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Abstract

We explore a formal approach to dealing with the zero

frequency problem that arises in applications of proba-

bilistic models to language. In this report we introduce

the zero frequency problem in the context of probabilistic

language models, describe several popular solutions, and

introduce localized smoothing, a potentially better alter-

native. We formulate localized smoothing as a two-step

maximization process, outline the estimation details for

both steps and present the experiments which show the

technique to have potential for improving performance.

1 Overview

Language modeling is quickly gaining recognition as the

primary approach to various problems dealing with text.

Because language models are estimated from sparse data,

many elementary events will have zero probability under

the model. In what follows we will briefly introduce

the zero-frequency problem in the context of language

modeling and outline several popular solutions. We will

then propose a possible improvement, based on heuristic

techniques that have proven successful in Information

Retrieval.

The rest of this report is structured as follows. Sec-

tion 1.1 describes the task of language modeling and the

common unigram formulation for language models. Sec-

tion 2 reviews the zero frequency problem, which arises

when maximal likelihood estimates are used in language

models. Section 3 introduces our approach to the zero-

frequency problem: localized smoothing. Our approach

involves a two-step likelihood maximization process, also

detailed in Section 3. We evaluate the approach in Sec-

tion 4, and conclude with important directions for future

research in Section 5.

1.1 Language modeling

Language modeling is concerned with estimating how

likely it is that a given model
�

could have generated

a sample of text ✁ . In other words, language modeling

is an approach to estimating ✂☎✄✆✁✞✝ �✠✟
. There are a num-

ber of approaches to estimating this quantity. Ponte and

Croft (Ponte, 1998) assume ✁ to be a binary vector in the

vocabulary space with probability of occurrence of every

word estimated from
�

. We take a slightly different ap-

proach, assuming ✁ to be a sequence of random variables

✁✞✡ ☛✌☞✎✍✏☛✒✑✔✓✖✕✗✕✘✕✚✙✜✛✣✢✥✤✧✦✩★✪✄✆✁ ✟ , each ✁✫✡ ☛✌☞ takes on the words ✬
in the vocabulary as possible values. We assume that ✁✞✡ ☛✌☞
are independent of each other (a unigram assumption), so

the probability of ✁ under
�

can be rewritten as:

✂☎✄✜✁✞✝ �✠✟ ✑
✭✯✮✩✰✲✱✴✳✜✵✖✶✗✷✹✸✺
✻✘✼✪✽ ✂☎✄✜✁✫✡ ☛✌☞✹✑✾✬✞✝ �✠✟

The unigram assumption is also known as term inde-

pendence assumption, and is a common practice in the

field of Information Retrieval. It is a known fact that

words in the language do not occur independently, for

example ✂☎✄✜✁✫✡ ☛✿☞❀✑❁✦✩★❂✛✏✝ ✁✫✡ ☛❄❃❅✓❆☞❇✑❉❈❋❊ ✟ is much greater

than ✂☎✄✆✁✞✡ ☛✌☞❀✑❉✦✩★●✛✏✝ ✁✫✡ ☛❄❃❅✓❆☞❀✑❉✦✩★●✛ ✟ , since “of the” is a

very common bigram in English, while “the the” is most

likely a typo. However, assuming word independence

is often necessary to gather sufficient statistics about

word occurrence. Furthermore, there is some evidence

that preserving word dependencies may not improve the

accuracy of probabilistic models of text (e.g. pairwise

dependence model by van Rijsbergen (1977)).

