
Answer Passage Retrieval for Question Answering
Andres Corrada-Emmanuel, W. Bruce Croft, Vanessa Murdock

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003-9264

{corrada, croft, vanessa}@cs.umass.edu

ABSTRACT

Document or passage retrieval is typically used as the first step in
current question answering systems. The accuracy of the answer
that is extracted from the passages and the efficiency of the
question answering process will depend to some extent on the
quality of this initial ranking. We show how language model
approaches can be used to improve answer passage ranking. In
particular, we show how a variety of prior language models
trained on correct answer text allow us to incorporate into the
retrieval step information that is often used in answer extraction,
for example, the presence of tagged entities. We demonstrate the
effectiveness of these models on the TREC9 QA Corpus.

Keywords
Question Answering Systems, Relevance Models, Answer
Language Models, Answer Passage Retrieval

1. INTRODUCTION
Current question answering systems typically include an initial
document (or passage) retrieval step to simplify the task of
identifying good answer passages [1,2]. The answer passages are
then analyzed by a variety of techniques to extract the final
answers. The accuracy of the final answer will depend to some
extent on the quality of the passages retrieved. This will be
especially true in environments where computational resources are
bounded (i.e. real systems rather than laboratory experiments) and
the number of passages that will be examined is limited. If the
answer passage retrieval process can be relied on to deliver high-
quality results, then the question answering system will only need
to process a small number of top-ranked passages.

In this paper, we show how the language model approaches used
recently for document retrieval can be applied to answer passage
retrieval. We discuss both the query-likelihood and relevance
model approaches [3,4,5] and evaluate their performance on the
task of finding 250 byte answer passages specified in the TREC-9
question answering track. [6].

In many question answering systems, a variety of additional
features, such as the question type, are used in an ad-hoc way to
filter out passages unlikely to contain answers. We believe that
many of these features could be incorporated directly into the
passage retrieval model. To demonstrate this, we investigate
various approaches for building answer models for particular
question types. The answer model specifies likely text patterns
that would be found in answers of a given question type. For
example, answers to “location” questions will typically contain
noun entities of type location. We show how these prior answer

language models can be incorporated into both the query-
likelihood and relevance models and compare the results.

The following section describes the language modeling
frameworks that are the basis of the answer passage retrieval
algorithms. We also show how answer models can be
incorporated. Section 3 discusses the overall system that was used
to retrieve passages, including a discussion about different types
of passages. Section 4 describes the document, query collections,
and evaluation measures used for the experiments. Section 5
presents the results of the experiments. Section 6 gives a brief
overview of related work. The final section summarizes the paper
and describes future work

2. LANGUAGE MODEL FRAMEWORKS
A statistical language model is a probability distribution over all
possible sentences (or other linguistic units) in a language [8]. It
can also be viewed as a statistical model for generating text. In
most applications of language modeling, such as speech
recognition and information retrieval, the probability of a sentence
is decomposed into a product of n-gram probabilities. A bigram
model is estimated using information about the co-occurrence of
pairs of words, whereas a unigram model uses only estimates of
the probabilities of individual words. For applications such as
speech recognition or machine translation, word order is
important and higher-order (usually trigram) models are used. In
information retrieval, the role of word order is less clear and
unigram models have been used extensively.

The basic approach for using language models for IR assumes that
the user generates a query as text that is representative of the
“ideal” document. The task of the system is then to estimate, for
each of the documents in the database, which is most likely to be
the ideal document. That is, we calculate:

)()|(maxarg)|(maxarg dPdqPqdP
dd

= (1)

where the prior P(d) is usually assumed to be uniform and a
language model Pd(q) is estimated for every document. In other
words, we estimate a probability distribution over words for each
document and calculate the probability that the query is a sample
from that distribution. This query-likelihood retrieval model was
first proposed by Ponte and Croft [3] and described in terms of a
“noisy channel” model by Berger and Lafferty [4]. This approach
to retrieval, although very simple, has produced results that are at
least comparable to the best retrieval techniques previously
available.

