nonterrorist event. To address these

problems, we extended the relevancy signatures algorithm to include slot

filler information. By augmenting the signatures with slot fillers, we capture

local context surrounding the key phrase, which can improve the accuracy of

the resulting classifications.

3.2.1 Augmented Relevancy Signatures. A relevancy signature represents

the presence of a key phrase in a text. By looking only for the existence of a

concept node, we are ignoring the surrounding context that is available inside

the concept node. Augmented relevancy signatures [Riloff and Lehnert 1992]

use the information extracted by the concept nodes in combination with the

signatures to classify texts. Relevancy signatures represent the existence of

concept nodes; augmented relevancy signatures represent concept node

instant iations.

We represent each slot filler as a triple of the form: (concept node type, slot

name, semantic feature). For example, suppose a kidnapping concept node

extracts the victim “the mayor of Achi.” The victim slot filler yields the

following slot triple: (kidnapping, victim, GOVERNMENT-OFFICIAL), because the

word “mayor” is tagged with the semantic feature GOVERNMENT OFFICIAL in

the dictionary .11 This slot triple represents the fact that a government official

was identified as the victim of a kidnapping event. We use semantic features

instead of lexical items to generalize over the specific words in the text.

An augmented releuancy signature is the combination of a signature and a

slot triple that are independently highly correlated with relevance for a

domain. If a text contains an augmented relevancy signature, then it must

contain both a highly relevant key phrase and a highly relevant piece of

information surrounding the key phrase. The criteria for augmented rele-

vancy signatures are strict, since both sources of information must be highly

correlated with relevance independently. As a result, augmented relevancy

signatures are very effective at classifying texts with high precision.

3.2.2 The Algorithm. The augmented relevancy signatures algorithm is

the same as the relevancy signatures algorithm except that we collect and

apply statistics for slot triples as well as for signatures. For each concept

node produced by CIRCUS, we generate a signature and a set of slot triples

to represent the slot fillers extracted by the concept node. For each slot triple,

11Some words have multiple semantic features assigned to them. In this case, we create multiple

slot triples for a filler, one for each semantic feature.

ACM TransactIons on Information Systems, Vol 12, No. 3, July 1994.

High-Precision Text Classification . 313

we estimate the conditional probability that a text is relevant given that the

slot triple appears in the text. Finally, we identify a set of “reliable” slot

triples by using two thresholds that are analogous to the relevancy signature

thresholds: R,lOt and M~lOt. A slot triple is judged to be “reliable” if it

appears at least M,lot times in the training corpus and if its conditional

probability is greater than or equal to R~lOt. Figure 6 illustrates the training

procedure.

To classify a new text, we process the text using CIRCUS and generate a

signature and set of slot triples for each concept node produced by CIRCUS. If

any concept node yields both a relevancy signature and a reliable slot triple,

then we classify the text as relevant. Otherwise we classify the text as

irrelevant.

3.2.3 Experimental Results. We evaluated the augmented relevancy sig-

natures algorithm on the basis of the same test sets, TST3 and TST4. First,

we used the training set of 1500 texts to generate signature and slot triple

statistics. Once again, we tested the algorithm with a variety of threshold

settings. We varied each of R and R.lOt from 0.70 and 0.95 in increments of

0.05, and each of M and M.lOt from O to 20 in increments of 5.12

Figure 7 shows the scatterplots for the augmented relevancy signatures

algorithm on TST3 and TST4. Each data point represents the application of

the algorithm using a specific set of threshold values. As before, many

different threshold settings produce identical results, so we see far fewer

than 900 data points. The recall\ precision tradeoff is still apparent in these

graphs but is more difficult to see because the combinations of threshold

settings are more complex. The tails on the left side of the graph are caused

by low recall, which makes precision especially volatile. As we noted

in Section 3.1.4, at very low recall values changing the classification of a

single text can have a dramatic impact on precision. The augmented

relevancy signatures algorithm is especially susceptible to these effects

because its strict criteria for relevance can result in relatively few relevant

classifications.

We see several important differences between these results and the results

for the relevancy signatures algorithm. The most striking difference is that

augmented relevancy signatures achieve better performance on TST3. Aug-

mented relevancy signatures reach 1009% precision at 62% recall, but rele-

vancy signatures reach 100’2ZOprecision with only 30’%0 recall. The augmented

relevancy signatures algorithm also achieves 100% precision with 277o recall

on TST4, while relevancy signatures alone could achieve only 93 YO precision

with 247o recall on TST4.

On the surface, it might seem counterintuitive that the algorithm with

stricter criteria for relevance produces better recall (at 100% precision) than

the algorithm with less strict criteria. The reason for this is subtle. The

lZ We used bigger increments for M than in the previous experiments because the combinatorics

of varying four thresholds can quickly get out of hand. Even with the larger increments of 5, we

ran the algorithm 900 times on each test set.

ACM Transactions on Information Systems, Vol. 12, No. 3, July 1994.

314 . E, Riloff and W, Lehnert

CLASSIFICATION

concept
::x:~ + (Ctis)+ nodes=

signatures &

slot triples
“-~’:”nt

Fig 6. Flowchart fortheaugmented relevancy signatures algorithm

TST3

100

90

80

70

~ 60

:? 50
U
b 40

30

20

10

0

0 102030405060708090100

recall

TST4

00

90

80

70

60

50

40

30

20

10

0

0 102030405060708090100

recall

Test Set I Recall] F(2)] F(1) I F(.5) I F(.3) F(.2)] Precision

TST3 8193 1819318193 I8193I621OO I621OOI 62 100

I TST4
1 I , i I

8974189741897416784156 89] 27 100 I 27 100

Fig 7. Augmented relevancy signatures results on TST3 and TST4,

relevancy signatures algorithm classifies a text as relevant if it contains a

single key phrase that is highly correlated with relevance. As a result, it may

be able to attain high precision only with high threshold values. The aug-

mented relevancy signatures algorithm classifies a text as relevant if it

contains a key phrase and a piece of extracted information that are highly

correlated with relevance. Therefore, it can often sustain high precision levels

with lower threshold values. The low threshold values enable the algorithm

to achieve better recall levels while maintaining strong precision.

It is also worth noting that augmented relevancy signatures perform very

well on TST3 at the high recall end, achieving 9370 precision with 81% recall.

ACM Transactions on Information Systems,VO112, No. 3, July 1994.

High-Precision Text Classification . 315

Both algorithms have difficulty on TST4 at the high recall end, but aug-

mented relevancy signatures obtain better precision (74%) than relevancy

signatures alone (63’%) without sacrificing much recall.

3.3 Case-Based Text Classification

As we noted earlier, keyword approaches in general and relevancy signatures

in particular are prone to false hits when the correct classification of a text

depends on the context surrounding a keyword or phrase. Augmented rele-

vancy signatures were our first attempt to go beyond keywords and phrases

and take advantage of local context. Augmented relevancy signatures demon-

strated good success with high-precision text classification, but sometimes

only with moderate recall.

