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Abstract

A system to retrieve images using a description of
the image intensity surface is presented. Gaussian
derivative filters at several scales are applied to the im-
age and low order 2D differential invariants are com-
puted. The resulting multi-scale representation is in-
dexed for rapid retrieval. Queries are designed by the
users from an example image by selecting appropri-
ate regions. The invariant vectors corresponding to
these regions are matched with the database counter-
parts both in feature and coordinate space. This yields
a match score per image. Images are sorted by the
match score and displayed. FExperiments conducted
with over 1500 images of objects embedded in arbitrary
backgrounds are described. It is observed that images
similar in appearance and whose viewpoint is within
small view variations of the query can be retrieved with
an average precision' of 56%.

1 Introduction

The goal of image retrieval systems is to operate on
collections of images and, in response to visual queries,
extract relevant images. There are several issues that
must be understood before image retrieval can be suc-
cessful. Foremost among these is an understanding
of what ’retrieval of relevant images’ means. Rele-
vance, for users of a retrieval system, is most likely as-
sociated with semantics. Encoding semantic informa-
tion into a general image retrieval system entails solv-
ing such problems as feature extraction, segmentation
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Iprecision is the proportion of retrieved images that are
relevant

and, object and context recognition. These are ex-
tremely hard problems that are as yet unsolved. How-
ever, in many situations attributes associated with an
image, when used together with some level of user in-
put, correlate well with the kind of semantics that are
desirable. Consequently, recent work has focused di-
rectly on retrieval using attributes such as color, tex-
ture, shape, and combinations thereof.

In this paper, images are retrieved by a character-
ization of the visual appearance of objects. The fo-
cus is on retrieving ’similar’ objects. For example,
when a face is presented as a query it is expected that
the system should not only retrieve the same person’s
face but rank other faces before it ranks, cars, trains
or apes. Similarly if a car is a query(see Figure 1)
then it is expected that cars be ranked before faces
or trains(see Figure 2). Intuitively, an object’s visual
appearance in an image depends not only on its three-
dimensional geometric shape, but also on its albedo,
its surface texture, the view point from which it is
imaged, among other factors. It is non-trivial to sep-
arate the different factors that constitute an object’s
visual appearance. However, we posit that the shape
of an imaged object’s intensity surface closely relates
to its visual appearance. Here a local characterization
of the intensity surface is constructed and images are
retrieved using a measure of similarity for this repre-
sentation. The experiments conducted in this paper
verify the association that objects that appear to be
visually similar can be retrieved by a characterization
of the shape of the intensity surface.

Different representations of appearance have been
used in object recognition [8]. Other representations
have been used for specific types of retrieval such as
face recognition. The approach taken here does not
rely on image segmentation (manual or automatic) or
binary feature extraction. Unlike some of the pre-
viously mentioned methods, no training is required.
Since the representation is local, objects can be em-
bedded in different backgrounds. Using an ezam-
ple image and user interaction to construct queries,



Figure 1: Allowing the user to construct queries by
selecting the boxes shown

Synapse retrieves similar images within small view and
size variation in the order of their similarity in syntac-
tic appearance to a query.

The claim is that, up to a certain order, the local ap-
pearance of the intensity surface (around some point)
can be represented as responses to a set of scale pa-
rameterized Gaussian derivative filters (see Section 3).
The family of Gaussian filters are unique in their abil-
ity to describe the scale-space or deep structure [2, 4, 1]
of a function and are well suited for representing ap-
pearance.

In this paper an indexable strategy for image re-
trieval is then developed using feature vectors con-
structed from combinations of the derivative filter out-
puts. These combinations yield a set of differential in-
variants [1] that are invariant to two-dimensional rigid
transformations. Retrieval is achieved in two compu-
tational steps. During the off-line computation phase
each image in the database is first filtered at sampled
locations and then filter responses across the entire
database are indexed(see Section 4). The run-time
computation of the system begins with the user se-
lecting an example image and marking a set of salient
regions within the image. The responses correspond-
ing to these regions are matched with those of the
database and a measure of fitness per image in the
database is computed in both feature space and co-
ordinate space (see Section 4.2). Finally, images are
displayed to the user in the order of fitness (or match
score) to the query (see Section 6).

