Server Selection Techniques for Distributed Information Retrieval

Yoshiya Kinuta Brian Neil Levine

R. Manmatha

Department of Computer Science
University of Massachusetts, Amherst, MA 01003
{ykinuta, brian, manmatha}@cs.umass.edu

Abstract

Server selection is typically defined as maximizing
network performance under the assumption that each
server holds an exact replica of all data. We propose
and evaluate methods of server selection when servers
are not exact replicas such that we maximize both
network performance and information retrieval (IR)
precision (i.e., the relevance of retrieved data). We
show that naive composition of previously proposed
techniques from networking and IR perform poorly.
We propose improving the performance of current IR
selection techniques by using language model-based
selection to construct local replicas of databases that
network selection predicts are likely to be poor net-
work performers and that IR selection predicts will
have relevant results. In our experiments our tech-
nique is capable of selecting servers and retrieving in-
formation that is as accurate as techniques that focus
on IR performance; moreover, our techniques reduce
network latency significantly (30-67% over those IR
selection techniques), at the cost of local storage (16—
33% of all data).

1 Introduction

Distributed information retrieval (IR) systems allow
clients to query multiple information databases at
once. This is usually done in a three stage process [1]:
resource description, where the information sources
are modeled [6, 1, 16]; collection selection, where re-
sources and collections appropriate to the query are
selected and searched [2, 7, 5]; and results merg-
ing, where ranked results from each search engine
are combined [1, 4, 13, 15, 12]. Collection selection

This paper was supported in part by National Science Foun-
dation awards ANI-033055, EIA-9983215, and EIA-0080199
and in part by the Center for Intelligent Information Retrieval.
Any opinions, findings and conclusions or recommendations ex-
pressed in this material are the authors’ and do not necessarily
reflect those of the sponsor.

methods have assumed that network performance is
immaterial and ignored such costs. However, when
servers are distributed over the Internet, the network
latency and TCP performance from a client to each
server will be heterogeneous. Indeed, some servers
may not be available at all because of network con-
ditions (e.g., routing partitions or persistent loss) or
system problems (e.g., denial of service attacks).

Related previous work from the networking liter-
ature has studied methods of server selection where
network latency is minimized (which we call network
selection to avoid confusion) — however, such stud-
ies have considered only scenarios where each server
in a group holds an exact replica of all data; those
methods are not designed nor able to choose servers
with any notion of IR accuracy.

In this paper, we propose and evaluate methods
of distributed information retrieval where selection
s affected by both heterogeneous collections stored
by servers and the heterogeneous metwork latencies
among clients and servers. We know of no previous
work that considers both networking and IR perfor-
mance. To evaluate our work, we used extensive net-
work traces to simulate realistic behavior of servers
on the Web; we mapped this performance to TREC
information databases and user query logs.

Our results show that methods that naively com-
bine collection selection (specifically, CORI [1]) and
network selection methods performed poorly. This
is because choosing databases according to network
performance harms the accuracy of retrieval — and
vice versa. There is no reason for servers with good
network performance to contain the most relevant
documents, nor for the databases most relevant to a
query to have good network performance. In order to
overcome this conflict between network performance
and relevance of data, we introduce a novel technique
that improves network performance while maintain-
ing reasonable retrieval accuracy. Our techniques are
based on language models [14], which are statistical
characterizations of the content of databases.

In sum, our proposed technique involves two steps:
(1) Given a set of distributed databases, the client
constructs a concise language model description of the
most relevant databases based on training queries; (2)
then the client caches part of or replicates all infor-
mation from those databases that are similar to the
constructed language model. Our results show:

e Methods for network and IR server selection are
inherently in conflict.

e QOur language modeling technique is a good
method of constructing local replicas that are
relevant to future queries.

e Our method of selection is a more accurate ap-
proach to server selection as compared to meth-
ods that ignore IR metrics, as well as naively
composed methods.

e Our method of selection has network perfor-
mance better than server selection methods that
do not consider network characteristics such as
CORI and naively composed methods.