Another assumption we make in our model is that ✁✫✡ ☛✌☞
have identical distributions, that is ❍ ✻✆■ ❏❑■ ▲ ✂☎✄✜✁✫✡ ☛✿☞❄✑✠✬ ✟ ✑
✂☎✄✜✁✫✡ ▼❋☞◆✑❖✬ ✟ . This means we do not model the loca-

tion of the words in text, we only focus on content. After

making this assumption, we can rearrange the terms in the

product and group together the tokens ✁✞✡ ☛✌☞ which take on
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the same value ✬ . The resulting formulation is given be-

low:

✂☎✄✜✁✞✝ �✠✟ ✑ ✺
▲ ✂☎✄✆✬✞✝ �✠✟ �✂✁ ✮☎✄ ✶ ▲ ■ ✷●✸

2 The zero frequency problem

In this section we look at the estimation of ✂☎✄✜✬✞✝ �✠✟
and

at the zero frequency problem that may arise in the esti-

mation. In the above formulae ✂☎✄✆✬✞✝ �✠✟
means the prob-

ability of observing the word ✬ at some position in ✁ , in-

dependently of position and all other words occurring in

✁ . The most natural way of estimating this quantity is to

use the maximum likelihood of observing ✬ as a sample

from
�

:

✂✝✆ ✭ ✄✆✬✞✝ �✠✟ ✑ ❊✟✞ ✛✡✠✏✄✜✬☞☛ �✠✟
✙✜✛✣✢✥✤✧✦✩★✪✄ �✠✟

While this estimate is unbiased, it has a fundamental

problem. If
�

does not contain any instances of the word

✬ , we have ✂☎✄✆✬✞✝ �✠✟ ✑✍✌ , which implies ✂☎✄✆✁✞✝ �✠✟ ✑✎✌
for any text sample ✁ that contains ✬ . This becomes a

very serious problem when
�

itself is estimated from a

relatively small samples of text (for example from a user’s

query, as we do in our experimental section). Just be-

cause some word ✬ does not occur in the sample from

which we estimate
�

, we cannot assume that ✬ has zero

probability under
�

. This problem is called the zero fre-

quency problem and it is not unique to language model-

ing. The zero frequency problem arises in numerous ap-

plications of probabilistic modeling and bayesian classifi-

cation, whenever there is insufficient data to form a good

model. The problem has been extensively studied in the

field of data compression, see (Witten & Bell, 1991) for a

prominent example.

2.1 Traditional approaches to the zero fre-

quency problem

There are a number of solutions to the zero-frequency

problem, popular in different fields where the problem

arises. In the following sections we outline three simple

approaches, suggest reasons why they may be deficient

and why we may want to seek a better alternative.

2.1.1 Parametric smoothing

One approach to avoiding zero values for ✂☎✄✆✬◆✝ �✠✟
is to

assume a parametric distribution over the words in the vo-

cabulary, and then fit the parameters of this distribution

with the frequency counts from
�

. There are a num-

ber of applicable distributions. Please note that a popular

Poisson distribution is not applicable for the task, since

if we estimate the mean ✏ from the model itself, we are

still faced with a problem, since the Poisson formulation✏✟✑✲✛✓✒✕✔✗✖✙✘✕✚ is still zero whenever ✏ ✑✛✌ . One distribution

that is applicable, and used widely is the Gibbs formula:

✂✝✜ ✻✣✢✤✢✦✥ ✄✆✬✞✝ �✠✟ ✑ ✛★✧✙✩✫✪ ✶ ▲✭✬ ✮ ✸✰✯✲✱✳✵✴ ✛ ✧✶✩✷✪ ✶
✴ ✬ ✮ ✸✸✯✹✱

This technique is widely known as softmax smoothing

in Reinforcement Learning and related fields. The

formulation avoids zero counts entirely: Gibbs formula

allocates a total mass of ✓★✖ ✳ ✴ ✛★✧✙✩✷✪ ✶
✴ ✬ ✮ ✸✸✯✹✱

to any word

that is not present in
�

, so it can be viewed as a uniform

smoothing technique. The smoothing parameter ✺ , also

referred to as temperature, can be used to tune the degree

of smoothing.

The method is popular in several fields, but it has two

fundamental problems for language modeling. First, it as-

sumes a parametric form of the word distributions. This

is a problem, since there have been a few studies indicat-

ing that words do not follow simple distributions from the

exponential family. Second, Gibbs formulation allocates

equal weight to any word that is not found in
�

. In the

next sections we describe two approaches that circumvent

these deficiencies.

