Scale-Space Matching and Image Retrieval*

S. Ravela and R. Manmatha and E. M. Riseman

Computer Vision Research Laboratory

and

Center for Intelligent Information Retrieval
University of Massachusetts, Amherst, MA 01003
{ravela,manmatha}@cs.umass.edu

Abstract

The retrieval of tmages from a large database of 1m-
ages 1s an important and emerging area of research.
Here, a technique to retrieve images based on ap-
pearance that works effectively across large changes
of scale is proposed. The database is initially filtered
with derivatives of a Gaussian at several scales.
A user defined template is then created from an
mmage of an object similar to those being sought.
The template is also filtered using Gaussian deriv-
atives. The template is then matched with the fil-
ter outputs of the database images and the matches
ranked according to the match score. Frperiments
demonstrate the technique on a number of images
mn a database. No prior segmentation of the images
18 required and the technique works with viewpoint
changes up to 20 degrees and illumination changes.

1 Introduction

The advent of multi-media and large image col-
lections in several different domains brings forth
These

systems will respond to visual queries by retriev-

a necessity for image retrieval systems.

ing 1mages in a fast and effective manner. The
application potential is enormous; ranging from
database management in museums and medicine,
architectural and interior design, image archiv-
ing, to constructing multi-media documents or
presentations[GGudivada 95].

Simple image retrieval solutions have been pro-
posed, one of which 1s to annotate images with text
and then use a traditional text-based retrieval en-
gine. While this solution is fast, it cannot however
be effective over large collections of complex im-
ages. The variability and richness of interpretation
is quite enormous as is the human effort required
for annotation.

To be effective an image retrieval system should ex-
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Figure 1: Construction of a query begins with a user
marking regions of interest in an image, shown by
the rectangles.

ploit image attributes such as color distribution,
motion, shape [Flickner 95], structure, texture or
perhaps user drawn sketches or even abstract token
sets (such as points, lines etc.). Representations of
these attributes can be matched to gauge similarity
and perhaps also be used to index the images. Tm-
age retrieval can be viewed as an ordering of match
scores that are obtained by searching through the
database. Therefore, the key challenges in building
a retrieval system are the choice of attributes, their
representations, query specification methods, match
metrics and indexing strategies.

In this paper a method for retrieving images based
on appearance is presented. Without resorting to
token feature extraction or segmentation, images
are retrieved in the order of their similarity in ap-
pearance to a query.

Query construction begins with the user selecting
regions in an image. An example is shown in Fig-
ures 1 and 2. Here, the user wishes to retrieve im-
ages similar in view and shape (appearance) to the
car shown i Figure 1. Tn order to do so, the user



Figure 2: The regions of interest and their spatial
relationships define a query.

outlines salient. regions (in his or her opinion) on
the image(shown as rectangles in Figure 1). These
regions along with their spatial relationship are con-
junctively called as the query( Figure 2)'.

Similarity of appearance is quite simply the simil-
arity of shape under small view variations. While
the proposed definition constrains view variations,
there is however, no constraint imposed on scale
variations. That 1s, the image of an object in the
database can be very different in size from the im-
age of the object in the query. This could happen
due to variations in resolution of the image or due
to the object or scene being imaged from different
distances. The variation in scale is particularly im-
portant in image databases since no control can be
exerted over the image acquisition process. Any ap-
pearance based retrieval system must therefore ad-
dress this fundamental issue. In order to measure
the similarity of appearance between a query and
an image, two 1ssues must be addressed. First, ap-
propriate representations of images must be chosen
and second, a mechanism for matching these repres-
entations must be developed.

Filtered versions of images are used as representa-
tions of appearance. In particular a vector repres-
entation(VR) of an image is obtained by associating
each pixel with a vector of responses to (zaussian de-
rivative filters of several different orders. A single
VR 1s the basic representation that can be used to
retrieve images but, under a fixed scale. To retrieve
images under varying scale a representation over the
scale parameter is required and scale-space repres-
entations [Lindeberg 94] are a natural choice. Tists
of VRs generated using banks of Gaussian derivative
filters at several different scales form a scale-space
representation of the object. This scale-space rep-
resentation 1s used to retrieve objects under large
(but not arbitrary) scale variations. Tn particular,
this paper demonstrates retrieval for scale changes
up to a factor of 4 (1/4 to 4 times the query size).
The choice of (Gaussians and their derivatives to de-

1 . . . . .
The retrieved images for this case are shown in Fig-
ure 4.

