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Abstract

Image deformations due to relative motion between
an observer and an object may be used to infer 3-D
structure. Up to first order these deformations can be
written in terms of an affine transform. Here, a new
framework for measuring affine transforms which cor-
rectly handles the problem of corresponding deformed
patches is presented. In this framework, points, lines
or image brightnesses may be used to derive the affine
transform between image patches. No correspondence
is required. The patches are filtered using gaussians
and derivatives of gaussians and the filters deformed
according to the affine transform. The problem of find-
ing the affine transform is therefore reduced to that of
finding the appropriate deformed filter to use. The
method is local and can handle large affine deforma-
tions.

Ezperiments demonstrate that this technique can
find scale changes and optical flow in situations where
other methods fail.

1 Introduction

Changes in the relative orientation of a surface with
respect to a camera cause deformations in the image
of the surface. Deformations can be used to infer lo-
cal surface geometry and depth from motion. Since a
repeating texture pattern can be thought of as a pat-
tern in motion, shape from texture can also be derived
from deformations [8].

To first order, this image translation together with
the deformation can be described using a six parame-
ter affine transformation (t , A ) where

r =t+ Ar (1)

r’ and r are the image coordinates related by an affine
transform, t is a 2 by 1 vector representing the transla-
tion and A the 2 by 2 affine deformation matrix. The
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affine transform is useful because the the image projec-
tions of a small planar patch from different viewpoints
are well approximated by it.

In Figure (1) the image on the right is scaled 1.4
times the image on the left. Even is the centroids
of the two images are matched accurately, measuring
the affine transform is difficult since the sizes of ev-
ery portion of the two images differ. This problem
arises because traditional matching uses fixed correla-
tion windows or filters. The correct way to approach
this problem is to deform the correlation window or
filter according to the image deformation.

This paper derives a computational scheme where
gaussian and derivative of gaussian filters are used and
the filters deformed according to the affine transforma-
tion. The resulting equations are solved by lineariz-
ing with respect to the affine parameters rather than
the image coordinates. This allows the linearization
point to be moved so that arbitrary affine transforms
can be solved unlike traditional methods restricted to
small affines. The method is local, applicable to arbi-
trary dimensions and can measure affine transforms in
situations where other algorithms fail. For example,
Werkhoven and Koenderink’s algorithm [11] when run
on the images in Figure (1) returns a scale factor of
1.16 while our algorithm does the matching correctly
and therefore returns a scale factor of 1.41.

g

Figure 1: Dollar Bill scaled 1.4 times

It is also shown that points and lines can be treated
as part of the same framework. For points and lines,
explicit correspondence need not be established. Fur-
ther, the method works for both closed and open con-



tours and even for collections of line segments.
1.1 Previous Work

Affine transforms between image patches have been
recovered in three different ways (for more details see

[8]):

1. By linearizing the image intensities or the fil-
ter outputs with respect to the image coordi-
nates. Linearization limits these algorithms to
cases when the affine transforms are small. This
linearization does not account for the deformation
due to the affine transform. [1, 2, 10, 11] (Note
that [10] essentially re-discovered the method due
to [1]).

2. Matching image intensities by searching through
the space of all affine parameters. This approach
adopts a brute force search strategy which is po-
tentially slow [4].

3. Line based methods which match the closed
boundaries of corresponding regions [3, 9].

Of these approaches, only the third deals with the
problem of corresponding deformed patches. However,
it is limited to homogenous regions with closed bound-
aries.

Patches deformed under similarity transforms may
also be matched using the Mellin-Fourier Transform
([5]). Although possible, recovery of the similarity
transform has not been demonstrated. The main
drawback to these techniques is that they are inher-
ently global and they are not applicable to general
affine transforms.

2 Deformation of Filters

The initial discussion will assume zero image trans-
lation; translation can be recovered as suggested in
section 3.2. It is also assumed that shading and illu-
mination effects can be ignored.

Notation Vectors will be represented by lowercase
letters in boldface while matrices will be represented
by uppercase letters in boldface.

Consider two Riemann-integrable functions F; and
F; related by an affine transform i.e.

