SCALABLE DISTRIBUTED ARCHITECTURES
FOR INFORMATION RETRIEVAL

A Dissertation Presented
by
ZHIHONG LU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
May 1999

Department of Computer Science

© Copyright by Zhihong Lu 1999
All Rights Reserved

SCALABLE DISTRIBUTED ARCHITECTURES
FOR INFORMATION RETRIEVAL

A Dissertation Presented
by
ZHIHONG LU

Approved as to style and content by:

Kathryn S. McKinley, Chair

W. Bruce Croft, Member

Donald F. Towsley, Member

James P. Callan, Member

C. Mani Krishna, Member

James F. Kurose, Department Chair
Department of Computer Science

To my parents, Professor Hao Lu and Professor Jiangqiu Liu,

and my brother, Qinyi Lu.

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere thanks to my advisor,
Kathryn McKinley for her contribution in the development of my research and her
guidance in my professional growth. Without her broad vision, deep insight, and
strong encouragement, this work would not have been possible.

I would like to thank Bruce Croft and Jamie Callan for teaching me sound research
principles on distributed information retrieval and their valuable advice.

I would like to thank the rest of my committee, Don Towsley and Mani Krishna
for their valuable comments and suggestions.

I would like to thank all present and past members of the Center for Intelligent
Information Retrieval at the University of Massachusetts, Amherst. I was fortunate
enough to be a member of this friendly, enjoying, and stimulating research commu-
nity. In particular, I would like to thank Brendon Cahoon for his preliminary work
on distributed information retrieval architectures and his kindness to tutor me the
simulation techniques. I would like to thank Jay Ponte for proof-reading my proposal.
I would like to thank our secretary, Kate Moruzzi, for her kindness and efficient as-
sistance whenever I needed.

I would like to thank all my friends I have met in Amherst. Without them, the
last five and a half years would have been unbearable. In particular, I would like
to thank the Chinese community in the Department of Computer Science and the
Zinsmeister family.

I would like to thank my husband, Jianmin Wang, for his love, understanding,
and absolute faith in my abilities. I owe my son, Luhan Wang, for his four-year life

without his mother around. I wish he could understand me when he grows up.

I dedicate this dissertation to my parents, Hao Lu and Jiangqiu Liu, for their
love, caring, sacrifice, and support. I will always be grateful to my parents, who have
always given me more than what I could ever ask for. I especially appreciate that they
teach me the positive attitude to survive in this world. I also dedicate this dissertation
to my brother, Qinyi Lu. The dreams we were sharing during our childhood have
always been the greatest inspiration for me to move on and face whatever challenge
may appear.

This material is based on work supported in part by the National Science Foun-
dation, Library of Congress and Department of Commerce under cooperative agree-
ment number EEC-9209623, and in part by Defense Advanced Research Projects
Agency/ITO under ARPA order number D468, issued by ESC/AXS contract num-
ber F19628-95-C-0235. Any opinions, findings and conclusions or recommendations
expressed in this material are the author and do not necessarily reflect those of the

Sponsors.

vi

ABSTRACT

SCALABLE DISTRIBUTED ARCHITECTURES
FOR INFORMATION RETRIEVAL

MAY 1999

ZHIHONG LU
B.Sc., TONGJI UNIVERSITY
M.Sc., INSTITUTE OF COMPUTING TECHNOLOGY,
CHINESE ACADEMY OF SCIENCES
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kathryn S. McKinley

As information explodes across the Internet and intranets, information retrieval
(IR) systems must cope with the challenge of scale. How to provide scalable perfor-
mance for rapidly increasing data and workloads is critical in the design of next gen-
eration information retrieval systems. This dissertation studies scalable distributed
IR architectures that not only provide quick response but also maintain acceptable
retrieval accuracy. Our distributed architectures exploit parallelism in information
retrieval on a cluster of parallel IR servers using symmetric multiprocessors, and use
partial collection replication and selection as well as collection selection to restrict
the search to a small percentage of data while maintaining retrieval accuracy.

We first investigate using partial collection replication for IR systems. We examine

query locality in real systems, how to select a partial replica based on relevance,

vii

how to load-balance between replicas and the original collection, as well as updating
overheads and strategies. Our results show that there exists sufficient query locality
to justify partial replication for information retrieval. Our proposed replica selection
algorithm effectively selects relevant partial replicas, and is inexpensive to implement.
Our evidence also indicates that partial replication achieves better performance than
caching queries, because the replica selection algorithm finds similarity between non-
identical queries, and thus increases observed locality.