rive representations of appearance (VRs) is motiv-
ated by a number of considerations. Tt has been ar-
gued by Koenderink and others that the structure of
an image may be represented using Gaussian deriv-
atives [Koenderink 87]. Hancock et al [Hancock 92]
have shown that the principal components of a
set of images containing natural structures may be
modeled as the outputs of a Ganssian and its deriv-
atives at several scales. That is, there is a natural
decomposition of an image into Gaussian derivatives
at several scales. (aussians and their derivatives
have, therefore, been successfully used for match-
ing images of the same object under different view-
points [Bergen 92, Werkhoven 90a, Werkhoven 90b,
Kass 88, Manmatha 94, Rao 95]. This paper is an
extension to matching “similar” objects using Gaus-
sian derivatives.

Images are matched by correlating their vector-
representations. VR matching is robust to lighting
variations and tolerates small variations in view. In
addition, well-designed queries have yielded signi-
ficant variation in retrieved shapes(see Section 6).
Tt is quite likely that structures similar to that of
a query are present in the database at a different
scale. As described, the VR matching cannot ac-
VRs generated
from filters at several scales are used to search over

count for gross changes in scale.

scale-space for possible scale variations of the query.
The range of scale variation as well as the step size
18 a user-controlled parameter. Scale-space match-
ing 1s described in detail in Section 4. The entire
process of retrieval can be viewed as the following
three-step process. The first is an off-line compu-
tation step that generates vector-representations of
database images for matching. The second is con-
struction of queries and their VRs. The third is an
ordering of images ranked by the correlation of their
VRs with that of the query.

While one is tempted to argue that retrieval and
recognition problems have a lot in common, one
should also note the sharp contrasts between the
two paradigms. First, putting a user in the “loop” |
shifts the burden of the determination of feature sa-
liency to the user. For example, only regions of the
car in Figure 1 (namely, the wheels, side-view mirror
and mid-section) considered salient by the user are
highlighted. Second, user interaction can be used in
a retrieval system of sufficient speed to evaluate the
ordering of retrieved images and reformulate quer-
ies if necessary. Thus, in the approach presented
in this paper, alternate regions could be marked if
the retrieval is satisfactory. Third, a hundred per-
cent, accuracy of retrieval is desirable but not at
all critical (for comparison the best text-based re-



trieval engines have retrieval rates less than 50%).
The user ultimately views and evaluates the results,
allowing for tolerance to the few incorrect retrieval
instances.

The remainder of this paper is organized as follows.
In Section 2 other related approaches are examined.
In Section 3 VR matching is described. Tn Section 4
VR matching is extended to account for scale vari-
ations. Then, in Section b query construction is
discussed. Tn Section 6 a retrieval is demonstrated
on a database with over 300 images containing auto-
mobiles, locomotives (steam and diesel), apes and
houses. These 1mages obtained mainly over the in-
ternet have uncontrolled lighting and viewing geo-
metry.

2 Related Work

This paper is related to a number of threads in the
literature. The first concerns matching with Gaus-
sian derivative filters at multiple scales.

The idea of using Gaussian derivatives for match-
ing and recovering local structure was sugges-
ted among others by Koenderink [Koenderink 87].
Among filter representations, Gaussian derivatives
have a number of advantages - they are steerable
[Freeman 91] and separable. The use of multiple
derivative filters requires that correlation be per-
formed between vectors. This is discussed by Gran-

lund et al [Granlund 95].

Some of the earliest uses of scale in matching go
back to the Gaussian and Laplacian pyramids con-
structed by Burt and Adelson [Burt 83] and Crow-
ley [Crowley 87]. These pyramids have been used
to do coarse to fine matching under translation, af-
fine or more general transforms (see [Bergen 92]).
The pyramids speed up the computation as well
as performing matching at the appropriate scales.
However, as Lindeberg [Lindeberg 94] points out in
his extensive discussion of scale space and its prop-
erties they do not form a true scale space.

Kass [Kass 88] used the Gaussian and its derivat-
ives at multiple scales for stereo matching. The
notion of matching across Gaussians of different
scales was used by Manmatha [Manmatha 94] for
matching image patches under similarity and affine
transforms. He also used the idea of comparing
the outputs of Gaussians at different standard devi-
ations to compute large scale changes. Rao and Bal-
lard [Rao 95] used Gaussian derivatives at multiple
scales to match a moving object when the viewpoint
change was small.

