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ABSTRACT

The content-based retrieval of Western music has received increas-
ing attention recently. Much of this research deals with mono-
phonic music. Polyphonic music is more common, but also more
difficult to represent. Music information retrieval systems must ex-
tract viable features before they can define similarity measures. We
summarize and categorize representation features that have been
used for polyphonic retrieval with the aim of laying standardized
groundwork for future feature extraction research. Comparisons
with and extensions to monophonic approaches are given, and a
new feature, an extension of duration-independent pitch slices, is
proposed.
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1. INTRODUCTION

Many research projects in music information retrieval are concerned
with building retrieval systems, defining similarity measures, and
otherwise finding occurrences and variations of a musical fragment
within a collection of music documents. These systems necessarily
start with descriptions of the features used for matching, but of-
ten make the matching algorithms rather than features the primary
object of their research.

In this paper we turn our attention to the many features that have
been used for content-based, ad hoc music information retrieval.
The features one extracts naturally influence which types of sys-
tems can or cannot be built, but this issue belongs to a later stage
of research. At the moment, music IR is in its infancy. There exists
few standard techniques for feature extraction, and existing tech-
niques have not been categorized. This paper attempts to fill that
gap in the research.

This paper distinguishes itself from the related field of audio music
retrieval in that the lowest-level representation with which we are
concerned is the event: the pitch, onset, and duration of every note
in a music source is known. In monophonic music, no new note
begins until the current note has finished sounding. Sources are
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restricted to one-dimensional note sequences. Homophonic music
adds another dimension; notes with different pitches may be played
simultaneously, but they must still start and finish at the same time.
Polyphonic music adds yet another complication. A note may begin
before a previous note finishes.

“Feature extraction can be thought of as representation conversion,
taking low-level representation and identifying higher level fea-
tures” [6]. Features at one level may build upon features at a lower
level. The techniques employed range from string-matching al-
gorithms familiar to a computer scientist to “deep structure” ap-
proaches more familiar to a music theorist. The goal, however, is
not an understanding of music. It is not to develop a better theory
of music, or even to analyze music. The goal is retrieval. Compu-
tational and music-theoretic analyses of music might aid that goal,
but we consider them important only insofar as they aid feature ex-
traction, and thus the retrieval effort.

Section 2 contains other surveys relevant to music representation.
Sections 3 and 4 present features used for monophonic and poly-
phonic music, respectively. Section 5 discusses other music-theoretic
techniques which might be useful for future feature extraction method-
ology. Section 6 presents an extension of the polyphonic duration-
independent pitch slice feature.

2. RELATED WORK

A few summaries of interest to polyphonic feature extraction are
available. 12] lists various representational issues associated with
music. 7] provide a comprehensive summary of the problems of
polyphonic music information retrieval. Many of the issues raised
in their paper are directly related to the challenges encountered in
polyphonic feature extraction, and thus provide good background
and context for this paper. 17] discusses audio music information
retrieval, rather than the symbol-based approach which is the focus
of this paper.

3. MONOPHONIC FEATURE SELECTION

Most of the current work in music IR has been done with mono-
phonic sources, often called “melodies”. In monophonic music, no
new note begins until the current note has finished sounding. While
the focus of this paper is polyphonic (section 4) rather than mono-
phonic feature extraction, the latter is a proper subset of the former.
Not only do certain polyphonic feature extraction techniques re-
quire the exact same techniques prescribed for monophonic music
(section 4.1), but other monophonic techniques may be modified
and extended into the polyphonic realm. Therefore, it is necessary



to review those features which have been used for monophonic mu-
sic.

3.1 Relative vs. Absolute Measures

The most basic approach to monophonic feature extraction reduces
notes to a single dimension. Pitch is extracted and duration is ig-
nored, or vice versa. Both pitch and duration information may be
used in the final retrieval system, but as features they are treated
separately. Arguments may be made for the importance of absolute
pitch or duration. However, most music IR researchers favor rel-
ative measures because a change in tempo or transposition across
keys does not significantly alter the music information expressed
[15, 30, 18, 26, 4, 22, 37, 24].

Relative pitch has three standard expressions: exact interval, rough
contour, and simple contour. Exact interval is the signed magnitude
between two contiguous pitches. Simple contour keeps the sign and
discards the magnitude. Rough contour keeps the sign and groups
the magnitude into a number of equivalence classes. For example,
the intervals 1-3, 4-7, and 8-12 become the classes ““a little”, “a fair
amount”, and “a lot”. Relative duration has three similar standards:
exact ratio, rough contour, and simple contour. The primary dif-
ference between pitch and duration is that duration invariance is
obtained through proportion, rather than interval. Contours assume
values of “faster” or “slower” rather than “higher” or “lower”. In
all above-mentioned relative features, intervals of “0” and ratios of
“1” indicate no change from previous to current note.

