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ABSTRACT

We extend relevance modeling to the link detection task
of Topic Detection and Tracking (TDT) and show that it
substantially improves performance. Relevance modeling,
a statistical language modeling technique related to query
expansion, is used to enhance the topic model estimate asso-
ciated with a news story, boosting the probability of words
that are associated with the story even when they do not
appear in the story. To apply relevance modeling to TDT,
it had to be extended to work with stories rather than short
queries, and the similarity comparison had to be changed to
a modified form of Kullback-Leibler. We demonstrate that
relevance models result in very substantial improvements
over the language modeling baseline. We also show how
the use of relevance modeling makes it possible to choose a
single parameter for within- and cross-mode comparisons of
stories.

1. INTRODUCTION
Topic Detection and Tracking (TDT) is a research pro-

gram investigating methods for automatically organizing news
stories by the events that they discuss. TDT includes sev-
eral evaluation tasks, each of which explores one aspect of
that organization–i.e., splitting a continuous stream of news
into stories that are about a single topic (“segmentation”),
gathering stories into groups that each discuss a single topic
(“detection”), identifying the onset of a new topic in the
news (“first story detection”), and exploiting user feedback
to monitor a stream of news for additional stories on a spec-
ified topic (“tracking”).

Another TDT evaluation task, Link Detection, requires
determining whether or not two randomly selected stories
discuss the same topic. Unlike the other tasks that have
value in and of themselves, Link Detection is a a compo-
nent technology: it can be used to address each of the other
tasks.1 For example, in order to recognize the start of a

1In fact, such relationships exist between several of the
tasks. The tracking task can be a basis for the other tasks

.

new topic, a candidate story might be compared to all prior
stories to see whether the topic appeared earlier. Similarly,
tracking stories on a specified topic can be done by compar-
ing each arriving story to the user-supplied list of on-topic
stories.

The core of most approaches to Link Detection (and there-
fore to most of the TDT tasks) is comparing word over-
lap between the two stories: the more words that are in
common, the more likely it is that the two stories are on
the same topic. This method is the basis of everything
from vector space approaches [4, 17] to statistical language
model [19, 12] techniques. As in the field of Information
Retrieval, much research focuses on techniques for selecting
which words to compare, how they should be weighted, and
how best to compare the sets of weighted words.

Another research idea that has become common in TDT
is expanding the words in a story to include other, strongly
related words. The idea is to increase the likelihood that two
stories on the same topic will have important overlapping
words. Vector space models use query expansion techniques
such as Local Context Analysis [18] to expand the list of
words [16]. More theoretically grounded approaches such
as statistical language modeling implicitly include related
words from a background model as part of the smoothing
process [19, 12].

In this paper we explore this technique of expanding the
set of words associated with a story using “relevance mod-
els,” a theoretical extension of statistical language modeling
that was developed for the task of document retrieval. In the
next section we outline the basic ideas of relevance models.
In Section 3 we present how relevance models were adapted
to the TDT tasks, where stories are compared to each other
rather than a query to a document, and where the com-
parison method is therefore different. Section 4 describes
the experiments that were done and shows how relevance
models improve effectiveness on the link detection task. In
Section 4.5 we briefly explore how this expansion process is
quite different depending on whether the stories come from
within a single source and modality, or across them. Sec-
tion 5 draws conclusions and speculates on future work in
this area.

2. RELEVANCE MODELS
Lavrenko and Croft [11] define “relevance model” to be a

mechanism that determines the probability P (w|R) of ob-
serving a word w in a document that is relevant to a query,

also [3], though unlike link detection, it has clear value on
its own.



where R represents the class of documents that are relevant
to the query. The difficult aspect of relevance models is es-
timating the model in the absence of significant amounts of
data—typically the system has available only the query and
a set of documents without relevance judgments.

One way to address that problem is to make the assump-
tion that in the absence of any training data and given
a query Q = q1q2 . . . qk, we can approximate P (w|R) by
P (w|q1q2 . . . qk). That is, by the probability of co-occurrence
between the query and the word.

