
Polyphonic Music Modeling with Random Fields

Victor Lavrenko, Jeremy Pickens
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts, Amherst, MA 01003 USA

{lavrenko,jeremy}@cs.umass.edu

ABSTRACT

Recent interest in the area of music information retrieval
and related technologies is exploding. However, very few
of the existing techniques take advantage of recent devel-
opments in statistical modeling. In this paper we discuss
an application of Random Fields to the problem of creating
accurate yet flexible statistical models of polyphonic music.
With such models in hand, the challenges of developing effec-
tive searching, browsing and organization techniques for the
growing bodies of music collections may be successfully met.
We offer an evaluation of these models in terms of perplexity
and prediction accuracy, and show that random fields not
only outperform Markov chains, but are much more robust
in terms of overfitting.1

Categories and Subject Descriptors

H.5.5 [Sound and Music Computing]: Modeling

General Terms

Algorithms

1. INTRODUCTION
In this paper we discuss an application of Random Fields to the

problem of statistical modeling of polyphonic music. Statistical

models of music are relatively few, despite the fact that music is

a fairly well­understood phenomenon, familiar to everyone since

earliest years and intimately tied to the human experience. This is

partly due to the fact that the focus of contemporary musical the­

ory is primarily in the area of grammar and semantics, and there

have been little need or interest in modeling music as a stochastic

process. However, as music gradually finds its home in a digital

world, there will come a growing need for systems that facilitate
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organizing, searching and classifying musical collections, systems

that can verify authenticity or determine authorship of a given mu­

sical piece, or perhaps even mix, blend and re­style compositions to

the user’s desire. These systems are likely to be based on statistical

models of music, just like the modern text­processing systems are

largely based on the statistical models of language.

In particular, we suggest three specific applications which may

be aided by our statistical modeling process. First, ad hoc music

retrieval is made possible in that a model may be created for ev­

ery piece of music in the collection, then each piece ranked by the

probability that model produces a given query. Second, audio mu­

sic recognition (AMR), the transcription of raw audio into symbolic

notation [13, 2], is a difficult task for polyphonic music, especially

when note candidates are only considered in their local context. The

models we create in this paper may be used to better inform local

decisions based on patterns detected throughout a piece as a whole.

In this manner, imperfect transcriptions may be cleaned up, missing

notes inserted, extraneous notes deleted, by the statistical patterns

inducted by our models. Finally, optical music recognition (OMR),

the transcription of scanned image sheet music into symbolic nota­

tion [10], may be aided by our approach in a manner similar to the

AMR application as well.

As we will describe in the following sections, music can be

thought of as a very structured two­dimensional stochastic process.

Unlike text, the musical vocabulary is relatively small, containing

at most several hundred discrete note symbols. What makes music

so fascinating and expressive is the very rich structure inherent in

musical pieces. Whereas text samples can be reasonably modeled

using a simple bi­gram or tri­gram language model, musical samples

are characterized by numerous symmetries, repetitions, and short­

and long­term interactions that are beyond the capabilities of simple

Markov chains. This is one of the main reasons why we selected

Random Fields as the paradigm for modeling music.

Random Fields represent a generalization of Markov chains to

multi­dimensional spatial processes. They are incredibly flexible,

allowing us to model arbitrary interactions between the notes in a

sample of music. They have been very popular in modeling of phys­

ical systems, and recently have demonstrated superior performance

in a number of text­related applications. Finally, and perhaps most

importantly, random fields are extremely attractive from a theoret­

ical standpoint. Probability distributions over the fields have ex­

ponential form, consistent with the maximum­entropy framework

for inference. The objective function is globally ∩­convex with re­

spect to parameters of the model, and so parameters can be learned

effectively through iterative methods. Furthermore, there exists a

principled way of inducing the structure of the field that guarantees

improvement in the objective function, and in some cases allows

closed­form solutions.



The remainder of this report is organized as follows: In section 2

we provide a brief overview of related work, both in music mod­

eling and in recent applications of random fields. Section 3 starts

with a discussion of polyphonic music and introduces the music

representation that will be used throughout this report. In section 4

we discuss how a sample of music can be mapped onto a two­

dimensional field over binary variables. We discuss the structure of

the field, the interactions between the variables and the procedures

that can be used to induce the field and learn its parameters. In

section 5 we discuss the performance of our system and provide

a quantitative evaluation of its effectiveness. Section 6 serves to

summarize the findings of this project.

2. RELATED WORK
This section serves a dual purpose. First we will briefly survey

recent publications attempting to model music as a stochastic pro­

cess. We will also discuss the fundamental differences between

these approaches and the model we explore in the paper. Then we

will discuss relevant literature on applications of random fields in

the area of natural language processing.

2.1 Music Models
Due to the complex nature of polyphonic music, most of the

work in stochastic modeling of music, as in the music informa­

tion retrieval field in general, operates in the monophonic domain.

Examples and applications include automated score following [7]

and melody­based information retrieval [1]. Notable exceptions to

the monophonic domain are Raphael [17] and Pickens et al [16].

The former work uses carefully constructed hidden Markov models

to automatically transcribe polyphonic audio piano music, treat­

ing the actual notes (pitch values) as the hidden states and using

Viterbi to discover these values. The latter work proceeds by map­

ping each simultaneity in a piece of music onto a set of 24 triads

using a musically­motivated heuristic algorithm, then constructing

“visible” n­gram Markov models of those triad sequences.

Finally, it must be mentioned that entropy has been applied to

other areas of music, including clustering and melodic extraction.

As an example of the latter, Uitdenbogerd [19, 20] uses entropy

to select monophonic melody lines from polyphonic MIDI pieces.

What we present in this paper is a more comprehensive application

of the principles of entropy to the problem of creating reasonable

music models, which models may then be used for a wide variety

of music­related tasks.

