
Multimedia Indexing And Retrieval Research at the Center for Intelligent
Information Retrieval

R. Manmatha
�

Multimedia Indexing and Retrieval Group

Center for Intelligent Information Retrieval

Computer Science Department

University of Massachusetts, Amherst, MA 01003

manmatha@cs.umass.edu

Abstract

The digital libraries of the future will include not only

(ASCII) text information but scanned paper documents

as well as still photographs and videos. There is, there-

fore, a need to index and retrieve information from such

multi-media collections. The Center for Intelligent Infor-

mation Retrieval (CIIR) has a number of projects to index

and retrieve multi-media information. These include:

1. The extraction of text from images which may be

used both for finding text zones against general

backgrounds as well as for indexing and retrieving

image information.

2. Indexing hand-written and poorly printed docu-

ments using image matching techniques (word spot-

ting).

3. Indexing images using their content.

1 Introduction

The digital libraries of the future will include not only

(ASCII) text information but scanned paper documents

as well as still photographs and videos. There is, there-

fore, a need to index and retrieve information from such

multi-media collections. The Center for Intelligent In-

formation Retrieval (CIIR) has a number of projects to

index and retrieve multi-media information. These in-

clude:

1. Finding Text in Images: The conversion of scanned

documents into ASCII so that they can be in-

dexed using INQUERY (CIIR’s text retrieval en-

gine). Current Optical Character Recognition Tech-

nology (OCR) can convert scanned text to ASCII
✁

This material is based on work supported in part by the National
Science Foundation, Library of Congress and Department of Com-
merce under cooperative agreement number EEC-9209623, in part
by the United States Patent and Trademarks Office and the Defense
Advanced Research Projects Agency/ITO under ARPA order number
D468, issued by ESC/AXS contract number F19628-95-C-0235, in part
by NSF IRI-9619117 and in part by NSF Multimedia CDA-9502639.
Any opinions, findings and conclusions or recommendations expressed
in this material are the author(s) and do not necessarily reflect those of
the sponsors.

but is limited to good clean machine printed fonts

against clean backgrounds. Handwritten text, text

printed against shaded or textured backgrounds and

text embedded in images cannot be recognized well

(if it can be recognized at all) with existing OCR

technology. Many financial documents, for exam-

ple, print text against shaded backgrounds to pre-

vent copying.

The Center has developed techniques to detect text

in images. The detected text is then cleaned up

and binarized and run through a commercial OCR.

Such techniques can be applied to zoning text found

against general backgrounds as well as for indexing

and retrieving images using the associated text.

2. Word Spotting: The indexing of hand-written and

poorly printed documents using image matching

techniques. Libraries hold vast collections of orig-

inal handwritten manuscripts, many of which have

never been published. Word Spotting can be used

to create indices for such handwritten manuscript

archives.

3. Image Retrieval: Indexing images using their con-

tent. The Center has also developed techniques to

index and retrieve images by color and appearance.

2 Finding Text in Images

Most of the information available today is either on pa-

per or in the form of still photographs and videos. To

build digital libraries, this large volume of information

needs to be digitized into images and the text converted

to ASCII for storage, retrieval, and easy manipulation.

For example, video sequences of events such as a bas-

ketball game can be annotated and indexed by extract-

ing a player’s number, name and the team name that ap-

pear on the player’s uniform (Figure 1(b, c)). This maybe

combined with methods for image indexing and retrieval

based on image content (see section 3).

Current OCR technology [1, 20] is largely restricted

to finding text printed against clean backgrounds, since

Text

Clean-up

Chip

Refinement

Character

Recognition

Text

Clean-up

I
2

Segmentation

Texture

Segmentation

Texture

Segmentation

Texture

Segmentation

Texture

Generation

IInput Image

I
1

...

Generation

Generation

Generation

Chip

Chip

Chip

Chip Scale

Fusion

Chip

(a) (b) (c)

Figure 1: The system, example input image, and extracted text. (a) The top level components of the text detection and extraction
system. The pyramid of the input image is shown as

�
,
�✂✁

,
�☎✄✝✆✞✆✞✆

; (b) An example input image; (c) Output of the system before
being fed to the Character Recognition module.

in these cases it is easy to binarize the input images to

extract text (text binarization) before character recog-

nition begins. It cannot handle text printed against

shaded or textured backgrounds, nor text embedded in

pictures. More sophisticated text reading systems usu-

ally employ page segmentation schemes to identify text

regions. Then an OCR module is applied only to the

text regions to improve its performance. Some of these

schemes [32, 33, 21, 23] are top-down approaches, some

are bottom-up methods [7, 22], and others are based on

texture segmentation techniques in computer vision [8].

However, the top-down and bottom-up approaches usu-

ally require the input image to be binary and have a Man-

hattan layout. Although the approach in [8] can in prin-

ciple be applied to greyscale images, it was only used

on binary document images, and in addition, the text

binarization problem was not addressed. In summary,

few working systems have been reported that can read

text from document pages with both structured and non-

structured layouts. A brief overview of a system devel-

oped at CIIR for constructing a complete automatic text

reading system is presented here (for more details see

[34, 35]).

2.1 System Overview

The system takes advantage of the following distinctive

characteristics of text which make it stand out from other

image information: (1) Text possesses a distinctive fre-

quency and orientation attributes; (2) Text shows spatial

cohesion — characters of the same text string are of sim-

ilar heights, orientation and spacing.