We use a validated simulator to perform a detailed performance evaluation of
distributed IR architectures. We explore how best to build parallel IR servers using
symmetric multiprocessors, evaluate the performance of partial collection replication
and collection selection, and compare the performance of partial collection replication
with collection partitioning as well as collection selection. At last we present experi-
ments for searching a terabyte of text. We also examine performance changes when
we use fewer large servers, faster servers, and longer queries.

Our results show that because IR systems have heavy computational and I/O
loads, the number of CPUs, disks, and threads must be carefully balanced to achieve
scalable performance. Our results show that partial collection replication is much
more effective at decreasing the query response time than collection partitioning for a
loaded system, even with fewer resources, and it requires only modest query locality.
Our results also show that partial collection replication performs better than collection
selection when there exists enough query locality, and it performs worse when the
collection access is fairly uniform after collection selection. Finally our results show
that replica and collection selection can be combined to provide quick response time
for a terabyte of text. Changes of system configurations do not significantly change
the relative improvements due to partial collection replication and collection selection,

although they affect the absolute response time.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS s s s s s v

ABSTRACT . . . vii

LIST OF TABLES st s s s, xiii

LIST OF FIGURES s s s s, XV
Chapter

1. INTRODUCTION s s s s s, 1

1.1 The Problem of Scale in Information Retrieval 1

1.2 Research Summary Lo 2

1.2.1 Parallel Information Retrieval using Symmetric Multiprocessors . . 3

1.2.2 Partial Collection Replication)

1.2.3 Collection Selection 7

1.2.4 Scalable Distributed Architectures. 7

1.3 Research Contributions 7

1.4 Structure of the Dissertation 8

2. RELATED WORK e d s 9

2.1 Information Retrieval Background 9

2.1.1 Retrieval Models 9

21.2 Indexing L 13

2.1.3 Effectivenesso 13

2.2 Performance of Distributed Information Retrieval 14

2.3 Effectiveness of Distributed Information Retrieval 17

2.3.1 Automatic Collection Selection 17

X

2.3.2 Result Merging L 20

2.4 Parallel Information Retrieval 20
2.5 Data Replication o oo 23
2.5.1 Replication Strategies L. 23

2.5.2 Server Selection 24

. SYSTEM ARCHITECTURES 27
3.1 Clients e e e e 29
3.2 Collections and InQuery Servers 29
3.3 Connection Brokero Lo 30
3.3.1 Collection Selector, 30
3.3.2 Replica Selector 31
3.3.3 Imteractions Lo 31

. PARTIAL COLLECTION REPLICATION 33
4.1 Access Characteristics in Real IR Systems 33
4.1.1 Ratio of Query Processing and Document Access 35
4.1.2 Query Localityo 37
4.1.3 Overlap of Queries Over Time 39

4.2 The Partial Replication Architecture 42
4.3 Partial Replica Selection Based on Relevance 44
4.3.1 Ranking Partial Replicas with the Inference Network Model . . 45
4.3.2 Experimental Settings, 50
4.3.3 Comparing Ranking Functions 54
4.3.4 Effectiveness with Replicated Queries 58
4.3.5 Effectiveness with Unreplicated Queries 62
4.3.6 Summary e 67

4.4 Load Balancing Lo 68
4.5 Space and Time Overheads for the Replica Selection Database 69
4.5.1 Space Overhead 69
4.5.2 Time Overhead 70

4.6 Updating e 72
4.6.1 Costs for Updating Replicas 72
4.6.2 Costs for Updating the Replica Selection Database 74
4.6.3 Updating Strategies L L. 75

4.7 Summaryo

5. THE SIMULATION MODEL
5.1 System Measurements and Validation

5.1.1 Query Evaluation Time
5.1.2 Document Retrieval Time
5.1.3 Network Time
5.1.4 Connection Broker Time
5.1.5 Validation of the Query Evaluation Model