Our work is based primarily on investigations of
two previous works. First, it is based on our network
selection methods reported in Hanna, et al. [8], which
did not consider heterogeneous collections of data at
servers. We proposed a technique for selecting the
best servers using ping values and observed file trans-
fer times. Second, it is based on Callan’s proposed
the CORI database selection algorithm [10, 1], which
is an IR-prioritized server selection algorithm. Callan
did not consider cases when the network performance
of servers is heterogeneous.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related previous work in IR
and network server selection. Section 3 describes our
experimental methodology. Section 4 discusses the
inherent conflict between network selection and IR
selection. Section 5 presents our proposed method of
improving the network performance of IR selection
techniques. Section 6 offers our concluding remarks.

2 Background

Our investigation focuses on enhancing the perfor-
mance of server selection when servers do not store
replicas of one data set. We are unaware of previous
work that addressed both network performance and
IR accuracy. In this section, we review previous work
that has considered these questions separately.

2.1 Distributed Information Retrieval

A distributed retrieval system needs to tackle three
issues [1]:

1. resource description: the characterization of the
resources stored by a server [6, 1, 16].

2. collection selection: the selection of servers to
search that are most appropriate for a query [2,
7, 5].

3. results merging: the combination of results from
different search engines into a a unified rank-
ing [1, 4, 13, 15, 12].

Reviews of the work in distributed retrieval are cov-
ered more closely elsewhere; e.g., [1, 12, 2]. In this
paper, we focus specifically on the collection retrieval
inference network (CORI) [1] in a distributed IR sys-
tem utilizing the INQUERY [3] search engine.

CORI assumes that external access to each
database is through a limited interface, i.e., a search
engine. CORI pre-computes resource descriptions for
each database by probing them with a set of test
queries. When a user sends a query, CORI com-
pares the query to the resource descriptions to decide
which databases are the most appropriate. CORI
then sends the query to that subset of databases, who
then use their own search engines to return results to
CORI. CORI then merges all returned results into a
single ranked list using a heuristic algorithm.

Although there has been much effort to improve
the selection of relevant databases, network perfor-
mance of databases chosen by such a selection algo-
rithm is often ignored. It is very important to ad-
dress this issue because in a distributed environment
servers may be located far away from each other topo-
logically, and network traffic and load can vary from
server to server. In the worst case, routing layer fail-
ures or denial-of-service attacks may prevent a server
from even being reachable. In general, distributed
retrieval systems like INQUERY are unaware of the
availability of a server when performing selection.

The work that is most related to ours is by Lu, et
al. [11]. Their approach to improving IR system per-
formance was by hierarchical replication of databases.
While their focus is on processor overhead and query
response time in a local area network, our experi-
ments focus more on network latency over the Inter-
net.

2.2 Distributed Systems and Net-

working

Network performance between a client and server on
the Internet is dictated by the server load and the
congestion on the path between them. Determining
which server of many offers the best network perfor-
mance is difficult because many tests that are simple
to perform (e.g., hop count or ping measurements)
are poor predictors of TCP performance [8]. Our
work in Hanna, et al. [8] offers a review of previous
work and a comparison of many popular methods. In
summary, we found that network-based methods —
such as selecting a server based on minimal hop count
or autonomous system count — perform as poorly as
a random selection of servers. Minimizing round-trip
time measured by ICMP ping messages performs ad-
equately as a selection metric.

We also showed that best performing mirror servers
remain a small fraction of an increasing population of
servers over time, and they have greater performance
stability than average servers. Our proposed selection
algorithm choses the best servers by analyzing their
ping values and file transfer times as predictors of
stability. Servers with the best download time for a
250K file tend to maintain good performance relative
to the other servers over a period as long as a month.
We build on that method in this paper.

As part of that paper, we have made publicly avail-
able a large set of measurements recorded from actual
Internet servers [9]. Specifically, we continually mea-
sured network characteristics between 193 servers and
six clients in North America. During a 41-day period,
we continually cycled through all servers from each
client and measured the following: five ping times;
one trace-route; file transfer times for file size of 10k,
30k, 100k, 250k, 500k, 750k, and 1M bytes. For each
client, the 193 servers were visited sequentially, each
cycle termed a round.

The methods we propose in Hanna, et al. [8] work
under the limitation that all servers consist of iden-
tical data. However, it is often the case that servers
may contain different data. This may be because they
are under different administrative control, or because
it is difficult to synchronize the content of so many
servers.