The second thread to which our work 1s related 1s

the area of image indexing and retrieval. To the

best of our knowledge, retrieval on the basis of
appearance or shape is almost entirely based on
prior segmentation of the object. FExamples in-
clude the QBIC project at. TBM [Flickner 95], the
photo book project [Pentland 94] and shape re-
trieval [Mehrotra 95].
knowledge of the contour or binary shape of the ob-

These methods all require

ject. For specific objects like faces, principal com-

ponent analysis has been used successfully for rep-
resentation [Kirby 90] and retrieval [Turk 91]. Us-
ing texture measures, Picard et al [Picard 94] are
able to classify images into a few distinct categories
(e.g. city scene, country scene).

3 Matching Vector Representations

The key processing involves obtaining and matching
vector-representations of a sample gray level image
patch S and a candidate image . The steps in-
volved in doing this will now be described:

Consider a GGaussian described by it’s coordinate r
and scale o

2mo

A vector-representation V of an image [ is ob-
tained by associating each pixel with a vector of
responses to partial derivatives of the (Gaussian at
that location. Derivatives up to the second order
are considered. More formally, V takes the form
(In, Tys Inw, Ty, Tyy) where I, T, denote the the fil-
ter response of I to the first partial derivative of a
Gaussian in direction 2 and y respectively. I, I,
and 1, are the appropriate second derivative re-
sponses.

In this paper, only the first and second derivatives
of Gaussians are used. Let us consider 1-D Gaus-
The odd derivatives are all cor-
This also holds true for
the even derivatives which are correlated with each

sian derivatives.
related with each other.

other. However, for the same o, the first derivative
of a (Gaussian is uncorrelated with the second de-
rivative of a Gaussian [Kass 88]. Thus picking only
the first and second derivatives of (Gaussians insures
that maximal information is extracted from the im-
age. Gaussian (as opposed to Gaussian derivatives)
filters are not used because they are sensitive to the
actual intensity value.

The correlation coefficient 1 between images ¢ and

S at location (m,n) in C is given by:

1 (m,n) = Z Cor (i,7) - Sy (m—i,n— ) (2)



Il

Figure 3: T1 is half the size of 10. To match points
po with py, Tmage Iy should be filtered at point pq
by a Gaussian of a scale twice that of the (zaussian
used to filter image I; (at py). To match a template
from Iy containing po and ¢y, an additional warping
step is required. See text in Section 4.

where
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and Sps is the mean of 5(7,7) computed over S.

C'y is computed similarly from (7(7,7) The mean
Car is in this case computed at (m,n) over a neigh-
borhood in C (the neighborhood is the same size as

S).

Vector correlation performs well under small view
variations. Tt is observed [Ravela 96] that typically
for the experiments carried out with this method, in-
plane rotations of up to 207, out-of plane rotation of
up to 30" and scale changes of less than 1.2 can be
tolerated. Similar results in terms of out-of-plane
rotations were reported by [Rao 95].

4 Matching Across Scales

The database contains many objects imaged at sev-
eral different scales. For example, the database used
in our experiments has several diesel locomotives.
The actual image size of these locomotives depends
on the distance from which they are 1maged and
shows considerable variability in the database. The
vector correlation technique described in Section 3
cannot handle large scale changes, and the matching
technique, therefore, needs to be extended to handle
large scale changes.

In Figure 3 image 77 is half the size of image I
(otherwise the two images are identical). Thus,

Io(r) = I (sr) (3)

where r 1s any point in image Iy and sr the corres-
ponding point in [ and the scale change s = 0.5.
In particular consider two corresponding points pq
and p; and assume the image 1s Gaussian filtered at
po Then by substituting for Iy using equation 3 we

have:
/ Io(r)G(r — po,o)dr =
/ Ii (sv)G(sv — p1,so)d (sv) x5~ (4)

But it can be shown that G(r,s) = G(sr,so)
[Manmatha 94]. Thus,

/ TO(I‘)G(I‘—pO,O')dI‘:./ I (sv)G(r — p1,0)d (sr)
(5)

In other words, the output of Ij filtered with a Gaus-
sian of scale o at py is equal to the output of I
filtered with a Gaussian of scale so i.e. the Gans-
sian has to be stretched in the same manner as the
image if the filter outputs are to be equal. This is
not a surprising result if the output of a (Gaussian
filter is viewed as a Gaussian weighted average of
the intensity. A more detailed derivation of this res-
ult, is provided in [Manmatha 94].