Many texts describe a relevant terrorist incident even though they do not

contain any specific words or phrases that are highly correlated with rele-

vance. Some sentences contain multiple pieces of information that are highly

correlated with relevance together but are not necessarily highly correlated

with relevance independently. For example, the word “killed” is not highly

correlated with terrorism because people are killed in many situations that

are not terrorist in nature. However, if a MUC-4 text mentions that a

government official was killed, then the text probably is describing a terrorist

incident because government officials are frequently the victims of terrorist

attacks in Latin America. Even so, we would not want to classify every text

that mentions a government official as a relevant text. To classify texts

reliably, we need to consider both pieces of information together. In this

situation, a weak key phrase (“was killed”) identifies a potentially relevant

event, and a strong slot filler (government official victim) provides additional

evidence that the event is probably terrorist in nature.

A strong key phrase combined with a weak slot filler can be equally

effective. For example, the word “assassination” is an important word in the

domain of terrorism, but we cannot always rely on it because many irrelevant

texts in the MUC-4 corpus refer to assassination in general. The presence of a

known victim often distinguishes a general reference to assassination from a

specific one. Since the word “assassination” is such a strong cue for terrorism,

almost any reference to a victim will do. For example, if a text describes the

assassination of an individual, it is probably describing a specific terrorist

attack. Once again, the key phrase and the slot filler are not highly correlated

with relevance independently, so we need both pieces of information to make

a reliable classification. The presence of a strong key phrase (“assassination”)

identifies a potentially relevant event, and the slot filler (any victim) serves

as an additional source of evidence that the text is relevant.

In summary, the combination of a key phrase and a slot filler may be

highly correlated with relevance together even though they are not necessar-

ily correlated with relevance independently. However, some relevant texts do

not contain any strong key phrases or strong slot fillers. Sometimes a text

merely contains an abundance of information that describes a relevant

ACM Transactions on Information Systems,Vol. 12,No. 3, July 1994.

316 . E, Riloff and W, Lehnert

incident. In these texts, the whole is more compelling than the parts. For

example, consider the following sentences:

Police sources have confirmed that a guerrilla was killed and two civilians were

wounded this morning during an attack by urban guerrillas.

The mayor reiterated hls position when he commented on the attack in which 20

persons were killed and approximately 100 were Injured, which was perpetrated

yesterday by terrorists on the drug cartel’s payroll near Itagui municipality.

Two vehicles were destroyed and an unidentified office of the agriculture and

livestock ministry was heavily damaged following the exploslon of two bombs

yesterday afternoon.

Each of these sentences describes a specific terrorist incident. However, none

of the words or phrases are necessarily relevant on their own. The words

“killed ,“ “wounded,” and “attack” describe a violent incident that could easily

be military. The phrase “urban guerrillas” is certainly associated with terror-

ism, but guerrillas are mentioned in many texts that describe military

incidents or do not mention any specific incidents at all. The bottom line is

that sometimes we need multiple pieces of information to conclude that a

text is relevant. We need to know that there was a violent act (e.g., “attack”)

perpetrated by terrorists (e.g., “by urban guerrillas”) against civilian targets

(e.g., “two civilians were wounded”). This information is compelling collec-

tively, and we need all of it to classify the text as relevant with confidence.

In this section, we describe a text classification algorithm that uses case-

based reasoning to classify texts. Case-based reasoning techniques use the

solutions to previous problems (called “cases”) to solve new ones (e.g., Ashley

[1990], Hammond [1986] and Kolodner and Simpson [1989]). By representing

natural language contexts as cases, information that spans multiple clauses

can be used collectively to classify texts.

3.3.1 The Case Representation. Ideally, a text should be classified as

relevant or irrelevant on the basis of the entire document. However, to avoid

the problems of discourse analysis,13 we used single sentences as a first

approximation toward larger contexts. Each case represents the natural

language context associated with a single sentence.

To create a set of cases for a document, for each sentence we collect all of

the concept nodes produced by CIRCUS and merge them into a case. A case is

represented as a structure with five slots: signatures, perpetrators, victims,

targets, and instruments. The signatures slot contains the signatures associ-

ated with each concept node generated by the sentence. The remaining four

slots contain the information pertaining to the fillers extracted by these

concept nodes.li The concept nodes extract specific strings from the text (e.g.,

13For the MUC task, discourse analysis refers to the problem of tracking multiple event

descriptions in a single text. Discourse analysis was one of the most difficult problems encoun-

tered in MUC-3 [Iwanska et al. 1991].

14The concept nodes in our MU(2-4 dictionary extract only these 4 classes of information In

general, a case should have one slot for each concept node slot defined for the domain.

ACM Transactmns on Information Systems, Vol 12, No 3, July 1994

High-Precision Text Classification . 317

“the mayor”), but only the semantic features associated with the strings are

stored in the case (e.g., GOVERNMENT-OFFICIAL). Figure 8 shows a sample

sentence, the concept nodes produced by CIRCUS for the sentence, and the

resulting case representation.

Note that the case representation does not preserve the associations be-

tween concept nodes and their slot fillers. For example, the case in Figure 8

does not specify whether the GOVT-OFFICE-OR-RESIDENCE was destroyed and

the TMNSPORT-VEHICLE was damaged or vice versa. We, purposely, disassoci-

ated the slot fillers from the concept nodes that extracted them so that our

algorithm could search for relationships between any signature and filler.

3.3.2 The Case Base. During training, we convert each document in the

training corpus into a set of cases and then store them in a case base. Each

document is represented as a set of cases, one for each sentence that

produced at least one concept node. The resulting case base contains thou-

sands of natural language contexts from hundreds of texts. It is important to

note that the case base is constructed automatically as a side effect of natural

language processing.

To classify a new document, we convert the document into cases and

determine whether any of its cases are relevant to the domain. The heart of

the algorithm is its ability to judge the relevancy of new cases accurately. If

any of the cases are deemed to be relevant then we classify the document as

relevant; otherwise we classify the document as irrelevant.

To determine the relevancy of a new case, the most obvious approach is to

retrieve the most similar case from the case base and apply its classification

to the new case. Most case-based reasoning (CBR) systems retrieve one or a

few very similar cases and apply them directly to the current case (e.g.,

Ashley [1990] and Hammond [1986]). We cannot do this, however, because

the MUC-4 corpus provides us with the correct classifications for each

document but not for each case. If a document is irrelevant, the text does not

contain any relevant information so all of its cases must be irrelevant.

However, if a document is relevant then some of the sentences in the text

describe a relevant incident, but we do not know which ones. This is a classic

example of the credit assignment problem .15 We do not know which cases

contain the information that is responsible for the relevant classification of

the document.

To get around this problem, we rely on statistics to sift through the case

base and identify cases that probably contain relevant information. The

general approach is similar to that of the previous algorithms. We probe the

case base with a set of features, retrieve cases that share these features, and

15The credit assignment problem is a well-known term used by artificial intelligence researchers.

It refers to the difllculty of determining which part of a system deserves credit (blame) for a

correct (incorrect) result.