2.2 Random Fields and Maximum Entropy
Markov Random Fields have long been a popular tool for model­

ing complex physical systems, and most of their fundamental prop­

erties were derived in a physical setting. The technique has also been

quite popular in the field of computer vision. However, it is only

recently that random fields found applications in large­vocabulary

applications, such as language modeling and information extraction.

One of the most influential works in the area is the 1997 publication

of Della Pietra et al. [6], which outlined the algorithms that will be

used in parts of this paper. The learning procedures for parameter

estimation date back to a 1972 publication by Darroch and Ratcliff

[5], but do not include the techniques for feature induction, which

are crucial for the purpose of music modeling. Berger et al. [3]

were the first to suggest the use of maximum entropy models for

natural language processing. Since then, the models have steadily

gained popularity, and variations were proposed for the tasks of lan­

guage modeling [18], text segmentation and information extraction

[12, 9], text classification [14] and machine translation [15]. Re­

cently, Malouf [11] carried out an extensive comparison of learning

algorithms for the maximum­entropy framework.

While our work was inspired by applications of random fields

to language processing, it bears more similarity to the use of the

framework by the researchers in computer vision. In most natural

language applications authors start with a reasonable set of features

(which are usually single words, or hand­crafted expressions), and

the main challenge is to optimize the weights corresponding to these

features. This works well in natural language, where words bear

significant semantic content. In our case, induction of the random

field is the crucial step. As we describe below, we will start with

a set of single notes, which by themselves cannot reflect anything

about a musical piece. We will use the techniques suggested by [6]

to automatically induce new high­level features, such as consonant

and dissonant chords, progressions and repetitions.

3. MUSIC REPRESENTATION
The domain in which we wish to apply the MRF modeling is

polyphonic music. Music has several possible representations. In

its most unstructured form, music can be represented as a sequence

of audio signal samples, as for example in a .wav or .mp3 file.

On the other end of the spectrum, music may be represented as

instructions to a performer, as in sheet music. Music in this form

contains all the notes in a piece of music, the onset, symbolic­code

duration (eg: "quarter" note, "half" note"), and pitch of every single

note. This music also comes complete with time signatures, key

signatures, sharps, flats, ties, slurs, and various other dynamics

markings which help instruct the performer as to the manner in

which the piece should be performed. We deal with neither of these

forms, but rather with a form that combines aspects of the two.

MIDI (www.midi.org) is a characteristic example, though we do

not require the music to be in this specific format. In MIDI files, the

onset, duration, and pitch of every note in a piece of music is known.

But no other information is necessarily available. The pitches are

encoded as numbers, ranging from 1 to 128. The durations are

not symbolic, but instead are given as millisecond integers. The

onset times also are not symbolic, but occur at millisecond integer

locations.

Monophonic music is such that, if a note is playing, no new note

may start until the previous note has finished. In polyphonic music,

there is no such restriction. Any note may start or finish before any

other note finishes. We may therefore think of polyphonic MIDI

music as a two­dimensional graph, with millisecond time along the

x­axis, and MIDI note number (1 to 128) along the y­axis. At any

point along the y­axis, notes turn "on", remain "on" for a particular

duration, and then turn back "off" again. As a quick example, see

the figures below. Black circles represent notes being "on". White

circles represent notes being "off".

In order to do our MRF modeling, we need to select features

from our polyphonic source documents and use those features for

modeling. We begin by selecting only the onset times of each new

pitch in the sequence, and ignoring the duration of the note. The

example above thus transforms into:

Next, we get rid of all millisecond onset times which contain

no pitches. (We are throwing away not only the duration of the



notes, but the duration between notes. We feel this is necessary

for a first­stage modeling attempt. Future models might contain

more complexity.) Those millisecond onset times which do contain

pitches, however, we give the specialized name "simultaneity".

Finally, we reduce the 128­note y­axis to a 12­note octave­

equivalent pitch set. We do this simply by taking the mod­12 value

of every MIDI pitch number. The example above thus becomes:

So we are left with a sequence of 12­element bit vectors; there is

either a 1 or a 0. In each spot, depending on whether a note of that

(mod 12) pitch had an onset in that particular simultaneity.

As an important aside, we must again emphasize that the

modeling techniques described in this paper do not require the

source music to be MIDI. The only information with which we are

concerned is the pitch values and relative order of the notes. The

section above explains how we might obtain this information from

a MIDI file, but we could have just as easily obtained it from a

transcribed (AMR) audio file or a transcribed (OMR) scanned sheet

music file, to name just a few sources. Our algorithms work on any

music data in which pitch information is available.

4. RANDOM FIELDS OVER MUSIC
In the previous section we showed how polyphonic music can

be represented as a temporal progression of 12­dimensional bi­

nary vectors. Restricting the representation to a single octave (12

notes) is more of an implementation convenience, and in general we

can think of music as a sequence of n­dimensional binary vectors.

Given this representation, it is tempting to model music with simple

Markov Chains, treating the entire vectors as if they were words

in some vocabulary, and computing the probabilities of transition

from one vector to another. This is a viable approach, but it suffers

from extreme data sparseness. Instead, we choose to treat the entire

progression as a two­dimensional field over binary variables. This

framework allows us to selectively model the interactions between

the individual notes. For instance, with random fields we could

directly model the probability of the same note being played twice

in a row. Modeling this event in isolation is next to impossible with

Markov Chains on entire 12­bit vectors.