5.2 Configuration Parameters

6. PERFORMANCE EVALUATION OF OUR DISTRIBUTED IN-
FORMATION RETRIEVAL SYSTEM

6.1 Parallel Information Retrieval Using Symmetric Multiprocessors

6.1.1 Threading L
6.1.2 The Hardware Balancing Act
6.1.3 Partitioning Versus Replication
6.1.4 Summaryo

6.2 Partial Collection Replication in a Distributed Information Retrieval
System L

6.2.1 Varying the Distracting Percentage
6.2.2 Partial Replication Versus Collection Partitioning
6.2.3 Varying the Replicating Percentage
6.2.4 Varying the Collection Size
6.2.5 Replication Hierarchy
6.2.6 Summary

6.3 Collection Selection in a Distributed Information Retrieval System . .

6.3.1 Varying the Collection Access Skew and the Selection Percent-

AZE « o i e e e e
6.3.2 Varying the Number of Collections
6.3.3 Collection Selection Versus Partial Collection Replication . . .
6.3.4 Summaryl

6.4 Summary

7. TOWARD SEARCHING A TERABYTE OF TEXT

xi

7.1 'The Sizes of Replicas, Replica Selection Database, and Collection Se-

lection Databaseso oL 139

7.2 Performance Using Queries with an Average of Two Terms 140

7.3 Performance with Larger Disks 144

7.4 Performance with Faster Servers and Network 145

7.5 Performance with Longer Queries 147

7.6 Summaryo 149

8. CONCLUSIONS s 150

8.1 Summarieso 150

8.2 Contributions 153

83 Future Work 154
APPENDICES

A. TREC COLLECTIONS 157

A1 Data Sources 157

A2 Statistics of TREC Collections 160

B. ACCESS LOG ANALYSIS oo 161

B.1 The THOMAS Log 161

B.1.1 Query Locality 0o 161

B.1.2 Document Access Patterns 165

B.2 The Excite Log L 169

BIBLIOGRAPHY e 172

xii

LIST OF TABLES

Table Page

4.1 Ratios of queries and documents in the THOMAS log.
4.2 Query locality in the logs.
4.3 Query overlap over time in the THOMAS log.
4.4 Statistics of partial replicaso

4.5 Comparing ranking functions using short queries on the 2GB TREC
2+3 collection (replicas built with top 200 documents)

4.6 Effectiveness of different ranking functions using short queries on the
2 GB TREC2+3 collection (replicas built with top 200 documents)

4.7 Replica selection for replicated queries

4.8 Effectiveness of replica selection for replicated queries (each trial has
99 judged queries)

4.9 Replica selection for unreplicated queries
4.10 Effectiveness of unreplicated queries (each trial has 50 queries)
4.11 Space overhead for the replica selection database.

4.12 Time overhead for searching the replica selection database for the 20
GB collection(seconds).o

4.13 Updating time for replicas with different sizes (hours).

4.14 Updating time for replica selection database (minutes).

5.1 Term evaluation time validation.

5.2 Query model validation. 0L

9.3

0.4

3.5

2.6

6.1

6.2

6.3

6.4

7.1

7.2

Al

B.1

B.2

B.3

B.4

B.5

B.6

B.7

Distribution of underestimated queries.

Percentage difference of average response times between the implemen-
tation and simulator.o L Lo

Configuration parameters.

The values used in terms per query.

Configuration parameters for parallel experiments.
Configuration parameters for replication experiments.
Configuration parameters for collection selection experiments.

The percentage of commands that goes to the most frequently used
collectiono

Configuration parameters for terabyte experiments

The replica size based on the Excitelog

The TREC Collections o o v i i it s s

The statistics from the THOMAS log (I)
The statistics from the THOMAS log (ITI)
The statistics from the THOMAS log (IIT)
The statistics from the THOMAS log (VI)
The statistics from the THOMAS log (V).
Document access statistics from the THOMAS log

The statistics from the Excite log.

xXiv

LIST OF FIGURES

Figure Page
2.1 Document retrieval inference network 11
3.1 Architectures for distributed information retrieval. 28
4.1 Excerpts from the THOMAS and Excite logs. 35
4.2 The replication hierarchy. 00, 43
4.3 'The collection retrieval inference network. 45
4.4 The collection ranking function in InQuery. 46
4.5 'The replica selection function. 48
4.6 The relationship between document frequencies in different replicas

5.1

5.2

9.3

0.4

9.5

2.6

6.1

6.2

with different sizes.o 49
Query evaluation timing values (seconds). 81
Network time values (seconds). 83
Connection broker time values (seconds). 84
Validation of the performance using partial replication. 89
Query term frequency distributions.o 0L 93
Query term frequency distributions with increasing collection size. . . . 94
The parallel InQuery server 99
Performance as the number of threads increases (disk bottleneck). . 101

XV

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

7.1

7.2

7.3

7.4

Performance as the number of threads increases (CPU bottleneck).