The derivation above does not use an explicit value
of the scale change s. Thus, equation 5 1s valid
for any scale change s. The form of equation 5
resembles a convolution and in fact it may be re-

written as a convolution

Io(r) * G(.,0) = I (sv) x G(., s0) (6)

Similar derivations may also be
carried out for higher derivatives of Gaussians (see
[Manmatha 94]). Here the results for the first and
second derivatives of Gaussians are listed. Define

the normalized first derivative of (Gaussian by
G'(r,s0) = so dG(r,sc)/dr (7)

The first derivative of the Gaussian has been energy
normalized by the term so so that its energy is the
same as that of the Gaussian filter [Werkhoven 90a].

The normalized second derivative of Gaussian may
be similarly defined by

G'(v,s0) = (s0)? d’G(r,so)/d(xrT)  (8)

where the term (so)? again ensures that the energy
of the second derivative GGaussian filter is the same
as the energy of the first derivative Gaussian filter
and the Gaussian filter.

Note that the first derivative of a (zaussian i1s a vec-
tor and the second derivative of a (Gaussian a 2 by
2 matrix.

Then the Gaussian derivatives are related by (see

[Manmatha 93])

I+ G (o) = Iy« G (., 50) (9)



and

I, «G'(.,0) = Ig« G (., 50) (10)

The above equations are sufficient to match the fil-
ter outputs (in what follows assume only Gaussian
filtering for simplicity) at corresponding points (for
example at, pg and p1). A further complication is
introduced if more than one point is to be matched
while preserving the relative distances (structure)
between the points. Consider for example the pair
of corresponding points pg, qo and p1,qy. The fil-
ter outputs at points po,qo may be visualized as
a template and the task 1s to match this template
with the filter outputs at points p1, q1. That is, the
template is correlated with the filtered version of the
image I1 and a best match sought. However, since
the distances between the points p1, qq are differ-
ent, from those between pq, qo the template cannot
be matched correctly unless either the template is
rescaled by a factor of 1/2 or the image I1 is res-
caled by a factor of 2. The matching is, therefore,
done by warping either the template or the image T
appropriately.

Thus, to find a match for a template from Ty, in Iy,
the (Gaussians must be filtered at the appropriate
scale and then the image 77 or the template should
be warped appropriately. Now consider the problem
of localizing a template T', extracted from Ty, in
T (see Figure 3).
analysis, assume two corresponding points (po,qo)

For the purpose of subsequent

of interest in T and Ty (p1,q1) respectively. To
localize the template the following three steps are
performed.

1. Use appropriate Relative Scale: Filter the tem-
plate and 7, with Gaussians whose scale ratio
18 2. That 1s, filter T" with a (Gaussian of scale
20 and Iy with .

2. Account for size change: Sub-sample T' by half.
At this point the spatial and intensity rela-
tionship between the warped version (filtered
and sub-sampled) of template points py and
¢o should be exactly same as the relationships
between filtered versions of py and ¢.

3. Translational Search: Perform a translational
search over I to localize the template.

This three step procedure can be easily extended to
match VRs of T and I, using Equations 9 and 10.
Tn step(1) generate VRs of T and T; using the men-
tioned filter scale ratios. Tn step(2) warp the VR
of T instead of just the intensity. Tn step(3) use
vector-correlation(Equation 2 at every step of the
translational search.

Without loss of generality any arbitrary template T'
can be localized in any Iy that contains T scaled by
a factor s.

4.1 Matching Queries over
Unknown Scale

The aforementioned steps for matching use the as-
sumption that the relative scale between a template
and an image 1s known. However, the relative scale
between structures in the database that are similar
to a query cannot be determined a prior:. That is,
the query could occur in a database image at some
unknown scale. A natural approach would be to
search over a range of possible relative scales, the
extent and step size being user controlled paramet-
ers.

One way of accomplishing this is as follows. First,
VRs are generated for each image in the database
——0,...40. Then, a
72\/5 ) ) )

VR for the query is generated using Gaussian de-

over a range of scales, say ]I(r

rivatives of scale o. The query VR, is matched with
each of the image VRs, thus traversing a relative
scale change of %...4, in steps of /2. For each scale
pairing the three step procedure for matching VRs
18 applied. Tn the warping step of this procedure
either the query or the image is warped depending
on the relative scale. Tf the relative scale between
the query and a candidate image is less than 1 the
candidate VR is warped and if it is greater than 1
the query VR is warped. After the query is matched
with each of the image VRs, the location in the im-
age which has the best correlation score 1s returned.