2 Related Work

A number of different techniques have been used
to retrieve images using color, shape, texture and ap-
pearance. Due to lack of space, the reader is referred
to [5] for a review of the literature.

Gaussian derivative representations have also been
used in the context of recognition. Indexed differen-
tial invariants have recently been used [8] for object
recognition. We also index using differential invariants
but there are several differences compared with [8].
First, the invariants corresponding to the low two or-
der derivatives are used as opposed to nine invariants
as in [8]. This is because we observed that nine invari-
ants at a single scale are much more discriminating
and do not work as well when retrieving similar im-
ages. The low two orders perform better for this task.
Second, their indexing algorithm depends on interest
point detection and is, therefore, limited by the sta-
bility of the interest operator. We on the other hand
sample the image. Third, the authors do not incorpo-
rate multiple scales into a single vector whereas here
three different scales are chosen. In addition the index
structure and spatial checking algorithms differ.

3 Characterization of Appearance

This section shows how appearance may be repre-
sented using a multi-scale feature vector constructed
by filtering an image with a set of Gaussian derivative
filters. The multi-scale feature vector are transformed
so that the elements within this vector are invariant
to 2D rigid transformations. This transformed feature
vector is called the multi-scale invariant vector.

The local N-jet of I (x) at scale o and order N is
defined as the set [3]:

IV (%,0) = {Li, insln=0...N} (1)

where

Liy iy o (%) = (I x Gy 3,) (X,0)
the Gaussian derivatives are specified by

(sn
Gi, i, = ﬁG

n

ik =x1...¢p,k=1...n. and G is the Gaussian.

The set limy_,o JV [I](x,0) specifies the Taylor
expansion of I, up to derivatives of order N. Thus, for
any order N, the local N-jet at scale ¢ contains all the
information required to reconstruct I at the scale of
observation ¢ up to order N. That is, up to any order
the derivatives locally characterize the shape of the
intensity surface, i.e. appearance, to that order. From
the experiments shown in this paper it is also observed
that this representation can be used to retrieve images
that appear visually similar.

The choice of the Gaussian as the smooth test func-
tion, as opposed to others, is motivated by the fact
that it is unique in describing the scale-space or deep
structure of an arbitrary function. For a review of



scale space, the reader is referred to [9, 2, 1, 4]. Scale-
space has an important physical interpretation in that
it models the change in appearance of an imaged ob-
ject as it moves away from a camera. An argument is
therefore made for a multi-scale feature vector which
describes the intensity surface locally at several scales.
A multi-scale feature vector at a point p in an image I
is given by the vector:

{IM 1 (p.o1), IV (] (po2) ... IV (1) (p,0n)} (2)

for some order NV and a set of scales o ...0,. In prac-
tice the zeroth order terms are dropped to achieve in-
variance to constant intensity changes. Multi-scale
vectors represent, appearance more robustly than a
single-scale vector. This can be viewed from sev-
eral different perspectives. Since, multi-scale vectors
are values computed at several different kernel sizes,
therefore, they contain more information than fixed
window operators. Equivalently, multi-scale vectors
contain information at several different bandwidths
and with the choice of a Gaussian accurately repre-
sent the intensity surface at different depths from the
camera. From a practical standpoint this means that
mis-matches due to an accidental similarity at a single
scale can be reduced.

4 Indexable Retrieval Strategy

In earlier work [7, 6], the appropriateness of the
derivative vector representation is evaluated using the
well known correlation metric. A measure of similar-
ity between two feature vectors can be obtained by
correlating them or computing the distance between
the vectors. The feature vector used is the local 2-
jet (without the zeroth order term), computed at a
fixed scale [7, 6] i.e., (I;, 1y, sz, Loy, Iyy),, computed
at scale o, Using this representation in conjunction
with correlation, we verify that [7, 6], at any scale a
reasonable retrieval of visually similar images is pos-
sible. Typically, in-plane rotations of up to 20° and
out-of-plane rotations of up to 30° can be tolerated.
Second, a range of size variations, determined a pri-
ori, can be handled by searching across the scale pa-
rameter of the Gaussian. In particular similar objects
within size changes of 1 ...4 could be retrieved [7, 6].