ACM Transactions on Information Systems, Vol 12, No 3, July 1994

318 E. Riloff and W. Lehnert

SENTENCE: Twovehicles were destroyed and an unidentified of flceof

the agriculture and livestock ministry was heavily damaged following the

explosion of two bombs yesterday afternoon.

CONCEPT NODES

$destruction-passive$ (triggered by “destroyed”)

target = two vehicles

$damage-passive$ (triggered by “damaged”)

target = an unidentified office of the agriculture and livestock ministry

$weapon-bomb$ (triggered by “bombs”)

CASE

Signatures: (<destroyed, $destruction-passive$>,

<damaged, $damage-passive$>,

<bombs, $weapon-bomb$>)

Perpetrators: nil

Victims: nil

Targets: (GOVT-OFFICE-OR-RESIDENCE TRANSPORT-VEHICLE)

Instruments: (BOMB)

Fig. 8. A sample sentence, concept nodes, and resulting case

look at the statistical properties of the retrieved cases. If a high percentage of

the retrieved cases come from relevant documents, we assume that this is not

a coincidence. The retrieved cases must share something that makes them

relevant. Since we know that all the cases share the probe features, these

features probably represent relevant information. It follows that new cases

containing these features are also likely to be relevant.

Ideally, we would like to retrieve from the case base all cases that share

exactly the same features as the new case. However, our case representation

is rich enough and the training corpus is not large enough for the case base to

contain many exact matches. Since we rely on the statistical properties of the

retrieved cases to determine whether the cases are truly relevant, we need to

retrieve a reasonably large number of cases. So instead of looking for exact

matches, we use relevancy indices to retrieve cases that share a few specific

features. In the next section, we introduce the notion of a relevancy index,

describe its representation, and explain how it is used to retrieve cases.

3.3.3 Relevancy Indices. A relevancy index is a collection of features that,

together, reliably predict a relevant event description. To make things less

abstract, first we will describe the representation and then justify it with

examples. A relevancy index is a triple of the form: (signature, slot filler, case

outline). As we have already explained, a signature represents a set of

linguistic expressions. A slot filler is a pair consisting of the name of a slot

ACM Transactions on Information Systems,VO112, No 3, July 1994

High-Precision Text Classification . 319

and a semantic feature representing the information extracted by the slot,

such as (perpetrators, TERRORIST).16 The third part of a relevancy index is the

case outline. An outline is a list of slots in a case that contain fillers. For

example, the outline (perpetrators, victims) represents a case that contains

information in the perpetrator and victim slots but not in the target or

instrument slots. The signature slot is always filled, so we do not include it as

part of the outline. The case outline represents the types of information that

were found in a sentence.

By combining a signature, slot filler, and case outline into a single index,

we retrieve cases that share similar key phrases and at least one piece of

similar information, and that contain roughly the same amount and types of

information. By indexing simultaneously on a signature and a slot filler, we

retrieve cases that are strongly associated with terrorism because the combi-

nation of a key phrase and a slot filler is compelling. The relevancy index

may represent a weak key phrase and a strong slot filler, a strong slot filler

and a weak key phrase, or a weak key phrase and a weak slot filler. However,

a high percentage of the cases retrieved by the index will be relevant only if

the two items together are highly associated with terrorism,

The case outline captures both the amount of information in a sentence and

the types of information. Intuitively, we include the case outline as part of a

relevancy index because different signatures and slot fillers require different

amounts and types of supporting information in order to be reliable. For

example, consider the three relevancy indices in Table II.

The first index retrieves cases that contain the word “assassin ation,” a

civilian victim, and no additional information. We retrieved all cases in a case

base derived from 1500 texts that share this index: 1009%% of the retrieved

cases came from relevant texts. This is not surprising, since the word

“assassination” is a strong keyword for terrorism, especially when paired with

a specific victim. However, when we probed the same case base using the

second relevancy index, we found that only 68$% of the retrieved cases came

from relevant texts. The only difference between these indices was the

signature. Once again, this is not surprising, since the word “killed” is not a

good keyword for terrorism in our corpus. In particular, the MUC-4 corpus

contains many texts that contain summary descriptions of terrorist activity

over a period of time, such as; many people have been killed since 1980.

However, we can distinguish these summary descriptions from specific event

descriptions by merely changing the case outline. When we probed the case

base using the third relevancy index, we found that 1009% of the retrieved

cases came from relevant texts. The difference between the last two indices is

the case outline. The second index dictates that the retrieved cases must

contain only victims, but the third index dictates that the retrieved cases

lb Note that these are different from the slot trzples used for augmented relevancy signatures. In

the augmented relevancy signatures algorithm, the statistics for slot triples are computed

separately from the signatures. We dropped the event type (e.g., murder) from the slot represen-

tation for relevancy indices because they already include a signature (which represents a concept

node and therefore an event type).

ACM Transactions on Information Systems, Vol 12, No 3, July 1994.

320 . E Rlloff and W, Lehnert

Table II. The Power of the Case Outline

Relevancy Index Relevant Cases

(<assassination, $murder$>, (v]ctims, CIVILIAN), (wctlms)) 100%

(<killed, $murder-passlve$>, (victims, CIVILIAN), (v~ctims)) 68%

(< kdled, $murder-passlve$>, (victims, CIVILIAN), (wctlms perpetrators)) 100%

TRAINING

training
texts + CIRCUS + C::::t * cases ~ casebase

CLASSIFICATION

Fig.9. Flowchart forthecase-based text classification algorithm

must contain victims and perpetrators. General summary descriptions usu-

ally do not mention a perpetrator, but specific event descriptions typically

mention a perpetrator in conjunction with the attack. The presence of a

perpetrator can be critical in distinguishing between specific and general

event descriptions. Of course, this particular distinction does not always hold.

For example, a summary event description may blame a particular terrorist

organization for a wave of attacks, or a specific event description may fail to

identify a perpetrator. These are merely patterns that generally hold in the

MUG-4 corpus. The emphasis is not on this particular example, but on the

role of the case outline as a feature for exploiting these types of contextual

distinctions.

3.3.4 The Algorithm. Finally, we explain how relevancy indices are used

to classify new documents. The case-based text classification algorithm [Riloff

1993b] is illustrated in Figure 9.

To classify a new document, we convert the concept nodes produced by

CIRCUS into a set of cases. If any of the cases are judged to be relevant, then

we classify the text as relevant; otherwise we classify it as irrelevant. We

classify a case as relevant if and only if the following three conditions are

satisfied:

CONDITION 1. The case contains a strong relevancy index.

CONDITION 2. The case does not contain any “bad” signatures.

CONDITION 3. The case does not contain any “bad” slot fillers.

ACM Transactions on Information Systems, Vol 12. No 3, July 1994

High-Precision Text Classification . 321

Condition 1 is the most important part of the algorithm. Conditions 2 and 3

are merely secondary checks to make sure that the case does not contain any

information that might negate otherwise relevant information. We will show

examples of these situations later.