In the remainder of this section we will discuss in detail our

model for polyphonic music. First, we will discuss the structure of a

random field over the notes, the notions of history or neighborhood

and feature functions over the neighborhood. We will also give

the general form of the maximum entropy distribution over the

variables in the field, and state the objective of our model. Then,

in section 4.2 we will describe how a suitable field structure can

be induced automatically, starting with primitive atomic features

and generalizing to more interesting complex relationships. The

field induction procedure closely follows the algorithm described

in [6], the primary difference being that we are dealing with a

directed conditional field, whereas [6] worked with an undirected

joint model. Finally, in section 4.3 we discuss how we can learn the

parameters of the model to optimize its performance on the chosen

objective function.

n0,1 n0,2 n0,3 n0,4 . . . n0,t . . .
n1,1 n1,2 n1,3 n1,4 . . . n1,t . . .
n2,1 n2,2 n2,3 n2,4 . . . n2,t . . .

. . .
n11,1 n11,2 n11,3 n11,4 . . . n11,t . . .

Figure 1: Variables of a Musical Random Field

4.1 Structure of the Field
Suppose we are given a musical piece represented by T simul­

taneities (binary vectors of length 12). With this piece we will

associate a lattice of binary variables {ni,t}, indexed by the time

t = 1. . .T , and by note index i = 0. . .11. Each variable {ni,t}
can be either 0 or 1, indicating whether a note i is on or off at time t.
Figure 1 illustrates the lattice. Our goal is to develop a model that

will allow us to predict the value ni,t from the values of the sur­

rounding variables. In other words, we would like to develop an es­

timate for the probability distribution P (ni,t|{nj,s : j 6=i or s 6=t}).

It is important to stress that we do not want to assume independence

among the variables, or restrict the conditioning to the immediate

neighbors of ni,t. On the contrary, we believe that the value of

ni,t is strongly influenced by both its short­range and long­range

neighbors in the lattice. However, for the scope of this paper we

will impose several limitations on what kind of dependencies may

exist in our field.

4.1.1 Directed Structure

The first limitation we impose concerns the temporal nature of

music. In the most general formulation of a random field, the value

of the note ni,t may be influenced by both the notes that precede

it {nj,s≤t}, and notes that follow it {nj,s>t}. In our initial model

we will restrict the dependencies to only those notes that precede

the target note in the sequence. For every note ni,t we define the

concept of history or neighborhood Hi,t to include the notes that

either occur before time t, or notes that occur at time t, but have an

index lower than i:

Hi,t = {nj,s : s < t} ∪ {nj,s : s = t, j < i} (1)

Notes in Hi,t are the ones that can be examined when we are

making the prediction regarding ni,t. In other words, we assume

that the probability of note i playing at time t is completely deter­

mined by Hi,t in our model. By defining the history in this manner

we have converted our model from a general Markov Random Field

to a directed structure, where all influences progress in an acyclic

fashion left­to­right. We would like to stress that in our opinion

this does not make the model equivalent to a simple Markov Chain,

since we still allow arbitrary dependencies within the subset defined

by the neighborhood Hi,t. For a graphical illustration of directed

dependencies in the field see Figure 2.

Figure 2: Dependencies in a directed random field
over polyphonic music: note ni,t is influenced by the
neighborhood Hi,t of notes preceding it.



4.1.2 Conjunctive Features.

The second limitation we impose on the conditional probabil­

ity P (ni,t|Hi,t) concerns the nature of dependencies that will be

modeled by a field. In general, a random field framework allows

arbitrary dependencies (or features) between the target ni,t and its

neighborhood Hi,t. For example, ni,t may depend on the answer to

the following question: “what is the total number of times note
i was played in the history Hi,t?”. For the sake of simplicity

and elegance we will deliberately restrict allowed dependencies to

binary questions of the form: “was note j played at some time
s before t?”. We will also allow generalizations where a question

is asked about some subset S of the notes in the allowed history

Hi,t. The answer to a question of this form will be called the feature

function fS , and S will be referred to as the support of f . For a

given support S ∈ Hi,t, the feature function fS is defined as the

conjunction of answers about the individual notes in nj,s∈S:

fS(ni,t, Hi,t) = ni,t

�
nj,s∈S

nj,s (2)

Defined in this manner, our feature functions are always binary,

and equal to 1 if all the notes defined by S were played before

the target note ni,t. The binary nature of our features will come

particularly handy when we describe the details of automatic field

induction in the following section. Also note that a feature function

always includes the target note ni,t. This is not a fallacy in the

model, since ni,t will never actually be considered a part of its

own history. Presence of ni,t in the feature serves only to tie the

occurrences of notes in S to the occurrence of ni,t. If the feature is

considered likely, that is evidence in favor of predicting ni,t = 1.

If the feature does not occur, it suggests that ni,t is likely to be zero.

On a final note, we choose to make features time­invariant, but not

index invariant. This means that a feature is expected to characterize

the same kind of dependency, regardless of the time index t of the

target ni,t. Consequently, we will index the time component of the

notes in S not in absolute values but relative to the time t. We do

not do the same for the note index i, so these indices will remain

absolute. As an illustration, below we discuss some examples of

features that could have an impact on note “2” at time t. Figure 3

shows a graphical representation of the same notes:

1: f1(n2,t, H2,t) = n2,tn1,t – this feature represents the

event that two notes immediately adjacent on the musical

scale (notes 1 and 2) were being played at once. This is a

highly unlikely event in a typical musical piece, so we expect

this feature to have a negative contribution to the probability

that ni,t = 1.

2: f2(n2,t, H2,t) = n2,tn2,t−1n2,t−2 – this feature represents

the event that the same note (2) was played three times in a

row. This is a relatively common event, and we expect this

feature to possess a positive weight.

3: f3(n2,t, H2,t) = n2,tn1,tn3,t−1n3,t−2 – hypothetical fea­

ture, representing both a dissonant combination (notes 1 and

2 at the same time), and a reasonably common progression

(note 3 twice, and then note 2).

4: f4(n2,t, H2,t) = n2,tn0,tn2,t−2n0,t−2 – complex feature

representing a chord (notes 0 and 2) played successively,

but with some other intervening set of notes which do not

participate in the formulation of the given feature.