The classical probabilistic model of retrieval [9] is described
in terms of a Bayesian classification of documents into the classes

relevant (R) and non-relevant (N) for each query. In this case, we
rank documents by the ratio P(d|R)/P(d|N). A generative approach
to this document-likelihood model requires that we estimate the
language models PR(d) and PN(d). This means that we must
estimate probabilities for words in the relevant (and non-relevant)
classes of documents. Given that the only information available
initially about relevance is the query, this is a challenging task.
Lavrenko and Croft [5] show that if the relevance model is
estimated by:

)|()|(qwPRwP ≈ (2)

where w is a word, then the estimation process involves a version
of query expansion. This results in better effectiveness than the
simple query-likelihood model. Lavrenko and Croft introduce two
ways of estimating P(w|q). In this work, we use

 ∏∑
=

=
m

i
i

D
m dqpdwpdpqqwp

1
1)/()/()(),...,,((3)

It seems reasonable, given these two models, to propose that
the documents whose models are most similar to the relevance
model should be retrieved. Relative entropy (also known as
Kullback-Leibler divergence) is a standard metric for comparing
distributions that has worked well in IR experiments. The relative
entropy between the relevance model R and a document model D
is defined as:

)|(

)|(
log)|()||(

DwP

RwP
RwPDRKL

w
∑= (4)

This measure produces consistently better retrieval results than
either the query-likelihood or document-likelihood approaches. It
also simplifies to the query-likelihood model when maximum-
likelihood estimates are used for the query terms.

Both the query-likelihood and relevance model approaches have
been used for passage-based retrieval of documents [10]. In this
case, document language models are replaced with passage
language models. Relevance models can be constructed from
either documents or passages. Liu and Croft [10] show that
passage retrieval is approximately as effective for retrieving
relevant documents, and more robust when searching databases
containing very heterogeneous documents.

In this paper, we are developing a passage retrieval model
specifically for retrieval of answer passages, not relevant
documents. The specific passage type used for this work is
described in the next section. The baseline for the query-
likelihood model is equation (1) assuming uniform prior
probabilities. In other words, we rank passages by

)|()|(
1

AqPQAP
n

i
i∏

=

∝ (5)

where A is an answer passage. As with all language model
approaches, the smoothing of probabilities is a major issue. In our
experiments, we used interpolation with a collection model and
Dirichlet smoothing [11]. The collection probabilities were
estimated using the whole TREC-9 collection.

In the case of the relevance model, equation (2) is used with a
uniform prior (p(d)). The relevance model is built from the top
ranked passages rather than documents (in our case, the top 30
passages).

In order to incorporate additional information about an answer
model, we used the prior probability in both the query-likelihood
and relevance model equations. In other words, p(d) (or p(a) in
this case) is modified based on the probability of the text given a
particular question class. To calculate these probabilities, we
constructed answer models from training data for the main TREC
question classes.

Our answer models are of two types. The first type is the bigram
model familiar from other NLP applications were the training data
is used to learn the 2-gram and 1-gram statistics of words in the
text. The second type is “template” based. Templates are text
patterns strongly associated with particular question types. These
templates can either be incorporated manually [14] or learned
automatically in a supervised learning system [13, 16].

3. SYSTEM ARCHITECTURE
The goal of our research is to effectively rank passages directly
from the query. Currently, however, the toolkit we are using
(Lemur1) does not support direct passage retrieval. For these
experiments, therefore, we first retrieve documents, then split
these documents into passages. The passages are then ranked
using language model techniques.

Passages were created using the following procedure. The top 20
retrieved documents were selected (early tests showed that
increasing this number had no effect in system performance).
These selected documents were split into sentences using a
heuristic sentence segmenter.