Performance as the number of threads increases (CPUs and disks are
well balanced). Lo

Performance as the hardware configuration changes for a 4 GB collec-
tON. e

Increasing the number of disks versus increasing the data size per disk
as the collection size increases.

Partitioning versus full replication for a 16 GB collection.
Partitioning versus partial replication for a 16 GB collection.
Varying the distracting percentage.
Varying the replication percentage.
Varying the collection size. o000 L.
Performance with a hierarchy of replicas.
Performance with collection selection for 256 GB of data on 8 servers.

Varying the number of collections for 256 GB of data on 8 servers. . .
Collection selection versus partial collection replication.

Collection selection versus partial collection replication for 256 GB on
8 SEIVETS. o o i e e e

Performance when searching a terabyte of text using queries with an
average of 2 terms.o L Lo

Performance when searching a terabyte of text using larger disks . . .

Performance when searching a terabyte of text using faster servers and
network L

Performance when searching a terabyte of text using an average of 8
terms Lo e e e e

xvi

103

CHAPTER 1
INTRODUCTION

1.1 The Problem of Scale in Information Retrieval

Information Retrieval (IR) is concerned with locating documents relevant to the infor-
mation needs of users. Distributed information retrieval provides information access
to text collections distributed across a network. As information explodes everywhere,
increasingly many vendors and users distribute and search their information through
the Internet and intranets. The data volume a distributed IR system must cope with
is nearing the terabyte level. For example, AltaVista, a web search engine, claims
that it searches over 140 million web pages [4], which indicates that its search space
is already several hundred gigabytes. In this dissertation, we investigate distributed
architectures that scale with rapidly increasing data and workloads, and not only
provide quick response but also maintain acceptable retrieval accuracy.

When we face a huge number of text collections and tremendous workloads, the
first reaction is to use lots of hardware resources. Using lots of hardware resources
does help solve the problem. Because information retrieval is an inherently parallel
application, we can execute queries independently, and we can divide a collection
into several partitions and execute a query on multiple partitions at the same time.
Therefore, we may either use a multiprocessor to increase the processing capability of
each single server, or use multiple machines such that each machine processes a part
of data and workloads. However using lots of hardware resources does not necessarily
produce high performance, since a single bottleneck can degrade performance. We

need to carefully balance the hardware and software resources to ensure performance

improvements. In addition, information retrieval is a resource-intensive application.
A system that searches hundreds of collections or that receives millions of requests
a day although it only searches a small collection could take minutes to complete a
request, which is beyond online users’ tolerance for waiting for a response.
Restricting the search to the most relevant collections is a way of producing quick
response while maintaining acceptable retrieval accuracy, because searching fewer
collections takes less time. However, selecting the most relevant collections may work
ineffectively when the relevant documents about a topic are scattered over a large
number of collections. In addition, excessive workloads are still able to overwhelm a
server that is frequently chosen.

For excessive workloads, the only solution is to distribute workloads on a single server
over several “identical” servers, which requires full or partial data replication. The
huge number of documents in a large-scale IR system prohibits full data replication.
We investigate replicating parts of collections by disseminating documents based on
query locality, resources, and access patterns or other constraints in order to replicate
as little data as possible and maintain acceptable retrieval accuracy. In a distributed
IR system, partial collection replication serves two purposes: distributing excessive
workloads and restricting the search to a small percentage of data.

In this dissertation, we investigate the scalable architectures that exploit parallelism
by distributing data over a cluster of symmetric multiprocessors, and use partial col-
lection replication and collection selection to search as little data as possible while
maintaining acceptable retrieval accuracy. We also observe characteristics of IR work-

loads and IR systems in order to use them as a guideline.