To determine whether a case contains a strong relevancy index, we first

generate all possible relevancy indices for the case. Most cases have multiple

signatures and slot fillers, so there are many possible relevancy indices for a

case.17 For each relevancy index, we retrieve all cases from the case base that

share the same index. Then we estimate the conditional probability that a

case is relevant given that it shares this index. The formula is

(— -
case is relevant

)

N ~,, = REL-CASES
Pr

case matches r~ Nc
,L

where Nc is the number of retrieved cases, and Nc . ~~~.c~s~~ is the
r

number ofr~etrieved cases that come from relevant texts. if this probability is

high, then we assume that the relevancy index is responsible for the high

correlation with relevant texts. In other words, we assume that the relevancy

index represents information that is relevant to the domain. It follows that

the new case, which shares the index, also contains information that is

relevant to the domain and should be classified as relevant.

We use two thresholds to determine whether the probability is “high”

enough: a relevancy threshold, RC~,,,, and a frequency threshold, MC.,,,. if

the conditional probability is greater than or equal to RC~S,,, and Nc > iklC~,,~,

then the relevancy index is deemed to be “strong,” and Condition 1 is

satisfied.

Conditions 2 and 3 look for “bad” signatures and slot fillers that might be

negative indicators for the domain. The presence of a particular signature or

slot filler may warrant an irrelevant classification even though the rest of the

information in a case seems relevant. As we mentioned earlier, the MUC-4

domain guidelines specify that a document is relevant only if it describes a

specific terrorist incident. Summary event descriptions are not considered to

be relevant; for example,

More than 100 people have died In Peru since 1980, when the Maoist Shining Path

organization began its attacks and its wave of political violence,

This sentence yields the following case:

Case

Signatures:
((died, die), (wave, $generic-event-marker$), (attacks, $attack-noun$))

Perpetrators: (TERRORIST owmIzAmoN)

Victims: (HLTMAN)

Targets: nll

Instruments: nll

‘7This is potentially expensive, but in practice we are constrained by the nature of language.

Most sentences contain only a relatively small amount of information.

ACM Transactions on Information Systems, Vol. 12, No. 3. July 1994.

322 . E. Riloffand W. Lehnert

However, a similar sentence describes a specific, relevant incident:

More than 100 people have died in Peru during 2 attacks by the Maoist Shining Path

organization yesterday.

This sentence yields the following case:

Case

Signatures: ((died, die), (attacks, $attack-noun$))

Perpetrators: (TERROIUST oRIxiwzAmoiw)

Victims: (HUMAN)

Targets: nil

Instruments: nil

The case representations for these two sentences are almost identical. The

only difference is that the first sentence produces a concept node called

$generic-event-marker$ in response to the phrase “wave of.” Our MUC-4

system used a small number of special concept nodes to recognize textual

cues that signal summary event descriptions. The presence of this single

concept node indicates that the sentence is a summary event description and

is therefore irrelevant, even though the rest of the information appears to be

relevant.

Similarly, a “bad” slot filler can indicate that a case is irrelevant, despite

otherwise good information. For example, a terrorist attack must involve a

terrorist perpetrator. If a civilian commits a crime, then it is not considered to

be terrorist in nature. As a result, the sentence “A guerrilla killed the mayor” is

relevant, but the sentence “A burglar killed the mayor” is not.

We use two additional “irrelevance” thresholds, 1, ,g and 1,,10~, to identify

“bad” signatures and slot fillers. Given a case, we check each signature in the

case by retrieving all cases from the case base that contains the signature.

Then we estimate the conditional probability that a case is relevant given

that it contains the signature, i.e.,

(
case is relevant

—) -

N C,hq, E REL-CASES
Pr

case contains sig, Nc
s,gt

where NC is the total number of retrieved cases that contain sig,, and
SW,

NC,,z,EREL– CASES is the number of retrieved cases that contain sig, that

come from relevant texts. If the probability is less than l,lg and Nc >

M cahes> then the signature does not satisfy Condition 2. The procedure fo~~lot

fillers is analogous. Given a case, we check each slot filler in the case by

retrieving from the case base all cases that also contain the slot filler and the

same case outline. Then we estimate the conditional probability that a case is

relevant given that it contains the slot filler and outline; i.e.,

(
case is relevant

Pr

—)-

‘C.lut,, E REL-G.4SES

case contains filler~ and outline~ Nc
‘j”~v

ACM Transactions on Information Systems, Vol 12, No 3, July 1994

High-Precision Text Classlflcation . 323

where NC,,”, is the total number of retrieved cases that contain filler, and

outline~, and N c,l.,,,. ~~1,.CAS~S iS the number of retrieved cases that come

from relevant texts. If the probability is less than I ~10~and Nc,lo,t, > Mcas,,,

then Condition 3 is not satisfied.

These four thresholds allow the user to tailor the performance of the

algorithm for his or her domain. By increasing I ~,~ and 1, ~0~ the user can

adjust the sensitivity of the algorithm to irrelevance cues. The user can also

adjust MC.,,, based on the size of the training corpus. For a large corpus, the

user may want to give MC~~e~ a large value to get more accurate probability

estimates. For a smaller corpus, the user may give MC~,,,, a small value

because the case base will contain relatively few cases. We will address the

issue of selecting appropriate threshold values more thoroughly in Section 4.

3.3.5 Experimental Results. We evaluated the case-based classification

algorithm using the same training and test sets as in the previous experi-

ments. First, we created a case base from the 1500 texts in the training set;

the final case base contained 6868 cases. Next, we tested the algorithm on

both TST3 and TST4 with a variety of threshold settings. We varied RC~,,~

from 0.70 to 0.95 in increments of 0.05, MC~~,, from O to 20 in increments of 2,

and gave each of 1, ,g and 1,10~ the values {0.50, 0.60, 0.70}.

Figure 10 shows the results for TST3 and TST4. Once again, the data

points are somewhat scattered, and we see the familiar tails on the low-

recall side. The most notable improvement is on TST4. The case-based

algorithm achieved 44% recall with 100% precision, while the augmented

relevancy signatures algorithm reached only 277o recall with 1007o precision.

These results support our claim that using natural language contexts allows

us to classify texts correctly that are inaccessible to more simple word- and

phrase-based techniques. On TST3, the results are very similar to the aug-

mented relevancy signatures algorithm, although the case based algorithm

produces a strong data point in the F(O.5) column (68% recall with 98%

precision).

Note that we see more data points with relatively low precision on TST4.

This is because combining low threshold values with larger natural language

contexts for classification can work against the user. One of the main

strengths of the case-based approach is that it can classify a text as relevant

based on context even if the text does not contain any reliable key words or

phrases. With high threshold values, a case is classified as relevant when its

context is highly correlated with relevance. However, with low threshold

values, a case is classified as relevant even when its context is weakly

correlated with relevance. This means that the text may not contain any

relevant words, phrases, or information! As a result, the case-based approach

is not particularly effective with low threshold values.

Fortunately, the case-based algorithm produces similar, or better, recall

levels than the other algorithms, even with higher threshold values. How-

ever, to get the best performance from the algorithm, we need to choose

appropriate threshold settings. In the next section, we describe a procedure

that allows the user to find good threshold values empirically.