Fi(r) = F2(Ar) (2)
Define a generalized gaussian as

1 TM-1p
(27)n/2det(M)1/2 ezp(— T) (3)

G(r,M) =

where M is a symmetric positive semi-definite matrix.
Then it may be shown that the output of F; filtered
with a gaussian is equal to the output of F, filtered

with a gaussian deformed by the affine transform (see
[8] for details) i.e.

/ Fi(r)G(r,c’T)dr = / Fy(Ar)G(Ar,RSR7T)d(Ar)
(4)

where the integrals are taken from —oco to co. R is a
rotation matrix and ¥ a diagonal matrix with entries
(510)?, (520)2...(5,0)% (si > 0) and RERT = oZAAT
(this follows from the fact that AAT is a symmetric,
positive semi-definite matrix).

Intuitively, equation (6) expresses the notion that
the gaussian weighted average brightnesses must be
equal, provided the gaussian is affine-transformed in
the same manner as the function. The problem of
recovering the affine parameters has been reduced to
finding the deformation of a known function, the gaus-
sian, rather than the unknown brightness functions.
The equation is exact and is valid for arbitrary di-
mensions.

The level contours of the generalized gaussian are
ellipsoids rather than spheres. The tilt of the ellipsoid
is given by the rotation matrix while its eccentricity is
given by the matrix ¥, which is actually a function of
the scales along each dimension. The equation clearly
shows that to recover affine transforms by filtering, one
must deform the filter appropriately; a point ignored
in previous work [1, 2, 11, 4]. The equation is local
because the gaussians rapidly decay.

The integral may be interpreted as the result of
convolving the function with a gaussian at the origin.
It may also be interpreted as the result of a filtering
operation with a gaussian. To emphasize these simi-
larities, it may be written as

Fy + G(r,0%I) = F5 * G(r1, RERT) (5)

where r; = Ar.

In the special case where the affine transform can
be written as A — sR i.e. a scale and a rotation, the
above equation reduces to,

F; % G(r, 0'2) = Fy % G(r1, (30')2) (6)

Note that this equation is valid for an arbitrary rota-
tion..

Similar equations may be written using derivative
of gaussian filters (for details see [8]).

3 Solution for the Case of Similarity
Transforms

To solve equation(6) requires finding a gaussian of
the appropriate scale so given o. A brute force search
through the space of scale changes is not desirable. In-
stead a more elegant solution is to linearize the gaus-
sians with respect to ¢. This gives an equation linear
in the unknown o

F1 % G(.,(s0)%)



4G(.,0?%)
B (7)

= F+G(,0%) +ad®V?F +G(.,0%) (8)

where s = 1 + a. The last equality follows from the
diffusion equation % = o6V?2G. The key notion here
is that the linearization is done with respect to o and
not the image coordinates.

Equation (8) is not very stable if solved at a single
scale. By using gaussians of several different scales o;

the following linear least squares problem is obtained:

|| F1* G(.,02) — Fa % G(.,02) + ad? F5 « V2G(.,02)||?
9)

Fy % G(.,0%) + adFy *

2

and solved using Singular Value Decomposition
(SVD).

The following o; (1.25,1.7677,2.5,3.56355,5.0) -
spaced apart by half an octave (a factor of 1.4) - were
found to work well. The corresponding filter widths
were approximately 8 * o; (3,5,7,11,15,21,29,41)
Different

3.1 Choosing a Operating

Point:

For large scale changes (say scale change > 1.2)
the recovered scale tends to be poor. This is because
the Taylor series approximation is good only for small
values of . The advantage of linearizing the gaussian
equations with respect to o is that the linearization
point can be shifted i.e. the right-hand side of (6) can
be linearized with respect to a o different from the
one on the left-hand side (other methods linearize the
function F or the gaussian with respect to r and are
therefore constrained to measuring small affine trans-
forms). Let the right-hand side of (8) be linearized
around o; to give the following equation

F1xG(.,07) ~ F3%G(.,03)+a'0} FxV2G(.,03) (10)
where s = 0 /0;(1+ o'). The strategy therefore is to
pick different values of o; and solve (10) ( or actually
an overconstrained version of it). Each of these o;
will result in a value of o’. The correct value of o' is
that which is most consistent with the equations. By
choosing the o; appropriately, it can be ensured that
no new convolutions are required.