In practice, VR lists are generated both for the
query and database images to save computational
cost, memory, and to avoid running in to filter dis-
cretization problems. For the experiments carried
out in this paper the scales of the filters used for
both the query and database images are in the range

[0.8---3.2] in steps of /2.

Tt 1s instructive to note that VR lists over scale are
scale-space representations in the sense described
by Lindeberg [Lindeberg 94] and by [Granlund 95].
By smoothing an image with Gaussians at several
different scales Tindeberg generates a scale-space
representation. While VR lists are scale-space rep-
resentations, however, they differ from Lindeberg’s
approach in two fundamental ways. First VRs are
generated from derivatives of Gaussians and second,
an assumption is made that smoothing is accompan-
ied by changes in size (i.e. the images are scaled
versions rather than just smoothed versions of each
other). This is the reason warping is required dur-
ing VR matching across scales.



On the hand, the VR list

should not be confused with pyramidal represent-

other approach
ations [Burt 83]. While pyramidal representations
are also generated by filtering and sub-sampling im-
ages, there is an important distinction. Pyramids
are generated as a translational search reduction
mechanism for use in coarse-to-fine matching. Pyr-
amid matching assumes that the scale of the tem-
plate and the image within which 1t is being local-
ized 1s the same. Therefore, matching the coarsest
level of the image and template first followed suc-
cessively by the finer representations yields reduc-
tions in translational search. However, the relat-
ive scale between the query and the image is never
known, forcing a true search across the scale para-
meter. As Tindeberg points out recursive applica-
tion of filters and sub-sampling as is done in pyram-
idal schemes is not in general a scale-space repres-
entation [Lindeberg 94]. VR lists, which are not
generated recursively, are proper scale-space rep-
resentations and the matching occurs across scale-
space.

5 Constructing Query Images

The query construction process begins with the user
VRs gen-

erated at several scales within these regions are

marking salient regions on an object.

matched with the database in accordance with the
description in Section 4. Unselected regions are not
used in matching. One way to think about this is to
consider a composite template, such as one shown in
Figure 2. The unselected regions have been masked
out. The composite template preserves inter-region
spatial relationships and hence, the structure of the
object is preserved. Warping the composite will
warp all the components appropriately, preserving
relative spatial relationships. That is, both the re-
gions as well as distances between regions are scaled
appropriately. Further, there are no constraints im-
posed on the selection of regions and the regions
need not overlap.

Careful design of a query is important. Tt is inter-
esting to note that marking the entire object does
not work very well. Marking extremely small re-
gions has also not worked with this database. There
are too many coincidental structures that can lead

to poor retrieval.

Many of these problems are, however, simplified by
having the user interact extensively with the system.
Letting the user design queries eliminates the need
for detecting the saliency of features on an object.
Instead, saliency is specified by the user. In addi-
tion, based on the feedback provided by the results
of a query, the user can quickly adapt and modify

jects such as houses.

the query to improve performance.
6 Experiments

The choice of images used in the experiments was
based on a number of considerations. Tt is expec-
ted that when very dissimilar images are used the
system should have little difficulty in ranking the
images. For example, if a car query is used with a
database containing cars and apes, then 1t is expec-
ted that cars would be ranked ahead of apes. This
is borne out by the limited number of experiments
done. Much poorer discrimination is expected if
the images are much more ’similar’. For example,
man-made vehicles like cars, diesel and steam loco-
motives should be harder to discriminate. Tt was
therefore decided to primarily use images of cars,
diesel and steam locomotives as part of the data-
base.

The database used in this paper has digitized im-
ages of cars, steam locomotives, diesel locomotives,
apes and a small number of other miscellaneous ob-
Over 300 images were ob-
tained from the internet to construct this database.
About 215 of these are of cars, diesel locomotives
and steam locomotives. There are about 80 apes
and about 12 houses in the database. These pho-
tographs, were taken with several different cameras
of unknown parameters, and, under varying but un-
controlled lighting and viewing geometry. The ob-

jects of interest are embedded in natural scenes such

as car shows, railroad stations, country-sides and so
on.

Prior to describing the experiments, it is import-
ant to clarify what a correct retrieval means. A re-
trieval system is expected to answer questions such
as 'find all cars similar in view and shape to this
car’ or ’find all steams similar in appearance to this
steam engine’. To that end one needs to evaluate if
a query can be designed such that it captures the
appearance of a generic steam engine or perhaps
that of a generic car. Also, one needs to evaluate
the performance of VR, matching under a specified
query. In the examples presented here the following
method of evaluation is applied. First, the objective
of the query is stated and then retrieval instances
are gauged against the stated objective. In general,
objectives of the form ’extract images similar in ap-
pearance to the query’ will be posed to the retrieval
algorithm.