2.1.2 Uniform smoothing

A simple approach that avoids assumption about the para-

metric form of word distributions is to simply add a small

number ✻ to all probabilities, thus avoiding zero frequen-

cies:

✂✝✼ ✰ ✻ �✾✽✹✁ ✆✞✄✜✬✞✝ �✠✟ ✑✵✏ ✮ ✂✫✆ ✭ ✄✜✬✞✝ �✠✟✫✿ ✄ ✓❀❃❀✏ ✮ ✟ ✻
This is equivalent to assuming a simple mixture model

for word generation: with probability ✏ ✮ the word is

generated by the model
�

, and with probability ✓❀❃❀✏ ✮ ,

the word is generated by a uniform model over the entire

vocabulary. If we know the size of our vocabulary ✝ ❁ ✝ , we

can set ✻ ✑ ✓✡✖ ✝ ❁ ✝ . However, if the size of the vocabulary

is not known, or if we expect new words to enter the

vocabulary occasionally, it is a common practice to set✻ ✑ ✓✡✖✲✙✿✛✣✢✥✤✧✦✩★✪✄ �✠✟
, reflecting the fact that we are less

and less likely to see new words as our model
�

gets

larger and larger (this is related to Zipf’s law of word

occurrences).

This method is very simple, and has the advantage

of not assuming parametric distributions for word occur-

rences. However, it suffers from assigning equal proba-

bilities to all words that do not occur in
�

. This means

that if neither of the words “the” and “Zipf” are in
�

, the
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uniform smoothing method will assign equal likelihoods

to their occurrence in ✁ . This is a problem, since we know

that “the” is a very common word, and so is likely to oc-

cur in any piece of text, while “Zipf” is certainly not. The

following method resolves this deficiency.

2.1.3 Smoothing with a prior (global smoothing)

We can avoid the problem highlighted in the previous sec-

tion by selecting a better mixture model in place of the

uniform model. A natural choice is to substitute the prior

probability ✂☎✄✜✬ ✟ instead of ✻ for every word:

✂☎✄✜✬✞✝ �✠✟ ✑✵✏ ✮ ✂ ✆ ✭ ✄✜✬✞✝ �✠✟✫✿ ✄ ✓❀❃❀✏ ✮ ✟ ✂☎✄✜✬ ✟

This will have the desired effect of closer matching

the specifics of language, giving higher likelihood to

observing “the” than to observing “Zipf”. The prior

probability ✂☎✄✜✬ ✟ is estimated from the universe of all

English texts, in practice this means as large a collection

of texts as we can get a hold of. It is worth mentioning

that a common practice is to smooth the prior probability

✂☎✄✆✬ ✟ with a uniform model, to avoid the possibility of

some words missing from our large collection (however

the weight allocated to the uniform model is much

smaller than the weight allocated to ✂☎✄✜✬ ✟ ).
This formulation has been rather successful in appli-

cations of language modeling, but there is still room for

improvement. We may observe that a global model may

not be the best fit for the mixture. This is due to the fact

that a global model gives the true prior probability ✂☎✄✆✬ ✟
for occurrence of ✬ in a random piece of text. If we are

considering documents in a narrow domain, this distribu-

tion may be a poor fit. For instance, the word “Zipf” is

a fairly common word in the Information Retrieval litera-

ture, whereas in a random piece of text the prior probabil-

ity of observing “Zipf” is virtually nonexistent. This dis-

crepancy leads us to examine approaches that model the

context of our model
�

, which we do in the next section.