ACM Transactions on Information Systems, Vol. 12, No 3, July 1994.

324 . E, Riloff and W Lehnert

TST3 TST4

100

90

80

70

~ 60
.-
: 50
0
& 40

30

20

10

0

0 102030405060708090100
recall

100

90

80

70

~ 60
.-
: 50
al
& 40

30

20

10

0

0 102030405060708090100

recall

Test Set FLecall F(2) F(1) F(.5) F(.3) F(.2) Precision

TST3 81 85 81 85 77 91 68 98 61 100 61 100 61 100

TST4 89 72 89 72 89 72 75 85 44 1O(I 44 100 44 100

Fig, 10. Case-based text classification results

4. COMPARATIVE ANALYSIS

In the previous section, we presented three text classification algorithms and

showed how performance improves as we use additional natural language

context to classify texts. However, all of the experiments so far were based on

two blind test sets of 100 texts each. It would be premature to come to any

conclusions about the relative merit of the algorithms based solely on these

200 texts. With such a small number of texts, effects can be magnified

positively or negatively, and the texts may not be representative of the corpus

in general. Unfortunately, the MUC-4 corpus is relatively small, and since

our algorithms all depend on statistical data, we must reserve a large

number of texts for training.

To evaluate the algorithms on the basis of more texts, we used a 10-fold

cross-validation design. This experimental design uses aZZ of the texts in the

corpus for testing by rotating different subsets of the corpus for training.

First, we divide randomly the entire corpus of 1700 texts into 10 partitions of

170 texts each. Then we evaluate each “fold” independently. For the first fold,

we use partition #1 as the test set and the remaining 9 partitions as the

training set. For the second fold, we use partition #2 as the test set and the

other 9 partitions as the training set, and so on. Each fold, therefore, has a

unique test set of 170 texts and a training set of 1530 texts. (The training sets

will overlap.) Figure 11 illustrates the process for a single fold. We use the

training set to generate statistical training data (in the form of signatures,

slot triples, or a case base) and then apply the algorithm to the corresponding

ACM TransactIons on Information Systems, Vol. 12, No. 3, July 1994

High-Precision Text Classification . 325

e test set

-
:=

ALGORITHM text classification

training set results
e

‘mLd’a’ues

Fig. 11. One fold of cross-validation.

test set. Finally, we combine (sum) the results over all 10 folds. For example,

in a 2-fold cross-validation design, if fold #1 classified 24 of 50 texts correctly

and fold #2 classified 16 of 50 texts correctly then the combined results would

be 40 out of 100 texts. The combined results reflect the performance of the

algorithm on all 1700 texts (albeit with different training sets).

An important issue that still needs to be addressed is how to find good

threshold values. In a new domain or corpus, a user would not know what

threshold values to use. The “best” threshold settings depend on the size and

nature of the corpus and, most importantly, the needs of the user. The

algorithms all support a recall/lprecision tradeoff that can be manipulated by

adjusting the thresholds. In general, a user who wants high recall should

choose lower threshold values, and a user who demands high precision should

choose higher threshold values.

Since the effectiveness of the thresholds is entirely dependent on the

corpus, we devised a procedure that allows the user to derive the “best”

threshold setting empirically. The procedure recommends threshold settings

that are appropriate for a variety of metrics. By using multiple metrics, we

create a sort of recall/precision “knob.” The user can look at the results

obtained on the training set under each metric and choose threshold settings

that will achieve the desired behavior. In this manner, users can automati-

cally identify the most appropriate threshold values for their needs based on

the corpus. The suggested threshold settings are not guaranteed to produce

the best possible results, but they are threshold values that achieved the

desired behavior on training texts.

We used seven metrics to represent a spectrum that shifts importance

gradually from recall to precision. At the two ends of the spectrum, we used

metrics to represent the absolute importance of recall (i.e., the highest recall

regardless of precision) and the absolute importance of precision (i.e., the

highest precision regardless of recall). In between these endpoints, we used

the F-measure with different ~-values to vary the relative importance of

recall and precision gradually. As before, we chose five values of ~: 2.0, 1.0,

0.5, 0.3, 0.2. Note that several ~-values give extra weighting to precision

because our algorithms were specifically designed for high-precision text

classification.

Figure 12 shows the procedure for automatically deriving good threshold

values. This design mimics the 10-fold cross-validation experiment. Using the

ACM TransactIons on Information Systems, Vol. 12, No. 3, July 1994.

326 . E. Rlloff and W Lehnert

@GZDa-

,:::~uai#g~ t::;~tra::g~

ALGORITHM ALGORITHM

\l

m

I

threshold values

Gmi@a
test

//

training

set set

. . ALGORITHM

/

Fig, 12, Threshold experiments

same training set of 1530 texts that were used to generate statistical data, we

randomly divide the training set into 10 partitions of 153 texts each. For the

first fold, we use partition #1 as the test set and the remaining 9 partitions

as the training set. For the second fold, we use partition #2 as the test set

and the other 9 partitions as the training set, etc. For each fold, we use the

training set to generate statistical data and then run the algorithm on the

test set with a variety of different threshold setting.ls Then we sum the

results of all the folds for each set of threshold values. For example, we would

sum all of the classification results for the relevancy signatures algorithm

with threshold values: {0.85, 10}. This sum reflects the performance of the

algorithm on all 1530 texts using threshold values {0.85, 10}. Finally, we

determine which threshold settings achieved the best performance under

each metric and return these seven sets of threshold values.

It is important to remember that we derive a different set of threshold

values for each fold. Figure 11 shows that the training set for each fold is also

input to the threshold experiments. The resulting threshold settings are then

applied only to the test set for the same fold. Therefore, each fold may use a

different set of “best” threshold values. The motivation for this design is that

it demonstrates how a user might go about finding good threshold settings in

a real-world scenario. Given a training set (which is necessary to generate

statistical data anyway), a user can use the same training set to derive a good

—
‘8 We tested the algorithms with the same variety of threshold settings as before, with a few

exceptions: we varied M from 0–20 in increments of 2 for the relevancy signatures algorithm, we

varied M and M,,lO$ from O– 15 in increments of 5 for the augmented relevancy signatures

algorlthm, and we varied MC ~, ~, from O– 15 in increments of 5 for the case-based algorithm, The

larger increments were necessary to keep the total number of runs under control during the

cross-validation and threshold experiments.

ACM Transactions on Information Systems, Vol 12, No. 3, July 1994.

High-Precision Text Classlficatlon . 327

set of threshold values empirically. If we assume that the training texts are

representative of new texts, the results obtained in the threshold experi-

ments predict the level of performance that will be achieved on novel texts.

Finally, we evaluate the test sets for each fold of the cross-validation

experiment using the “best” threshold settings for that fold. Each fold there-

fore yields seven sets of results, one for each metric. The results of the folds

are combined to yield seven final data points that reflect the performance of

the algorithm on the entire corpus of 1700 texts. These data points are shown

in Figure 13. In addition to the three text classification algorithms described

in Section 3, we also evaluated the relevant words algorithm described in

Section 3.1.4. This algorithm serves as a sort of baseline for the performance

of a simple word-based approach on this corpus. Note that some of the

algorithms generated fewer than seven data points because multiple metrics

produced the same results.