4.1.3 Exponential Form

At this point we are ready to select the parametric form that we

will be using for computing the probabilities P (ni,t|Hi,t). There

Figure 3: Examples of musical features that may
be induced to predict the probability of note 2 be-
ing played at time t. Black circles represent notes
that are part of the feature function. Boxed black
circle denotes the note n2,t. Boxed area represents
the history H2,t. From left to right, the features
are: {n2,tn1,t}, {n2,tn2,t−1n2,t−2}, {n2,tn1,tn3,t−1n3,t−2},
{n2,tn0,tn2,t−2n0,t−2}

are a number of different forms we could choose, but it turns out that

for random fields there is a natural formulation of the distribution

that is given by the maximum­entropy framework. Suppose we are

given a setF of feature functions that define the structure of the field.

The maximum­entropy principle states that we should select the

parametric form that is: (i) consistent with the structure imposed by

F and (ii) makes the least amount of unwarranted assumptions —

that is the most uniform of all distributions consistent with F . The

family of functions that satisfies these two criteria is the exponential

(or log­linear) family, expressed as:

P̂ (ni,t|Hi,t) =
1

Zi,t
exp

✁✂ ✄✆☎
f∈F

λff(ni,t, Hi,t) ✝ ✞✟ (3)

In equation (3), the set of scalars Λ = {λf : f ∈ F} is the

set of Lagrange multipliers for the set of structural constraints F .

Intuitively, the parameter λf ensures that our model predicts feature

f as often as it should occur in reality. Zi,t,Λ,F is the normalization

constant that ensures that our distribution sums to unity over all

possible values of ni,t. In statistical physics, it is known as a

partition function and is defined as follows:

Zi,t =
☎
n

exp

✁✂ ✄✆☎
f∈F

λff(n, Hi,t) ✝ ✞✟ (4)

For a general random field, the partition function Zi,t is ex­

ceptionally hard to compute, since it involves summation over all

possible states of the system. In a typical system the number of

states is exponential in the number of field variables, and direct

computation of equation (4) is not feasible. In our case, the special

nature of the underlying problem makes computation of the par­

tition function extremely simple. Recall that all underlying field

variables are binary, so equation (4) only needs to be computed for

two cases: ni,t = 0 and ni,t = 1. We can further simplify the prob­

lem if we recall that every feature function f is a binary conjunction,

and every f includes ni,t in its support. As a direct consequence,

f(ni,t, Hi,t) is non­zero only if ni,t = 1. The assertion holds for

all feature functions f∈F , which implies that the summation inside

the exponent in equations (3) and (4) is zero whenever ni,t = 0.

These observations allow us to re­write equation (3) in a form that

allows very rapid calculations:

P̂ (ni,t = 1|Hi,t) = σ

✁✂ ✄ ☎
f∈F

λff(1, Hi,t) ✝ ✞✟
P̂ (ni,t = 0|Hi,t) = 1− P (ni,t = 1|Hi,t) (5)



Here σ is the sigmoid function, defined as: σ(x) = ex

1+ex . We

have stated equation (5) as a special case applicable to our particular

setting. In the remaining arguments we will use the form given by

equations (3) and (4) to ensure generality.

4.1.4 Objectives

The ultimate goal of this project is to develop a probability dis­

tribution P̂ (ni,t|Hi,t) that will accurately predict the notes ni,t

in polyphonic music. There exist a number of different measures

that could indicate the quality of prediction. We choose one of

the simplest — log­likelihood of the training data. Given a train­

ing set T consisting of T simultaneities with 12 notes each, the

log­likelihood is simply the average logarithm of the probability of

producing every note in T :

LP̂ =
1

12T
log

T�
t=1

11�
i=0

P̂ (ni,t|Hi,t) (6)

= �
H

�
n

P̃ (n, H) log P̂ (n|H)

In the second step in equation (6) we re­expressed the log­

likelihood in terms of the expected cross-entropy between the

target distribution P̃ (n|H) and the estimate P̂ (n|H) produced by

our field. The target empirical distribution P̃ (n|H) can be com­

puted directly from the training set T , it is just the relative frequency

of observing a note n together with the history H across all the po­

sitions (i, t) in the field:

P̃ (n, H) =
1

12T

T�
t=1

11�
i=0

δ(n, ni,t)δ(H,Hi,t) (7)

Here δ refers to the Kronecker delta function, defined as:

δ(x, y) = ✁ 1 if x = y
0 otherwise

(8)

Returning our attention to equation (6), we stress that the expec­

tation ✂ H [. . . ] is performed over all possible values that a history

H of a note might take. This set is exponentially large, and a direct

computation would be infeasible. However, for computation we

always use the first part (top) of equation (6), whereas the second

part (bottom) comes very handy in the algebraic derivations of the

field induction algorithm.

To summarize, in the previous two sections we restricted our­

selves to the exponential (Gibbs) form of the probability distribu­

tion P̂ (n|H), and declared that our objective is to maximize the

likelihood of the training data within that parametric form. It is im­

portant to note that there is a different statement of objectives that

provably leads to exactly the same exponential solution P̂ (n|H).