The first characteristic suggests that text may be

treated as a distinctive texture, and thus be segmented

out using texture segmentation techniques. Thus, the first

phase of our system is Texture Segmentation as shown in

Figure 1(a). In the Chip Generation phase, strokes are

extracted from the segmented text regions. Using rea-

sonable heuristics on text strings based on the second

characteristic, the extracted strokes are then processed to

form tight rectangular bounding boxes around the corre-

sponding text strings. To detect text over a wide range

of font sizes, the above steps are applied to a pyramid

of images generated from the input image, and then the

boxes formed at each resolution level of the pyramid are

fused at the original resolution. A Text Clean-up mod-

ule which removes the background and binarizes the de-

tected text is applied to extract the text from the regions

enclosed by the bounding boxes. Finally, text bounding

boxes are refined (re-generated) by using the extracted

items as strokes. These new boxes usually bound text

strings better. The Text Clean-up process is then carried

out on the regions bounded by these new boxes to extract

cleaner text, which can then be passed through a com-

mercial OCR engine for recognition if the text is of an

OCR-recognizable font. The phases of the system are

discussed in the following sections.

2.2 The Texture Segmentation Module

A standard approach to texture segmentation is to first

filter the image using a bank of linear filters such as

Gaussian derivatives [11] or Gabor functions, followed

by some non-linear transformation such as a hyperbolic

function ✟✡✠☞☛✍✌✏✎✒✑✏✟✔✓ . Then features are computed to form

a feature vector for each pixel from the filtered im-

ages. These feature vectors are then classified to seg-

ment the textures into different classes (for more details

see [34, 35]).

Figure 2(a) shows a portion of an original input im-

age with a variety of textual information to be extracted.

There is text on a clean dark background, text printed

on Stouffer boxes, Stouffer’s trademarks (in script), and

a picture of the food. Figure 2(b) shows the final seg-

mented text regions.

(a) (b) (c) (d)

Figure 2: Results of Texture Segmentation and Chip Generation. (a) Portion of an input image; (b) The final segmented text
regions; (c) Extracted strokes; (d) Text chips mapped on the input image.

(a) (b) (c) (d)

Figure 3: The scale problem and its solution. (a) Chips generated for the input image at full resolution; (b) half resolution; (c)

✁
�

resolution; (d) Chips generated at all three levels mapped onto the input image. Scale-redundant chips are removed.

2.3 The Chip Generation Phase

In practice, text may occur in images with complex back-

grounds and texture patterns, such as foliage, windows,

grass etc. Thus, some non-text patterns may pass the fil-

ters and initially be misclassified as text (Figure 2(b)).

Furthermore, segmentation accuracy at texture bound-

aries is a well-known and difficult problem in texture

segmentation. Consequently, it is often the case that text

regions are connected to other regions which do not cor-

respond to text, or one text string might be connected to

another text string of a different size or intensity. This

might cause problems for later processing. For example,

if two text strings with significantly different intensity

levels are joined into one region, one intensity threshold

might not separate both text strings from the background.

Therefore, heuristics need to be employed to refine

the segmentation result. Since the segmentation process

usually finds text regions while excluding most of those

that are non-text, these regions can be used to direct fur-

ther processing (focus of attention). Furthermore, since

text is intended to be readable, there is usually a sig-

nificant contrast between it and the background. Thus

contrast can be utilized finding text. Also, it is usually

the case that characters in the same word/phrase/sentence

are of the same font and have similar heights and inter-

character spaces. Finally, it is obvious that characters in a

horizontal text string are horizontally aligned. Therefore,

all the heuristics above are incorporated in the Chip Gen-

eration phase in a bottom-up fashion: significant edges

form strokes (Figure 2(c)); strokes from the segmented

regions are aggregated to form chips corresponding to

text strings. The rectangular bounding boxes of the chips

are used to indicate where the hypothesized (detected)

text strings are (Figure 2(d)). These steps are described

in detail in [34, 35].

2.4 A Solution to the Scale Problem

The frequency channels used in the segmentation pro-

cess work well to cover text over a certain range of font

sizes. Text from larger font sizes is either missed or frag-

mented. This is called the scale problem. Intuitively, the

larger the font size of the text, the lower the frequency it

possesses. Thus, when the text font size gets too large,

its frequency falls outside the channels selected in sec-

tion 2.2.

A pyramid approach (Figure 1(a)) is used to solve the

scale problem: a pyramid of the input image is formed

and each image in the pyramid is processed as described

in the previous sections. At the bottom of the pyramid

is the original image; the image at each level (other than

the bottom) has half of the resolution as that of the im-

(a) (b)

(c)

Figure 4: Binarization results before and after the Chip Refinement step. (a) Input image; (b) binarization result before refinement;
(c) after refinement.

age one level below. Text of smaller font sizes can be

detected using the images lower in the pyramid (Figure

3(a)), while text of large font sizes is found using images

higher in the pyramid (Figure 3(c). The bounding boxes

of detected text regions at each level are mapped back to

the original input image and the redundant boxes are then

removed as shown in Figure 3(d). Details are presented

in [34, 35].

2.5 Text on Complex Backgrounds

The previous sections describe a system which detects

text in images and puts boxes around detected text strings

in the input image. Since text may be printed against

complex image backgrounds, which current OCR sys-

tems cannot handle well, it is desirable to have the back-

grounds removed first. In addition, OCR systems require

that the text must be binarized before actual recognition

starts. In this system, the background removal and text

binarization is done by applying an algorithm to the text

boxes individually instead of trying to binarize the input

image as a whole. This allows the process to adapt to the

individual context of each text string. The details of the

algorithm are in [34, 35].

2.6 The Text Refinement

Sometimes non-text items are identified as text as well.

In addition, the bounding boxes of the chips sometimes

do not tightly surround the text strings. The consequence

of these problems is that non-text items may occur in

the binarized image, produced by mapping the extracted

items onto the original page. An example is shown in

Figure 4(a,b). These non-text items are not desirable.

However, by treating the extracted items as strokes,

the Chip Refinement module which is essentially sim-

ilar to the chip Generation module but with stronger

constraints, can be applied here to eliminate the non-

text items and hence form tighter text bounding boxes.