In information retrieval terms, exact intervals and ratios yield high
precision, while contour aids recall. Rough contours or equivalence
classes attempt to balance the two, gaining some flexibility without
sacrificing too much precision.

There are exceptions to pitch and duration as independent features
[24, 10]. Relative measures of pitch and duration are combined
into single objects. Some flexibility is retained through the rela-
tive measures, but some flexibility is lost through the combination
of features. It becomes more difficult to search on pitch or dura-
tion only, to find matches with similar pitch sequences but different
duration sequences.

3.2 Unigrams vs. N-grams

Collectively, the techniques in section 3.1 are known as unigrams.
For certain types of retrieval systems, such as those that use string
matching to compare melodic similarity, or those that build ordered
sequences of intervals (phrases) at retrieval time [32], such fea-
tures are rich enough. However, other retrieval approaches require
”larger” basic features. Longer sequences, or n-grams, are con-
structed from an initial sequence of interval or ratio unigrams.

One of the simpler approaches to n-gram extraction is the use of
sliding windows [16, 6]. The sequence of notes within a length n
window are converted to a sequence of relative unigrams. Numer-
ous authors suggest a tradeoff between unigram type and n-gram
size. Where more precise (exact magnitude) unigrams are used, n-
grams remain shorter, perhaps not to sacrifice recall. Where more
flexible (contour) unigrams are used, n-grams remain longer, per-
haps not to sacrifice precision.

A more sophisticated approach to n-gram extraction is the detection
of repeating patterns [19, 40, 27, 1]. Implicit in these approaches
is the assumption that frequency or repetition plays a large role in
music similarity. Another alternative segments a melody into mu-

sically relevant passages, or “musical surfaces” [29]. Weights are
assigned to every potential boundary location, expressed in terms
of relationships among pitch intervals, duration ratios, and explic-
itly delimited rests (where given). The weights are then evaluated,
and automatic decisions are made about where to place boundary
markers using local maxima. The sequence of notes between mark-
ers becomes the n-gram window.

Finally, some approaches use string matching techniques to detect
and extract n-grams [2, 21] We wish to distinguish between string
matching retrieval and extraction algorithms. Although the meth-
ods are similar, the difference lies in the object to which each is
applied. String matching retrieval algorithms treat queries and col-
lections as unigram feature strings, and search for instances of the
former within the latter. String matching n-gram extraction tech-
niques use notions such as insertions, deletions, and subsitutions
to automatically pull n-grams from a source; no query string is re-
quired. These n-grams, unlike those from other techniques, are
composed of unigrams which are not always contiguous within the
original source.

3.3 Shallow Structure

Shallow structural features are what we call feature extraction tech-
niques which range from simple statistical measures to lightweight
computational or music-theoretic analyses. An example of such
a feature for text information retrieval is a part-of-speech tagger
[43], which identified words as nouns, verbs, adjectives, and so on.
While music does not have parts of speech, there are roughly anal-
ogous shallow structural concepts such as key. A technique which
examines a set or sequence of note pitches and does a probabilistic
best fit into a known key is a shallow structural feature extractor
[38, 23]. A sequence of pitches is thus restructured as a sequence
of keys or tone centers.

Similar shallow structural techniques may be defined for duration
as well as pitch. 39] describes techniques for defining the tem-
poral pattern complexity of a sequence of durations. These meth-
ods may be applied to an entire source, or to subsequences within
a source. A sequence of durations could be restructured as a se-
quence of rhythm complexity values.

Statistical features may also be used to aid the monophonic music
retrieval process. We draw the distinction between a pitch interval
as a feature, and the statistical measure of pitch intervals. Extrac-
tion of the latter depends on the identification of the former, while
retrieval systems which use the former do not necessarily use the
latter. 35] creates an “interval repertoire”, which includes the rel-
ative frequencies of various pitch unigrams, length of the source,
and “tendency” of the melody (i.e.: 3% descending or 6% ascend-
ing). Mentioned, but not described, is a “duration repertoire” simi-
lar to the interval repertoire, giving counts and relative frequencies
of duration ratios and contours. There are other researchers which
do statistical analyses of their sequential features as well [16]. It is
clearly possible to subject most if not all of the features described
in section 3.2 to statistical analysis.

4. POLYPHONIC FEATURE SELECTION

In section 3 we introduced monophonic music, and characterized
it as a sequence of notes. Homophonic music adds another dimen-
sion; notes with a different pitch may be played simultaneously,
they must start and finish at the same time. Polyphonic music adds
yet another dimension. A note may begin before a previous note
finishes.



Polyphony poses serious challenges to many monophonic features.
It is difficult to speak of the “next” note in a sequence when there is
no clear one-dimensional sequence. Explicit features such as pitch
interval and duration contour are no longer viable, but the implicit
assumption which led to those features are. This simplifying as-
sumption is independence between dimensions.

For monophonic music, most researchers assume independence be-
tween the pitch and duration of a note. These features are not
truly independent, but the simplification makes retrieval much eas-
ier. For polyphonic music, researchers have assumed independence
between overlapping notes. The remainder of this paper is an ex-
ploration and categorization of the various methods in which over-
lapping notes are segmented and features are extracted.

4.1 Monophonic Reduction

One of the oldest approaches to polyphonic feature selection is
what I call monophonic reduction. A polyphonic source is reduced
to a monophonic source by selecting at most one note at every
time step. This monophonic sequence of notes can then be further
deconstructed using the monophonic feature selection techniques
from section 3.

The monophonic sequence that most researchers attempt to extract
is the melody, or theme. Whether this monophonic sequence is use-
ful for retrieval is tied to how well a technique extracts the “correct”
melody, in addition to how well any monophonic sequence actually
represents a polyphonic source.

4.1.1 Short Sequences
3] does monophonic reduction, constructing short monophonic se-
quences of note pitches from polyphonic sources. However, the
selection is done manually. Clearly, this becomes impractical as
music collections grow large.

Automated methods become necessary. There exist retrieval al-
gorithms which can search polyphonic sources for exact or evolu-
tionary known apriori monophonic strings [13, 25, 20]. There ex-
ist feature extraction algorithms which automatically select salient
monophonic patterns, not known apriori, from monophonic sources
using clues such as repetition and evolution (section 3.2). Yet we
know of no work which combines the two, automatically select-
ing short, salient strings from polyphonic sources. This would be
a useful feature selection technique, and appears to be a solvable
research problem.

4.1.2  Long Sequences

One might not trust the intuition that repetition and evolution yield
salient, short monophonic sequences. An alternative is to pull out
an entire monophonic note sequence equal to the length of the poly-
phonic source. A naive approach is described in which the note
with the highest pitch at any given time step is extracted [41, 42,
33]. An equally naive approach suggests using the note with the
lowest pitch [4]. Other 41 approaches use voice information (when
available), average pitch, and entropy measures to wind their way
through a source. Interestingly, the highest pitch approach yields
fairly decent results.

Other techniques do not presume to extract a melodic line, but split
a polyphonic source into a number of monophonic sequences [28,
9]. Each monophonic sequence can be searched independently, and
the results combined to give a score for the piece as a whole. How

well this works depends not only on the technique, but on the music
being split; some music might lend itself to easier decomposition.

4.2 Homophonic Reduction

A second popular technique for segmenting the overlapping notes
common to polyphonic music is what I call homophonic reduction.
Instead of selecting at most one note at a given time step, as was
done in section 4.1, one selects every note at a given time step.
Thus, a polyphonic source is reduced to a homophonic source by
assuming independence between notes with overlapping duration.

Many names have been given to the homophonic objects created
under this assumption: syncs, chords, windows, sets, slices, or
chunks. I prefer the term homophonic slice. There are also slight
variations amongst various methologies. Some homophonic reduc-
tions only consider notes with simultaneous attack time, i.e.: if note
X is still playing at the time that note Y begins, only Y belongs to
the homophonic slice [14]. Other approaches use all notes currently
sounding, i.e.: if note X is still playing at the time that note Y be-
gins, both X and Y belong to the slice [25]. Yet other approaches
use larger, time or rhythm based windows in which all the notes
within that rhythmic window belong to the slice [33, 11]. In all
cases, the resulting homophonic source can be characterized as a
sequence of pitch sets.

25] propose a number of modifications to homophonic slices. In
one variation, duration information is discarded completely and the
slice becomes a set of MIDI pitch values (0 to 127). Another vari-
ation uses octave equivalence to reduce the size of the pitch set to
12. A third variation creates transposition invariance by transform-
ing the sequence of homophonic slices (S = S1.52...5y) into a
sequence of pitch interval sets (D = D1 D3 ... Dyp_1):

1 fori:=2tondo
for eacha € S;_1andb € S; do
3 D;_1:=D;_1|J{b —a}

[\

Before the reduction of polyphonic to homophonic music, it was
not possible to extract pitch intervals, because overlapping dura-
tions make it unclear which note is the “next” note in a sequence.
Homophonic slices assume independence between duration over-
laps and thereby recreate sequentiality and the ability to construct
intervals.

4.3 Monorhythmic and Homorhythmic Reduc
tion

There is a symmetry inherent in a monophonic sequence of notes.
A note splits cleanly into its pitch and duration (time) component.
It is as easy to extract a sequence of pitch intervals as it is a se-
quence of duration ratios. Polyphonic music is different. Almost
by nature, the pitch of an individual note and the duration of that
note do not carry equal weight. For example, when trying to extract
the monophonic “melody” from a polyphonic source (section 4.1),
it is reasonable to use the note with the highest pitch at a given time
step. Using the note with the longest duration at a given time step
makes much less sense. Similarly, when reducing a polyphonic
source to a homophonic source, it is most often the pitch which
comprises the homophonic slices. The set of durations co-existing
at one time step does not seem as useful.

The problem might lie in the fact that monophonic and homophonic
reductions are by definition pitch-centric, because notes or sets of



notes are extracted at various time steps. If duration is to be given
fair treatment, notes or note sets should be extracted at various
pitch steps. For example, one could examine a single pitch, such
as Middle C (MIDI note 60) and reduce that pitch value to a set
of onset and ending times. Thus, the set would reflect the attack
time and duration of every occurrence of the middle C pitch in a
polyphonic source.

Monophonic reduction is so named because it extracts one (vari-
able) pitch at each (fixed) time step. This new duration-centric mea-
sure could be named monorhythmic reduction, for it extracts each
(variable) time step at one (fixed) pitch. Doing the same rhythmic
extraction for all 128 MIDI pitches (treating each pitch as an inde-
pendent channel) would then be called homorhythmic reduction.

Though such a view of duration counters our intuition of musi-
cally salient features, it still might be useful for retrieval. At the
very least, it gives different transformations of a polyphonic source,
which might reveal otherwise unnoticed patterns than those shown
by more traditional, pitch-based feature extraction techniques. No
retrieval systems known to the authors have specifically addressed
polyphonic duration features.

4.4 Shallow Structure

As with monophonic music, a shallow structural feature is the name
we give feature extraction techniques which range from simple sta-
tistical measures to lightweight computational or music-theoretic
analyses.

33] begins with octave equivalent homophonic slices and further
tempers them by their harmonicity. The pitches are fit to a nor-
malized array of harmonic classes. These harmonic classes are
comprised of triads (major, minor, augmented, and diminished) and
seventh chords (major, minor, dominant, and diminished minor) for
every scale tone. A sequence of pitch sets thus becomes a sequence
of harmonic chord sets. The pitches in a slice often fit more than
one triad or seventh chord, so neighboring slices are use to disam-
biguate potential harmonic candidates.

Tempering a homophonic slice by its inherent harmonicity should
sound familiar. In section 3.3, windows slid across monophonic
sources to establish key signatures or tonal contexts. Homophonic
slices are windows as well, albeit not necessarily as wide. Since
a greater variety of pitches often coexist in a narrower time frame,
polyphonic music might be an even better domain in which to apply
this shallow structural technique; more context is provided by more
notes.

5] proposes a number of other statistical and shallow structural fea-
tures appropriate for polyphonic or reduced-homophonic music:
the number of notes per second, the number of chords per second,
the pitch of notes (lowest, highest, mean average), the number of
pitch classes used, pitch class entropy, the duration of notes (low-
est, highest, mean average), number of semitones between notes
(lowest, highest, mean average), and how repetitive a source is.
There are certainly many more shallow structural features possible
for polyphonic music. Existing work is just beginning to enumerate
the possibilities.

S. DEEP STRUCTURE

A deep structural feature is the name we give more complicated
music-theoretic, artificial intelligent, or other form of symbolic cog-
nitive techniques for feature extraction. Such research constructs

its features with the goal of conceptual “understanding” or expla-
nation of music phenomena. For information retrieval, we are not
interested in explanation so much as we are in comparison or sim-
ilarity measures. Any technique which produces features that aid
the retrieval process is useful. Unfortunately, most deep structural
techniques are not fully automated, especially for polyphonic mu-
sic. These deeper theories therefore must inspire rather than solve
our feature extraction problems. Some examples include Schenke-
rian analysis [36], Al techniques [8], Chomskian grammars [34],
and other structural representations [31], to name very few.

6. EXTENSIONS

Given the large number of features discussed for both monophonic
and polyphonic music, we now propose an extension to one of these
features. Attributes which appeal to us are the homophonic slice
and the interval. The former creates durational independence and
the latter, transposition invariance. A homophonic interval is the
feature which encapsulates both notions, and was proposed by 25 in
section 4.2. Our extension to this feature makes use of his notation
and pseudocode.

The inspiration for this extension comes from observations made
by 26] and 4]. Intervals formed from contiguous notes do not al-
ways reveal the true “contour” of a piece. Ornamentation, passing
tones, and other extended variations tend to obscure rather than re-
veal musically salient passages. Rather than abandon intervals and
return to absolute pitch atomic units, we create “secondary” inter-
vals, a secondary contour [4]. In other words, we extract intervals
between non-contiguous notes.

Our goal is to extend this notion of non-contiguous intervals to ho-
mophonic intervals. Recall from section 4.2 that homophonic inter-
vals are constructed by taking the difference between all possible
note combinations in two contiguous homophonic slices. We once
again transform the sequence of slices (S = S1S52 ... Sy) into a se-
quence of pitch slice intervals (D = D1Ds ... D,_1). However,
each interval set D; will no longer exclusively contain contiguous
intervals. Non-contiguous intervals will be allowed between the
notes at the current slice and the notes up to & slices ahead in the
sequence:

fori:=1ton—1do
forj:=(i+1)to(i+1+k)do
for eacha € S; andb € S; do
Di = Dl U{b—a}

AWM~

Variation A It is possible to allow duplicates within interval slices;
the frequency of occurrence of each interval is given in the set.
This variation could be useful for separating “strong” from “weak”
intervals. For example, if one slice holds a C-Major triad, and a
neighboring slice rises to a G-Major triad, the set of intervals will
be {+14, +11, +10, +7, +7, +7, +4, +3, +0}. The +7 interval has
the highest frequency, and therefore might be the strongest, most
salient, and useful for retrieval purposes.

Variation B This variation works best as an extension of variation
B. It deals with the relative importance of the intervals found at in-
creasingly distant time slices. Though non-contiguous intervals are
useful for dealing with ornamentation and other variations, they po-
tentially add noise. The current algorithm adds all non-contiguous
intervals to the current slice, regardless of the distance, k. So a nat-
ural variation is to downweight the occurrence of an interval based



on its distance from the current slice, using a simple distance for-
mula or a one-tailed probability distribution.

The downweighting does not have to be monotonically decreasing;
it could be periodic. If the rhythm or beat of the source is known,
then the weighting function could experience a small resurgence
every time a distant slice is located on the same rhythmically sig-
nificant beat at the current slice. Slices which are not located “on-
beat” are downweighted more. Furthermore, the entire periodicity
could decay as a function of distance from the current slice; on-
beat intervals closer to the current slice are weighted higher than
on-beat intervals further away.

Variation C The converse of non-contiguity is concurrency. Just
as it is possible to extract intervals from the current slice to another
slice k time steps in the future, we may extract intervals from within
the current slice. This could be useful for establishing harmonic
context. For example, if intervals of +3, +4 and +7 are found, one
could conclude that a major triad exists within the current slice.
The changes to the algorithm are slight, and mostly insure that an
interval between a note and itself is not taken:

1 fori:=1ton—1do

2 for j :=ito(i+k)do

3 for eacha € S; andb € S; do

4 if (¢ = j) and (b # a) do

5 D; .= D; | J{b — a}
7. SUMMARY

Few of the feature extraction approaches in this paper should be
new for those familiar with work in music IR. Indeed, this paper
attempts to summarize and categorize the various techniques that
have been used for monophonic and polyphonic music retrieval.
The categories proposed are rough and do not claim to be the final
standard for future thought on music features. However, they pro-
vide a useful foundation for discussion of current work. With this
foundation, we hope that readers will see additional holes or gaps,
areas where new features may be proposed or current techniques
may be extended. Section 6 was an example of one such extension.

A number of authors have suggested doing music retrieval in two
phases. The goal of the first phase is to retrieve a large set of gen-
eral matches, low in precision but high in recall. In the second
phase, this set is tamed and false matches eliminated. The retrieval
task is split because features used to obtain high recall are neces-
sarily the same features appropriate for high precision. High pre-
cision retrieval tasks also have the potential to be computationally
expensive, which furthers the need for intermediate phases which
tame the entire collection. It is therefore of great use for the music
information retrieval community to remain familiar with as many
different feature extraction techniques as possible.
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