Rather than focus on maximum­likelihood, we could search for

the most uniform distribution P̂ (n|H) that is consistent with the

structure imposed by F . To clarify what we mean by the structure

consistency, suppose f ∈ F is a feature of the field. Let Ẽ[f ] de­

note the empirical or target expected value of f , which is simply

how often the feature actually occurs in the training data T :

Ẽ[f ] = �
H

�
n

P̃ (n, H)f(n, H) (9)

=
1

12T

T�
t=1

11�
i=0

f(ni,t, Hi,t)

Similarly, our estimate P̂ (n|H) gives rise to the predicted expec­

tation Ê[f ] for the function f . Predicted expected value is simply

how often our model “thinks” that f should occur in the training

set:

Ê[f ] = �
H

P̃ (H) �
n

P̂ (n|H)f(n, H) (10)

=
1

12T

T�
t=1

11�
i=0

�
n

P̂ (n|Hi,t)f(n, Hi,t)

The key difference between Ê[f ] and Ẽ[f ] is that we do not look

at the actual value ni,t when we compute Ê[f ], instead we “predict”

it from our model P̂ (n|H). Given the two expectations in equations

(9) and (10) it is natural to strive that they be equal, that is we’d like

to arrange our model in such a way that predicted frequency Ê[f ]

of any feature f matches its actual frequency of occurrence Ẽ[f ].

Furthermore, if there are multiple distributions P̂ (n|H) that honor

the constraint that Ê[f ] = Ẽ[f ], the maximum­entropy principle

would guide us to pick the distribution that makes the least amount

of assumptions about the data, or equivalently, maximizes its own

expected entropy:

HP̂ = �
H

P̃ (H) �
n

P̂ (n|H) log P̂ (n|H) (11)

Curiously, maximizing the entropy subject to the constraint that

Ẽ[f ] = Ê[f ] for every feature f turns out to be equivalent to assum­

ing an exponential form for our probability distribution P̂ (n|H),

and maximizing the likelihood given by equation (6). Della Pietra

et al. [6] provide an excellent proof of this claim.

4.2 Feature Induction
In the previous section we outlined the general structure of a

directed random field over polyphonic music and stated our objec­

tive: to learn the probability distribution P̂ (n|H) that maximizes

the likelihood of the training data (equation (6)). Recall that we

selected exponential form for P̂ (n|H). If we examine equation (3)

we note that there are two things the model depends on. The first

and the most important in our opinion is the structure of the field

F , represented as a set of constraints or feature functions f∈F .

These constraints represent most significant dependencies between

the variables of the field. The second thing we can learn is the

set of weights Λ = {λf}, one for each feature f∈F . We know

that Λ and F are intimately intertwined and we need to learn the

simultaneously, but for the sake of clarity we split the discussion in

two sections. This section will describe how we can incrementally

induce the structure F of the field, starting with a very flat, mean­

ingless structure and slowly improving on that. Then, in section 4.3

we describe how a set of weights Λ can be optimized for a given

structure F .

Our approach to inducing the structure of the field closely follows

the algorithm proposed by Della Pietra et al. [6]. We start with a very

flat structure of the field that contains only individual notes, without

any dependencies: F0 = {ni,t : i = 0. . .11}. Recall that our

features are time­invariant, so t is a dummy index that only serves

as a point of reference in the field. We will incrementally update

the structure F by adding the features g that result in the greatest

improvement in the objective function. Suppose Fk = {fS} is the

current field structure. Also assume that the corresponding weights

Λk are optimized with respect to Fk. We would like to add to Fk

a new feature g that will allow us to further increase the likelihood

of the training data. In order to do that we first need to form a set

of candidate features G that could be added. We define G to be the

set of all one­note extensions of the current structure F :



G = ✁ fS · nj,s : fS ∈ F and there exists

nj′,s′∈S such that |s− s′| ≤ 2 � (12)

In other words, we form new candidate features g taking an

existing feature f and attaching a single note nj,s that is not too far

from f in time (in our case, not more than by two simultaneities).

Naturally, we do not include as candidates any features that are

already members of F . Now, following the reasoning of [6], we

would like to pick a candidate g∈G that will result in the maximum

improvement in the objective function. Suppose that previous log­

likelihood based only on Fk was LP̂ . Now, if we add a feature

g weighted by the multiplier α, the new likelihood of the training

data would be:

LP̂+{αg} = LP̂ + αẼ[g]− log Ê[eαg] (13)

We may factor this expression in terms of three convenient com­

ponents: the old log­likelihood LP̂ which does not depend on

g or α, the empirical expectation Ẽ[g], and the predicted ex­

pectation Ê[eαg]. If the candidate feature g is binary, that is

g(n, H) ∈ {0, 1}, the new log­likelihood LP̂+{αg} can be ex­

pressed in a particularly convenient form that involves only expec­

tations over g:

LP̂+{αg} = LP̂ + αẼ[g]− log ✁ eαÊ[g] + (1− Ê[g]) ✂ (14)

When we add a new feature g to the field, we would like to add it

with a reasonable weight α, preferably the weight that maximizes

the contribution of α. We can achieve that by differentiating the

new log­likelihood LP̂+{αg} with respect to α and find the root of

the derivative:

0 =
∂LP̂+{αg}

∂α
⇐⇒ α = log ✄ Ẽ[g](1− Ê[g])

Ê[g](1− Ẽ[g]) ☎ (15)

An important observation to make is that we arrived at a closed­

form solution for the optimal weight α to be assigned to the new

feature g. The closed­form solution is a special property of binary

feature functions, and greatly simplifies the process of inducing field

structure. Knowing the optimal value of α in closed form allows us

to compute the resulting improvement, or gain, in log­likelihood,

also in closed form:

Gain = Ẽ[g] log
Ẽ[g]

Ê[g]
+ (1− Ẽ[g]) log

1− Ẽ[g]

1− Ê[g]
(16)

Equation (16) is the result of substituting the optimal value of

α from equation (15) and some simple algebraic manipulation.

The final form is particularly interesting, since it represents the

Kullback­Leibler divergence between two Bernoulli distributions

with expected values Ẽ[g] and Ê[g] respectively.