To implement the ideas behind relevance models, a system
follows the following steps:

• Use the query, Q, to retrieve a set of highly ranked
documents, RQ. This step yields a set of documents
that contain most or all of the query words. The doc-
uments are, in fact, weighted by the probability that
they are relevant to the query—i.e., P (D|Q), D ∈ RQ.

• For each word in those documents, calculate the prob-
ability that the word occurs in that set. That is, cal-
culate P (w|RQ), a value that is used to approximate
P (w|R):

P (w|RQ) =
∑

D∈RQ

P (w|D)P (D|Q) (1)

As with most language modeling approaches, P (w|D) is
calculated using a maximum likelihood estimate smoothed
with the background model:

P (w|D) = λPml(w|D) + (1 − λ)Pbg(w)

= λ
tfw,D

|D|
+ (1 − λ)

cfw
coll.size

(2)

Here, tfw,D is the number of times the word w occurs in
the document D, cfw is the total number of times w occurs
in a large background collection, and coll.size is the total
number of words in that background collection. The value
of λ as well as the number of documents to include in RQ

are determined empirically from training data. For all ex-
periments reported here, RQ is 30. Values of λ are reported
below.

3. RELEVANCE MODELS IN TDT
The relevance model described above was built from a

small query and then used to estimate the probability that
documents are relevant to the query. In TDT’s link detec-
tion task two stories are being compared to decide if they
are on the same topic. We will do this by building a rel-
evance model for each story, where that model is intended
to capture the topic of the stories. Because we are start-
ing from an entire story rather than from a short query, the
estimation must be done slightly differently.

Once the two models are created, we decide whether they
discuss the same topic by comparing the models directly.
We found it helpful to use a modified form of the Kullback-
Leiblar divergence

Finally, we needed to explore the impact of different modal-
ities on the comparisons. In most retrieval tasks, the collec-
tion being searched contains a mostly homogeneous set of
documents. TDT collections, on the other hand, come from
newswire text, speech recognition output, closed captioning,

machine translation, and combinations of all of those. Com-
parisons within and across modalities can have significant
impact on the results. We discuss below how we addressed
that problem.

3.1 Building the topic models
In order to build a topic (relevance) model for a story,

we start with the process described above. The story, S =
q1q2 . . . qk, is used as a “query” into all training stories in the
news. Each training story, D, is therefore ranked by P (D|S)
or P (D|q1 . . . qk). Unfortunately, if those probabilities are
used directly, they are generally forced to zero because there
are so many terms in the story (i.e., k is large). To see why
that is the case, consider how we calculate the probability:

P (D|q1 . . . qk) =
P (q1 . . . qk|D)P (D)

P (q1 . . . qk)

The denominator P (q1 . . . qk) is a constant across different
documents D, and following [11] we picked a a uniform prior
P (D). Therefore only the probability of the query given the
document P (q1 . . . qk|D) has an impact on the value of the
posterior. We usually assume independence of the query
words and calculate:

P (D|q1 . . . qk) ∼ P (q1 . . . qk|D) =
k∏

i=1

P (qi|D)

When k is larger than a few terms, the resulting product
becomes very small (recall that P (qi|D) < 1). As a result,
we often get floating point underflow and—more importantly—
the probability only has a reasonable value for the highest-
ranked story. That is, P (D|q1 . . . qk) is driven to zero for
all but the highest ranked story, which is almost always the
original document S = q1 . . . qk. If that happens, then the
value of relevance modeling disappears: no stories are mixed
into the model.

To address this problem, we “flatten” the probability as

P (q1 . . . qk|D)
1

k . Taking the kth root avoids both problems
listed above. This is a heuristic adjustment which we hope
to circumvent in our future work on relevance-based models.

3.2 Measuring Topic Similarity
Once we have built models for each topic, we need to com-

pare the models to determine the chance that they represent
the same topic. Given two stories, S1 and S2, assume that
their relevance models are M1 and M2, respectively. If we
were to parallel the information retrieval use of relevance
models, we might calculate either P (S1|M2) or P (S2|M1)
or possibly the average of the two.

However, given that we have two models that were es-
timated from similar amounts of data (S1 or S2) we can
instead compare the models directly. The Kullback-Leibler
divergence is a standard way to compare two probability
distributions, defined as:

D(M1||M2) =
∑

w

P (w|M1) log
P (w|M1)

P (w|M2)

KL divergence is asymmetric, which is unacceptable as a
link detection metric. We compute a symmetric version by
summing the divergence in both directions: D(M1||M2) +
D(M2||M1). Since Kullback-Leiblar divergence is a measure



of dissimilarity of the two distributions, we use the negation
of the above quantity to measure similarity.

This yields a reasonable approach, but has the problem
that if the models are very ambiguous—e.g., if relevance
modeling failed and created a model that looks too much like
general English—their matching has very little significance.
That is, if the two models are both of general English, it
is not valuable that they are identical since they do not
describe a topic. To address this problem, we leverage a
notion of query clarity [8], the KL divergence between a
distribution and general English. A distribution is clear (or
focused) if it is very unlike general English and unclear if it
is identical to general English.

The non-symmetric version of our topic similarity mea-
sure is therefore: [−D(M1||M2) + Clarity(M1)] That is, the
degree to which M2 and M1 are similar, increased to the
extent that M1 is a clear model that differs from general
English. After a very simple algebraic manipulation, the
similarity measure can be written as:

∑

w

P (w|M1) log
P (w|M2)

P (w|GE)
(3)

In this form it bears strong resemblance to the length-
normalized log-likelihood ratio, which has been used by a
number of TDT participants [12, 4]. Note that adding clar-
ity has resulted in the denominator that plays a role similar
to the role of idf in document retrieval. To get the final sim-
ilarity measure, we calculate the same quantity the other
way (swapping M1 and M2) and add them together.

4. APPLYING RELEVANCE MODELS
In this section we evaluate performance of relevance mod-

els, as described above, on the Link Detection task of TDT.
First, we describe the experimental setup and the evalua-
tion methodology. Then we provide empirical support for
the choice of parameters in our system. Finally we show
that relevance models significantly outperform simple lan-
guage models, as well as other heuristic techniques.

4.1 Experimental Setup

4.1.1 Dataset

All of the following experiments were performed on a 4-
month subset of the TDT2 [7] dataset. The corpus contains
40,000 news stories totaling around 10 million words. The
news stories were collected from six different sources: two
newswire sources (Associated Press and New York Times),
two radio sources (Voice of America and Public Radio In-
ternational), and two television sources (CNN and ABC).
The stories cover January through April of 1998. Radio and
television sources were manually transcribed [7] at closed-
caption quality. In a pre-processing stage, the stories were
stemmed and 400 stop-words from the InQuery [5, 2] stop-
list were removed.

4.1.2 Topics

TDT is concerned with detecting and organizing the top-
ics in news stories. Human annotators identified a total of
96 topics in the TDT2 dataset, ranging from 1998 Asian
financial crisis, to the Monica Lewinsky scandal, to an exe-
cution of Karla Faye Tucker. Each topic is centered around
a specific event, which occurs in a specific place and time,

with specific people involved. 56 out of these 96 topics are
sufficiently represented in the first four months of 1998 and
will form the basis for our evaluation.

4.1.3 Evaluation Paradigm

The system is evaluated in terms of its ability to detect
the pairs of stories that discuss the same topic. A total of
6363 story pairs were drawn from the dataset (according to
the official TDT2 sampling). 1469 of these were manually [7]
judged to be on-target (discussing the same topic), and 4894
were judged off-target (discussing different topics). During
evaluation the Link Detection System emits a YES or NO
decision for each story pair. If our system emits a YES
for an off-target pair, we get a False Alarm error; if the
system emits a NO for on-target pair, we get a Miss error.
Otherwise the system is correct. Link Detection is evaluated
in terms of the decision cost [9], which is a weighted sum of
probabilities of getting a Miss and False Alarm:

Cost = P (Miss)CMiss + P (FA)CFA

In current evaluations of Link Detection, CMiss is typ-
ically set to 10 × 0.02, and CFA = 1 × 0.98. Note that
by always answering YES a system would have no misses
and therefore a cost of 0.2 (similarly, always answering NO
guarantees a cost of 0.98). To penalize systems for doing no
better than a simple strategy like that, the cost is normal-
ized by dividing by the minimum of those two values (here,
0.2). A normalized cost value near or above 1.0 reflects of
a system of marginal value. An operational Link Detection
System requires a threshold selection strategy for making
YES / NO decisions. However, in a research setting it has
been a common practice to ignore on-line threshold selection
and perform evaluations at the threshold that gives the best
possible cost. All of our experiments report the minimum
normalized detection cost: Costmin.

4.2 Value of Clarityadjusted KL
In Section 3 we describe a clarity-adjusted KL divergence,

and provide an argument for why we believe this measure
may perform better than straight KL divergence. To eval-
uate the value of clarity adjustment we perform a simple
experiment without constructing relevance models. Given a
pair of stories A and B we construct maximum likelihood
language models of each story, smooth it with the back-
ground model, as described in equation (2), and measure
divergence. We consider four different divergence measures:

1. simple KL divergence: KL1(A, B) = D(A||B)

2. symmetric version: KL2(A, B) = D(A||B) + D(B||A)

3. clarity-adjusted: KLc,1(A, B) = D(A||B)−Clarity(A)

4. symmetric: KLc,2(A, B) = KLc,1(A, B)+KLc,1(B, A)

Figure 1 shows the minimum detection cost (Costmin) of
the four measures as a function of the smoothing parame-
ter λ from equation (2). We observe that clarity-adjusted
KL leads to significantly lower errors for all values of λ.
Clarity adjustment also leads to smaller dependency on λ,
which makes tuning easier. We also note that for both
simple and adjusted KL, we get significantly better per-
formance by using symmetric divergence. The best per-
formance Costmin = 0.1057 is achieved by using the sym-
metric version of clarity-adjusted KL when λ = 0.2. This
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Figure 1: Clarity adjustment leads to significantly
lower error rates. Symmetric versions of KL per-
form better than asymmetric versions. Symmetric
KL with clarity is best and most stable with respect
to the smoothing parameter λ.

performance will be used as a baseline in later comparisons
with relevance models. The baseline is competitive with the
state-of-the-art results reported in the official TDT evalua-
tions [14].

4.3 Relevance Model Performance
Now we compare our baseline to the performance we can

achieve with relevance models. Given a pair of stories A

and B, we construct a relevance model from each story as
described in Sections 2 and 3. For efficiency purposes, each
story was reduced to 30 words with highest frequencies, and
these words were used as a query Q to retrieve a set of related
stories RQ. The set RQ was limited to contain 30 highest-
ranked documents. The relevance model was constructed
from this set of documents according to equation (1). We use
symmetric clarity-adjusted KL as a measure of divergence
between the two resulting relevance models. The smoothing
parameter λ is set to 0.999. Empirical justifications for these
parameter settings are described in section 4.4.

Figure 2 shows the Detection Error Tradeoff (DET) [13]
curve for the performance of relevance models, compared
to the best language modeling baseline. A DET curve is a
plot of Miss and False Alarm probabilities as a function of
a sliding threshold. The point on each curve marks the
optimal threshold, and the corresponding minimum cost
Costmin. Note that the values are plotted on a Gaussian
scale and that the axes only go up to 20% Miss and False
Alarm; the full-range DET curves are presented in Figure
6. We observe that a relevance modeling system notice-
ably outperforms the baseline for almost all threshold set-
tings. The improvements are particularly dramatic around
the optimal threshold. The minimum cost is reduced by
33%. Outside of the displayed region, on the high-precision
end (FalseAlarm < 0.01%), the relevance modeling system
noticeably outperforms the baseline. On the very high-recall
end (Miss < 1.5%), the baseline performs somewhat better.

The results in Figure 2 were achieved by careful tuning
of parameters on the 4-month subset of the TDT-2 corpus
and do not represent a blind evaluation. However, the same
parameters were used in the official TDT 2001 blind eval-

1

2

5

10

20

.1 .2 .5 1 2 5 10 20

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

False Alarms probability (in %)

Detection Error Tradeoff

Best Language Model

Min.Cost = 0.1057

Best Relevance Model

Min.Cost = 0.0707

Figure 2: Relevance Models noticeably outperform
the baseline for all threshold settings in the region
of interest. Minimum Detection Cost is reduced by
33%

uation on the 3-month TDT-3 corpus. The results in that
case were comparable to those described above (see Figure 7
for details). The system based on Relevance Models signif-
icantly outperformed a state-of-the-art vector-space system
(cosine with Okapi tf.idf weighting). The normalized min-
imum cost was reduced from 0.27 to 0.24. This suggests
that our parameter settings generalized reasonably well to
the new dataset and the new set of topics.

4.4 Parameter Selection
In this section we provide empirical justification for the

values of parameters we used in the estimation of relevance
models. We explore three parameters: the number of words
we used to represent the document, the size of the retrieved
set RQ, and the smoothing parameter λ.

4.4.1 Query size

Efficiency issues prompted us to represent a document by
30 words with highest frequencies in that document. Ide-
ally, we would like to be able to use all the words in the
document, however running the whole document as a query
is computationally very expensive, while running a 30-word
query is quite feasible. To show that 30 words is a reason-
able value, we look at resulting precision in the set RQ for
different sizes of RQ. Figure 3 shows the precision as a func-
tion of the number of words in the query. Precision is the
proportion of documents in RQ that discuss the same topic
as the query document. We show precision for the sets RQ

of size 5, 10, 15, 20 and 30. We observe that in all cases pre-
cision does not improve significantly if we use more than 30
words. If we use fewer than 30 words, the precision degrades
noticeably. In the remaining experiments we use 30-word
queries. Note that stopwords have been removed from the
documents prior to selecting high-frequency words.

4.4.2 Size of retrieved set

In theory, estimating a relevance model involves comput-
ing equation (1) over all the documents D in the dataset,
since P (D|Q) is never zero due to the smoothing. In practice
this is very expensive and unnecessary. For the vast majority



Figure 3: Using more than 30 words to represent
the document does not lead to improved precision
in the set RQ. The result is consistent over various
sizes of RQ.

of documents, P (D|Q) is very close to zero, and including
it in the summation will have little effect. For this reason
we consider limiting RQ to the n documents with the high-
est P (D|Q). Figure 4 shows relevance models performance
as a function of n (the smoothing parameter λ was fixed at
0.9). We observe that using anywhere between 5 and 70 doc-
uments with highest P (D|Q) results in good performance.
Using fewer than 5 or more than 100 documents has adverse
effects. We settled on using 30 top-ranked documents.

4.4.3 Smoothing

Smoothing is a critical component of any system based
on statistical language modeling. Numerous studies [6, 10,
15] have shown that smoothing has a very strong impact
on performance of information retrieval systems. In Section
4.2 we observed that the smoothing from equation (2) has a
strong effect on performance of maximum likelihood models.
Interestingly, smoothing had a very unusual effect with rel-
evance models. We obtained best performance with λ very
close to 1, i.e. with almost no smoothing of the document
models. This result is somewhat unexpected, and deserves
a brief explanation.

According to Zhai and Lafferty [10], smoothing plays a
dual role in applications of statistical language models to
Information Retrieval. First, smoothing ensures non-zero
probabilities for every word under a document model, and
acts as a variance-reduction technique. Second, smoothing
has an idf-like effect on document scoring. Both of these
roles are captured by different mechanisms in our model.
When we estimate a Relevance Model for some story, we mix
together neighboring document models (equation 1). This
results in non-zero probabilities for many more words than
actually occur in the original story, so there is less value in
smoothing to avoid zeros. Also, as mentioned in the end
of section 3.2, clarity adjustment on KL divergence has an
effect similar to idf.

4.5 Crossmodal evaluation
An essential part of TDT is being able to deal with mul-

Figure 4: Using anywhere between 5 and 70 top-
ranked documents as RQ results in consistently good
performance.

tiple sources of news. The TDT2 corpus that was used in
our experiments includes news from six different sources.
Two of these (Associated Press and New York Times) are
printed sources, the other represent broadcast news, which
are transcribed from audio signal. Spoken text has very
different properties compared to written sources, and part
of the TDT challenge is development of the algorithms that
can cope with source-related differences in reporting. To de-
termine how well our algorithms perform on different source
conditions, we partitioned the set of 6363 pairs into three
subsets:

1. 2417 pairs where both stories come from a broadcast
source; this set will be labeled “BN” (broadcast news)

2. 1027 pairs where both stories come from a printed
source; this set will be labeled “NW” (newswire)

3. 2919 pairs where one story is from a broadcast source
and the other from the printed source; this set will be
labeled “NWxBN”

Figure 5 shows performance of the baseline and the rele-
vance modeling systems on the three subsets we described.
Performance is shown as a function of the smoothing param-
eter λ. First we observe that performance varies very signif-
icantly from one subset to another. Interestingly, both sys-
tems perform best on the “NWxBN” condition, even though
it intuitively appears to be more challenging as we are deal-
ing with two different language styles. Another very inter-
esting issue is the value of λ that gives the best performance.
Note that for the baseline system the optimal λ value is dif-
ferent for every condition: “BN” is optimized near λ = 0.5,
“NW” – near λ = 0.05, while “NWxBN” is optimal near
λ = 0.7. This means that for the baseline system we can-
not select a single value of λ which will work well for all
sources. In contrast to that, for the relevance modeling sys-
tem all conditions are optimized if we set λ to 0.99, or any
value close to 1. This is a very encouraging result, as it
shows that relevance models are not very sensitive to source
conditions.
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Figure 5: Performance on different source conditions. Left: baseline, optimal smoothing value is different for
every condition. Right: Relevance Models, all conditions are optimized as λ approaches 1.
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Figure 6: Performance of Relevance Models on the training data. Relevance Models with optimal param-
eters outperform both the optimal Language Modeling system (left), and the optimal vector-space system
using Cosine with Okapi term weighting (right). Minimum Detection Cost was reduced by 33% and 25%
respectively (not shown).

Figure 7: Performance of Relevance Models in the official TDT 2001 evaluation. All the parameters were
tuned on the training dataset, and no part of the evaluation dataset was used prior to evaluation. Relevance
Models (right) consistently outperform the vector-space model (left). Minimum Detection Cost is reduced
by 10%.



5. CONCLUSIONS
In this work we have shown how the relevance model tech-

nique can be extended to TDT’s link detection task. To
do so, the models themselves had to be calculated differ-
ently to avoid the problem of very small probabilities due to
large “queries”. Also, we found it preferable to compare two
models directly using a version of KL divergence that incor-
porates model clarity, or how close the model is to general
English.

We demonstrated a substantial performance improvement
using relevance models. The parameter selection problem
was also shown to be somewhat simpler because the cost
values are less sensitive to parameter changes with than
without relevance models.

This effect—easier parameter selection—carried over into
the problem of within- and cross-mode comparisons of sto-
ries. With relevance models, the different choices (both A,
both B, or A&B) have much more similar cost values, im-
proving the error tradeoffs.

6. FUTURE WORK
In the course of this work, we encountered a number of

interesting questions that we hope to answer in our future
research. For one, we were surprised by the gain we achieved
by using clarity adjustment over the straight KL divergence,
and would like to investigate theoretical implications of its
remarkably good performance. Second, we are not satisfied
with the heuristic nature of flattening of posterior proba-
bilities (section 3.1), and are investigating more formal ap-
proaches.

The present work can be extended in a number of im-
portant directions. One is dictated by the multi-lingual na-
ture of TDT: a Link Detection system should be capable
of dealing with stories in multiple languages. We are ac-
tively investigating techniques for estimating multi-lingual
relevance models, i.e. language models that contain a mix-
ture of English and non-English words. We are also inter-
ested in extending the framework of relevance models to the
case where the stories discuss multiple topics. In this case,
multiple relevance models would be formed for each story in
question.
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