This can be achieved because (1) the clean-up proce-

dure is able to extract most characters without attach-

ing to nearby characters and non-text items (Figure 4(b)),

and (2) most of the strokes at this stage are composed of

complete or almost complete characters, as opposed to

the vertical connected edges of the characters in the ini-

tial processing. Thus, it can be expected that the correct

text strokes comply more consistently with the heuristics

used in the early Chip Generation phase. The significant

improvement is clearly shown in 4c.

2.7 Experiments

The system has been tested over
�✂✁

images from a wide

variety of sources: digitized video frames, photographs,

newspapers, advertisements in magazines or sales flyers,

and personal checks. Some of the images have regular

page layouts, others do not. It should be pointed out that

all the system parameters remain the same throughout

the entire set of test images, showing the robustness of

the system.

Characters and words (as perceived by one of the au-

thors) were counted in each image as ground truth. The

total numbers over the whole test set are shown in the

“Total Perceived” column in Table 1. The detected char-

acters and words are those which are completely en-

closed by the boxes produced after the Chip Scale Fu-

sion step. The total numbers of detected characters and

words over the entire test set are shown in the “Total De-

tected” column. Characters and words clearly readable

by a person after the Chip Refinement and Text Clean-up

steps (final extracted text) are also counted for each im-

age, with the total numbers shown in the “Total Clean-

up” column. The column “Total OCRable” shows the

total numbers of cleaned-up characters and words that

appear to be of OCR recognizable fonts in ✄✂☎ of the bi-

narized images. Note that only the text which is horizon-

tally aligned is counted (skew angle of the text string is

less than roughly 30 degrees)1. The “Total OCRed” col-

umn shows the numbers of characters and words from the

“Total OCRable” sets correctly recognized by Caere’s

commercial WordScan OCR engine.

Figure 5(a) is a portion of an original input image

which has no structured layout. The final binarization re-

sult is shown in (b) and the corresponding OCR output is

shown in (c). Notice that most of the text is detected, and

most of the text of machine-printed fonts are correctly

recognized by the OCR engine. It should be pointed out

that the cleaned-up output looks fine to a person in the

places where the OCR errors occurred.

3 Word Spotting: Indexing Handwritten

Archival Manuscripts

There are many historical manuscripts written in a sin-

gle hand which it would be useful to index. Exam-

ples include the W. B. DuBois collection at the Uni-

versity of Massachusetts, Margaret Sanger’s collected

works at Smith College and the early Presidential li-

braries at the Library of Congress. These manuscripts

are largely written in a single hand. Such manuscripts

are valuable resources for scholars as well as others who

wish to consult the original manuscripts and consider-

able effort has gone into manually producing indices

for them. For example, a substantial collection of Mar-

garet Sanger’s work has been recently put on microfilm

(see http://MEP.cla.sc.edu/Sanger/SangBase.HTM) with

an item by item index. These indices were created manu-

ally. The indexing scheme described here will help in the

automatic creation and production of indices and concor-

dances for such archives.

One solution is to use Optical Character Recognition

(OCR) to convert scanned paper documents into ASCII.

1Here, the focus is on finding horizontal, linear text strings only.
The issue of finding text strings of any orientation will be addressed in
future work.

Table 1: Summary of the system’s performance. �✂✁ images were used for detection and clean-up. Out of these, 35 binarized
images were used for the OCR process.

Total Total Total Total Total

Perceived Detected Clean-up OCRable OCRed

Char 21820 20788 (95%) 91% 14703 12428 (84%)

Word 4406 4139 (93%) 86% 2981 2314 (77%)

(a) (b) (c)

Figure 5: Example 1. (a) Original image (ads11); (b) Extracted text; (c) The OCR result using Caere’s WordScan Plus 4.0 on b.

Existing OCR technology works well with standard ma-

chine printed fonts against clean backgrounds. It works

poorly if the originals are of poor quality or if the text

is handwritten. Since Optical Character Recognition

(OCR) does not work well on handwriting, an alternative

scheme based on matching the images of the words was

proposed by us in [18, 17, 15] for indexing such texts.

Here a brief summary of the work is presented.

Since the document is written by a single person, the

assumption is that the variation in the word images will

be small. The proposed solution will first segment the

page into words and then match the actual word images

against each other to create equivalence classes. Each

equivalence class will consist of multiple instances of the

same word. Each word will have a link to the page it

came from. The number of words in each equivalence

class will be tabulated. Those classes with the largest

numbers of words will probably be stopwords, i.e. con-

junctions such as “and” or articles such as “the”. Classes

containing stopwords are eliminated (since they are not

very useful for indexing). A list is made of the remain-

ing classes. This list is ordered according to the num-

ber of words contained in each of the classes. The user

provides ASCII equivalents for a representative word in

each of the top m (say m = 2000) classes. The words in

these classes can now be indexed. This technique will be

called “word spotting” as it is analogous to “word spot-

ting” in speech processing [9].

The proposed solution completely avoids machine

recognition of handwritten words as this is a difficult task

[20]. Robustness is achieved compared to OCR systems

for two reasons:

1. Matching is based on entire words. This is in con-

trast to conventional OCR systems which essen-

tially recognize characters rather than words.

2. Recognition is avoided. Instead a human is placed

in the loop when ASCII equivalents of the words

must be provided.

Some of the matching aspects of the problem are dis-

cussed here (for a discussion of page segmentation into

words, see [18]). The matching phase of the problem is

expected to be the most difficult part of the problem. This

is because unlike machine fonts, there is some variation

in even a single person’s handwriting. This variation is

difficult to model. Figure (6) shows two examples of the

word “Lloyd” written by the same person. The last image

is produced by XOR’ing these two images. The white ar-

eas in the XOR image indicate where the two versions of

“Lloyd” differ. This result is not unusual. In fact, the

differences are sometimes even larger.

The performance of two different matching techniques

is discussed here. The first, based on Euclidean dis-

tance mapping [2], assumes that the deformation be-

tween words can be modelled by a translation (shift).