Performance of distributed systems can be mea-
sured in various ways. However, in our experiments,
we focus on network download latency. We define
this as the time from when a client initiates a TCP
connection to the server until the time at which the
client receives the requested entire object.

3 Methodology

Our evaluations of different server selection methods
are based on a careful combination of real measure-
ments that have been collected by ourselves and oth-
ers for evaluating network and IR server selection, re-
spectively. Using these two sets of data, we perform
several off-line experiments.

To test IR precision, we used volumes 1, 2, and
3 of the Text Retrieval Conferences (TREC) run by
the National Institute of Standards and Technology
(NIST). TREC 1-2-3 consists of several collections of
newspaper archives, federal document archives, and
similar content totaling 3.2 GB. NIST has also cre-
ated TREC Query Topics, which are collections of
queries and answers to the database; real users have
determined the relevance of documents in the collec-
tion. These Query Topics allow researchers to per-
form offline analysis of IR accuracy since the rele-
vance of all documents is known ahead of time. We
used Query Topics 51-100 in our experiments.

To perform IR server selection, we used the IN-
QUERY [3] implementation of Callan’s CORI algo-
rithm.

We simulated network latency of the databases se-
lected using the same experimental logs collected in
the Hanna, et al. study [8] as described in Section 2.

In our experiments we divided the TREC
databases into a distributed set of 100 (and in a later
section, 18 servers). We mapped these servers to
a randomly-chosen but consistent subset of servers
from the network logs.

Figure 1 illustrates our experimental process. A
typical run of the experiment consists of the follow-
ing example: A query is chosen from the TREC set
and given to INQUERY, which selects 20 of the 100
databases that it believes to contain the most col-
lection of data. Then, the set of 20 is reduced to 5
based on, for example, the five-best ping times of the
20 servers according to the network logs. The result-
ing download time of the query results is taken from
the network logs, and the IR accuracy of the results
is determined by INQUERY based on the TREC rel-
evance data. After all queries are run, the next round
of network results from the logs is considered and the
queries are re-run. The figure illustrates just one se-
lection strategy; however, we investigate many more
in this paper.

4 Naive Strategies

Our first experiments were to examine naive strate-
gies of composing IR and network methods for select-

web web web web

server server server server oo

web

server| 192 Servers in network logs

1 2 3 4 . 192
/ \ \mapping from TREC databases to network servers
\

IR IR IR \ IR
datallbase datazbase datgbase s databasel] TREC 1-2-3 divided into smaller databases
n
* Ne\t\york
*Summary of content estimators
0y . Y .
Query 51 Selection Selection TREC Data on
of servers of server : .
Query 52 For cach query based on Network based on resulting IR precision
. INQUERY estimated Selection estimated -
. accuracy. (e.g.., PING) network Network logs determine
Query 100 performance. network performance.

Figure 1: An overview of the mapping between Network logs and IR TREC logs. The CORI-PING strategy

is diagrammed in particular.

Avg. Precision | Std. Dev. | 95% c.i.
CORI-20 13.6 % 0 0
CORI-5 5.1 0 0
Ping-20 1.2 0.7% 0.1%
Ping-CORI 1.3 0.6 0.1
CORI-Ping 0.9 0.2 0.1

Table 1: Precision of composed methods.

Average 10k File Transfer Time of Top 5 Databases (ms)
1st 2nd 3rd 4th 5th
CORI-20 | 346 (£35) | 307 (£38) | 432 (£38) | 459 (£38) | 485 (£38)
CORI-5 413 (£40) | 519 (£40) | 678 (£53) | 1,178 (£101) | 3,458 (£232)
Ping-20 217 (£32) | 259 (£32) | 281 (£34) | 300 (£37) | 317 (£39)
Ping-CORI | 310 (£45) | 372 (£48) | 416 (£49) | 665 (£116) | 2,007 (£269)