4.3 Parameter Estimation
In the previous section we described how we can automatically

induce the structure of a random field by incrementally adding the

most promising candidate feature g ∈ G. We also presented the

closed form equations that allow us to determine the improvement

in log­likelihood that would result from adding g to the field, and

the optimal weight α that would lead to that improvement. What

we did not discuss is the effect of adding g on the weights of other

features already in the field. Since the features f ∈ F are not

independent of each other, adding a new feature will affect the

balance of existing features. From equation (16) we know that the

new log­likelihood LP̂+{αg} is always going to be better than the

old one LP̂ (unless the field is saturated and cannot be improved

anymore). However, this does not guarantee that the current set

of weights Λ is optimal for the new structure. We may be able to

further improve the objective by re­optimizing the weights for all

functions that are now in the field.

Assume now that the structureF contains all the desired features.

We would like to adjust the set of weights Λ, so that the objective

function LP̂ is maximized. First, we will factor the likelihood into

two parts, corresponding to the numerator and the denominator of

equation (3):

LP̂ = �
H

�
n ✆✝ P̃ (n, H) �

f

λff(n, H) ✞✟ −
�
H

✄ P̃ (H) log �
n′

eΣf λf f(n′,H) ☎ (17)

Now, to maximize the objective, we will, as before compute the

partial derivatives of LP̂ with respect to each weight λf ′ , with the

intention of driving these derivatives to zero:

∂LP̂

∂λf ′

= Ẽ[f ′]− Ê[f ′] (18)

Driving each partial derivative to zero will maximize the objec­

tive. But note how this also forces the satisfaction of constraints

that Ẽ[f ] = Ê[f ] which we discussed in section 4.1.4 as part of

the maximum­entropy framework.

Unfortunately, there is no closed­form solution that would allow

us to set the weights to their optimal values. Instead, we will

describe an iterative procedure that will drive the weights towards

the optimum. There are a number of algorithms for adjusting the

weights in the exponential models. The most widely known is

perhaps the Generalized Iterative Scaling (GIS) algorithm proposed

by Darroch and Ratcliff [5], and the Improved Iterative Scaling

version (IIS) described by Della Pietra et al. [6]. However, as

Malouf pointed out in his recent analysis [11], iterative scaling is

an extremely slow procedure, hindered by the need to compute

complex upper bounds for the objective. Much faster convergence

can be achieved by using variations of gradient descent. This is

the approach we adopt in this paper. Given the current value of the

weight vector Λ, we will update it by a small step in the direction of

the steepest increase of the likelihood, given by the vector of partial

derivatives. We compute the following for all f ∈ F :

λk+1
f ←− λk

f + β
∂LP̂

∂λf
= λk

f + β ✠ Ẽ[f ′]− Ê[f ′] ✡ (19)

Equation (19) will be applied iteratively, until the change in

likelihood is smaller than some pre­selected value. Note that while

Ẽ[f ] is computed only once for each feature f , we will have to

re­compute the value Ê[f ] after every update. This makes the

learning procedure quite expensive. However, we can claim that the

learning procedure is guaranteed to converge to the global optimum.

Convergence is ensured by the fact that the objective function LP̂

is ∩­convex with respect to the weights λf . One may verify this by

computing the second­order derivative of LP̂ and observing that it

is everywhere negative.

4.4 Field Induction Algorithm
We are finally ready to bring together the results of sections 4.1,

4.2, and 4.3 into one algorithm for automatic induction of directed

random fields over polyphonic music. Let T be the training set of

T simultaneities of 12 notes each. The field induction algorithm is

as follows:



1. Initialization

(a) Let the feature set F0 be the set of single­note features:

F0 = {ni,t, i = 0 . . . 11}.

(b) Set the initial features weights λf = 1 for all f ∈ F0.

2. Weight Update

(a) Set λk+1
f ← λk

f + β ✠ Ẽ[f ]− Ê[f ] ✡ for each feature

f ∈ F .

(b) If there is noticeable change in likelihood, repeat step

(2.a).

3. Feature Induction

(a) Compute the set of candidate features:

G = {fS · nj,s : fS ∈ F and ∃nj′,s′∈S s.t. |s− s′| ≤ 2}

(b) For every candidate feature g ∈ G compute the optimal

weight αg = log ✁ Ẽ[g](1−Ê[g])

Ê[g](1−Ẽ[g])
✂

(c) For every g ∈ G compute expected improvement from

adding g to the structure F :

LP̂+{αgg} − LP̂ = αgẼ[g]− log ✁ eαg Ê[g] + (1− Ê[g]) ✂
(d) Pick the candidate g that promises the highest improve­

ment, add it to the structure F , and set λg = αg .

(e) If there is noticeable change in likelihood, go to step (2),

otherwise return F and Λ as the induced field.

5. EXPERIMENTS
In this section we briefly report on the experiments we carried

out to test the effectiveness of the proposed model in capturing the

regularities of polyphonic music. For our project, we have four col­

lections. The first is a set of approximately 3000 polyphonic music

pieces from the CCARH [8] at Stanford. These are mostly baroque

and classical pieces from Bach, Beethoven, Corelli, Handel, Haydn,

Mozart and Vivaldi. The original scores have sometimes been bro­

ken up into their various movements, but otherwise each piece in

the collection is a unique composition. Our remaining three sets

of music, on the other hand, are pieces which were intentionally

composed as variations on some original theme.

T 26 individual variations on the tune known to English speakers

as ‘Twinkle, twinkle, little star’ (in fact a mixture of mostly

polyphonic and a few monophonic versions);

L 75 versions of John Dowland’s ‘Lachrimae Pavan’, collected

as part of the ECOLM project (www.ecolm.org) from dif­

ferent 16th and 17th­century sources, sometimes varying in

quality (numbers of ‘wrong’ notes, omissions and other in­

accuracies), in scoring (for solo lute, keyboard or five­part

instrumental ensemble), in sectional structure and in key;

F 50 variations by four different composers on the well­known

baroque tune ‘Les Folies d’Espagne’.