It is reassuring to see that the results in Figure 13 are consistent with the

results obtained in the previous experiments. In general, relevancy signa-

tures achieve better precision than the relevant words, often at comparable or

higher recall levels (relevancy signatures achieve better results under 6 of the

7 metrics). However, both augmented relevancy signatures and the case-based

algorithm perform better than the other two algorithms. In general, aug-

mented relevancy signatures and the case-based algorithm produce very

similar results. Augmented relevancy signatures obtain the best precision of

all of the algorithms, which is not surprising since they have the most rigid

criteria for relevance. For the most part, the case-based algorithm achieves

slightly better recall than augmented relevancy signatures, with similar

levels of precision (some higher, some lower).

Remember that the threshold settings were derived empirically, but they

were not guaranteed to produce the “best” results on novel texts. Therefore,

each of the algorithms may be capable of achieving better performance than

we see here. If a test set has significantly different properties from the

training set, then the empirically derived threshold values may do poorly,

whereas different threshold values would have done better. By evaluating the

algorithms on the entire corpus of 1700 texts, we hoped to minimize these

effects. Nevertheless, the consistency of one algorithm outperforming another

is compelling, as is the consistency of these results with those reported in the

earlier experiments.

Finally, the performance levels shown in Figure 13 are not quite as high as

those attained on TST3 and TST4. For example, we do not achieve 100’%

precision under any metric, and in general, the precision levels are lower.

One explanation for this is that there is some noise associated with the

answer keys in the MUC-4 corpus. As we mentioned in Section 2.2, most of

the answer keys were generated by the MUC-3 and MUC-4 participants. We

know from experience that some parts of the corpus were more reliably

encoded than others. In contrast, the answer keys associated with the TST3

and TST4 texts were generated by the conference organizers. Because these

answer keys were used for the final evaluation, extra care was taken to

ensure that they were encoded as carefully as possible. In general, noisy

ACM Transactions on Information Systems, Vol. 12, No, 3, July 1994

328 . E, Rlloff and W, Lehnert

100-1

90-

80-

70-

5 60-
.=
: 50-
0)
&, 40-

A.,

IQ_

W = Relevant Words

R = Relevancy Signatures

A = Augmented Relevancy Signatures

C = Case-Based Algorithm

30

20

10 !

o~
0 102030405060708090100

recall

Algorithm Recall F(2) F(1) F(.5) F(.3) F(.2) Precision

Rel Words 10053 98 57 87 65 69 74 43 80 32 83 15 86

Rel Sigs 95 64 95 64 87 69 78 74 52 76 29 86 17 87

Aug Rel Sigs 88 74 88 74 83 78 72 81 61 84 47 85 12 95

CBR 90 70 90 70 84 74 73 82 53 86 47 86 15 87

Fig. 13. Graph of cross-validation results

answer keys impact both the training data and the test results. But since our

algorithms are based on statistical patterns, they should be tolerant of some

noise in the training data. Noise in the test set, however, has direct impact on

the final results.

5. PORTING THE TEXT CLASSIFICATION SYSTEM TO NEW DOMAINS

In Section 1, we claimed that our text classification system is portable across

domains. The classification algorithms, themselves, use general statistical

techniques that are not domain dependent in any way. The underlying

information extraction system, however, uses two domain-specific diction-

aries, and the text classification algorithms depend on a domain-specific

training corpus. In this section, we describe briefly how to acquire the

domain-specific dictionaries with a minimal amount of effort and how to

generate an appropriate training corpus.

5.1 Porting the Information Extraction System

The concept node dictionary is potentially the main knowledge-engineering

bottleneck for the information extraction system. For MUC-4, we defined

manually a dictionary of concept nodes for the domain of terrorism. We

estimate that it took approximately 1500 person-hours on the part of highly

trained researchers to build the dictionary. However, we have shown else-

ACM TransactIons on Information Systems, Vol. 12, No 3, July 1994

High-Precision Text Classification . 329

where [Riloff 1993a; Riloff and Lehnert 1993a] that concept node definitions

can be acquired automatically given an appropriate training corpus. Using a

system called AutoSlog, in only 5 person-hours we automatically generated a

concept node dictionary for terrorism that achieved 987o of the performance

of the hand-crafted dictionary.lg Furthermore, AutoSlog can be used by

anyone who is familiar with the domain after only a minimal amount of

training [Riloff and Lehnert 1993b].

As input, AutoSlog needs a training corpus of relevant texts in which the

domain-specific information that should be extracted has been tagged with

semantic labels. For example, in the domain of terrorism, the name of each

perpetrator, victim, target, and weapon involved in a relevant terrorist event

should be tagged with its semantic type (e.g., VICTIM) and the event type (e.g.,

KIDNAPPING). NLP systems often rely on other types of tagged corpora, such as

part-of-speech tagging or phrase structure bracketing (e.g., the Brown Corpus

[Francis and Kucera 1982] and the Penn Treebank [Marcus et al. 1993]).

However, corpus tagging for automated dictionary construction is less de-

manding than other forms of tagging because it is smaller in scope. For

syntactic tagging, every word or phrase must be tagged, but for AutosSlog,

only the targeted information needs to be tagged. Sentences, paragraphs, and

even texts that are irrelevant to the domain can be effectively ignored.

CIRCUS also relies on a lexical dictionary for part-of-speech tags and

semantic features. Machine-readable dictionaries are available that contain

part-of-speech tags for thousands of words. An alternative approach is to use

a part-of-speech tagger that relies on statistics generated from a corpus.

Several statistically based part-of-speech taggers have been developed, in-

cluding OTB [Lehnert et al. 1993] and POST [Weischedel et al. 1993].

The relevancy signatures algorithm does not rely on semantic features at

all,20 but the augmented relevancy signatures algorithm and the case-based

algorithm do. Some techniques have been developed to acquire semantic

features dynamically during text processing (e.g., Cardie [1993]). Alterna-

tively, semantic features for many domain-specific words can be acquired

with minimal effort by exploiting the annotated training corpus used by

AutoSlog.21

5.2 Generating a Training Corpus

The classification algorithms rely heavily on a domain-specific training

corpus of texts. Since the statistics identify associations between extracted

information and relevance, the training corpus must contain a good mix of

lg We should note, however, that AutoSlog was not designed to generate concept nodes that

represent irrelevancy cues, such as the ones described in Section 3.3.4.

20In theory, relevancy signatures do not use semantic features. But some of the hand-crafted

concept nodes used in these experiments did rely on semantic features in their enabling

conditions. However, concept node definitions produced by AutoSlog do not use semantic

features.

21We used this strategy to acquire semantic features for the business domain of joint ventures,

and it took us only a few hours to generate a core dictionary.

ACM Transactions on Information Systems, Vol. 12, No 3, July 1994.