In principle, arbitrary scale changes can be recov-
ered using this technique. In practice, most scale
changes in motion and texture are < 2.5 and therefore
three operating points (o, 1.40, 2.00) should suffice.

3.2 Finding Image Translation:

Image translation, i.e. optic flow can be recovered
in the following manner. Let F; and F3 be similarity
transformed versions of each other (i.e. they differ by
a scale change, a rotation and a translation). Assume
that an estimate of the translation tq is available. Lin-
earizing with respect to r and o gives

Fi(r+to) = G(r, 0'2) — JtTFl(r + to) * G(r, 0'2)
~  Fy* G(.,0%) 4+ ad?Fy + V2G(.,0%) (11)

which is again linear in both the scale and the residual
translation ét. As before an overconstrained version
of this equation using multiple scales is obtained and
solved for the unknown parameters. Large scales are
handled as before.

to is obtained either by a local search or from a
coarser level in a pyramid scheme, while dt is esti-
mated from the equation (see [6] for details).

Note that since the gaussians are rotation invariant,
the translation can be recovered for arbitrary rotations
about an axis perpendicular to the image. No other
scheme is able to do this.

Figure 2: Random Dot Sequence

3.3 Experimental Results

Experiments on synthetic images show that the
affine transform can be recovered to within a few per-
cent (see [8]).

Figure (2) illustrates the power of this algorithm.
A random dot image is scaled by a factor of 1.1 and
rotated around an axis perpendicular to the image by
30 deg. On the left is the flow produced by an SSD
based pyramid scheme. Note that the algorithm fails
quite dramatically because of the large rotation. This
occurs because for correct matching the template also
needs to be rotated by the same angle. For small an-
gles, the template rotation can be ignored but this
cannot be done for large rotations. On the other hand
the results of running the algorithm described here
are shown on the right-hand side. The flow shown is
clearly rotational. Note that the flow has been com-
puted at every point without fitting a global model. To
the best of our knowledge no other existing algorithm



can compute the flow correctly in this situation A his-
togram of the of the recovered scale values peaks at
1.1 which is the correct value.

Fig (1) shows a dollar bill scaled by 1.4. The algo-
rithm correctly recovers the scale as 1.41. Other ex-
periments with scaled and rotated versions of the dol-
lar bill consistently show good recovery of scale within
a few percent.

For other experimental results see [8, 6, 7].

4 Solving for the General Affine

There are two factors which need to be taken into
account in the general case. First note that in the
similarity case all the filtering was done at one point
(the origin). The results can be further improved by
filtering at many points rather than just one point.
However, the rotation invariance will then be lost. In
the general affine case, because of the larger number
of parameters that have to be recovered, the filtering
must be done at many points.

The deformation must also be accounted for and
this can be done by linearizing the generalized gaus-
sian. This can be done either by linearizing with re-
spect to the 3 parameters of an elliptical gaussian, ie.
the orientation and the scale changes along the major
and minor axes ([6, 7]) or by linearizing directly with
respect to the affine parameters.

Filtering at a point 1; modifies the generalized gaus-
sian equation 4 as follows: Given a point with coordi-
nates 1;,

/ Fy(r)G(r — I, 0*T)dr
_ / Fy(Ar)G(A(r — I;)), RER7)d(Ar) (12)

Thus if the image is filtered at point 1; in the first
image patch, it must be filtered at point Al; in the
second image patch. Note that this is similar to mov-
ing the translation point. Therefore, differentiating
with respect to the image coordinates gives,

/ 1 (r)G(r — I, 0*T)dr

Fy(Ar)G(Ar —1;), RER")d(Ar)

—

- [(A-DL)*¥ /Fz(Ar)G’(Ar—li),RERT)d(Ar)
(13)

where G’ is the derivative of G with respect to the im-
age coordinates. The next step is to approximate the

deformed gaussian. Now G(., RER) = G(.,02AAT).
and
1 rT(AAT)" 1
G(.,0?AAT -1
(- ) = GryTdea)e <P 207 )

(14)

If B= A —Iis small, the A inverses inside the expo-
nential may be linearly approximated to give

G(.,0c2AAT)
1 r’(B-I)(B-I)Tr

) et (A) P~ 202

")
(15)