The second, based on an algorithm by Scott and Longuet

 ��

Figure 6: Two examples of the word “Lloyd” and the

XOR image

Higgins [28] models the transformation between words

using an affine transform.

3.1 Prior Work

The traditional approach to indexing documents involves

first converting them to ASCII and then using a text

based retrieval engine [30]. Scanned documents printed

in standard machine fonts against clean backgrounds can

be converted into ASCII using an OCR [1]. However,

handwriting is much more difficult for OCRs to handle

because of the wide variability present in handwriting

(not only is there variability between writers, but a given

person’s writing also varies).

Image matching of words has been used to recognize

words in documents which use machine fonts [5, 10].

Recognition rates are much higher than when the OCR

is used directly [10]. Machine fonts are simpler to

match than handwritten fonts since the variation is much

smaller; multiple instances of a given word printed in the

same font are identical except for noise. In handwrit-

ing, however, multiple instances of the same word on the

same page by the same writer show variations. The first

two pictures in Figure 6 are two identical words from the

same document, written by the same writer. It may thus

be necessary to account for these variations.

3.2 Outline of Algorithm

1. A scanned greylevel image of the document is ob-

tained.

2. The image is first reduced by half by gaussian filter-

ing and subsampling.

3. The reduced image is then binarized by threshold-

ing the image.

4. The binary image is now segmented into words. this

is done by a process of smoothing and thresholding

(see [18]).

5. A given word image (i.e. the image of a word) is

used as a template. and matched against all the other

word images. This is repeated for every word in

the document. The matching is done in two phases.

First, the number of words to be matched is pruned

using the areas and aspect ratios of the word im-

ages - the word to be matched cannot have an area

or aspect ratio which is too different from the tem-

plate. Next, the actual matching is done by using

a matching algorithm. Two different matching al-

gorithms are tried here. One of them only accounts

for translation shifts, while the other accounts for

affine matches. The matching divides the word im-

ages into equivalence classes - each class presum-

ably containing other instances of the same word.

6. Indexing is done as follows. For each equivalence

class, the number of elements in it is counted. The

top n equivalence classes are then determined from

this list. The equivalence classes with the highest

number of words (elements) are likely to be stop-

words (i.e. conjunctions like ‘and’ , articles like

‘the’, and prepositions like ‘of’) and are therefore

eliminated from further consideration. Let us as-

sume that of the top n, m are left after the stopwords

have been eliminated. The user then displays one

member of each of these m equivalence classes and

assigns their ASCII interpretation. These m words

can now be indexed anywhere they appear in the

document.

We will now discuss the matching techniques in detail.

3.3 Determination of Equivalence Classes

The list of words to be matched is first pruned using the

areas and aspect ratios of the word images. The pruned

list of words is then matched using a matching algorithm.

3.4 Pruning

It is assumed that
�

✑
✁ ✂☎✄✝✆✟✞✡✠

✂☎☛✌☞✎✍✑✏✓✒✕✔✖☛✌☞
✁ ✑ (1)

where ✂ ☛✌☞✎✍✑✏✗✒✘✔✖☛✌☞ is the area of the template and ✂✙✄✝✆✟✞✡✠
is the area of the word to be matched. Typical values of

✑ used in the experiments range between 1.2 and 1.3. A

similar filtering step is performed using aspect ratios (ie.

the width/height ratio). It is assumed that

�
✚ ✁ ✂✜✛✟✢✤✣✦✥ ✟ ✄✝✆✧✞✖✠

✂✜✛✟✢★✣✩✥ ✟ ☛✌☞✎✍✑✏✓✒✕✔✖☛✌☞
✁ ✚✫✪

(2)

The value of
✚

used in the experiments range between 1.4

and 1.7. In both the above equations, the exact factors are

not important but it should not be so large so that valid

words are omitted, nor so small so that too many words

are passed onto the matching phase. The pruning values

may be automatically determined by running statistics on

samples of the document [15].

3.5 Matching

The template is then matched against the image of each

word in the pruned list. The matching function must sat-

isfy two criteria:

1. It must produce a low match error for words which

are similar to the template.

2. It must produce a high match error for words which

are dissimilar.

Two matching algorithms have been tried. The first

algorithm - Euclidean Distance Mapping (EDM) - as-

sumes that no distortions have occured except for rela-

tive translation and is fast. This algorithm usually ranks

the matched words in the correct order (i.e. valid words

first, followed by invalid words) when the variations in

words is not too large. Although, it returns the low-

est errors for words which are similar to the template,

it also returns low errors for words which are dissimilar

to the template. The second algorithm [28],referred to as

SLH here, assumes an affine transformation between the

words. It thus compensates for some of the variations in

the words. This algorithm not only ranks the words in the

correct order for all examples tried so far, it also seems

to be able to better discriminate between valid words and

invalid words. As currently implemented the SLH algo-

rithm is much slower than the EDM algorithm (we expect

to be able to speed it up).

3.6 Using Euclidean Distance Mapping for

Matching

This approach is similar to that used by [6] to match ma-

chine generated fonts. A brief description of the method

follows (more details are available from [18]).

Consider two images to be matched. There are three

steps in the matching:

1. First the images are roughly aligned. In the verti-

cal direction, this is done by aligning the baselines

of the two images. In the horizontal direction, the

images are aligned by making their left hand sides

coincide.

The alignment is, therefore, expected to be accurate

in the vertical direction and not as good in the hori-

zontal direction. This is borne out in practice.

2. Next the XOR image is computed. This is done by

XOR’ing corresponding pixels (see Figure 6).

3. An Euclidean distance mapping [2] is computed

from the XOR image by assigning to each white

pixel in the image, its minimum distance to a black

pixel. Thus a white pixel inside a blob is assigned

a larger distance than an isolated white pixel. An

error measure �✂✁☎✄✝✆ can now be computed by

adding up the distance measures for each pixel.