The sentences were sequentially formed into passages that were at
most 250 bytes in length and possibly overlapping with
neighboring passages. If a sentence was longer than 250 bytes, as
did occur, it was dropped. We call the passages produced by this
procedure “sentenced” passages. Our procedure yielded an
average of 434 passages per question that needed to be ranked.
We use these overlapping sentenced passages for various reasons.

We know from preliminary studies that passages constructed with
a sliding window that does not respect sentence boundaries
performed better than these sentenced ones. But for a given
document we get many more windowed passages than sentenced
ones. By using overlapping sentenced passages we have
developed a system complex enough to resolve issues related to
overlap between passages (see discussion in section 5.1) but
simple enough to quickly perform our experiments.

In addition, we were interested in developing a system that could
be seen as a pre-processor for an NLP system that needed
grammatical sentences while at the same time respecting the 250-
byte limit so our performance could be compared to that of other
systems that have performed the same task.

These sentenced passages were subsequently indexed with no
stemming and a stop list consisting of single characters only. We
then performed retrieval on these passages applying the
techniques we described above. Our retrieval for each question
was limited to only those passages that came from its retrieved
documents. Doing otherwise would be contrary to our approach:
start with retrieved documents for a question and then identify

1 www.cs.cmu.edu/~lemur/

passages within those documents that are likely to contain its
answer.

4. EXPERIMENTAL SETUP

4.1 Dataset
The TREC-9 QA Dataset was used for our experiments. It consists
of 979,000 documents with about 3GB of text from various news
sources (AP newswire, Wall Street Journal, San Jose Mercury
News, Financial Times, LA Times, and FBIS) [4].

The questions set for TREC-9 consists of 693 questions that are
generally characterized as being of the “factual” type: “What is
the longest river in the world?”, “Who is Colin Powell?”, etc. It
was found during the TREC-9 evaluation that some questions
were too ambiguous or did not have an answer within the corpus
[4]. Thus, 682 questions were finally used to report evaluation
metrics for the TREC-9 QA tasks, and it is this restricted set that
we use in the experiments reported here.

The TREC-9 questions have been classified into “question types”
by Thomas S. Morton of the University of Pennsylvania (private
email communication). We used six of his question type
classifications:

o Amount (A): “How many zip codes are there in the
U.S.?”

o Famous (F): “What is Francis Scott Key best known
for?”

o Location (L): “Where is Glasgow?”

o People (P): “Who invented basketball?”

o Time Point (T): “What year did Montana become a
state?”

o Other(X): This is a generic, catch-all for questions that
did not fit the other types

There are various reasons for using these question types. Many
QA systems have a question classification component. Thus it was
reasonable to investigate if our statistical approach benefits from
knowing a question’s type. In addition, we were interested in
seeing if training data improves the performance of a statistical
approach. The A questions are the smallest set in our group with
52 questions. We took this as the practical limit for testing
approaches that divided the questions into training and testing
portions. And finally, this AFLPTX set contains 589 out of the
682 questions evaluated in TREC-9.

So the results we present here are for each individual question in
the AFLPTX set, the AFLPTX set combined and all of the TREC-
9 evaluated questions. The individual question type results allows
us to see if performance varies across questions types. The
combined result (referred to as AFLPTX in the tables) would be
the performance of a system that had perfect question
classification performance. And finally the results for all questions
allow an approximate comparison between our work and
previously reported results for the TREC-9 evaluation.

4.2 Task and performance metric
The TREC-9 QA track had two experimental conditions: returning
answer strings limited to 50 bytes, and answer strings limited to
250 bytes. The results of the TREC-9 evaluation make it clear that
performance correlated with answer string length – longer strings

improved a system’s performance. All experiments reported were
done for the 250-byte task [4].

The performance metric for TREC-9 was the Mean Reciprocal
Rank (MRR) measured down to the top 5 answer strings returned
for each question. So systems were rewarded for returning a
correct answer within the top 5 ranked answer strings, but
received no credit for answers returned below the 5th position.