For the 3000­piece CCARH data, we split the collection into 1%

training and 99% testing subsets. For each of the TLF sets, we

split them in to 50%­50% training and testing subsets. We induce a

random field as we described in section (4.4) for each of the training

sets. For comparison, we also train up a Markov chain model for

each of these same training sets.

We will perform two types of evaluation. First, we qualitatively

look at the types of features that were induced in our field. Our

hope here is that random fields can pick out very intuitive features,

something that a musician would easily recognize. Second, we will

carry out a brief comparison between our model and the simple

(though comparable) Markov Chain model. We will look at which

model was able to perform better on the testing data, as a function

of the number of parameters in the model.

5.1 Qualitative Evaluation
We would like to see whether the features which are induced and

highly weighted by our algorithm are indicative of the same patterns

and structures a musician might notice. We must emphasize that

our goal in this work is to create a statistical model that accurately

predicts which notes will or should appear in a piece of music. We

are not trying to do a formal music­theoretic analysis. However, we

want to qualitatively show that those features learned by our statis­

tical model do actually make sense musically. There is no reason

that they must; it is just interesting that they do. Toward this end

we trained a model exclusively on Variation 6 of Mozart’s “Ah vous

dirai­je, Maman”, one of the “Twinkle” variations. Our algorithm

quickly induced approximately 8,000 features and learned their as­

sociated weights. Those induced features with the highest weights

are given below.

(We need to make a quick note of the following: For this qualita­

tive evaluation, for the sake of readability, we did not do an octave

equivalance mod 12 on the pitch values, as explained in section 3.

Instead, we use the middle four octaves centered around middle C.

Numbers are given in standard MIDI values, where 60 represents

middle C. Notes sounding at the same time are given in brackets,

such that [60][79,64] can be interpreted as note 60 followed by

the simultaneous playing of notes 79 and 64.)

• [74,67] Perfect 5th on G (G is the dominant of C)

• [53][52][53] Sequential minor 2nds (as you would find in

the 3rd­to­4th degrees of the C Major scale)

• [81,72,53] F Major triad (F is the sub­dominant of C)

• [60][79,64] Semi­arpeggiated C Major triad (first the c, then

the e and the g)

• [72,67,48] Perfect 5th on C

• [59][60] Sequential minor 2nd (as you would find in the

7th­to­8th degrees of the C Major scale)

• [64][60] Sequential Major 3rd on C

• [79,76,48] C Major triad

• [48][47][48] Sequential minor 2nds (as you would find in

the 7th­to­8th degrees of the C Major scale)

We can see that these highly­weighted features are indeed in­

dicative of the same sort of patterns a musician might notice. First,

there are a lot of Major triads, perfect 5ths, and Major 3rds. These

chords are also either based on C Major, or on a closely related key

to C (F and G). Indeed, this piece is written in the key of C Major.

Second, the trill­like arpeggiations on the notes 52­53 and 47­48

are also highly characteristic of this piece. In short, this algorithm

has not picked out just any random polyphonic subset of notes; it

has managed to select and weight highly features which are charac­

teristic of the basic tonality and structure of this piece of music as

a whole.
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5.2 Quantitative Evaluation
In this section we conduct a quantitative evaluation of using

Random Fields for the purpose of polyphonic music modeling. Our

main goal is to show that Random Fields are able to learn generative

models of music – models that generalize beyond the training set

and accurately predict the notes in unseen variations.

5.2.1 Baseline

We will compare effectiveness of Random Fields against the

popular N-gram Markov Chains. A Markov Chain estimates the

probability of observing a 1 in a particular position i, t by condi­

tioning the variable ni,t on all preceding variables within a limited

horizon. Markov Chains work on sequential data, and we lin­

earize the polyphonic representation using the following mapping:

ni,t −→ n′
k where k = i + 12t. Markov Chains do not involve

any feature induction, the probability of observing a 1 in a given

position k under an N ­gram Markov Chain is given by:

PN (n′
k|n

′
k−N+1 . . . n′

k−1) =
#(n′

k−N+1 . . . n′
k)

#(n′
k−N+1 . . . n′

k−1)
(20)

To make Markov Chains comparable to our Random Field mod­

els, we estimate 12 separate Markov Chains. Each of the 12 chains is

responsible for predicting notes of a single pitch i, but the probabil­

ities can be conditioned on any other pitch value. It is a well­known

fact that Markov Chains are extremely effective in capturing the

regularities present in the training data. However, for large values

of N these models generalize poorly, as it becomes increasingly un­

likely that any conditioning history n′
k−N+1 . . . n′

k−1 gets an exact

match on the testing data. To alleviate this problem, researchers

commonly use smoothing techniques, where the high­order prob­

ability is interpolated with lower­order estimates. We use linear

interpolation with the following recursive definition:

P̂N (n′
k|H

′
k) = λNPN(n′

k|H
′
k) + (1− λN)P̂N−1(n

′
k|H

′
k)

We set smoothing parameter λN according to the estimate origi­

nally proposed by Witten and Bell [21]:

λN = AN/ (AN + VN )

Here AN is the aggregate count of all N ­grams that occur in the

training data and UN is the number of unique training N ­grams.

The intuition behind the formula is to provide more smoothing when

the training data is sparse and contains many unique N ­grams (large

UN ) with few repetitions (small AN ).

5.2.2 Evaluation Methodology

As explained at the beginning of section 5, we randomly split

each of our collections of music into training and testing sets. We

use the training portion to estimate the model and then measure how

well our model predicts each note in the testing portion. We use two

popular measures of performance to assess predictive capabilities

of our model: perplexity, commonly used to evaluate generative

models, and prediction accuracy, favored by the machine learning

community.