Average 250k File Transfer of Top 5 Databases (ms)
1st 2nd 3rd 4th 5th
CORI-20 | 1,201 (£74) | 1,516 (£66) | 1,683 (£61) | 1,805 (£62) | 1,008 (£65)
CORI-5 1,504 (£66) | 2,068 (£78) | 2,719 (£103) | 4,495 (£171) | 10,202 (£362)
Ping-20 742 (£76) | 836 (£80) | 963 (£78) | 1,079 (£67) | 1,153 (L60)
Ping-CORI | 049 (£88) | 1,386 (£108) | 1,830 (£124) | 2,587 (£166) | 4,586 (+251)

Table 2: Network performance of composed methods for 10k and 250k downloads (UCSC Client). Standard

deviations appear in parentheses.

ing the best 5 out of 100 servers such that precision
and download time is maximized. In each round of
our simulation, we kept track of the following mea-
surements:

e Average precision;

o Average file transfer time for 10K and 250K byte
downloads.

First, we needed a base-line of how well selection
methods perform on their own.

e CORI-20 and CORI-5: CORI-20 specifies
that the CORI selection algorithm selects 20
servers out of 100 to query. To see how CORI de-
grades the accuracy of the search when restricted
to a small set we also show results for CORI with

5 servers.

e PING-20: 20 databases were chosen accord-
ing to their average ping time and were used to

query.
Next we evaluated two composed methods:

¢ PING-CORI: 20 servers are chosen based on
the fastest average ping time, then CORI nar-
rows the selection to the most relevant five.

¢ CORI-PING: The 20 most relevant servers are
selected by CORI and then the five with the best
average ping time are queried.

4.1 Evaluation

We evaluated several strategies by splitting TREC
1-2-3 into 100 databases, which we then mapped to
100 servers in the network logs. For each round of
the network logs, we evaluated the performance us-
ing TREC queries 51-100. Tables 1 and 2 show the
performance of the five methods. (Note that CORI
has zero variation because the servers it picks does
not change with network performance: all servers are
available each round, and the queries do not change
from round-to-round.)

The results show a clear incompatibility between
network and IR server selection. There are several
items of interest in the results.

The difference between CORI-20 and CORI-5
shows the effects of limiting server selection to a small
number of nodes. Since CORI-5 is forced to ignore
95% of all servers (and therefore all data), precision
is kept to a low 5.1%. Not surprisingly, the results for
PING-20 show network selection is a poor method of
selecting relevant servers.

The results for PING-CORI and CORI-PING show
about the same performance as PING since any selec-
tion by network performance may remove most of the
relevant servers. CORI-PING has the worst average
precision of all methods.

Because CORI-20 and PING-20 select four times
the number of servers, Table 2 shows the transfer time
of the five fastest servers selected by four strategies.
CORI-PING had such poor IR performance, we did
not evaluate its network performance. Two different
files sizes are shown, 10K and 250K downloads, as we
observed more distinct differences between servers for
larger downloads. Here we see that PING-20 can se-
lect servers that take almost half the download time
of CORI-20 for the first five results that return to the
client. When IR selection is restricted to querying five
servers, it is difficult to maintain fast download times

as a comparison between PING-CORI and CORI-5
shows; they also show an important trade-off: dou-
bling of network time for an almost four fold increase
in precision.

We believe that the results demonstrate a general
result that a simple approach to combining IR and
networking approaches does not work. Our conclu-
sion is that IR precision is damaged more from net-
work selection than the converse. Therefore, in the
next section, we evaluate methods of improving the
network performance of IR selection with a different
strategy: locally replicating or caching information
at the clients.

5 Local Replication based on
LM Training

As we have discussed, there is no reason for databases
most relevant to a query to also have good network
performance for a particular client; this places net-
work and IR selection methods at odds with each
other. In this section, we examine the benefits of
locally replicating at clients some data from the dis-
tributed database in order to improve network perfor-
mance. Our results show that this strategy of trading
local storage for improved network and IR perfor-
mance is attractive and favorable.

There are several options for deciding what data
should be replicated locally and we compared a num-
ber of them.

First, we investigated a complement strategy,
which attempts to maximize coverage of the local par-
tial replica of the distributed database. We first find
the fastest set of servers (based on network selection);
we then find another set of servers which are most dif-
ferent in content and then replicate these locally.