There are several limitations to the correlation ap-
proach. First, correlation is computationally expen-
sive. Second, using the derivatives directly in a fea-
ture vector restricts tolerance to rotations. Third, the
use of vectors at a fixed scale can lead to mismatches
due to accidental similarity solely as a result of the
fixed scale of observation. These issues are partially
addressed below. First, the derivative feature vector
is transformed so that it is invariant to 2D rigid trans-

formations. Second, correlation is replaced with an
indexable strategy that results in an order of magni-
tude of speed increase and third vectors at multiple
scales are used simultaneously to improve robustness.
In this paper the multi-scale vector is computed at
three different scales placed half an octave apart.
4.1 Indexing Multi-Scale Invariant Vec-
tors

Given the derivatives of an image I, irreducible dif-
ferential invariants (invariant under the group of dis-
placements) can be computed in a systematic manner
[1]. The value of these entities is independent of the
choice of coordinate frame (up to rotations). The ir-
reducible set of invariants up to order two of an image
I are:

dy =1 Intensity
di =12+ I; Magnitude
dy = I, + 1, Laplacian

ds = Lyplo Dy + 21,10, + 11,1,
dy =12, +2I7,+1,

Here, the vector, A, = (di,...ds), is computed
at three different scales. The element dy is not used
since it is sensitive to gray-level shifts. The result-
ing multi-scale invariant vector has at most twelve el-
ements. Computationally, each image in the database
is filtered with the first five partial derivatives of the
Gaussian (i.e. to order 2) at three different scales at
uniformly sampled locations. Then the multi-scale in-
variant vector D = (A,,,A,,,A,,) is computed at
those locations.

A location across the entire database can be iden-
tified by the generalized coordinates, defined as, ¢ =
(i,z,y) where i is the image number and (z,y) a coor-
dinate within this image. The computation described
above generates an association between generalized co-
ordinates and invariant vectors. This association can
be viewed as a table M : (i,z,y, D) with 3+ columns(
k is the number of fields in an invariant vector) and
number of rows, R, equal to the total number of lo-
cations (across all images) where invariant vectors are
computed.

To index the database by fields of the invariant
vector, the table M is split into k& smaller tables
M{ e M,;, one for each of the k fields of the invari-
ant vector. Each of the smaller tables M;,p =1---k
contains the four columns (D(p),i,z,y). At this stage
any given row across all the smaller tables contains the
same generalized coordinate entries as in M. Then,
each MI’7 is sorted and a binary tree is used to repre-
sent the sorted keys. As a result, the entire database
is indexed. A given invariant value can, therefore, be
located in log(R) time (R = number of rows).



Figure 2: The results of the car query

4.2 Matching Invariant Vectors

Run-time computation begins with the user mark-
ing selected regions in an example image. At sam-
pled locations within these regions, invariant vectors
are computed and submitted as a query. The search
for matching images is performed in two stages. In
the first stage each query invariant is supplied to the
‘find-by-value’ algorithm and a list of matching gen-
eralized coordinates is obtained. In the second stage
a spatial check is performed on a per image basis, in
order to verify that the matched locations in an image
are in spatial coherence with the corresponding query
points. In this section the "find-by-value’ and spatial
checking components are discussed.

The multi-scale invariant vectors at sampled loca-
tions within regions of a query image can be treated
as a list. The n'" element in this list contains the
information @, = (Dy, Ty, yn), that is, the invariant
vector and the corresponding coordinates. In order
to find-by-invariant-value, for any query entry @Q,,
the database must contain vectors that are within a
threshold ¢ = (#1 ...%;) > 0. The coordinates of these
matching vectors are then returned. This can be repre-
sented as follows. Let p be any invariant vector stored
in the database. Then p matches the query invariant
entry D, only if D, —t < p < D, +t. This can be
rewritten as

&5y [Dy (j) =t (j) <p(i) < Dy (§) — t(j)]

where & is the logical and operator and k is the num-
ber of fields in the invariant vector. To implement the
comparison operation two searches can be performed
on each field. The first is a search for the lower bound,

that is the smallest entry larger than D,,(j) — ¢(j) and
then a search for the upper-bound i.e. the largest entry
smaller than D,,(j)+t(j). The block of entries between
these two bounds are those that match the field j. In
the inverted file the generalized coordinates are stored
along with the individual field values and the block
of matching generalized coordinates are copied from
disk. To implement the logical-and part, an intersec-
tion of all the returned block of generalized coordinates
is performed. The generalized coordinates common to
all the k fields are the ones that match query entry
(. The find by value routine is executed for each @,
and as a result each query entry is associated with a
list of generalized coordinates that it matches.