1.2 Research Summary
This dissertation studies distributed architectures that scale with rapidly increasing

data and workloads, and not only produce quick response time but also maintain

acceptable retrieval accuracy. Our architectures incorporate parallel information re-
trieval, partial collection replication, and collection selection. We implement a simu-
lator for distributed architectures, and validate it against the prototype implementa-
tion. We use the validated simulator to evaluate system performance with a variety
of workloads. We also investigate how to replicate a small percentage of data and
select relevant partial replicas.

The information retrieval engine used in this dissertation is InQuery [14], which is
based on the inference network retrieval model [72]. There are two major reasons
to choose InQuery. First, it is a proven effective retrieval engine [36, 37, 38, 39, 40]
that enables our research to provide high retrieval accuracy. Second, it is used in
Web searching, large libraries, companies, and government agencies such as Library
of Congress, White House, West Publishing, and Lotus [46]. For the experiments in
this dissertation, we implement our simulator using the measurements from InQuery
version 3.1 and validate it against a prototype implementation on a 3-CPU 250 MHZ
DEC Alpha for a heavily loaded system. We also discuss the sensitivity of our results

with respect to our base system.

1.2.1 Parallel Information Retrieval using Symmetric Multiprocessors

Although the previous research has demonstrated information retrieval is easily par-
allelized, it typically investigated an IR system on a distributed memory, massively
parallel processing (MMP) machine (e.g. CM-5 with 65,536 processing elements),
which is very expensive and needs specialized algorithms to take advantage of hard-
ware resources [6, 21, 26, 57, 66, 67, 68] (Section 2.4 describes the previous research).
Both the high price and the need for specialized algorithms prohibit such machines
from being widely used. In contrast, symmetric multiprocessors (SMP) are very pop-
ular and affordable. Easily upgrading existing software from single-CPU machines to

SMPs is another advantage of using SMPs.

Currently, commercial information retrieval systems, such as Web search engines
AltaVista [4] and Infoseek [45], handle tremendous loads by exploiting the parallelism
implicit in their tasks and use SMPs to support their services. Although it is clear
that the more CPUs and disks you have the more load the system can handle, the
important questions are how much of which hardware and what software structure
is needed to exploit these resources. Unfortunately, commercial systems have not
published their hardware and software configurations. The previous research on SMPs
investigated a part of system, such as the disk system [47] or it compared the cost
factors of the SMP architecture with other architectures [20]. Recently the TREC
conference reported results on a single query (rather than a loaded system) against a
100 GB collection [42], where some of its participated institutions used SMPs. None of
the commercial systems and the previous research on SMPs reported how to balance
hardware and software resources in order to achieve scalable performance in a SMP
system.

In this dissertation, we conduct a systematic study on a proven effective system
using symmetric multiprocessors under a variety of realistic workloads and hardware
configurations. Unlike the previous research where the workloads only include query
commands, our workloads are a mixture of three IR commands: query, summary, and
document commands, which provides a more realistic investigation. Our workloads
mimic the statistics from real system logs. During our investigation, we demonstrate
how to balance the hardware and software with respect to number of threads, CPUs,
and disks as the collection size increases. We investigate the factors that affect the
necessary number of threads. We demonstrate system scalability when the system
is well balanced, and when one of the hardware components is a bottleneck. Our
results provide insights for building high performance IR servers using symmetric

multiprocessors.

1.2.2 Partial Collection Replication

Replication has long been used in the areas of distributed file systems and distributed
database systems in order to improve system performance and availability [1, 2, 3,
16, 19, 24, 25, 30, 43, 44, 51, 65, 69, 76] (see Section 2.5 for detailed discussions).
Database vendors such as Oracle, Informix, and Sybase offer replication techniques
in their products [60]. However, there are several distinctions that make this work
unique. First, information retrieval is different from the focus of previous database
and file system work. Information retrieval systems are working on text, which is
unstructured and is generally read-only. The database and file systems are working
on structured data such as records and objects, and the data is read-write. Their
work focuses on algorithms for updating read-write data to ensure consistency of
different copies of data. In addition, structured database and file systems can simply
use the set membership to find a replica, while information retrieval needs a selection
function to determine whether a replica contains all, some, or none of the relevant
documents in order to maintain retrieval effectiveness.

Recently, researchers have used replication in the Web for document access [5, 7, 78].
Generally, they cache popular documents in a hierarchy of proxy servers which are
located between clients and Web servers to reduce Internet traffic. Although we also
adopt a replication hierarchy to store the documents of the most frequently used
queries, our replicas are searchable and thus can speed up both query and document
processing.