330 . E. Riloff and W, Lehnert

both relevant and irrelevant texts. If the corpus contains mostly relevant

tests, then virtually every phrase or context will be highly correlated with

relevant texts. If the corpus contains mostly irrelevant texts, then few, if any,

phrases or contexts will be highly correlated with relevant texts. The ideal

training corpus should be balanced between relevant and irrelevant texts.

Furthermore, the irrelevant texts should be similar in nature to the

relevant texts. That is, they should contain the same “types” of information.

For example, the irrelevant texts in the MUC-4 corpus typically describe

military incidents, civilian crimes, or terrorist activity in general. Since these

stories refer frequently to violent crimes, perpetrators, victims, targets, and

weapons, they activate many of the same concept nodes as the relevant texts.

This is important because the statistical techniques need both positive and

negative examples to identify reliable phrases and contexts. If the irrelevant

texts do not activate any of the same concept nodes as the relevant texts,

then every piece of extracted information will be highly correlated with

relevance.

We should emphasize that these algorithms may not be appropriate for

general corpora. As we explained in Section 2.2, the MUC-4 corpus was

prefiltered for the domain of terrorism. The texts were selected by keyword

search from a database of newswire articles because they contain words

associated with terrorism. The MUC-4 corpus satisfied both of the criteria

described above: (1) about 50% of the texts were relevant and (2) the

irrelevant texts were similar in nature to the relevant texts. This two-stage

process shows how traditional IR systems can be pipelined with natural

language processing systems to exploit the benefits of both approaches.

Traditional IR techniques such as keyword filtering can be used to retrieve

texts of a certain nature from a general corpus. The natural language

processing techniques can be applied to this prefiltered corpus to generate

more accurate classifications.

5.3 Run-Time Measurements

For all three algorithms, the time required for training and classification is

dominated by the sentence analyzer, CIRCUS. The average text length in the

MUC-4 corpus is 300 words; CIRCUS took approximately 13 seconds to

process each text, on average. Once the training corpus of 1500 texts was

processed by CIRCUS, it took roughly 5.1 minutes to generate the signature

data and 1.3 minutes to generate the slot triple data. The case base took 12.7

minutes to build. Classifying new texts takes about 13 seconds per text for

sentence analysis plus the time required by the algorithms for classification,

which is negligible (2–4 seconds per 100 texts.) All of these experiments was

performed on a Decstation 5000/240 running Ultrix 4.2 with 64 MB of RAM.

6. CONCLUSIONS

We have presented three algorithms that use information extraction to

achieve high-precision text classification. In general, we obtained better

performance as we used more extracted information. However, the algorithms

ACM TransactIons on Information Systems, Vol 12, No. 3, July 1994

High-Precision Text Classification . 331

have different properties that make each of them suitable for different types

of domains. The relevancy signatures algorithm uses the least amount of

extracted information. This algorithm is suitable for domains that are charac-

terized by strong key phrases and in which surrounding context is usually

not important. The augmented relevancy signatures algorithm is more appro-

priate for domains with strong key phrases when surrounding context is an

important factor. This algorithm emphasizes high precision more strongly

than the others. Finally, the case-based algorithm should be used for domains

that may not have strong key phrases and for which context is crucial.

Our work on text classification differs from previous work in several

respects. Within the IR community, text classification has typically been

approached using word-based techniques and statistical methods (e.g., Maron

[1961], Borko and Bernick [1963], and Hoyle [1973]). As we explained in

Section 1, word-based techniques have many limitations. Knowledge-based

text classification systems have been developed that address some of these

problems using rule bases or other knowledge sources (e.g., Goodman [1991],

Hayes and Weinstein [1991], and Rau and Jacobs [1991]). For example,

CONSTRUE [Hayes and Weinstein 1991] uses a rule base to identify phrases,

context, and even text structure. The rules can approximately recognize

language constructs and contexts without requiring the use of a natural

language processing system. The main advantage of our approach over other

knowledge-based systems is that our system can be easily ported to new

domains. Most knowledge-based systems require an extensive manual

knowledge-engineering effort that can take significant time and human

resources. Additionally, our system carries with it the benefits of natural

language processing. There have been other systems that use NLP techniques

as a basis for information retrieval tasks (e.g., Lewis et al. [1989], Mauldin

[1991], and Rau and Jacobs [1991]). For example, FERRET [Mauldin 1991]

used information extraction techniques to recognize relevant documents in a

standard information retrieval task. However, these NLP systems also re-

quire extensive manual knowledge engineering to build domain-specific dic-

tionaries and knowledge structures.

Another important distinction is that our algorithms do not use the entire

representation of a text to decide whether the text is relevant. Although we

skim the entire text to extract relevant information, in general we do not use

all of this information to make a classification. Instead, we look in the text for

“hot spots” that are highly correlated with relevance. Once we find a highly

relevant phrase or context, we immediately classify the text as relevant. This

is fundamentally different from other systems that reason with the entire

representation of a text. For example, Maron [1961] also classified texts by

estimating the conditional probability of a category. But he estimated the

conditional probability of a category given all of the indexing terms found in

the document. Our algorithms estimate the conditional probability of a

category given an individual indexing term. Furthermore, our indexing

terms are linguistic phrases and contexts, which are richer than single-word

terms. Since phrases and contexts are more discriminating than single words,

many of them are highly correlated with relevance by themselves. By using

ACM Transactions on Information Systems, Vol. 12, No. 3, July 1994.

332 . E. Riloffand W. Lehnert

natural language processing techniques to represent more complex indexing

terms, we can use simple statistical techniques to identify reliable phrases

and contexts that can be used effectively to achieve high precision.

In summary, we have proposed a new model for text classification that uses

an underlying information extraction system to achieve high-precision text

classification. Information extraction techniques provide the system with the

strengths of natural language processing without the difficulties of in-depth

text understanding. As a practical matter, our text classification algorithms

and the information extraction system can be easily ported to new domains.

We believe that shallow natural language processing techniques, such as

information extraction, can be used effectively to support many information

retrieval applications. By pipelining traditional IR techniques with natural

language processing capabilities, we may be able to achieve better perfor-

mances than either technology could support on its own.

ACKNOWLEDGMENTS

The authors would like to thank Jamie Callan, Claire Cardie, and Jon

Peterson for providing helpful comments on earlier drafts of this article.

REFERENCES

ASIILEY, K 1990 Modellmg Legal Argument: Reusonzng with Cases and Hypothetzcals. The

MIT Press, Cambridge, Mass,

BELKIN, N., AND CROFT, W. B. 1992, Information filtering and information retrieval: Two sides

of the same tom? Clvnmun. ACM 35, 12 (Dec.), 29–38,

BORKO, H,, AND BF,RNICK, M. 1963 Automatic document classification. J, ACM 102, 151-162.

CARDIE, C. 1993. A case-based approach to knowledge acquisition for domain-specific sentence

analysis, In Proceedings of the 11th National Conference on Artiflclal Intelligence. AA/U Press,

Menlo Park, Calif,, 798-803.