The association between a query entry @), and the
list of f generalized coordinates that match it by value
can be written as

A, = <$n:ynacnlacn2 "'C"f>
= <$n:yn:(in1=xn1=yn1)"'(i”f’l.nf’ynf)>

Here z,,,y, are the coordinates of the query entry @,
and ¢y, ...c,, are the f matching generalized coordi-
nates. The notation ¢y, implies that the generalized
coordinate ¢ matches n and is the f* entry in the list.
Once these associations are available, a spatial fit on
a per image basis can be performed. In order to de-
scribe the fitness measure, two definitions are needed.
First, define the distance between the coordinates of
two query entries m and n as d,,,. Second, define
the distance between any two generalized coordinates
¢m; and ¢, that are associated with two query entries
m,n as 6cmj,c"k

Any image v that contains two points (locations)
which match some query entry m and n respectively
are coherent with the query entries m and n only if the
distance between these two points is the same as the
distance between the query entries that they match.
Using this as a basis, a binary fitness measure can be
defined as

Cm jyCny,

1 if 3§33k | |Omn — 0 <T
Iy = lny, = U, M #£ N

Fn (0) =

0 otherwise

That is, if the distance between two matched points
in an image is close to the distance between the query
points that they are associated with, then these points
are spatially coherent (with the query). Using this
fitness measure a match score for each image can be
determined. This match score is simply the maximum
number of points that together are spatially coherent



(with the query). Define the match score by:

score (u) = m Sy, (u) (3)
where, S, (u) = Zfl:l}'(u)m’n. The computation
of score(u) is at worst quadratic in the total number
of query points. The array of scores for all images is
sorted and the images are displayed in the order of
their score. T used in F is a threshold and is typi-
cally 25% of 0,,,. Note that this measure not only
will admit points that are rotated but will also toler-
ate other deformations as permitted by the threshold.
The value of the threshold is selected to reflect the ra-
tionale that similar images will have similar responses
but not necessarily under a rigid deformation of the
query points.

5 Query Construction

The ability for the user to construct queries by se-
lecting regions is an important distinction between the
approach presented here and elsewhere. Users can be
expected to employ their considerable semantic knowl-
edge about the world to construct a query. Such se-
mantic information is difficult to incorporate in a sys-
tem. An example of query construction is shown in
Figure 1, where the user has decided to find cars simi-
lar to the one shown and decides that the most salient
part are >wheels’. Tt is clear that providing such inter-
action removes the necessity for automatic determina-
tion of saliency. In the car example, the user provides
the context to search the database by marking the
wheels and retrieved images mostly contain wheels.
The association of wheels to cars is not known to the
system, rather it is one that the user decides is mean-
ingful. Several other approaches in the literature take
the entire feature set or some global representation
over the entire image (see [5] for examples). While
this may be reasonable for certain types of retrieval,
it cannot necessarily be used for general purpose re-
trieval. Letting the user design queries eliminates the
need for detecting the salient portions of an object,
and the retrieval can be customized so as to remove
unwanted portions of the image. Based on the feed-
back provided by the results of a query, the user can
quickly adapt and modify the query to improve per-
formance.

6 Experiments

The database used in this paper has digitized
images of cars, steam locomotives, diesel locomo-
tives, apes, faces, people embedded in different back-
ground(s) and a small number of other miscellaneous

2see Figure 2 for the results

objects such as houses. 1561 images were obtained
from the Internet and the Corel photo-cd collection
to construct this database. These photographs were
taken with several different cameras of unknown pa-
rameters, and under varying uncontrolled lighting and
viewing geometry. Also, the objects of interest are em-
bedded in natural scenes such as car shows, railroad
stations, country sides and so on.

A measure of the performance of the retrieval en-
gine can be obtained by examining the recall/precision
table for several queries. Briefly, recall is the propor-
tion of the relevant material actually retrieved and pre-
cision is the proportion of retrieved material that is
relevant.