This strategy, and the others we study in this sec-
tion, require a method of determining which servers
are slow. Fortunately, our results published in Hanna,
et al. already show how to pick servers that consis-
tently provide good download speeds at clients [8].
We have shown that downloading a small 250k file
from all servers is a very good predictor for up to
30 days of downloads. Therefore, this operation was
performed by comparing the download speeds of the
18 servers in the first round of data downloads in
the network logs. We considered any server that had
a download time that was not more than twice the
download speed of the fastest server to be “fast”.
This was typically 3-5 of the servers. We did not
use ping because we required a metric that can select
servers that remain consistently fast over time so that

we don’t have to constantly switch which databases
we locally replicated.

Figure 2 shows the IR performance of this tech-
nique (labeled “LM Aggregating Complementary”).
The graph shows the precision of this technique in
answering 50 TREC queries. In the experiment, the
client starts the five fastest servers (as picked by net-
work selection) and the precision of using these five
servers is computed. The complement strategy then
adds a server that is most different in content from
the existing set. Our goal is to find the strategy that
is best able to choose databases to replicate locally;
and what is important about this experiment is that
the order by which databases are added is determined
by the strategy. Therefore, the graph shows the abil-
ity of each strategy to choose servers in a way that
increases precision fastest.

For comparison, the graph also shows the per-
formance of CORI (labeled “Collection Selection”),
which represents an upper bound of sorts. This is
because CORI has the advantage of being able to
choose a different set of databases from the 18 for each
query while the others must keep the same databases
for all queries. (Though in the end, CORI will suffer
in network performance because of the lack of local
replication.)

Figure 2 shows that locally storing data comple-
mentary to fast servers performs much worse than
CORI. We found that the poor performance arises be-
cause most of the relevant documents for most of the
queries were obtained from a few database servers;
i.e., some databases are completely irrelevant in the
collection and it is of no help to store them locally.
Thus, it seems important to find similar databases
rather than different ones.

A second approach we explored was to start with
the fastest servers and then add databases which are
most similar to the original set of servers. As Fig-
ure 2 shows this approach (labeled “LM Aggregating
Similar”) is better but still may not work well. The
problem is that while the initial set of servers is fast,
there is no guarantee that any of them contains any
relevant information. Thus finding databases similar
to the initial set of fast servers does not mean that
databases with a lot of relevant documents will be
selected. The performance increase is probably due
to luck: more databases in the set are relevant than
not; and so finding relevant databases in the fast set
is somewhat likely. This increases the chances that
what we replicate locally is relevant, but does not
guarantee anything. In fact, It is well known in IR
research that one needs to look for databases which
are most relevant to the query.

Average Precision of CORI and Language Modeling techniques

0.25 T T T T T
s o *
3 0.15 4
S
Lo
o =) g
¥
g *
o .
ERAN - o o]
<
* -
0.05 & p 1
X
e Collection Selection —+—
- LM aggregating Complementary ---x---
LM aggregating Similar ------
0 , ,)) Trained LM aggregating Si‘milar =)
6 8 10 12 14 16 18

Total Number of Servers

Figure 2: A comparison of strategies for locally repli-
cating portions of the distributed database against
the precision of CORI.

The approach we advocate, therefore, involves se-
lecting the initial relevant set by training on a set
of queries. We then find the set of servers that are
most similar to this set and replicate or cache them.
Our basic insight is that servers that are likely to be
relevant but have poor network performance should
be cached or replicated. In other words, no effort
should be made to improve servers that are fast or
are likely to be irrelevant. Experiments show that
this technique can reduce network download speeds
in half while not significantly reducing IR accuracy.

5.1 Language Model Based Replica-
tion

The approach behind selecting the most relevant
databases for replication is the following. We need to
find the statistical characteristics of the database that
is most relevant to a training set of queries. We can
then compare these statistical characteristics with the
larger universe of all databases and select an addi-
tional set of databases that are most similar (but on
which we have not trained). In our experiments we
show that this training procedure generalizes.

More specifically, the procedure is as follows. First,
we characterize every database statistically using lan-
guage models (which we formally describe later).
Then, we train using a small set of queries and a small
set of randomly selected databases and find the subset
of databases that are most relevant to our need. For
example, in our case we have 18 database servers'.

1We switched from 100 servers as INQUERY took exces-
sive processing time for 100 databases. We also used TREC-2
only to decrease processing time, which we split up to have an
even number of documents at each node; the collection most

We train using 20 queries (TREC queries 51-70) on
five servers of these and pick the two servers that were
most relevant to our training queries. We use the lan-
guage model characterization of these two databases
to find other servers that are the most similar from
the remaining servers; in our case, we evaluated pick-
ing one and four other servers. This procedure avoids
having to train on all the databases, which may not
be practical. We now discuss the details of this ap-
proach.

A Language Model of a collection is a statistical
description of how words are distributed in a collec-
tion. Language models have been used in a number of
different areas like speech recognition, machine trans-
lation, optical character recognition, and information
retrieval. In this paper, we use the language model
of a database to provide a concise statistical descrip-
tion of what the particular database contains. The
simplest kind of language model is a unigram lan-
guage model, which assumes that every word occurs
independently of each other and that the probabil-
ity of a word occurring is given by the frequency of
occurrence of the word in the corpus. Strictly speak-
ing, words do not occur independently of each other.
However, unigram language models are good approx-
imations and have been successfully applied to many
different tasks.

In many situations, the complete database may or
may not be accessible directly (documents may only
be accessible through a search engine). Callan, et
al. [2] developed a procedure called query-based sam-
pling to get around this problem. The sampling pro-
cedure involves probing a small number of documents
(300-500) from the documents obtained by using a
set of queries. A language model is then generated
using these documents. Callan, et al. [2] have shown
that the language models created by probing are good
approximations of the language models obtained from
the entire database. We used query-based sampling
to create language models for each of the 18 databases
in our experiments.

We can determine how similar two language mod-
els are by computing the Kullback-Leibler (KL) di-
vergence. Given two probability mass functions, p(z)
and ¢(z), their KL divergence is:

p(z)
D q) = p(z) log —
(¢ 19) = pla)log 2)

The KL divergence shows how likely it is that g(z)
is derived from p(z). The KL distance is always
greater than zero. Low KL distances denote a greater
similarity between databases.

naturally broke up in to 18 parts.

IR Avg. Precision
CORI 10 | 15.3%
CORI 18 | 16.0%
LM-replication-3 | 13.2%
LM-replication-6 | 13.2%

Table 3: The average precision that results from the
four selection strategies.

Local Storage Costs
0 MB

0 MB

143 MB (+ 38MB)

242 MB (+ 62 MB)

CORI-10
CORI-18
LM-replication-3
LM-replication-6

Table 4: The storage costs of the four selection strate-
gies.

5.2 Algorithm

The specific algorithm we used to discover which
databases should be cached or replicated locally is
described below:

1. Training phase:

(a) Pick a subset of databases from the set
of all databases. In our case, we picked
5 databases at random from the set of 18
databases.

Query these databases using a small set of
queries. We used 20 queries.

Choose the top k£ databases that are rele-
vant to the most queries and create an ag-
gregate language model by averaging the
language model of the top k& databases. In
our case k = 2. This aggregate language
model serves as the base relevance model.

2. We determine the C' databases whose language
models are closest to the base language model
and replicate them locally. Closeness or similar-
ity is determined by computing the KL distance.

Step 2 is carried out as follows. Let the language
models of the two databases selected by the training
procedure be 77 and T>. We average these two to cre-
ate a language model 7. We then compare T against
the composite language model B;, which is created
by averaging T and the language model A; of every
other database (the remaining 16), using the KL dis-
tance and find that B; with the smallest KL distance.
Without any loss of generalization assume that this is
B; and the corresponding database (actually its lan-
guage model) is A;. We now repeat this procedure

Network performance of the Apache client

25 .
Average ——
@ Worst -
g 20 . Best r--x--1 |
(5]
[0}
Zz %
o2 15 '
‘; %
o
el
10
o
5 x
2 .
g ° -
= 1
[| * %
0 Ly ! Lyl I I
LM_6 LM_3 CORI10 CORI 18
Selection Method
Network performance of the UNC client
14 T
‘Average ——
@ Worst s
g 12 Best ~--x--
< * %
S e
o 10 1
X2
2 8]
x x
o
& 6 1
S - -
& 4r i
(%2}
3 s
= 2 e _ 1
o * -*
0 Ll 5o L L
LM_6 LM_3 CORI10 CORI 18

Selection Method

Network performance of the UDEL client

25 .
Average ——
@ Worst -
-g 20 I x Best »--x--1 |
(5]
[0} .
@ %
o 15 % g
<
o
el
e [0 S i
o
:q:) =1]
2 N
g 5 - -]
= [
T x| *-
0 L L [.
LM_6 LM_3 CORI10 CORI 18
Selection Method
Network performance of the UNC client
25 .
Average ———
& Worst +x-
-g o0 L . Best r--x--1 |
[$]
(9]
2 %
2 15 ¢ ' 1
o
o 3
[Tel
N 10t 1
o x
ks
(%2}
= 1
7 - * %
0 Lyl Lyl L L
LM_6 LM_3 CORI10 CORI 18

Selection Method

Figure 3: Network performance of CORI and LM-based replication for the four clients.

with B;. That is, we now compare B; with language
models C; (2 < i < 16) where C; is the composite
language model By + 4; (2 <1 < 16) and select the
C; with the lowest KL distance. We repeating this
procedure until we have as many databases as we
want to replicate. This approach is somewhat com-
putationally intensive and future work would involve
speeding this step up by using some approximations.

Note that this procedure of creating composite
language models avoids the necessity to smooth the
language models (i.e., smooth the probabilistic esti-
mates).

5.3 Experiments

To evaluate our strategy of LM-based selection of
replicated databases, we ran a number of experi-
ments. We created ten different mappings from the
18 databases to 18 randomly selected servers; this
also changed which five databases were chosen ini-
tially for training. For each mapping TREC queries
51-70 were used for training. After training, we end
up with two databases (out of the five) which are

most relevant to the training queries. These two
servers are used to select either one more or four
more databases by finding those servers whose lan-
guage models are similar to theirs (two servers se-
lected during training). These strategies we call “LM-
replication-3” and “LM-replication-6”, respectively,
representing the number of databases replicated lo-
cally.

For each mapping, TREC queries 71-100 were run
for each of round of measurements for twenty log
days. We ran this for logs from four different clients
in the network logs from Hanna, et al.: UCSC.edu,
UNC.edu, UDEL.edu, AND USC.edu. The measure-
ments closest to noon on each day for the clients was
used. Therefore the experiments show the average of
200 experiments for each client.

Tables 3 and 4 shows our results for four different
strategies at each client. CORI was not designed to
consider network performance at all: if given the op-
portunity to contact all 18 servers it might contact
all of them if it decides all have some relevant infor-
mation to offer. However, the consequence is that
CORI will pick even the slowest servers every time.

This isn’t a fair comparison and so we also show the
results when CORI is restricted to selecting the 10
most relevant servers. These are shown as CORI-10
and CORI-18 on the graph. Figure 3 also shows the
network performance of language model-based replica
construction where the size of the local replication is
limited to 3 databases and 6 databases.

The results show that local storage based on lan-
guage model training results in an significant increase
in network performance for CORI while only a small
cost in IR precision.

Replicating three databases locally (for use over a
period of 20 days) reduces download times to 67%,
62%, 66%, and 67% of CORI-10 selection for clients
at UDEL, UNC, USC, and UCSC for replicating three
databases; and 30% , 37%, 36%, and 34% of CORI-10
selection for clients UDEL, UNC, USC, and UCSC
for replicating six databases. Moreover, IR preci-
sion drops only 2—-3% points from CORI performance.
The cost of these improvements is storage: 143Mb for
LM-replication-3 and 242Mb for LM-replication-6. It
was difficult with our tools to test a caching strategy
where only a portion of a database (e.g., the most
popular documents in the database) are stored at the
clients in this preliminary study. But we expect that
future tests will show significant results can still be
obtained from such an approach.

6 Conclusion

In this paper, we examined for the first time collec-
tion selection when servers have a heterogeneous set
of data and heterogeneous network performance to
clients. We have shown that methods that consider
network selection or IR selection in isolation are not
easily composed with good results. This is because
servers that contain relevant data have no correlation
with good network performance.