3 Localized Smoothing

In this section we introduce the main contribution of this

work: an approach to localized smoothing: mixing the

model
�

with its context. We will refer to the context as

the zone of
�

. We assume a similar mixture model: with

probability ✏ ✮ the word ✬ is generated by the original

maximum likelihood model of
�

, with probability ✏ � ✽ ✰❋✮
it is generated by the contextual model of

�
, and with

probability ✏ ✱✴✭ ✽ ✢✂✁ ✭ the word is generated by the global

model of word occurrences:

✂☎✄✆✬✞✝ �✠✟ ✑

✑✵✏ ✮ ✂✝✆ ✭ ✄✆✬✞✝ �✠✟✷✿ ✏ � ✽ ✰❋✮ ✂☎✄✜✬✞✝ � � ✽ ✰❋✮ ✟✫✿ ✏ ✱✴✭ ✽ ✢✂✁ ✭ ✂☎✄✆✬ ✟
The motivation is as follows. When estimating the

likelihood of ✁ , we assume that salient words will

come from
�

, related concepts and synonyms will be

generated by contextual model, and the functional words

will be generated by the prior (global) model. Now we

turn our attention to estimating the zone model of
�

.

First, we have to identify the zone of a model
�

. The

zone is the projection of
�

onto the space of text sam-

ples, some of which are expected to contain the context

of
�

. In probabilistic terms, we define the zone of
�

to

be the subset of text samples that maximizes the posterior

likelihood of
�

being their source:

✄ ❈ ✢ ✛✧✄ �✠✟ ✑✆☎✞✝✠✟ ✡☛☎✌☞✑ ■ ✍ ✷✏✎✒✑✓✑✓✑ ✷✌✔✖✕ ✂☎✄ � ✝ ✗✲✁ ✽ ✕✗✕✘✕ ✁ ✑✏✘ ✟

Note that the size ✘ of this subset ✗ ✁ ✽ ✕✗✕✘✕ ✁ ✑✞✘ is not spec-

ified, and is a variable in maximization. Once we have

determined the zone of
�

, we can estimate the model of

that zone. We define the zone model to be the model that

maximizes the probability of observing the set of samples✗✲✁ ✽ ✕✗✕✘✕ ✁ ✑✏✘ :

� � ✽ ✰❋✮ ✑✆☎✞✝✠✟✙✡☛☎✌☞✮✛✚ ✂☎✄✜✗ ✁ ✽ ✕✘✕✗✕ ✁ ✑✏✘ ✝ �✣✢✘✟
Note that the two maximization steps are distinct: in

the first step we are searching over all subsets of text sam-

ples, while in the second we are searching in the space of

models. We now turn to the details of estimation in each

step.

3.1 Maximum likelihood context zone of ✤
We defined the zone to be a subset ✗✲✁ ✽ ✕✘✕✗✕ ✁ ✑✞✘ of our space

of text samples, which maximizes the posterior probabil-

ity of the model
�

being its source. We can use Bayes

theorem to express this posterior as the ratio of probabil-

ity of ✗✲✁ ✽ ✕✘✕✗✕ ✁ ✑✞✘ under the model
�

over the prior prob-

ability for ✗ ✁ ✽ ✕✗✕✘✕ ✁ ✑✞✘ . Note that the prior probability for�
drops out because it is a constant in the maximization

step:

✄ ❈ ✢ ✛✧✄ �✠✟ ✑✆☎✞✝✠✟ ✡☛☎✌☞✑ ■ ✍ ✷ ✎ ✑✓✑✓✑ ✷✌✔✖✕ ✂☎✄ � ✝ ✗✲✁ ✽ ✕✗✕✘✕ ✁ ✑ ✘ ✟

✑✆☎✞✝✠✟ ✡☛☎✏☞✑ ■ ✍ ✷✌✎✒✑✓✑✓✑ ✷✌✔✖✕
✂☎✄✜✗ ✁ ✽ ✕✘✕✘✕ ✁ ✑✏✘ ✝ �✠✟
✂☎✄✂✗✲✁ ✽ ✕✗✕✘✕ ✁ ✑ ✘ ✟

Note that we must use a smoothed version of ✂☎✄✜✁ ✻ ✝ �✠✟
in the numerator, as warranted in Section 2. We assume

smoothing with a prior model, but any other smoothing

could be used. Because ✗✲✁ ✽ ✕✘✕✗✕ ✁ ✑ ✘ is the set of indepen-

dent text samples, we can rewrite the joint probability as

the product of the marginals as follows:
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✄ ❈ ✢ ✛✧✄ �✠✟ ✑ ☎✏✝ ✟ ✡☛☎✌☞✑ ■ ✍ ✷✏✎ ✑✓✑✓✑ ✷✌✔✖✕
✑✺
✻✘✼✪✽