Consider as an example the query described in Fig-
ure 1. Here the user wishes to retrieve 'white wheel
cars’ similar to the ones outlined and submits the
query. The top 25 results ranked in text book fash-
ion are shown in Figure 2. Note that although there
are several valid matches as far as the algorithm is
concerned (for example image 11 a tire), they are not
considered valid retrievals as stated by the user and
are not used in measuring the recall /precision. This is
inherently a conservative estimate of the performance
of the system. The average precision (over recall in-
tervals of 10%) is 57%.

One of the important parameters in constructing
indices is the sample rate. The performance of the
system was evaluated under sample rates of three pix-
els and five pixels respectively. The case where every
pixel is used could not be implemented due to pro-
hibitive disk requirements and lack of resources to do
so. It is observed that there is a dramatic improvement
in scores, and in most cases a substantial improvement
in average precision.

Six other queries that were also submitted are de-
picted in Table 1. The recall/precision table over all
seven queries is in Table 2. The third column of ta-
ble shows the average precision for each query with a
database sampling of 5 pixels and the fourth column
shows with 3 pixels. The average precision and pre-
cision at recall intervals of 10, over all the queries for
both samplings is shown in Table 2. This compares
well with text retrieval where some of the best sys-
tems have an average precision of 50%*. The average
precision over the same seven queries with both three
and five pixel sampling is 56.2% for the five pixel case
and 61.7% in the three pixel case. However, while the
increase in sampling improves the precision it results
in an increased storage requirement.

Unsatisfactory retrieval occurs for several reasons.

3The value n(= 10) is simply the retrievals up to recall n.
4Based on personal communication with Bruce Croft



Table 1: Queries submitted to the system and expected retrieval
| Given(User Input) | Find Precision (5) | Precision (3) |
Face All Faces 74.7% 61.5%
Face see Same Person’s Face 61.7% 75.5%
Monkey’s coat Dark Textured Apes 57.5% 57%
Both wheels, see Figure 1 | White Wheeled Cars, see Figure 2 57.0% 63.7%
Coca Logo All Coca Cola Logos 49.3% 74.9%
Wheel White Wheeled Cars 48.6% 54.4%
Patas Monkey Face All Visible Patas Monkey Faces 44.5% 47.1%
Table 2: Precision at standard recall points for seven Queries
Recall | 0 10 20 30 40 50 60 70 80 90 | 100
Precision(5) % | 100 | 95.8 | 90.3 | 80.1 | 67.3 | 48.9 | 39.9 | 34.2 | 31.1 | 18.2 | 12.4
Precision(3) % | 100 | 100 | 90.4 | 80.9 | 75.7 | 55.9 | 49.4 | 47.6 | 40.6 | 20.7 | 17.1
average(5) | 56.2%
average(3) | 61.7%

First, it may possible that the query is poorly de-
signed. In this case the user can design a new query
and re-submit or refine the query by using a result
of a previous search as a query. A second source of
error is in matching generalized coordinates by value.
The choice of scales in the experiments carried out in
this case are % 3,3v/2. It is possible that locally the
intensity surface may have a very close value, so as
to lie within the chosen threshold and thus introduce
an incorrect point. By adding more scales or deriva-
tives such errors can be reduced, but at the cost of in-
creased discrimination and decreased generalization.
Many of these ’false matches’ are eliminated in the
spatial checking phase. Errors can also occur in the
spatial checking phase because it admits much more
than a rotational transformation of points with respect
to the query configuration. Overall the performance
to date has been very satisfactory and we believe that
by experimentally evaluating each phase the system
can be further improved.

The time it takes to retrieve images is dependent
linearly on the number of query points. On a Pentium
Pro-200 Mhz Linux machine, typical queries execute
in between one and six minutes.

7 Conclusions

Within small view variations, images that are sim-
ilar to a query are retrieved. These images are also
observed to be visually similar and we posit that this
method has good potential for image retrieval.

Whiile retrieval of objects across different sizes has
been implemented elsewhere [7] using correlation, in
this paper, the multi-scale invariant vector was used
only to robustly characterize appearance. The next
immediate step is to explicitly incorporate matching
across size variations akin to the correlation approach.

A second important question is, what types of in-
variants should constitute a feature vector ? This is
an open research issue. Finally, although the current
system is some what slow, it is yet a remarkable im-
provement over our previous work. We believe that by
examining the spatial checking and sampling compo-
nents further increases in speed are possible.
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