CROFT, W. B., TURTLE, H. R. AND LEWIS, D. D, 1991. The use of phrases and structured queries

in information retrieval. In Proceedings of SIGIR 1991. ACM, New York, 32–45.

DILLON, M. 1983 FASIT: A fully automatic syntactically based indexing system. J. Am Soc

Infi Sci. 34, 2, 99-108.

FAGAN, J. 1989. The effectiveness of a nonsyntactic approach to automatic phrase indexing for

document retrieval J. Arm Sac. Inj! Sci. 40, 2, 115-132.

FRMWIS, W., AND KUCERA, H. 1982. Frequency An.alysls of Englzsh Usage Houghton Mifflin,

Boston, Mass.

GOODMAN, M. 1991. Prism: A case-based telex classifier. In Proceedings of the 2nd Annual

Conference on Innovatwe Applzcatzons of Artzfzczal Intelligence. AAA1 Press, Menlo Park, Cahf,,

25-37.

HAMMOND, K, 1986. CHEF: A model of case-based planning, In Proceedings of the 5th

Natzonal Conference on Artificial Intelligence. Morgan Kaufmann, San Mateo, Calif., 267-271.

HARMAN, D., ED. 1993. The Fzrst Text Retrleual Conference (T7?EC1). Spec. Pub 200–207,

National Inst. of Standards and Technolobg, Galthersburg, Md

HAWS, P. J., AND WEINSTEIN, S, P. 1991. Construe-TIS: A system for content-based indexing of

a database of news stones, In Proceedings of the 2nd Annual Conference on InnoL,ative

Applicrhons of Artzficzal Intelligence. Menlo Park, Calif. AAAI Press, 49–64,

HOYLE, W 1973. Automatic mdexing and generatmn of classification systems by algorlthm

Inf Sforage Refrzeu. 9, 4, 233-242.

IWANSKA, L., APP~LT, D , Awso, D., DAHM:REN, K., GLOVER STALLS, B., GRISHMAN, R., KRUPKA, G.,

MONTGOMERY, C., AND RILOFF, E. 1991. Computational aspects of discourse in the context of

MUC-3, In Proceedings of the 3rd Message Understanding Conference (MUC-3). Morgan

Kaufmann, San Mateo, Calif., 256-282.

ACM Transactions on Information Systems. Vol 12, No 3, July 1994

High-Precision Text Classlflcation . 333

KOLODNER, J., AND SIMPSON, R. 1989. The MEDIATOR: Analysis of an early case-based

problem solver. Cog. Sci. 13, 4, 507-549.

KROVETZ, R. AND CROFT, W. B. 1989. Word sense disambiguation using machine-readable

dictionaries. In Proceedings of SIGIR 1989. ACM, New York.

LEHNERT, W. 1991. Symbolic/subsymbolic sentence analysis: Exploiting the best of two worlds.

In Aduances zn Connectionist and Neural Computational Theory, J. Barnden and J. Pollack,

Eds., Vol. 1 Ablex Publishers, Norwood, N.J., 135-164,

LEHN~RT, W. G. AND SUNDHEIM, B. 1991. A performance evaluation of text analysis technolo-

gies. AI Msg. 12, 3, 81-94.

LEHNERT, W., CAROIE, C., FISHER, D., MCCARTHY, J., RILOIW, E., AND SODERLAND, S. 1992.

University of Massachusetts: Description of the CIRCUS system as used for MUC-4. In

Proceedings of the 4th Message Understanding Conference (MUC-4). Morgan Kaufmann, San

Mateo, Calif., 282-288.

L~HNERT, W., MCCARTHY, J., SODERLANB, S., RILOFF, E., CARDIE, C., PETERSON, J., FENG, F.,

DOMN, C., AND GOLDMAN, S. 1993. University of Massachusetts/Hughes: Description of the

CIRCUS system as used for MUC-5. In Proceedings of the 5th Message Understanding

Conference (MUC-5~. Morgan Kaufmann, San Mateo, Calif., 277-291.

LEWIS, D. D., CROFT, W. B., AND BHANDARU, N. 1989. Language-oriented information retrieval.

Int. J. Intell. Syst. 4, 3, 285-318.

MARCtTS, M., SANTO~INI, B., AND MARrINKIEWICZ, M. 1993. Building a large annotated corpus of

English: The Penn Treebank. Cornput. Lzng. 19, 2, 313-330.

MARON, M. 1961. Automatic indexin~ An experimental inquiry, J. ACM 8, 404-417.

MAULDIN, M. 1991. Retrieval performance in FERRET: A conceptual information retrieval

system. In Proceedings of SIGIR 1991. ACM, New York, 347–355.

RAU, L. F., AND JACOBS, P, S. 1991. Creating segmented databases from free text for text

retrieval. In Proceedings of SIGIR 1991. ACM, New York, 337–346.

RILOFF, E. 1993a. Automatically constructing a dictionary for information extraction tasks. In

Proceedings of the llth National Conference on Artificial Intelligence. A&M Press, Menlo Park,

Calif., 811-816.

RILOFF, E. 1993b. Using cases to represent context for text classification. In Proceedings of the

2nd International Conference on Information and Knowledge Management (CIKM-93). ACM,

New York, 105-113.

RILOFF, E., AND LEHNERT, W. 1993a. Automated dictionary construction for information ex-

traction from text. In Proceedings of the 9th IEEE Conference on Artificial Intelligence for

Apphcations. IEEE Computer Society Press, Los Alamitos, Calif., 93-99.

RILOFF, E., AND LEHNERT, W. 1993b. Dictionary construction by domain experts. In Proceed-

ings of the TIPSTER Text Program (Phase I). Morgan Kaufmann, San Francisco, CaLf.,

257-259.

RILOFF, E., AND LEHNERT, W. 1992. Classif@g texts using relevancy signatures. In Proceed-

ings of the 10th National Conference on Artificial Intelhgence. AAA1 Press, Menlo Park, Calif.

329-334.

SALTON, G. 1989. Automatic Text Processing: The Transformation, Analysis, and Retrieval of

Information by Computer. Addison-Wesley, Reading, Mass.

SUNDHEIM, B., Ed. 1993. Proceedings of the 5th Message Understanding Conference (MUC-5).

Morgan Kaufmann, San Mateo, Calif. To be published.

SUNDHEIM, B., Ed. 1992. Proceedings of the 4th Message Understanding Conference (M UC-4).

Morgan Kaufmann, San Mateo, Calif.

SUNDHEIM, B., Ed. 1991. Proceedings of the 3rd Message Understanding Conference (MUC-3).

Morgan Kaufmann, San Mateo, Calif.

TURTLE, H., AND CROFT, W. B. 1991. Efficient probabilistic inference for text retrieval. In

Proceedings of RIAO 91.644-661.

WEISCHEDEL, R., METEER, M., SCHWARTZ, R., RAMSHAW, L., AND PALMUCCI, J. 1993. Coping with

ambiguity and unknown words through probabilistic models. Comput. Ling. 19 2, 359–382.

ACM Transactions on Information S-mtems, VO1. 12. No. 3, JUIY 1994.