✂☎✄✜✁ ✻ ✝ �✠✟
✂☎✄✆✁ ✻ ✟

The formulation above suggests an simple composition

of the zone. Observe that the product is maximized as

long as the individual terms in the product each exceed

1. Therefore the zone may be composed of text samples

✁ ✻ which are more likely under the model
�

than they

are likely a-priori, in our universe of text samples. We

may, for reasons suggested in Section 4, wish to further

constrain the zone to the samples ✁ ✻ which have the like-

lihood ratio exceeding
�✂✁ ✓ :

✄ ❈ ✢ ✛✧✄ �✠✟ ✑ ✗✲✁ ✻ ✍ ✂☎✄✆✁ ✻ ✝
�✠✟

✂☎✄✆✁ ✻ ✟
✁✄�✆☎ ✓ ✘

Now that we have defined the composition of the zone

of
�

, we turn our attention to estimating the maximum

likelihood model for that zone.

3.2 Maximum likelihood model of the con-

text zone

We defined the zone model
� � ✽ ✰❋✮ to be the model that

maximizes the likelihood of observing ✗✲✁ ✽ ✕✘✕✗✕ ✁ ✑ ✘ :
� � ✽ ✰❋✮ ✑ ☎✞✝✠✟ ✡☛☎✏☞✮ ✚ ✂☎✄✂✗✲✁ ✽ ✕✗✕✘✕ ✁ ✑ ✘ ✝ � ✢ ✟

Note that
� � ✽ ✰❋✮ as defined above also maximizes its

own posterior likelihood ✂☎✄ � ✢ ✝ ✗ ✁ ✽ ✕✘✕✗✕ ✁ ✑ ✘ ✟ when ✂☎✄ � ✢ ✟
is uniform over

� ✢
. As before, because ✗ ✁ ✽ ✕✘✕✘✕ ✁ ✑ ✘ is the

set of independent samples, we can decompose the joint

probability into the product of the marginals:

� � ✽ ✰❋✮ ✑ ☎✞✝✠✟ ✡☛☎✏☞✮ ✚ ✑✺
✻✘✼✪✽ ✂☎✄✜✁ ✻ ✝

� ✢ ✟

We employ our definition of ✂☎✄✜✁✞✝ �✠✟
, as specified in

Section 1.1 to obtain:

� � ✽ ✰❋✮ ✑ ☎✏✝ ✟ ✡☛☎✌☞✮✛✚ ✑✺
✻✗✼ ✽

✺
▲ ✂☎✄✆✬◆✝ � ✢ ✟ �✂✁ ✮☎✄ ✶ ▲ ■ ✷✞✝✜✸

Now we observe that we can re-arrange the ordering of

terms in the product:

� � ✽ ✰❋✮ ✑ ☎✏✝ ✟ ✡☛☎✌☞✮ ✚ ✺ ▲
✑✺
✻✗✼ ✽ ✂☎✄✆✬◆✝

� ✢ ✟ �✂✁ ✮☎✄ ✶ ▲ ■ ✷ ✝ ✸
Observe that ✂☎✄✜✬✞✝ � ✢ ✟

is independent of ☛ , so we can

transform the product of exponents to an exponent of the

sum:

� � ✽ ✰✖✮ ✑ ☎✏✝ ✟ ✡☛☎✌☞✮ ✚ ✺ ▲ ✂☎✄✆✬✞✝ �✣✢✘✟ ✳ ✔✝✠✟ ✎ �✂✁ ✮☎✄ ✶ ▲ ■ ✷✡✝✆✸
Logarithm is a non-decreasing transformation, so we

can take the logarithm of the above expression without

any affect on maximization. We also bring the sum to

the outside of the logarithm, and use negation to change

maximization to minimization:

� � ✽ ✰❋✮ ✑
✑ ☎✏✝ ✟ ✡☞☛✍✌✮ ✚ ❃✏✎ ▲

✑ ✑✎ ✻✘✼✪✽ ❊✟✞✲✛✂✠✏✄✜✬☞☛ ✁ ✻ ✟✓✒✕✔✍✖ ✟ ✂☎✄✜✬✞✝ � ✢ ✟
The next step is to note that minimization is unaf-

fected if we multiply the objective by a constant. Since✳ ✑✻✗✼ ✽ ✙✜✛✣✢✥✤✏✦✩★✎✄✜✁ ✻ ✟ is a constant ( ✗ ✁ ✽ ✕✗✕✘✕ ✁ ✑ ✘ is fixed and we

are maximizing over
� ✢

), we can write:

� � ✽ ✰❋✮ ✑
✑✆☎✏✝ ✟ ✡☞☛✍✌✮ ✚ ❃✏✎ ▲

✑ ✳ ✑✻✗✼✪✽ ❊✟✞✲✛✂✠✏✄✜✬☞☛ ✁ ✻ ✟✳ ✑✻✗✼ ✽ ✙✜✛✣✢✥✤✏✦✩★✎✄✜✁ ✻ ✟
✒✕✔✍✖ ✟ ✂☎✄✜✬✞✝ �✣✢ ✟

However, the term before the logarithm is simply

the maximum likelihood estimate for ✬ under the set✗✲✁ ✽ ✕✗✕✘✕ ✁ ✑✏✘ :
� � ✽ ✰❋✮ ✑ ☎✏✝ ✟ ✡☞☛✠✌✮✛✚ ❃ ✎ ▲ ✂ ✆ ✭ ✄✆✬◆✝ ✗✲✁ ✽ ✕✗✕✘✕ ✁ ✑ ✘ ✟✗✔✍✖ ✟ ✂☎✄✜✬✞✝ � ✢ ✟

Observe that the objective function in the minimization

above is exactly the relative entropy between ✗✲✁ ✽ ✕✘✕✗✕ ✁ ✑ ✘
and

� ✢
. Entropy is minimized when two distributions are

identical, which leads us to a simple and intuitive formu-

lation for
� ✢

:

✂☎✄✆✬◆✝ �✣✢ ✟ ✑✾✂✝✆ ✭ ✄✆✬◆✝ ✗✲✁ ✽ ✕✗✕✘✕ ✁ ✑ ✘ ✟

3.3 Mixing probabilities

We have detailed both maximization steps involved in

forming a context model. One practical issue remains:

selection of appropriate mixing weights ✏ ✮ , ✏ � ✽ ✰✖✮ and✏ ✱✴✭ ✽ ✢ ✁ ✭ . An obvious constraint is that weights sum to

one. There exist a number of approaches to selecting

the weights so as to maximize some objective, such as

log likelihood of the training data (e.g. the use of EM

algorithm by T. Hoffman in his work on global topic

mixtures). At this point in our research we opt for us-

ing a closed-formed estimates derived by (Witten & Bell,

1991):

✏ ✮ ✑
✳ ▲✙✘ ✮ ❊✟✞✲✛✡✠✏✄✆✬ ☛ �✠✟

✳ ▲✙✘ ✮ ✄ ✓ ✿ ❊✟✞✲✛✡✠✏✄✆✬☞☛ �✠✟ ✟
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✏ � ✽ ✰❋✮ ✑
✳ ▲✙✘ � ✽ ✰❋✮ ❊✟✞✲✛✂✠✏✄✜✬☞☛ ✄ ❈ ✢ ✛ ✟✳ ▲✙✘ � ✽ ✰❋✮ ✄✩✓ ✿ ❊✟✞✲✛✂✠✏✄✜✬☞☛ ✄ ❈ ✢ ✛ ✟ ✟

To ensure the weights sum to one, we employ nesting

as follows:

✂☎✄✜✬✞✝ �✠✟ ✑✵✏ ✮ ✂✫✆ ✭ ✄✜✬✞✝ �✠✟✫✿ ✄ ✓❀❃❀✏ ✮ ✟ �
� ✡ ✏ � ✽ ✰❋✮ ✂☎✄✆✬✞✝ � � ✽ ✰✖✮ ✟ ✿ ✄ ✓ ❃ ✏ � ✽ ✰❋✮ ✟ ✂☎✄✜✬ ✟ ☞

Note that in our experiments ✂☎✄✆✬ ✟ is further smoothed

by a uniform model, as described in Section 2.1.3.