As suggested by our log analyses, we need to speed up both query processing and
document access to maximize performance improvements. One way to achieve this
goal is to cache the most frequently used queries along with their top documents, and
do string comparison to determine whether a query is cached. However using this
approach can not match a cached query when the new query is about the same topic,

but uses different query terms or different term forms. In our logs, 35% to 62% of the

topics that occur more than once contain more than one unique query that returns
the same top 20 documents. We solve this problem by storing a searchable replica
of the top documents for each query instead of caching query results. This structure
enables our system to detect whether queries about the same topic but using different
terms are in the replica, which increases query locality as compared to caching queries
which requires queries to match exactly.

Before we evaluate how much performance improvement partial collection replication
can yield, we investigate two problems first. The first problem is whether there exists
sufficient query locality in real systems. Fortunately, the access logs of real IR systems
demonstrate there is such locality (see Appendix B). The second problem is whether
we can find an effective tool to select a relevant partial replica, since not all partial
replicas are equally or nearly equally effective for a query. Selecting replicas just
based on load does not maintain acceptable retrieval accuracy, and a fast IR system
without acceptable retrieval accuracy is useless. In this dissertation, we adapt the
collection retrieval inference network model for selecting a relevant partial replica.
We propose a new replica selection function, compare it with the collection ranking
function [15], and demonstrate its effectiveness using a 2 GB collection and a 20 GB
collection.

After solving the problem of effectiveness in partial replication, we investigate load
balancing, updating strategies, and overheads for building replicas and replica selec-
tion databases. We then evaluate the performance of partial replication by varying
numerous parameters, such as command arrival rate, distracting percentage, replicat-
ing percentage, and collection size. We compare the performance of partitioning and

replication over additional hardware resources.

1.2.3 Collection Selection

The previous research on collection selection focuses on the effectiveness of collection
selection: how to rank collections (see Section 2.3), but does not include performance
evaluation. In this dissertation, we present performance evaluation for collection se-
lection using inference network. We demonstrate the sensitivity of collection selection
with respect to the number of top collections searched and the collection access skew
after collection selection. We compare the performance of collection selection and

partial collection replication.

1.2.4 Scalable Distributed Architectures

The previous research on distributed IR systems works on a relatively small amount
of data. Only two works investigate collection sizes of more than 100 GB (see Sec-
tion 2.2). Our distributed IR system simulates searching over a terabyte of text,
and incorporates technologies that do not exist in the previous research, such as
partial collection replication and collection selection. We demonstrate the overheads
of incorporating these technologies, compare implementation options, and evaluate

performance with a variety of workloads .

1.3 Research Contributions

The most important problem for IR systems is to attain quick response for rapidly
increasing data and workloads while maintaining retrieval accuracy. This disserta-
tion presents a significant step towards solving this key problem. The contributions

include:

e First work on partial collection replication and selection in information retrieval:

— justifying the usefulness of partial replication for IR based on traces;

— developing a replication architecture;

— developing an effective replica selection function and demonstrating its

performance;
— estimating updating costs for replicas and replica selection database;

— proposing updating strategies.

e Scalable distributed architectures and an evaluation of their performance:

— implementing and validating a simulator for distributed IR systems;

— performance evaluation of parallel servers using symmetric multiproces-

Sors;

— performance evaluation of partial collection replication;

— comparison of partial collection replication and collection partitioning;
— performance evaluation of collection selection;

— comparison of collection selection and partial collection replication;

— mechanisms for searching a terabyte of text.

1.4 Structure of the Dissertation

The remainder of the dissertation is organized as follows: Chapter 2 briefly introduces
the basic concepts used in information retrieval and reviews related work. Chapter 3
describes our distributed information retrieval architectures. Chapter 4 investigates
issues related to partial collection replication. Chapter 5 describes the simulation
model and its validation. Chapter 6 evaluates the performance of parallel information
retrieval using symmetric multiprocessors, and the performance of a distributed IR
system with partial collection replication and collection selection. Chapter 7 presents
experiments that use these technologies to search a terabyte of text. Chapter 8

summarizes the dissertation and indicates future research directions.