In lieu of using human judges to decide if retrieved answer
passages did answer the questions, we utilized the regular
expressions developed by NIST in an attempt to develop a
“reusable test collection”. These regular expressions were
constructed so that “almost all” strings judged to be correct by the
original judges of the TREC-9 evaluation would be matched [4].
The Kendall τ association between system performance measured
by human judges and that measured using regular pattern
matching was found to be 0.94 for the systems that participated in
the TREC-9 250-byte task [4].

5. EXPERIMENTAL RESULTS

5.1 Query Likelihood Baseline
The query likelihood baseline was described in section 2. It
returns a ranked list of passages using equation (3).

After examining the initial results, we found that just using the
query likelihood ranking may not the most effective approach.
Passages at the top of a ranked list may be overlapping and come
from the same document. To test the effect this has on the results,
we tested two strategies for removing passages from the same
document. The results from the original ranking are shown in the
first column of Table 1 under the heading “Unvetted”. The second
column, “one per document”, only allows the top ranked passage
from a given document to remain in the ranked list. The second
strategy, “non-overlapping”, allows multiple passages from the
same document by removing passages that overlap with a higher
ranked passage. It is clear from these results that vetting the list
returned by the query likelihood ranking produces a small
improvement for every question class, although there is not much
difference between the two strategies for removing passages.

All results mentioned in the rest of the paper will quote the MRR
scores derived using the non-overlapping strategy.

Table 1. Query Likelihood MRR performance (%)

Question Set Unvetted
One per

Document

Non-

overlapping

A (52) 20.7 22.5 22.4

F (84) 58.5 58.8 59.2

L (109) 43.6 44.1 44.9

P (109) 53.4 55.4 55.4

T (71) 27.6 27.8 27.7

X (164) 34.9 36.3 36.4

AFLPTX (589) 41.2 42.2 42.5

All(682) 39.3 40.6 40.8

5.2 Relevance Model Results
The relevance model baseline was done using equation (2). As
mentioned before, the relevance models are built using the top-
ranked passages from an initial retrieval. As one can see from the
baseline results for query likelihood, however, the best
performance is obtained when we vet the ranked list by requiring
that only non-overlapping sentenced passages be allowed in the
list. This implies that the relevance model results could also be
improved by vetting. Table 2 shows that this is the case for all
question types.

In general, the relevance model was more effective than the query-
likelihood model, sometimes substantially. This is a little
surprising given that relevance models are equivalent to a massive
query expansion [5], and answer passage retrieval is often done in
other systems using strict matching criteria. One of the question
classes, People, did not perform better with relevance models
(although the results were not worse either). This suggests that the
effectiveness of query expansion may depend on the type of
question.

Table 2. QA Relevance Models MRR performance (%)

Question Set
Query

Likelihood
RM

%

improvement

A (52) 22.4 23.9 6.7

F (84) 59.2 62.5 5.6

L (109) 44.9 51.6 14.9

P (109) 55.4 56.2 1.4

T (71) 27.7 32.0 13.4

X (164) 36.4 41.3 13.5

AFLPTX (589) 42.5 46.3 8.9

All (682) 40.8 42.9 5.1

It is interesting to note that the relevance models always had their
best performance at a smaller value for the Dirichlet constant than
the query likelihood results. This is encouraging since it means
that the probability estimates derived from the passages were
weighted more than in the query likelihood baseline. That is,
relevance models depend less on the use of smoothing. In
addition, whereas the number of words used to estimate the
relevance models for document retrieval is in the order of
hundreds, for this task the best value was obtained when the
words used to estimate the models were in the order of ten words.

5.3 Bigram Answer Model Results
Both of the results reported so far, query likelihood and relevance
models have used the assumption that the prior probability of an
answer passage is constant. We wanted to investigate how both
methods would be affected by the use of probability priors for the
answer passages. We investigated this approach by looking at
obtaining passage priors from bigram language models for correct
answer passages.