Perplexity is a measure of probability mass that would be as­

signed to the correct notes if we attempted to “generate” the testing

set by random sampling from our statistical model. Perplexity is

defined as the inverse geometric average of probabilities for every

note in the testing set: ✁✁� N
t=1 � 12

i=1 P̂ (ni,t|Hi,t) ✂ −1/12T

Here the

products go over every note in every simultaneity of the testing set.

From the definition, it is evident that perplexity is just 2 raised to

the entropy. Perplexity has an intuitive interpretation in terms of

uncertainty about the predicted value: a perplexity of k is the same

level of uncertainty one would experience when confronted with k
equally­likely choices.

While perplexity is a natural measure for evaluating genera­

tive models, a number of researchers [4] observed that perplexity

does not always correspond to prediction accuracy. In addition to

perplexity values we show Receiver Operating Characteristic
(ROC) curves which directly show misclassification rates. An in­

tuition behind ROC curves is as follows. We would like to predict
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the value of a particular note ni,t. One way to do that is to look

at the probability P̂ (ni,t|Hi,t) assigned by our model and decide

ni,t = 1 if that probability is above some threshold θ. For any

particular threshold we can compute the true positive rate: pro­

portion of all notes ni,t = 1 that scored above that threshold, and

false positive rate: proportion of all notes ni,t = 0 that scored

above the threshold. An ROC curve is obtained by plotting the true

positive rate against the false positive rate across all possible values

of a threshold θ ∈ [0, 1].

5.2.3 Perplexity Results

Figure 4 shows the perplexity of the two models on the training

and testing portions of the CCARH polyphonic collection. We plot

perplexity versus the total number of parameters in the model – for

Markov Chains this is the total number of N ­grams that have been

memorized, for Random fields it is the total number of features

we induced. Every point on the Markov Chain curve corresponds

to a different “order”: the first point reflects a unigram model,

the second, a bigram, and so on. The last point in each curve

corresponds to a 30­gram Markov Chain. For Random Field curves

every point corresponds to 10 iterations of the learning algorithm.

Several things become apparent when we examine Figure 4 in detail.

First, we see that Markov Chains are effective in capturing the

training data: training perplexity drops steadily and reaches very

low values. Remember that perplexity near 1 means that the model

is almost certain (on average) about the value of each variable.

However, we also observe that Markov Chains generalize poorly to

testing data. The testing perplexity starts to rise afer we condition

on 3 or 4 variables in the past, and beyond 7­ or 8­gram predictions

are completely off target. After conditioning on 12­15 variables

the testing perplexity is around 2, which means that the model is

almost clueless about the value of each testing note. This kind

of behavior is understandable: high­order Markov Chains learn by

memorizing portions of the data, and long memorized histories are

unlikely to re­appear in new music.

Random Fields show a very different behavior as we induce more

and more features. The training perplexity of these models is not

always as low as with N ­gram models, but the testing perplexity

does not explode and in most cases continues to decrease as we add

more and more parameters. This indicates that the model is extract­

ing salient features of the training dataset, instead of memorizing

portions of it. These salient features generalize well to the testing

portion of the dataset. The lowest testing perplexity achieved by

Random Fields is lower than the lowest Markov Chain perplexity.

We observed similar results on the other three datasets, see Table 1

for details.

5.2.4 Prediction Accuracy

Figure 5 compares the accuracy of Random Fields and Markov

Chains on the task of predicting every note in the testing portion

of CCARH. The diagonal line in the plot represents prediction

accuracy that would correspond to making random guesses about

each note. We observe that Random Fields noticeably outperform

Markov Chains. The lower portion of Table 1 summarizes the

quantitative difference between the ROC curves on the four datasets.

We use area under the ROC curve as a single­number measure

of relative performance. The Random Field Model is 13% more

accurate than Markov Chains on the CCARH dataset and 11%

more accurate on the Lachrimae dataset. It is also important that

the Random Field ROC curve completely dominates the Markov

Chain ROC curve: this means that the improvement is consistent

across all possible threshold values.

6. CONCLUSIONS
In this report we described how Random Fields can be used to

model polyphonic music. The model we proposed is theoretically

sound, and does not involve any heuristic steps. We directly mod­

eled occurrences of the notes by automatically inducing complex

dependencies between sets of notes played at different times in the

musical piece. We described the structure of the model, and pro­

vided a detailed account of how the model may be trained. We

demonstrated that a model is capable of finding very interesting in­

teractions and dependencies within the music. We also showed that

our model outperforms Markov Chains in four different collections.



Dataset CCARH Twinkle Lachrimae Folia
Number of variations 2,806 26 75 50
Total number of notes 15,904,356 15,108 436,152 63,612
Internal consistency (Scale 1 to 10) Very low (1) Low (5) Low (6) Medium (7)
Min. Perplexity: Markov Chain 1.494 (4-gram) 1.345 (2-gram) 1.375 (3-gram) 1.320 (3-gram)
Min. Perplexity: Random Field 1.448 (260 it.) 1.340 (140 it.) 1.319 (250 it.) 1.311 (750 it.)
Area under ROC: Markov Chain 0.700 0.745 0.776 0.828
Area under ROC: Random Field 0.791 (+13%) 0.811 (+9%) 0.864 (+11%) 0.857 (+3%)

Table 1: Comparison of Markov Chains and Random Fields on four different collections of polyphonic music.
For Markov Chains we show the N-gram model that gave best performance on the testing set. For Random
Fields we specify the number of iterations of the induction algorithm. For every collection, Random Fields
result in lower testing perplexity and higher area under the ROC curve

The field of statistical music modeling is relatively new, and only

a handful of models have been proposed for the task. Modeling

polyphonic music is particularly challenging, and most existing

models have focused on a much simple case of monophonic music.

Accordingly, we feel that our work is an important contribution to

the field.
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