CHAPTER 2
RELATED WORK

In this chapter, we briefly introduce basic concepts used in information retrieval,
and review the research related to this dissertation. We introduce retrieval models,
indexing, and measures for retrieval effectiveness in Section 2.1. We discuss related
work on performance in distributed information retrieval in Section 2.2, effectiveness
in distributed information retrieval in Section 2.3, parallel information retrieval in

Section 2.4, and data replication in Section 2.5.

2.1 Information Retrieval Background

2.1.1 Retrieval Models

Information retrieval is the process of identifying and retrieving relevant documents
based on a user’s query. An information retrieval system consists of three basic ele-
ments: a document representation, a query representation, and a measure of similarity
between queries and documents. The document representation provides a formal de-
scription of the information contained in the documents; the query representation
provides a formal description of user’s information need; and the similarity measure
defines the rules and procedures for matching the query and relevant documents.
These three elements collectively define a retrieval model. The most common mod-
els include the Boolean model [73], the vector space model [63] as implemented in
SMART [10], the probabilistic model [73], and the inference network model [72] as
implemented in InQuery[14]. We briefly describe these models below. In this thesis,

we use the inference network model, but our results apply to other models.

The Boolean Model

In Boolean retrieval [73], a document is represented as a set of terms d; = {t1, ..., tx},
where each t; is a term that appears in document d;. A query is represented as a
Boolean expression of terms using the standard Boolean operators: and, or, and not.
A document matches the query if the set of terms associated with the document
satisfies the Boolean expression that represents the query. The result of the query is

the set of matching documents.

The Vector Space Model

The vector space model [63] enhances the document representation of the Boolean
model by assigning a weight to each term that appears in a document. A document
is then represented as a vector of term weights. The number of dimensions in the
vector space is equal to the number of terms used in the overall document collection.
The weight of a term in a document is calculated using a function of the form ¢ f - idf,
where tf (term frequency weight) is a function of the number of occurrences of the
term within the document, and idf (inverse document frequency weight) is an inverse
function of the total number of documents that contain the term.

A query in the vector space model is treated as if it were just another document,
allowing the same vector representation to be used for queries as for documents.
This representation naturally leads to the use of the vector inner products as the
measure of similarity between the query and a document. This measure is typically
normalized for vector length, such that the actual similarity measure is the cosine of
the angle between the two vectors. After all of the documents in the collection have
been compared to the query, the system sorts the documents by decreasing similarity

measure and returns a ranked listing of documents as the result of the query.

10

d1

Document

Network rlD Concepfs
Query cl Query Concepts
Network

Query

Figure 2.1. Document retrieval inference network

The Probabilistic Model

The probabilistic retrieval model [73] is based on the Probability Ranking Princi-
ple [62], which states that an information retrieval system is most effective when it
responds to an expressed information need with a list of documents ranked in the
decreasing order of probability of relevance, and the probabilities are estimated as
accurately as possible given all the available information. In this model, the answer
to a query is generated by estimating P(relevant|d) (the probability of the infor-
mation need being satisfied given document d) for every document, and ranking the
documents according to these estimates. Using Bayes’ theorem and a set of inde-
pendence assumptions about the distribution of terms in documents and queries,
P(relevant|d) can be expressed as a function of the probabilities of the terms in d
appearing in relevant and non-relevant documents. Different independence assump-
tions lead to different forms of the function. The most popular functions are in the

category of tf - idf style.

The Inference Network Model
The inference network model [72] generalizes the probabilistic model by viewing infor-

mation retrieval as an inference or evidential reasoning process. An inference network

11

is a directed, acyclic dependency graph (DAG) in which nodes represent propositional
variables or constants and edges represent dependence relations between propositions.
If a proposition represented by node p “causes” or implies the proposition represented
by node ¢, we draw a directed edge from p to q. The node ¢ contains a link matrix
that specifies P(g|p) for all possible values of the two variables. When a node has
multiple parents, the link matrix specifies the dependence on the set of parents and
characterizes the dependence relationship between that node and all nodes represent-
ing its potential causes. Given a set of prior probabilities for the root of the DAG, the
network can be used to compute the probability or degree of belief associated with
all remaining nodes.