For example, one would expect that location questions (L type)
would invariably have a location within the correct answers. This
suggests that answer models trained on data where various entities

are abstracted from the text could lead to improvements in the
query likelihood baseline.

We tested this hypothesis by limiting ourselves to the 6 question
types that had more than 50 questions (A, F, L, P, T, X).

Our goal was to train answer models that captured the “structure”
of answer text rather than the actual words themselves. To that
end, we normalized the candidate answer passages using a noun
entity tagger. The text for all candidate answer passages for the
AFLPTX questions were processed using BBN’s IdentiFinder
[12] to tag for the following entities:

o PERSON

o PERCENT

o DATE

o MONEY

o LOCATION

o ORGANIZATION

These tags were used to replace the tagged text itself. Thus, for
example, eliminating most mentions (the tagger is not perfect) of
specific locations to a single token: _location_. This procedure
yielded a vocabulary of about 53K words for our AFLPTX
candidate answer passages versus a vocabulary of about 94K
words if no tagging with replacement had occurred.

We then proceeded to train answer models specific to each
question type with the following procedure. We used a 10-fold
cross-validation separation of questions into training and testing
sets. The question set for each question type was divided into ten
random partitions. Each partition assigned 90% of the questions
to a training set and 10% to a testing set. So each question was
used nine times in a training set and once in a test set.

There is one subtlety related to how this partitioning was done.
The TREC9 QA Corpus contains many examples of question
variants – groups of questions that are essentially reworded
versions of the same question. For example, questions 408, 701-4
are variants of the question: “What kind of an animal is Winnie
The Pooh?” The effect of these variants is that questions can
share the same passage as a correct answer. Thus we randomly
partitioned questions with the constraint that variant groups were
not split between testing and training sets. This guaranteed that no
correct answer used for training was ever a correct answer for a
test question.

Each random partition of a question type now had the correct
answer passages for 90% of the questions to train on. The main
distinction between all the answer models we constructed and
report here is the extent to which they used this training text.

The first model we tested is called the “whole passage” model. It
utilized all of the sentences available in passages that were
identified as correct for the training questions. The second model
is called the “matching line” model. It used only the sentence that
satisfied the regular expression for the correct answer. And lastly,
we investigated what type of information from templates could be
incorporated into answer models.

All of our answer models were trained as bigram models that used
absolute discounting to deal with unseen words and count one

words since our training data was so small and it is generally
assumed that absolute discounting works better than other
schemes such as Turing smoothing for small amounts of training
text.

Our procedure for calculating an estimate of p(a) given a
candidate answer passage and a prior language model was as
follows: The inverse of the perplexity of the candidate answer
passage under the answer model was calculated. The inverse of
the perplexity is just the geometric mean of the word probabilities
under the model, so we took this as our initial estimate for the
prior:

nn

i
ii wwpap

1

1
1))|(()(∏

=

−≈ (6)

By taking the geometric mean, we compensate for the varying
word lengths of the candidate passages. In addition, we smoothed
the resultant probability estimate by raising it to a power between
one and zero. By varying the exponent to which we raised the
prior probability we could tune for our use of answer models. An
exponent of zero gives a uniform prior (equivalent to query
likelihood ranking). Since the prior probabilities can be rescaled
to sum up to one, we view raising to a power as a smoothing
procedure necessary to deal with noisy training data.

We began by studying how answer models performed under the
query likelihood approach shown in equation 1.

5.3.1 Whole passage answer models
Whole passage answer models were trained on all of the sentences
present in a passage that was part of the training correct answers.
All classes improved but overall the improvement is small and it
suggests that better models can be trained by limiting further the
text we use for training.