This may now be linearized with respect to the ele-
ments of B to give

G(.,0c?AAT) ~ G(.,0)+b11Gez(.,
+ b21Gzy('a

0') + b12Ga:y(-a 0')
o) + b22Gyy(., 0) (16)

where the b;; are elements of B. Upto linear terms in
B equation (13) can therefore be written as as:

Fi«G(r—1;,0)
~ FyxG(r1—L,0) — (BL) R« G'(xr; — 1;,0)
+ 511 F2 % Gag(r1 — iy 0) + bao Fy x Gyy(r1 — 1;,0)
+  (b12 + b21) F2 % Goy(r1 — 1;,0) (17)

Note that this is linear in the affine parameters b;;. A
number of methods incorporate the idea of filtering at
many points [1, 2, 10]. However, none of these com-
pensate for the deformation terms (in essence the dif-
ference between the traditional linearization methods
and the technique presented here are the additional
second derivative terms).

Translation may be incorporated as before. The
equation may be turned into an overconstrained lin-
ear system by choosing a number of scales o; and a
number of points 1;. 5 scales are chosen as before.
The points 1; are picked as follows: An n by n window
is chosen. In addition to the origin (0,0), all points
whose coordinates are of the form (k x,k y) (x,y in-
tegers) within this window are chosen. The following
pairs of values (n, k) were tried (5,2),(9,2), (13 2) (the
total number of points chosen in each case is respec-
tively 9,25 and 49). Note that smaller windows can
be used to solve for larger affine transforms. On the
other hand, while larger windows can produce more of
an averaging effect, the linearization can give rise to
a larger error. Experimentally the (9,2) pair seemed
to work best, leading to faster convergence, while the
(5,2) window worked with large affine transforms. In
general this means that the windows used to recover
affine transforms are fairly small compared to those
used with other methods.

The solution was done iteratively. At each step, the
affine transformation was solved for. The image was
then warped according to the affine and the residual
affine solved for. Convergence is very rapid.

4.1 Experiment Results

The algorithm performs really well on sine-wave im-
ages. A test image was constructed using the following
sine-wave function Fi(z,y) = 128sin(0.2(z + y)) and



a second image was produced by affine transforming it
about the center of the image. Results after the first
iteration will be reported to indicate the rapid conver-
gence of the method. All the sine wave experiments
were done with an (n,k) pair of (9,2). Convergence

2.0 0.2
0.2 2.0
After the first iteration, the recovered affine transform
was [ 2.08 0.24

is somewhat slower with (n,k) = (5,2).

0.24 2.08 |- This shows that convergence is

very rapid. The following affine transform was also

tried. | 1-4095 —0.3420
red. | 0.3420 0.5638

erations (compare [10] where they took 19 iterations to
solve it). The experiments were repeated using large
amounts of noise (roughly 15% of the magnitude of
the sine wave) and performance was still good.

Behaviour on sine wave images is excellent partly
because the sine wave images are well behaved func-
tions - thus the derivative approximations hold well.
Therefore, it is important to check with images which
have discontinuities. This was done using random dot
images.

A random dot image was generated and a second
image was obtained by warping the first image about
the center of the image using the following affine trans-

form [ 16?71 102’17 ] (this is a scale change of 1.4 fol-

lowed by a rotation of 30 degrees). With (n,k) = (5,2)
after the first iteration, the affine transform was found

1.18 —0.40
to be [ 0.31 1.22 ]

The method seems to handle fairly large scale
changes without any need for a change in operating
points. However, it is expected that beyond a cer-
tain scale change, the operating point will need to be
moved. This can be done by filtering with elliptical
gaussians. A more serious problem is the need for
handling large orientation changes. In experiments so
far, The method seems to handle rotations upto about
¢ = 30 degrees. Rotations which are 90 + phi or 90
- phi can be handled very easily by changing corre-
sponding points in the two images. This can be done
without the need for any new convolutions. Similar
remarks apply to cases where the rotations are 180
+ phi and 180 - phi, as well as 270 - phi and 270 +
phi. Rotations between 30 and 60 degrees can also be
handled with some complications.