Questions of this form are interesting to answer in
the context of the types of images present in the
database. Diesel locomotives, steam engines and
cars are all man made objects and can be expected

to be similar. From several experiments performed



No. Retrieved Tmages
Query [ 1-10 [ 11-20 [ 21-30 | 31-40 [ 41-50
Car 8 6 1 0 1
Steam 7 2 1 0 2
Diesel 7 5 5 6 4
Table 1: Correct retrieval instances for the Car,

Steam and Diesel queries in intervals of ten. The
number of “similar” 1images in the database as de-
termined by a human are 16 for the Car query, 12
for the Steam query and 30 for the Diesel query.

with this database it is observed that queries can be
constructed, such that vector-matching does a good
job of ordering the dissimilarities in appearance of
these objects. For example, a car query that intuit-
ively captures distinguishing features on a car ranks
cars of similar appearance higher than other objects.
Additionally, good discrimination is easily obtained
between fairly dissimilar objects such as apes and
engines for example. Several different queries were
constructed to retrieve objects of a particular type.
Tt is observed that under reasonable queries at least
60% of m ohjects underlying the query are retrieved
in the top m ranks. Best results indicate retrieval
results of up to 85%.

Several experiments were carried out with the data-
base [Ravela 96].

carried out with a car query, a diesel query and a

The results of the experiments

steam query are presented in table 6. The number
of retrieved images in intervals of ten 1s charted in
Table 6. The table shows, for example, that there
are 16 car images “similar” in view to the car in the
query and 14 of these are ranked in the top 20. For
the steam query there are 12 “similar” images (as
determined by a person), 9 of which are ranked in
the top 20. Finally, for the diesel query there are 30
“similar” images, 12 of which are found in the top
20 retrievals.

Due to space limitations only the results of the Car
retrieval are displayed (Figure 4) and analyzed in
detail (for the others see [Ravela 96]).

The car image used for retrieval is shown in the top
left picture of Figure 4. The objective is to ’obtain
all similar cars to this picture’. Towards this end
a query was marked by the user, highlighting the
wheels, side view-mirror and mid section. The res-
ults to be read in text book fashion in Figure 4 are
the ranks of the retrieved images. The white spots
indicate the location of the centroid of the composite
template at best match. Tn the database, there are
exactly 16 cars within a close variation in view to
the original picture. Fourteen of these cars were re-

trieved in the top 16, resulting in a 87.5% retrieval.
All 16 car pictures were picked up in the top 50.
The results also show variability in the shape of
the retrieved instances. The mismatches observed
in pictures labeled "15.tif” and "19.tif” occur in VR,
matching when the relative scale between the query
VR and the images is ]I'

Wrong instances of retrieval are of two types. The
first 1s where the VR matching performs well but the
objective of the query is not satisfied. In this case
the query will have to be redesigned. The second
reason for incorrect retrieval is mismatches due to
the search over scale space. Most of the VR, mis-
matches result from matching at the extreme relat-
ive scales.

Overall the queries designed were also able to dis-
tinguish steam engines and diesel engines from cars
precisely becanse the regions selected are most sim-
ilarly found in similar classes of objects. As was
pointed out in Section b query selection must faith-
fully represent the intended retrieval, the burden of
which is on the user. The retrieval system presented
here performs well under it’s stated purpose: that is
to extract objects of similar shape and view to that
of a query.

7 Conclusions and Limitations

A method to retrieve images based on shape proper-
ties of images was presented. The vector-correlation
algorithm is robust to lighting changes and small
deformations. Vector-Correlation was extended to
incorporate gross scale changes. Thus, the result-
ing representation of images is a proper scale-space
representation and matching is performed over this
space.

Using this technique objects of similar appearance
were retrieved. There are several factors that affect
retrieval results, including query selection, and the
range of scale-space search. The results indicate
that this method has sufficient accuracy for image

retrieval applications.

One of the limitations of our current approach is
the inability to handle large deformations. The filter
theorems described in this paper hold under affine
deformations and a current step is to incorporate it
in to the vector-correlation routine.

While these results execute in a reasonable time they
are still far from the high speed performance de-
sired of image retrieval systems. Work is on-going
towards building indices of images based on local
shape properties and using the indices to reduce the
amount of translational search.
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Figure 4: Retrieval results for Car.
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