Table 3. Whole passage answer models MRR performance (%)

Question Set
Query

Likelihood

Whole

Passage

AM

% relative

improvement

A (52) 22.4 23.9 6.7

F (84) 59.2 59.3 0.2

L (109) 44.9 47.8 6.5

P (109) 55.4 55.7 0.5

T (71) 27.7 30.6 10.5

X (164) 36.4 37.8 3.7

AFLPTX (589) 42.5 43.9 3.3

5.3.2 Matching Line Answer Model
We constructed a second version of a prior answer model by
limiting our training text further. Matching line answer models
were trained using only the sentences that matched a correct
answer pattern. Their performance is shown in table 4. We can
see that although the text amount used for training diminished, the
quality of the models improved. Albeit, the Person question class
showed no improvement.

Table 4. Matching line answer models MRR performance (%)

Question Set
Query

Likelihood

Match

Line AM

% relative

improvement

A (52) 22.4 23.5 4.9

F (84) 59.2 59.6 0.7

L (109) 44.9 49.4 10.2

P (109) 55.4 56.2 1.4

T (71) 27.7 31.2 12.6

X (164) 36.4 39.0 7.1

AFLPTX (589) 42.5 44.7 5.2

5.3.3 Template Answer Model
A number of systems have used templates for question answering
[13,14,15,17]. We generated templates for the “location” class
using the Snowball system [16]. Snowball generates a set of
tuples, which consist of the terms to the left of the first seed, the
terms between the seeds, the terms to the right of the second seed,
the seeds themselves, and whether they should be ordered or not.
An example of a seed is “<Exxon, Irving>”, which expresses the
relation “<ORGANIZATION, LOCATION>”. We extracted a
total of 722 templates for the location class expressing
organization-location, location-location, location-person, and
location-date relations. A template is a cluster of similar patterns.
Each term in the template has a score that is the similarity
between the pattern the term was in, and the pattern that it
matched. An example of a template is:

order="true" tag1="PERSON" tag2="LOCATION"
left="<the:0.268><is:0.268>" middle="<at:1.0>" right="" belief=
0.0685

In addition, the template, itself, has a “belief” score that is an
indication of its quality.

5.3.3.1 Incorporating Templates
Templates and patterns are, by their construction, heuristic. The
similarity and belief scores assigned to them are attempts to
establish the likelihood of an answer candidate passage matching
a given template. Matching a template is strong evidence for being
a correct answer so we wanted to utilize them in our statistical
framework. The following experiments show how they can be
used to create answer models that can produce prior probabilities.

 We trained a unigram language model on the words from the
templates. Since we didn’t have word frequency statistics, the
similarity score for each term and the belief scores for each
template were massaged into a probability distribution, and then
those “probabilities” were used in place of word frequencies.
This approach yielded an MRR of 49.1.

Since we didn’t have actual word frequency statistics, but the
words themselves were a highly targeted vocabulary, we trained a
bigram language model from the texts of answers known to be
correct, but used the words from the templates as the vocabulary.
Restricting our vocabulary in this focused way is resulted in an
average MRR of 50.6.

We created bigrams from the templates and trained the model on
those, as if they had been gleaned from training data. All possible
bigrams were created from the templates, respecting the
left/middle/right substring boundaries. The language model was

trained with the pattern vocabulary. The average MRR from this
approach was 51.0.

We selected sentences from our known correct answer texts that
had “location-location” entity pairs, “location-organization”,
“location-date”, and “location-person”, and created a distribution
of the bigrams appearing in these sentences. The language model
trained on these targeted sentences produced an MRR score of
52.0. In each case the vocabulary used was restricted to the
vocabulary of the training set.

Table 5. MRR performance of “L” questions with four ways

of incorporating templates

Question

Set
Query

Likelihood
Pat.

Scores

Pat.

Vocab

Pat.

bigram
LM

L 44.9 49.1 50.6 51.0 52.0

One criticism of templates is that they are inflexible. We would
like a more flexible system, for question types for which we don’t
have entity relations or template information.