Our technique using language models overcomes
this incompatibility by making local replicas of slow
servers that contain relevant documents. We have
also examined different strategies for finding which
databases are best to replicate. In sum, servers that
are most relevant but can be predicted to not be
among the faster servers should be cached or repli-
cated.

In our experiments with TREC 2, our technique is
capable of providing an average precision of 13.2%,
which is comparable to CORI’s average precision of
15-16%. For storage costs of 143Mb (16% of the en-
tire database), network performance was improved
to 62-67% of CORI’s performance; and improves to
30-37% of CORI’s performance for storage of 242 Mb

(33% of the entire database). Our future work will be
to extend these results to consider storing only pop-
ular portions of relevant databases to reduce storage
costs while maintaining networking and IR perfor-
mance.

Acknowledgments

This work could not have been completed without the
generous assistance of Margaret Connell and the Cen-
ter for Intelligent Information Retrieval in operating
and modifying the INQUERY system.

References

[1] J. Callan. Distributed information retrieval. In
W. Bruce Croft, editor, Advances in Information Re-
trieval: Recent Research from the CIIR, chapter 5,
pages 127-150. Kluwer Academic Publishers, 2000.

[2] J. Callan and M Connel. Query-Based Sampling of
Text Databases. ACM Transactions on Information
Systems, 19(2):97-130, 2001.

[3] J.P. Callan, W.B.Croft, and S.M.Harding. The IN-
QUERY retrieval system. In the 3rd International
Conference on Database and Expert System Applica-
tions, Sept 1992.

[4] N. Craswell, D. Hawking, and P. Thistlewaite. Merg-
ing results from isolated search engines. In Proc. of
the Tenth Australasian Database Conf., pages 189—
200, 1999.

[6] N. Fuhr. A decision-theoretic approach to database
selection in networked ir. ACM Transactions on In-
formation Systems, 17(3):229-249, 1999.

[6] L. Gravano, C. Chang, H. Garcia-Molina, and
A. Paepcke. Starts: Stanford proposal for internet
meta-searching. In Proc. of the ACM-SIGMOD Int’l
Conference on Management of Data, 1997.

[7] L. Gravano and H. Garcia-Molina. Generalizing gloss
to vector-space databases and broker hierarchies. In
Proceedings of the 21st International Conference on
Very Large Databases (VLDB), 1995.

[8] K. M. Hanna, N. Natarajan, and B.N. Levine. Eval-
uation of a Novel Two-Step Server Selection Metric.
In IEEE ICNP 2001, November 2001.

[9] K. M. Hanna, N. Natarajan, and B.N. Levine. Net-
work trace logs. http://signl.cs.umass.edu, January
2001.

J.P.Callan, Z.Lu, and W.B.Croft. Searching Dis-
tributed Collections with Inference Network. In
the 18th International ACM SIGIR Conference
on Research and Development in Information Re-
trieval(SIGIR 95), pages 21-29, 1995.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Z. Lu and K. McKinley. Partial Replica Selection
Based on Relevance for Information Retrieval. In
22nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR 99), pages 97-104, 1999.

C. Luo and J. Callan. Using sampled data and re-
gression to merge search engine results. In Proc. of
the 22nd ACM SIGIR conf. on Research and Devel-
opement in Information Retrieval, 2002.

R. Manmatha, T. Rath, and F. Feng. Modeling score
distributions for combining the outputs of search en-
gines. In the Proc. of the 24th ACM SIGIR conf.
on Research and Developement in Information Re-
trieval, pages 267-275, Sept 2001.

J. Ponte and W.B. Croft. A Language Modeling Ap-
proach to Information Retrieval. In SIGIR 98, pages
275-281, 1998.

C. L. Viles and J. C. French. Dissemination of col-
lection wide information in a distributed information
retrieval system. In the Proc. of the 18th ACM SIGIR
conf. on Research and Developement in Information
Retrieval, 1995.

B. Yuwono and D. Lee. Server ranking for distributed
text retrieval systems on internet. In Proc. of the
Int. Conf. on Database Systems for Adv. Applica-
tions, pages 41-49, 1997.

10