4. Although the approximate translation has been

computed using step 1, this may not be accurate and

may need to be fine-tuned. Thus steps (2) and (3)

are repeated while sampling the translation space in

both x and y. A minimum error measure � ✁✞✄✟✆ ✍✡✠☞☛
is computed over all the translation samples.

3.7 SLH Algorithm for Matching

The EDM algorithm does not discriminate well between

good and bad matches. In addition, it fails when there is

significant distortion in the words. This happens with the

writing of Erasmus Hudson (Figure 7). Thus a match-

ing algorithm which models some of the variation is

needed. A second matching algorithm (SLH), which

models the distortion as an affine transformations, was

therefore tried (note that it is expected that the real vari-

ation is probably much more complex). An affine trans-

form is a linear transformation between coordinate sys-

tems. In two dimensions, it is described by

✌✎✍✑✏✓✒✔✌✖✕✘✗
(3)

where ✗ is a 2-D vector describing the translation, ✒ is

a 2 by 2 matrix which captures the deformation, ✌ ✍ and✌ are the coordinates of corresponding points in the two

images between which the affine transformation must be

recovered. An affine transform allows for the following

deformations - scaling in both directions, shear in both

directions and rotation.

The algorithm chosen here is one proposed by Scott

and Longuet-Higgins [28] (see [16]). The algorithm re-

covers the correspondence between two sets of points I

and J under an affine transform.

The sets I and J are created as follows. Every white

pixel in the first image is a member of the set I. Similarly,

every white pixel in the second image is a member of

set J. First, the centroids of the point sets are computed

and the origins of the coordinate systems is set at the

centroid. The SLH algorithm is then used to compute

the correspondence between the point sets.

Given the (above) correspondence between point sets

I and J, the affine transform ✒✚✙✛✗ can be determined by

minimizing the following least mean squares criterion:

�✢✜✤✣✦✥ ✏★✧
✒

✎✪✩ ✒✬✫ ✒✚✭ ✒✮✫ ✗ ✓✰✯ (4)

where ✩ ✒ ✙✱✭ ✒ are the (x,y) coordinates of point ✩ ✒ and ✭ ✒
respectively.

The values are then plugged back into the above equa-

tion to compute the error �✲✜✳✣✴✥ . The error �✢✜✳✣✴✥ is an

estimate of how dissimilar two words are and the words

can, therefore, be ranked according to it.

It will be assumed that the variation for valid words

is not too large. This implies that if ✂✶✵✷✵ and ✂ ✯✷✯ are

considerably different from 1, the word is probably not a

valid match.

Note: The SLH algorithm assumes that pruning on the

basis of the area and aspect ratio thresholds is performed.

3.8 Experiments

The two matching techniques were tested on

two handwritten pages, each written by a differ-

ent writer. The first page can be obtained from

Figure 7: Part of a page from the collected papers of the Hudson family

the DIMUND document server on the internet

http://documents.cfar.umd.edu/resources/database/

handwriting.database.html This page will be referred

to as the Senior document. The handwriting on this

page is fairly neat (see [18] for a picture). The second

page is from an actual archival collection - the Hudson

collection from the library of the University of Mas-

sachusetts (part of the page is shown in Figure (7). This

page is part of a letter written by James S. Gibbons to

Erasmus Darwin Hudson. The handwriting on this page

is difficult to read and the indexing technique helped in

deciphering some of the words.

The experiments will show examples of how the

matching techniques work on a few words. For more ex-

amples of the EDM technique see [18]. For more exam-

ples using the SLH technique and comparisons with the

EDM technique see [16]. In general, the EDM method

ranks most words in the Senior document correctly but

ranks some words in the Hudson document incorrectly.

The SLH technique performs well on both documents.

Both pages were segmented into words (see [18] for

details) The algorithm was then run on the segmented

words. In the following figures, the first word shown

is the template. After the template, the other words are

ranked according to the match error. Note that only the

first few results of the matching are shown although the

template has been matched with every word on the page.

The area threshold ✑ was chosen to be 1.2 and the aspect

ratio threshold
✚

was chosen as 1.4. The translation val-

ues were sampled to within �
�

pixels in the X direction

and �
�

pixel in the y direction. Experimentally, this gave

the best results.

3.9 Results using Euclidean Distance

Mapping

The Euclidean Distance Mapping algorithm works rea-

sonably well on the Senior document. An example is

shown below.

In Figure (8), the template is the word “Lloyd”. The

figure shows that the four other instances of “Lloyd”

present in the document are ranked before any of the

other words. As Table (2) shows, the match errors for

other instances of “Lloyd” is less than that for any other

word. In the table, the first column is the Token number

(this is needed for identification purposes), the second

column is a transcription of the word, the third column

shows the area in pixels, the fourth gives the match error

and the last two columns specify the translation in the x

and y directions respectively. Note the significant change

in area of the words.

The performance on other words in the Senior docu-

ment is comparable (for other examples see [18]). This

is because the page is written fairly neatly. The perfor-

mance of the method is expected to correlate with the

quality of the handwriting. This was verified by running

experiments on a page from the Hudson collection (Fig-

 ��

Figure 8: Ranked matches for template “Lloyd” using

the EDM algorithm (the rankings are ordered from left

to right and from top to bottom).

ure 7). The handwriting in the Hudson collection is diffi-

cult to read even for humans looking at grey-level images

at 300 dpi The writing shows wide variations in size - for

example, the area of the word “to” varies by as much as

100% ! However, this large a variation is not expected to

occur and is not seen when the words are larger. Since

humans have difficulty reading this material, we do not

expect that the method will perform very well on this

document.

The Euclidean Distance Mapping technique fails for

the template “Standard” in the Hudson document (see

Figure (9)). The failure occurs because the two in-

stances of “Standard” are written differently. The tem-

plate “Standard” has a gap between the “t” and the “a”.

This gap is not present in the second example of “Stan-

dard” (this is more clearly visible in Figure (10). A tech-

nique to model some distortions is, therefore, necessary.
 ��

Figure 9: Rankings for template “Standard” using the

EDM algorithm(the rankings are ordered from left to

right and from top to bottom).

3.10 Experiments Using the SLH

Algorithm

The SLH algorithm handles affine distortions and is,

therefore more powerful then the EDM algorithm. Since

Token Word Area �✂✁☎✄✝✆ ✍ ✠☞☛ Xshift Yshift

105 Lloyd 1360 0.000 0 0

70 Lloyd 1224 0.174 0 0

165 Lloyd 1230 0.175 -2 0

197 Lloyd 1400 0.194 4 0

239 Lloyd 1320 0.197 -3 0

21 Maybe 1147 0.199 -1 0

180 along 1156 0.200 1 0

215 party 1209 0.202 1 0

245 spurt 1170 0.205 -1 0

121 dreary 1435 0.206 3 0

Table 2: Rankings and match Errors for template “Lloyd”.

Token Word Area CP � ✜✳✣✴✥ A T

105 Lloyd 1368 233 0.00 1.00 0.00 0.00

0.00 1.00 0.00

197 Lloyd 1400 199 1.302 0.96 -0.04 1.58

0.01 1.04 0.14

70 Lloyd 1224 176 1.356 0.94 0.09 -1.02

0.03 0.92 -1.38

165 Lloyd 1230 189 1.631 1.03 0.05 -0.43

-0.01 0.87 -2.60

239 Lloyd 1320 203 1.795 0.99 -0.05 1.44

0.03 1.07 2.21

157 lawyer 1518 185 3.393 0.96 -0.03 1.89

0.05 1.11 0.03

240 Selwyn 1564 188 3.673 0.94 0.06 -4.23

0.05 1.05 -0.75

91 thought 1178 181 3.973 0.97 0.03 2.33

-0.01 1.08 2.91

Table 3: Rankings and Match Errors for template “Lloyd” Using SLH Algorithm.

the current version of the SLH algorithm is slow, the ini-

tial matches were pruned using the EDM algorithm and

then the SLH algorithm run on the pruned subset.

Experiments were performed using both the Senior

document and the Hudson documents. A few examples

are shown here (for more details see [16]). For the Se-

nior documents the same pruning ratios were chosen as

before. To account for the large variations in the Hudson

papers, the area threshold ✑ was fixed at 1.3 and the as-

pect ratio threshold at 1.7. The value of � depends on the

expected translation. Since it is small, � ✏✂✁ ✪ ✄
. A lower

value of � ✏ � ✪
☎ yielded poorer results.

The matches for the template “Lloyd” are shown in Ta-

ble (3). The succesive columns of the table, tabulate the

Token Number, the transcription of the word, the area of

the word image, the number of corresponding points re-

covered by the SLH algorithm, the match error � ✜✆☎✞✝
using the SLH algorithm and the affine transform. The

entries are ranked according to the match error � ✜✳✣✴✥ . If

either of ✂ ✵ ✵ or ✂ ✯✷✯ is less than 0.8 or greater than 1/0.8,

that word is eliminated from the rankings. A comparison

with Table (2) shows that the rankings change. This is

not only true of the invalid words (for example the sixth

entry in Table (2) is “Maybe” while the sixth entry in Ta-

ble (3) is “lawyer” but is also true of the “Lloyd”’s. Both

tables rank instances of “Lloyd” ahead of other words.

The technique also shows a much greater discrimination

in match error - the match error for “lawyer” is almost

double the match error for the fifth “Lloyd”.

The method was also run on the Hudson document

(Figure (7)) and it ranked most of the words correctly

on this document. As an example, we look at the word

“Standard” on which the EDM method did not rank cor-

rectly. The SLH method produces the correct ranking in-

spite of the significant distortions in the word (see Figure

(10)).

3.10.1 Recall–Precision Results

Indexing and retrieval techniques may be evaluated us-

ing recall and precision. Recall is defined as the “pro-

portion of relevant documents actually retrieved” while

precision is defined as the “proportion of retrieved doc-

uments that are relevant” [31]. Figure 3.10.1 shows the

recall–precision results for both algorithms on the Senior

 ��

Figure 10: Rankings for template “Standard” for the

SLH algorithm (the rankings are ordered from left to

right and from top to bottom).

document. The two EDM graphs are for two different

values of the area ratio (1.22 and 1.3). Notice that they

do not differ significantly, thus showing that the exact

values of the area ratio are not significant. The average

precision for the EDM and SLH algorithms on the Senior

document are 79.7 % and 86.3 % respectively. Note that

SLH performs significantly better than EDM. Similar re-

sults are obtained with the Hudson document. ��

Figure 11: Recall precision results for Senior document

4 Image Retrieval

The indexing and retrieval of images using their content

is a poorly understood and difficult problem. A person

using an image retrieval system usually seeks to find se-

mantic information. For example, a person may be look-

ing for a picture of a leopard from a certain viewpoint. Or

alternatively, the user may require a picture of Abraham

Lincoln from a particular viewpoint.

Retrieving semantic information using image content

is difficult to do. The automatic segmentation of an im-

age into objects is a difficult and unsolved problem in

computer vision. However, many image attributes like

color, texture, shape and “appearance” are often directly

correlated with the semantics of the problem. For exam-

ple, logos or product packages (e.g., a box of Tide) have

the same color wherever they are found. The coat of a

leopard has a unique texture while Abraham Lincoln’s

appearance is uniquely defined. These image attributes

can often be used to index and retrieve images.

The Center has carried out pioneering research in this

area. The Center conducts research in both color based

image retrieval see and appearance based image retrieval

(the methods applied to appearance based image retrieval

may also be directly applied to texture based image re-

trieval). We will now discuss appearance based retrieval

(the reader is referred to [3] for discussions about the

color based retrieval.

4.1 Retrieval by Appearance

Some attempts have been made to retrieve objects using

their shape [4, 24]. For example, the QBIC system [4],

developed by IBM, matches binary shapes. It requires

that the database be segmented into objects. Since auto-

matic segmentation is an unsolved problem, this requires

the user to manually outline the objects in the database.

Clearly this is not desirable or practical.

Except for certain special domains, all methods based

on shape are likely to have the same problem. An ob-

ject’s appearance depends not only on its three dimen-

sional shape, but also on the object’s albedo, the view-

point from which it is imaged and a number of other

factors. It is non-trivial to separate the different factors

constituting an object’s appearance. For example, it is

usually not possible to separate an object’s three dimen-

sional shape from the other factors.

The Center has overcome this difficulty by develop-

ing methods to retrieve objects using their appearance

[26, 27, 19, 25]. The methods involve finding objects

similar in appearance to an example object specified by

the query.

To the best of our knowledge, ours is the first gen-

eral query by appearance image retrieval system. Sys-

tems have been built to retrieve specific objects like faces

(e.g., [29])). However, these systems require a number of

training examples and it is not clear whether they can be

generalized to retrieve other objects.

Some of the salient features of our system include:

1. The ability to retrieve “similar” images. This is in

contrast with techniques which try to recover the

same object. In our system, a car used as a query

will also retrieve other cars rather than retrieving

only cars of a specific model.

2. The ability to retrieve images embedded in a back-

ground (see for example the cars in Figure 13 which

appear against various backgrounds).

3. It does not require any prior manual segmentation

of the database.

4. No training is required.

5. It can handle a range of variations in size.

6. It can handle 3D viewpoint changes up to about 20

to 25 degrees.

The user constructs the query by taking an example

picture, and marking regions which she considers impor-

tant aspects of the object. The query may be refined later

depending on the retrieval results. Consider, for exam-

ple, the first car shown in Figure 4.1. The user marks the

region shown in the figure using a mouse. Notice that

the region reflects the fact that wheels are central to a

car. The user’s query in this situation is to find visually

similar objects (i.e., other cars) from a similar viewpoint

(where the viewpoint can vary up to 25 degrees from the

query).

The database images are filtered with derivatives of

Gaussians at multiple scales. Derivatives of the first and

second order are used. Differential invariants (invariants

to 2D rotation) are created using the derivatives. [19, 25].

An inverted list is constructed from these invariants. The

inverted list is indexed using the value of each invariant.

The entire computation may be carried out off-line.

The on-line computation consists of calculating invari-

ants for points in the query (which is a region in the im-

age). Points with similar invariant values are now re-

covered from the database by indexing on the invariant

values. The points obtained by indexing must also sat-

isfy certain spatial constraints. That is, the values of

the invariants at a pixel and at some of its neighbors

must match. This ensures that the indexing scheme pre-

serves the spatial layout of objects. Points which satisfy

this spatial relationship vote and the database images are

ranked on the basis of this vote.

The scheme described above works if the object is

roughly the same size in the query and the image

database. In practice it is quite common for the objects

to be of different sizes in a database. The variation in

size is handled by doing a search over scale space. That

is, the query is filtered with Gaussian derivatives of dif-

ferent standard deviations [14, 13, 12] and the image si-

multaneously warped. This allows objects over a range

of sizes to be matched [26, 27].

The query is outlined by the user with a mouse Figure

4.1. Figure 13 shows the results of a query. Notice that

a large number of cars with white wheels have been re-

trieved. For more examples, see [19, 25]. This retrieval

Figure 12: Car Query for retrieval by indexing

was performed on a database of 1600 images taken from

the Internet, the Library of Congress and other sources.

The database consists of faces, monkeys, apes, cars,

diesel and steam locomotives and a few houses. Lighting

and camera parameters are not known.

5 Conclusion

This paper has described the multimedia indexing and

retrieval work being done at the Center for Intelligent In-

formation Retrieval. Work on systems for finding text

in images, indexing archival handwritten documents and

image retrieval by content has been described. The re-

search described is part of an on-going research effort

focused on indexing and retrieving multimedia informa-

tion in as many ways as possible. The work described

here has many applications, principally in the creation of

the digital libraries of the future.

6 Acknowledgements

This paper includes research contributions by Victor Wu

and Srinivas Ravela of the multimedia indexing and re-

trieval group. David Hirvonen and Adam Jenkins pro-

vided programming support. Ed Riseman gave com-

ments on some of this work. I would like to thank

Bruce Croft and CIIR for supporting this work and Gail

Giroux and the University of Massachusetts Library for

the scanned page from the Hudson collection.

References

[1] M. Bokser. Omnidocument technologies. Proceedings
IEEE, 80(7):1066–1078, 1992.

[2] Per-Erik Danielsson. Euclidean distance mapping. Com-
puter Graphics and Image Processing, 14:227–248,
1980.

[3] M. Das, E. M. Riseman, and B. A. Draper. Focus :
Searching for multi-colored objects in a diverse image
database. accepted to the IEEE CVPR ’97, June 1997.

[4] Myron Flickner et al. Query by image and video content:
The qbic system. IEEE Computer Magazine, pages 23–
30, Sept. 1995.

[5] L. D. Wilcox F. R. Chen, D. S. Bloomberg. Spotting
phrases in lines of imaged text. In Proceedings of the
SPIE conf. on Document Recognition II, volume 2422,
pages 256–269, San Jose, CA, Feb. 1995.

[6] Paul Filiski and Jonathan J. Hull. Keyword selection from
word recognition results using definitional overlap. In
Third Annual Symposium on Document Analysis and In-
formation Retrieval, UNLV, Las Vegas, pages 151–160,
1994.

[7] L. Fletcher and R. Kasturi. A robust algorithm for text
string separation from mixed text/graphics images. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 10(6):910–918, Nov. 1988.

[8] Anil K. Jain and Sushil Bhattacharjee. Text Segmentation
Using Gabor Filters for Automatic Document Processing.
Machine Vision and Applications, 5, 1992.

[9] G. J. F. Jones, J. T. Foote, K. Sparck Jones, and S. J.
Young. Video mail retrieval: The effect of word spot-
ting accuracy on precision. In International Conference
on Acoustics, Speech and Signal Processing, volume 1,
pages 309–316, 1995.

[10] Siamak Khoubyari and Jonathan J.Hull. Keyword loca-
tion in noisy document image. In Second Annual Sympo-
sium on Document Analysis and Information Retrieval,
UNLV, Las Vegas, pages 217–231, 1993.

[11] J. Malik and P. Perona. Preattentive texture discrimina-
tion with early vision mechanisms. Journal of the Optical
Society of America A, 7(5):923–932, May 1990.

[12] R. Manmatha. Image matching under affine deforma-
tions. In Invited Paper, Proc. of the 27nd Asilomar IEEE
Conf. on Signals, Systems and Computers, pages 106–
110, 1993.

[13] R. Manmatha. A framework for recovering affine trans-
forms using points, lines or image brightnesses. In Proc.
Computer Vision and Pattern Recognition Conference,
pages 141–146, 1994.

[14] R. Manmatha. Measuring the affine transform using gaus-
sian filters. In Proc. 3rd European Conference on Com-
puter Vision, pages 159–164, 1994.

[15] R. Manmatha and W. B. Croft. Word spotting: Indexing
handwritten manuscripts. In Mark Maybury, editor, In-
telligent Multi-media Information Retrieval. AAAI/MIT
Press, April 1998.

[16] R. Manmatha, Chengfeng Han, and E. M. Riseman. Word
spotting: A new approach to indexing handwriting. Tech-
nical Report CS-UM-95-105, Computer Science Dept,
University of Massachusetts at Amherst, MA, 1995.

[17] R. Manmatha, Chengfeng Han, and E. M. Riseman. Word
spotting: A new approach to indexing handwriting. In
Proc. Computer Vision and Pattern Recognition Confer-
ence, pages 631–637, 1996.

[18] R. Manmatha, Chengfeng Han, E. M. Riseman, and W. B.
Croft. Indexing handwriting using word matching. In
Digital Libraries ’96: 1st ACM International Conference
on Digital Libraries, pages 151–159, 1996.

[19] R. Manmatha and S. Ravela. A syntactic characteriza-
tion of appearance and its application to image retrieval.
In Proceedings of the SPIE conf. on Human Vision and
Electronic Imaging II, volume 3016, San Jose, CA, Feb.
1997.

[20] S. Mori, C. Y. Suen, and K. Yamamoto. Historical re-
view of ocr research and development. Proceedings of
the IEEE, 80(7):1029–1058, July 1992.

[21] G. Nagy, S. Seth, and M. Viswanathan. A Prototype
Document Image Analysis System for Technical Journals.
Computer, pages 10–22, July 1992.

[22] Lawrence O’Gorman. The Document Spectrum for Page
Layout Analysis. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 15(11):1162–1173, Nov. 1993.

[23] Theo Pavlidis and Jiangying Zhou. Page Segmentation
and Classification. CVGIP: Graphical Models and Image
Processing, 54(6):484–496, Nov. 1992.

[24] A. Pentland, R. W. Picard, and S. Sclaroff. Photo-
book: Tools for content-based manipulation of databases.
In Proc. Storage and Retrieval for Image and Video
Databases II,SPIE, volume 185, pages 34–47, 1994.

[25] S. Ravela and R. Manmatha. Image retrieval by appear-
ance. In Accepted to the 20th Intl. Conf. on Research and
Development in Information Retrieval (SIGIR’97), July
1997.

[26] S. Ravela, R. Manmatha, and E. M. Riseman. Image re-
trieval using scale-space matching. In Bernard Buxton
and Roberto Cipolla, editors, Computer Vision - ECCV
’96, volume 1 of Lecture Notes in Computer Science,
Cambridge, U.K., April 1996. 4th European Conf. Com-
puter Vision, Springer.

[27] S. Ravela, R. Manmatha, and E. M. Riseman. Scale space
matching and image retrieval. In Proc. DARPA Image
Understanding Workshop, 1996.

[28] G. L. Scott and H. C. Longuet-Higgins. An algorithm
for associating the features of two patterns. Proc. Royal
Society of London B, B244:21–26, 1991.

[29] M. Turk and A. Pentland. Eigenfaces for recognition. J.
of Cognitive NeuroScience, 3:71–86, 1991.

[30] H.R. Turtle and W.B. Croft. A comparison of text retrieval
models. Computer Journal, 35(3):279–290, 1992.

[31] C. J. van Rijsbegen. Information Retrieval. Butterworths,
1979.

[32] F. Wahl, K. Wong, and R. Casey. Block segmentation
and text extraction in mixed text/image documents. Com-
puter Vision Graphics and Image Processing, 20:375–
390, 1982.

[33] D. Wang and S. N. Srihari. Classification of newspaper
image blocks using texture analysis. Computer Vision
Graphics and Image Processing, 47:327–352, 1989.

[34] V. Wu, R. Manmatha, and E. M. Riseman. Finding Text
In Images. Technicial Report 97-09, Computer Science
Department, UMass, Amherst, MA, 1997.

[35] V. Wu, R. Manmatha, and E. M. Riseman. Finding Text
In Images. accepted to the Second ACM Intl. conf. on
Digitial Libraries DL’97, July 1997.

Figure 13: The results of the car query.