For each question type, we defined the entity relations by
choosing pairs of entities that occurred more frequently for a
given question type. We trained bigram language models using
sentences that contained any of the entity relations for a given
question type. The vocabulary was restricted to the training set.
Table 6 shows the results in average MRR score for this approach.

 Incorporating relevance models showed improvement for most
question types. In a template based system, incorporating
relevance models has the effect of smoothing for terms not found
in the template. This improves the situation for answers that are
not captured in templates, but decreases the overall effects for
template matches. Thus relevance models would be most useful
for question types whose answers have a low degree of match to
the templates.

Table 6. Relation Answer Models MRR performance (%)

5.4 Answer Models with Relevance Models
Since bigram answer models improved the baseline query-
likelihood performance, we also tested how the use of the model
priors would improve the relevance model performance. This was
done using the prior in equation (2).

The results are shown in Table 4. We show how two of our
models: the “matching line” and “template” models combine with
Relevance Models. We show the relative improvement in the
baseline query likelihood results in parentheses.

Table 7. RMs with bigram AM priors MRR performance (%)

Question Set
Query

Likelihood

Match Line

AM + RM

Template

AM + RM

A (52) 22.4 24.1 (+07.6) 23.6 (+5.4)

F (84) 59.2 63.9 (+07.9) 65.9 (+11.3)

L (109) 44.9 53.1 (+15.4) 56.3 (+25.4)

P (109) 55.4 55.4 (+00.0) 56.0 (+1.1)

T (71) 27.7 31.6 (+14.1) 30.1 (+8.7)

X (164) 36.4 41.4 (+13.7) 45.7 (+25.5)

AFLPTX (589) 42.5 46.7(+09.9) 48.6 (+14.4)

6. RELATED WORK
The use of passage retrieval for question answering has been
studied before. The IR-n system [13] from the University of
Alicante has focused on this task. It uses a heuristic measure to
retrieve passages with a fixed number of sentences, with best
performance obtained at around 20 sentences. Besides our use of
language models, this work differs from ours because we only
considered passages that conformed to the 250-byte TREC-9 QA
task.

The University of Sheffield [14] has also used passage retrieval in
their QA system. But as in the IR-n system, performs the passage
retrieval with a heuristic measure and retrieves passages longer
than the 250-byte limit.

In terms of using answer templates, a variety of systems have used
heuristic methods of deriving and applying templates. One
example of such a system is the AskMSR system described in
[17]. This system generates a hand-crafted set of query rewrite
rules, and answer templates and uses an heuristic approach to
scoring the answer candidates. Ravichandran and Hovy [13]
utilize the approaches in [14] and [15], using a bootstrapping
technique to learn regular expressions from the web, using suffix
trees to find the optimal substring length.

7. CONCLUSIONS AND FUTURE WORK

The results shown in this paper demonstrate that it is possible to
significantly improve answer passage ranking by incorporating
additional features related to passage quality into the retrieval
model. Table 7 summarizes the percentage improvements of
different approaches compared to the baseline query likelihood
model. This shows that query expansion via the relevance model
generally improves performance, but the incorporation of answer
models is better for some question classes. The incorporation of
answer models into the priors for the relevance model produces
the best results with consistent and substantial improvements in
all question classes. The incorporation of template information
was previously demonstrated to improve performance, and we
showed several ways this information can be incorporated into a
statistical system.

Question

Set

Query

Likelihood
AM

% relative

improvement

A 22.4 23.1 3.1

F 59.2 63.7 7.6

L 44.9 54.0 20.2

P 55.4 54.8 -1.2

T 27.7 32.7 18.1

X 36.4 44.9 23.4

AFLPTX 42.5 47.7 12.2

The best results in this table are competitive with the best results
achieved in TREC-9, but they are somewhat difficult to compare
directly because answer models were not constructed for all
question classes. It should be emphasized that this high level of
performance was achieved in what is effectively a single retrieval
pass with no additional ad-hoc filtering done afterwards, as is
common with most other systems.