4 Experiments

In this section we describe an implementation of the

localized smoothing approach described in Section 3.

We test our formulation against a popular approach of

smoothing with a prior (global smoothing), detailed

in Section 2.1.3. Aside from smoothing, we keep all

modeling details exactly the same for both approaches.

We compare the effectiveness of the two approaches on

the TREC ad-hoc retrieval task (Allan, Callan, Feng, &

Malin, 1999).

We use Detection Error Tradeoff (DET) curves (see

Figure 1) to evaluate the impact of smoothing approaches

on retrieval performance. DET curves are used exten-

sively in signal detection literature and have several ad-

vantages over the traditional Recall-Precision curves used

in the Information Retrieval community. The motivat-

ing factor for choosing DET curves over Recall-Precision

curves in this evaluation is that DET curves are less influ-

enced by “richness” (the a-priori probability of on-target

item in the dataset). For a more detailed description of

DET curves, see (Martin, Doddington, Kamm, & Or-

dowski, 1997).

4.1 Experimental setup

The ad-hoc retrieval task is the task of ranking a collec-

tion of documents by their estimated relevance to the

user’s query. We use a set of 50 queries (title versions

of TREC queries 251-300). Each query consists of 3-4

words on average (typical for web queries). We use the

AP’1988 collection of newswire articles as our data set.

The collection contains around 80,000 documents, the

average document length is around 300 words. Out of

the original 50 queries, 48 queries were judged by TREC

assessors to have relevant documents in the dataset. The

number of relevant documents ranged from 1 to 280, with

an average of 35.

Our experiments take the following form. For each

of the 48 queries, we form a maximum-likelihood model� ✄✆ ✭ from the words in the query. The models
� ✄✆ ✭ are

extremely sparse, since queries contain very few words.

We smooth each model
� ✄✆ ✭ either globally (Section

2.1.3), or using our localized approach (Section 3), to ob-

tain a smoothed version
� ✄

. Then, for each document
✁

in the collection, we compute the posterior likelihood that

the smoothed model
� ✄

is the source from which
✁

was

generated: ✂☎✄ � ✄ ✝ ✁ ✟ . We consider this posterior to be an

estimator of the degree of relevance to the query and rank

the documents by ✂☎✄ � ✄ ✝ ✁ ✟ .1

4.2 Effect of zoned smoothing

In our first experiment we set the zoning threshold
�

to 1 (Section 3.1), corresponding to true maximization.

Figure 2 shows the distributions of document scores (log-

likelihood ratios) for documents that were judged relevant

and non-relevant by TREC assessors. The distributions

are pooled across all 48 queries, and so are biased towards

queries with more relevant documents. The distributions

were constructed using a non-parametric kernel density

estimator2.The left graph shows the distributions obtained

using global smoothing, the right half presents the results

of our localized approach.

One thing that becomes immediately apparent from

looking at the distributions is the increase in the variance

of scores when using localized approach. However, the

variances did not increase proportionally: with global

smoothing the variance of non-relevant documents was

lower than that of the relevant ones, but with localized

smoothing the variance of non-relevant documents

became much higher than that of the relevant documents.

Another peculiarity of the localized smoothing approach

is the small bump in the density of non-relevant docu-

ments at the high scores. This suggests that localized

approach produced a number of very highly-ranked

non-relevant documents. This would be a discouraging

observation if our goal was to produce a low-recall

high-precision system.

Figure 3 displays the same information as Figure 2,

only in a form of a DET curve, allowing easier analysis.