. This converged in 5 it-

5 Points

The above framework may be extended to points.
That is, given a set of points in one image and an affine
transformed version in the second, the affine transform
may be recovered. The main advantage of this tech-
nique is that explicit point-wise correspondence is not
required; this is automatically obtained while measur-
ing the affine transform. Since a set of points does

not represent a continuous function, the actual equa-
tions and expressions will be slightly different than for
brightnesses. For this method to work satisfactorily,
a large number of points must be available otherwise
incorrect solutions will be obtained. Further, no oc-
clusion may occur (this may be relaxed by picking the
largest subset of non-occluded points).

A set of points may be represented using delta func-

tions. i.e
Fi(r) = Z §(r — b;) (18)

The affine transformed version will therefore be

Fa(r) =) 5(Ar+t—h;) (19)

Again, translation can be assumed to be zero. It can
be recovered as discussed before. For points, transla-
tion can also be recovered by matching the centroids
of the set of points defining F; and F,.

As discussed before it is desirable to filter F; and
F;. Since F; and F, are discrete functions, they are
not Riemann integrable. Instead the integrals must
be interpreted as Stieltjes integrals. Then it may be
shown that if un-normalized gaussians H(r,cI) are
used, equality is again obtained between the filter out-
puts of F; and Fj. i.e.

/ Fi(r)H(r,c’T)dr = / Fy(Ar)H(Ar,RSR7T)d(Ar)

20
where H is a an un-normalized generalized (elliptical{
gaussian defined by H(r, M) = ezp(—rTM~!r/2) and
M is a symmetric positive semi-definite matrix.

5.1 Solution

The solution of the above equation though slightly
different from the brightness case may be obtained as
for the brightness case. All the considerations that ap-
ply to the brightness case - the use of multiple scales
and the use of different operating points - also apply
here. These considerations will therefore not be dis-
cussed here. For purposes of illustration, the solution
for the similarity case is derived below

5.1.1 Case A = sR(6)
As before, by linearizing with respect to o, the solution

for the similarity case with known translation may be
shown to be:

FixH(.,0)~ F,x H(.,0)
+(s — 1)o?Fy + [V2H(.,0) + nH(.,0)/c?] (21)

where n is the number of dimensions. Note the extra
term as compared to the brightness equation (8).



6 Lines

Much more interesting is the case of lines. The ad-
vantage of using this framework for lines is that the
method can deal with both closed and open curves as
well as straight and curved lines. The method will
also work on a collection of line segments. No corre-
spondence is required, although it is assumed that if
line segments are used, the same segments are used in
both images.

In the case of lines, Riemann integration must be
performed along the line and Stieltjes integration per-
pendicular to the line. This makes the equations some-
what messy for the case of the general affine since the
local line orientation must be factored in. However,
for the similarity case, the local line orientation does
not figure in the equations. In this case, the gaussian
filter equation may be shown to be

Fi«H(.,0)/oc = F2 x H(.,s0)/(s0) (22)

where it 1s assumed that F; and F, are defined in 2-
D dimensions (the general case is a straightforward
extension).

The point, line and brightness cases may now be
contrasted. In the point case (equation (21)), both
the ¢'s required for normalizing a 2-D gaussian are
absent ; in the line case only one is absent (equation
(22)), while in the brightness case both are present.

The solution in the similarity case is again obtained
by linearizing with respect to ¢ and is given by

FixH(.,0)~ F2xH(.,0)
+(s — 1)o?Fy x [V2H(.,0) + H(.,0)/a] (23)

Experiments indicate that it works. For the method
to work well with lines, it is important to localize lines
with sub-pixel accuracy.

The general case may also be derived in similar
fashion.

6.1 Comments on Points and Lines

Both points and lines are for the most part unaf-
fected by illumination changes and shading. So if this
is a significant concern, they can be used. A number of
man-made scenes often consist of homogeneous regions
surrounded by lines. In such situations where there is
minimal image texture, methods using image bright-
nesses will fail. However, line based methods may still
work. Note that filter sizes may need to be changed
depending on the size of the structures present in the
image.

6.2 Combining Points,Lines and Bright-
nesses

One advantage of this framework is that it pro-
vides a natural mechanism to combine points, lines
and brightnesses (just put them all in one big matrix
and use singular value decomposition). For example,
in regions in the images where there are strong bound-
aries and corner points they are weighted more heavily
by using this technique.
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