In future work, we plan to investigate other features that could be
incorporated into the retrieval model. To do this, we may use
maximum entropy language models, which are more flexible with
regard to the types of features in the model [8]. We also plan to
further explore the automatic learning of answer templates, and
the most appropriate way to incorporate the information into a
statistical QA system.

8. ACKNOWLEDGEMENTS
This work was supported in part by the Center for Intelligent
Information Retrieval, in part by SPAWARSYSCEN-SD grant
numbers N66001-99-1-8912 and N66001-02-1-8903, and in part
by Advanced Research and Development Activity under contract
number MDA904-01-C-0984. Any opinions, findings and
conclusions or recommendations expressed in this material are the
author(s) and do not necessarily reflect those of the sponsor.

9. REFERENCES

[1] Ittycheriah et al. IBM’s Statistical Question Answering
System. In Proceedings of the Ninth Text Retrieval
Conference (TREC-9), 2000.

[2] Elworthy, D. Question Answering using a large NLP System.
In Proceedings of the Ninth Text Retrieval Conference
(TREC-9), 2000.

[3] J. Ponte, W.B. Croft, “A language modeling approach to
information retrieval”, Proceedings of ACM SIGIR 1998,
275-281, 1998.

[4] A. Berger, J. Lafferty, “Information Retrieval as statistical
translation”, Proceedings of ACM SIGIR 1999, 222-229,
1999

[5] V. Lavrenko, W.B. Croft, “Relevance-based language
models”, Proceedings of ACM SIGIR 2001, 120-127, 2001

[6] Voorhees, E. Overview of the TREC-9 Question Answering
Track. In Proceedings of the Ninth Text Retrieval
Conference (TREC-9), 2000.

[7] R. Rosenfeld, “Two decades of statistical language modeling:
where do we go from here?”, Proceedings of the IEEE,
88(8), 1270-1288, 2000.

[8] K. Sparck Jones, S. Walker, S E. Robertson, “A probabilistic
model of information retrieval: development and
comparative experiments”, Parts 1 and 2, Information
Processing and Management, 36(6): 779-840, 2000.

[9] Liu, X. and Croft, W.B., "Passage Retrieval Based On
Language Models," Proceedings of CIKM ’02 conference,
375-382, 2002.

[10] C. Zhai, J. Lafferty, “A study of smoothing methods for
language models applied to ad hoc information retrieval”,
Proceedings of ACM SIGIR 2001, 334-342, 2001.

[11] Bikel, Daniel M., Schwartz, Richard L., and Weischedel,
Ralph M. An Algorithm that Learns What’s In a Name.
Machine Learing vol. 34, p. 211-231, 1999.

[12] Llopis, Fernando, Vicedo, Jose Luis, and Fernandez,
Antonio. Passage Selection to Improve Question Answering.
In Workshop on Multilingual Summarization and Question
Answering, 2002.

[13] Ravichandran, D. and E.H. Hovy. 2002. Learning Surface
Text Patterns for a Question Answering System. In
Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL-2002) Conference.
Philadelphia, PA, July 7-12.

[14] M.M Sabboutin, and S.M. Sabboutin. “Patterns of Potential
Answer Expressions as Clues to the Right Answer.”
Proceedings of the TREC-10 Conference. NIST,
Gaithersburg, MD.

[15] G. Lee, et al. “SiteQ: Engineering High Performance QA
system Using Lexico-Semantic Pattern Matching and
Shallow NLP.” In Proceedings of the TREC-10 Conference.
NIST, Gaithersburg, MD.

[16] E. Agichtein and L. Gravano. “Snowball: Extracting
Relations from Large Plain-Text Collections.” In
Proceedings of the 5th ACM International Conference on
Digital Libraries. 2000.

[17] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. “Web
Question Answering: Is More Always Better?” In
Proceedings of ACM SIGIR 2002. p. 291-298.