The inference network model used for InQuery [14], shown in Figure 2.1, consists of
two component networks: a document network and a query network. The document
network consists of document nodes(d;), and concept representation nodes(r;). A
document node corresponds to a document. A concept node corresponds to an index
unit: a term or a phrase. The link from a d; node to a r; node means that the
document d; is “about” the particular concept r;. The query network consists of the
query concept nodes (¢;) and the query node(Q). A query concept corresponds to a
basic unit used to construct a query. The query concept nodes define the mapping
between the concepts in the document collection and the concepts in the query. In
InQuery, each query concept has exactly one parent in the document network. A
query node represents an individual query.

The inference network is used by attaching the query network to the leaves of the
document network. To produce a belief score for document d;, we assume that d; =
true and dy = false for all k # j, and condition the probabilities through the network
to obtain P(I|d;). In InQuery, the belief value belief;; for concept 7; in document d; is

atf-idf style function. The value of belief;; is larger when r; occurs more frequently in

12

the d; and less frequently in the entire collection. The system presents the documents

to users by the order of their belief scores.

2.1.2 Indexing

Indexing is a standard component in a retrieval system to improve the search effi-
ciency. Signature files [28] and inverted index files [64] are two popular data structures
for indexing. A signature file contains document signatures, one for each document
in the collection. A document signature is a bit-string created by applying a hash
function to each term in the document. During query evaluation, the system creates
a signature for the query in the same way as for documents and matches the query
to a document, if the intersection of the query signature and a document signature is
equal to the query signature. However since different terms may have the same signa-
ture, a document that does not match the query in fact could be flagged as matching,
which is called false hit. Signature files typically support the Boolean model only.
An inverted index file contains an inverted list for every term that appears in the
collection. A term’s inverted list identifies all of the documents that contain the
corresponding term. During query evaluation, the system matches the query to doc-
uments by obtaining the inverted list for the query terms and processing the document
entries in those lists. Inverted files are very flexible and support all retrieval models.
Recently Zobel et al. [79] give both analytical and empirical results that show inverted
files are superior to signature files in all aspects, regardless of the retrieval models.

InQuery uses inverted files.

2.1.3 Effectiveness
The effectiveness of a retrieval system is a measure of how well the system ranks rele-
vant documents ahead of non-relevant ones. In this thesis, we will use “effectiveness”

to refer to retrieval accuracy explicitly, and “performance” to refer to execution time

13

and system throughput. The two most widely used retrieval effectiveness measures

are Precision (P) and Recall (R) defined as follows:

Number of relevant documents returned

Precision =
Number of documents returned

Number of relevant documents returned
Recall =

Total number of relevant documents in the collections

Precision is a measure of speciality — how well the system retrieves only relevant
documents. Recall is a measure of completeness — how well the system retrieves all
the relevant documents. In practice, effectiveness is evaluated by two methods. The
first method is to present the precision figures at selected numbers of documents, such
as 5, 10, 15, 20, and 50 documents. The second one is to plot precision at standard
level of recalls. The 11 point R/P method defines precision at the 11 recall levels
0.0, 0.1, 0.2, ..., 1.0. Since recall increases at discrete points that do not necessarily
correspond to these 11 points, a standard interpolation algorithm is used to calculate
precision at 11 points [64]. In this thesis, we use trec_eval [38], a TREC evaluation

program, to calculate the precision-recall table.

2.2 Performance of Distributed Information Retrieval

Distributed IR systems enable users to simultaneously access multiple text collections
distributed over the network. A number of studies have investigated the performance
of distributed IR systems [11, 12, 13, 20, 41, 53, 56, 58, 59, 70, 71]. Most of the
previous work experiments with collections less than 1 GB and focuses on speedup
of query processing for an unloaded system when a collection is distributed over
several servers [11, 41, 53, 56, 58, 59]. Only Couvreur et al. [20], and Cahoon and

McKinley [12, 13] use simulation to experiment with more than 100 GB of data.

14

Macleod et al., Burkowski, and Martin et al. built their distributed IR systems on a
network of very slow servers [11, 41, 56, 58, 59]. The machines they used are IBM
PC/XT, IBM PC/AT, and Apple Macintosh II, and the link speed is 9600 baud.
Macleod et al. explore strategies for distributing the index file and the text file [56].
Burkowski compares uniformly distributing server functionality versus splitting func-
tionality across the servers[11]. Harman et al. report performance in a distributed
prototype system using statistical ranking [41]. Martin et al. consider the effects of
various data caching strategies on browsing and search response time [58, 59]. