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ABSTRACT

Topic Detection and Tracking (TDT) tasks are evaluated using a

cost function. The standard TDT cost function assumes a constant

probability of relevance P (rel) across all topics. In practice, P (rel)
varies widely across topics. We argue using both theoretical and

experimental evidence that the cost function should be modified to

account for the varying P (rel).
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1. INTRODUCTION
Tasks in Topic Detection and Tracking (TDT) are evaluated based

on miss and false alarm rates. One generally employed evaluation

device is the Detection Error Tradeoff (DET) curve [4], a graph that

shows how miss and false alarm vary inversely. The official mea-

sure, however, is a cost function defined as a linear combination of

the two error rates. It is that cost function that is used to tune sys-

tem parameters on training data and that is the basis for deciding

which system “wins” an evaluation task.

Fiscus and Doddington [2] provide an excellent review of the

TDT community’s motivations in coming up with that cost func-

tion. To compensate for the fact that the number of off-topic stories

is far greater than the number of on-topic stories, and that the dif-

ference varies across topics, the cost also includes a factor which

depends on the prior probability of finding an on-topic story. We

denote that value P (rel), the probability of relevance (it is also re-
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ferred to as P (target); we use the more IR-related form). The TDT

cost function assumes that this probability is constant across topics.

Experiments make it clear that the number of on-topic stories –

hence P (rel) – varies over different topics. In TDT, the cost func-

tion is often used to set thresholds. We show that assuming P (rel)
constant leads to the undesirable theoretical result that the optimal

threshold in probability space varies with the topic. We also show

theoretically that by allowing P (rel) to vary by topic, one can ob-

tain a constant optimal threshold in the probability space. This

suggests that the standard TDT cost function should be modified

to account for the varying P (rel).

1.1 Standard TDT Cost Function
The TDT cost function is defined as as a linear combination of

P (miss), the probability of a miss, and P (fa), the probability of a

false alarm [2]:

Cdet = CmissP (miss)P (rel) + CfaP (fa)(1 − P (rel)) (1)

where Cmiss and Cfa are the costs of missed detection and false

alarm respectively, and P (rel) is the prior probability of finding

a relevant story. Fiscus and Doddington [2] argue that in TDT

misses should be penalized much more heavily than false alarms,

so Cmiss = 1 and Cfa = 0.1. A constant value for P (rel) is used

over all topics. Anecdotal information from TDT participants in-

dicates that this value was chosen using training data to be 0.02.

The standard TDT cost function used for all evaluations in TDT is

therefore, Cdet = 0.02P (miss) + 0.098P (fa). We can now look

at the implications of having a constant P (rel).

Consider the scores produced by a TDT system for each docu-

ment. Let the distribution of scores of off-topic (non-relevant) doc-

uments be given by p(x|nrel) and let the distribution of scores of

on-target (relevant) documents be given by p(x|rel). Experimental

modeling shows that the distribution of scores of on-target docu-

ments may be approximated using a Gaussian and the distribution

of scores of off-topic documents may be approximated using an

exponential. This is similar to the model for the score distributions

of search engines [3]. For our discussion here, we do not need to

assume a form for these densities and can let the densities p(x|rel)
and p(x|nrel) be arbitrary. We will assume for our discussion that

we have perfect knowledge of these densities.

We can compute P (miss) and P (fa) using these densities. The

system decides that documents with scores above a certain thresh-

old θ are relevant. Then P (miss) is given by the area under p(x|rel)
bounded by θ on the right (see [1] for a similar expression in the

filtering case), and P (fa) is similarly found:

P (miss) =

∫
θ

−∞

p(x|rel)dx and P (fa) =

∫ +∞

θ

p(x|nrel)dx

(2)



The optimal threshold is found by substituting the expressions

for P (miss) and P (fa) in the expression for the cost function and

minimizing the cost function by setting
dCdet

dθ
= 0. This gives:

p(θ|rel) = 4.9p(θ|nrel) (3)

One can compute the posterior probability of relevance given the

scores P (rel|x) from the above densities. Using Bayes rule gives:

P (rel|x) =
p(x|rel)P (rel)

P (rel)p(x|rel) + P (nrel)p(x|nrel)
(4)

The threshold in the posterior probability space may be com-

puted by using the relationship between p(x|rel) and p(x|nrel) at

the optimal threshold from equation 3 giving:

P (rel|θ) =
p(θ|rel)P (rel)

p(θ|rel
P (rel) +

p(θ|rel)(1 − P (rel))

4.9

=
1

1 + 1
4.9

( 1

P (rel)
− 1)

(5)

This expression is true for any arbitrary form of p(x|rel) and

p(x|nrel). The threshold varies with P (rel) (and hence with the

topic) as a consequence of assuming that P (rel) is constant for the

cost function. That is, even if we had perfect knowledge of the non-

relevant and relevant distributions, the optimum threshold at the

posterior probability (equation 5) is not constant across topics but

depends on P (rel). The problem lies in the assumption of P (rel)
being constant. It is desirable in TDT to have a cost function which

has a constant threshold across topics. Currently, this is artificially

forced upon systems during evaluation.

2. A NEW COST FUNCTION FOR TDT
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Figure 1: Probability of relevance for different topics in the

TDT-2 corpus. Computed using actual relevance judgements.

The TDT cost function assumes a constant value of P (rel) across

different topics to obtain the standard TDT cost function described

above. Figure 1 shows a histogram of P (rel) for all topics in the

TDT-2 corpus. There is a considerable variation in P (rel) depend-

ing on the topic. Further, the average P (rel) across all stories is

0.002 which is different from the number assumed in the standard

TDT cost function (0.02). Assuming that they used a different

training corpus to select a value, this indicates that even the av-

erages vary with the corpus and cannot be assumed constant.

Is there any way to achieve a constant threshold for all topics

at least for the ideal case? This is, after all, one of the goals of

TDT. By going back to first principles we can derive a new cost

function which will have a constant threshold. Specifically, we look

at the original form of the cost function in equation 1. Assume that

P (rel) is not constant. As before we can use equation 2 to write

P (miss) and P (fa) in terms of p(x|rel), p(x|nrel) and the threshold

θ. Minimizing this cost function at the optimal threshold gives:

p(θ|rel) =
Cfa(1 − P (rel))

CmissP (rel)
p(θ|nrel) (6)

In terms of posterior probabilities the threshold is given by:

P (rel|θ) =
p(θ|rel)P (rel)

p(θ|rel)P (rel) + p(θ|nrel)P (nrel)
(7)

=
1

1 +
Cmiss

Cfa

(8)

where we use the expression of p(θ|nrel) from equation 6.

Given a set of costs Cmiss and Cfa, this new cost function has a

constant threshold for all topics. This is an intuitively satisfying re-

sult which argues that if one takes into account the fact that P (rel)
varies with the topic (which is what happens in reality) then a con-

stant threshold can be obtained. For the specific case of Cmiss = 1
and Cfa = 0.1 the threshold is:

P (rel|θ) =
1

1 +
Cmiss

Cfa

=
1

1 + 10
=

1

11
(9)

We don’t expect that systems will need to know P (rel). The cost

function is primarily an evaluation tool and for evaluation purposes

P (rel) is known. Even otherwise, there are approaches (see [3])

which would allow systems to estimate P (rel).

3. CONCLUSIONS
The TDT evaluation program assumes a constant for the proba-

bility that a story is on topic. Although that assumption was known

to be incorrect, it is used in the evaluation’s official cost function.

As a result, systems are torn between providing a threshold that

yields consistent results across topics or one that yields a minimum

cost function. We feel that a TDT system would do better to attempt

both of those at the same time. There are interesting problems with

using this cost function in the context of a DET curve, the other

official TDT measure. We are investigating those issues.
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