We see that localized feedback indeed shows inferior per-

formance at low recall (high miss rate). We also clearly

see the effect of increased variance in the distribution of

non-relevant scores. On a DET curve, increased variances

of non-relevant scores translate to steeper curves (see

1Actually, we rank by ✂☎✄✝✆✟✞✡✠☞☛✍✌ ✎✑✏✓✒✕✔✖✞✡✠☞☛✗✒ , which is seen to be

equivalent after transforming the posterior using Bayes theorem and

noticing that the prior ✞✡✠✘✎ ✏ ✒ does not affect the ranking of documents
2We used gaussian kernels with automatic bandwidth selection
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Figure 1: DET curves are a way to visualize tradeoff between misses and false alarms. Left: distributions of on-target and off-

target scores, shaded areas under the curves correspond to miss and false alarm errors. Right: corresponding DET curve, obtained

by varying the threshold from � ✁ to ✁ . NOTE: on a DET curve lower means better.
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Figure 2: Average distributions of scores of relevant and non-relevant documents. Left: global smoothing. Right:

localized smoothing.
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Figure 3: Performance of global vs. localized smoothing at
� ✑✠✓ .

Figure 1).

The increased variance of non-relevant documents

makes sense. When we use a global smoothing approach,

all documents that do not contain query words are as-

signed their prior in the collection as a whole, which is

uniformly very low. When we use a zoned model for

smoothing, a large class of documents that are nearby

to the zone receive a significant boost in their scores,

whereas documents that are not nearby are assigned a

fraction of their global prior, driving their scores even

lower. From Figure 3, we see that increased variance

appears to have a detrimental effect overall – resulting

in better performance only at high levels of recall (miss

rate below 20%). Improvements in that region are gener-

ally ignored by researchers in IR, though other fields (e.g.

TDT) may consider the improvement useful.

4.3 Impact of thresholding the zone

The detrimental effect of very high variance leads us

to consider tightening the context zone around
� ✄✆ ✭

(Section 3.1). To do this, we perform a number of

experiments setting
�

to various values and observing the

effect it has on performance. We experimented with
�

taking values ✓✙☛✴✛✓☛❑✛ � ☛❑✛ ✁

. Note that successively larger

values of
�

translate to smaller and smaller sizes of the

context zone around
� ✄✆ ✭ .

The results are presented in Figure 4. We observe

that increased values of
�

indeed result in improved per-

formance in the low-recall region. For example, setting� ✑ ✛ ✁

results in a consistent five-fold improvement in

False Alarm rate at low levels of recall. However, the

performance rapidly gets worse at higher recall. Setting

threshold to
� ✑ ✛ appears to give reasonable results over-

all, and we compare this setting to the performance of

global smoothing in Figure 5. We observe that perfor-

mance in the low-recall range is still worse, but not nearly

as much as with
� ✑ ✓ . However, for higher recall, lo-

calized smoothing gives dramatic improvements reducing

the false alarm rate 5 to 6 times. This is an interesting

improvement from the standpoint of evaluating the tech-

nology, even if it does not translate to higher relevance of

top-ranked documents.
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Figure 4: Effects of threshold
�

on performance of localized smoothing.

5 Directions for future work

We believe the technique of localized smoothing pre-

sented in this paper has significant potential for improving

the quality of language models. Our evaluation demon-

strated that simple maximization of the posterior does not

produce an optimal context zone for the original model

(our approach performed poorly for
� ✑ ✓ ). We intend to

investigate alternative optimization procedures for finding

the optimal query zone. We also need to investigate how

this approach compares to smoothing used in other lan-

guage modeling formulations (e.g. Ponte, 1998).

6 Conclusions

We presented a novel approach to localized smoothing

of language models, based on modeling the context zone

around the original model. Our technique relies on a two-

step likelihood maximization, which is detailed in Sec-

tion 3. We tested our approach against a commonly used

global smoothing technique on a standard set of TREC

queries. Experiments show that our approach provides

significant improvements in the high-recall region, but re-

sults in decreased quality at the top of the ranked list.
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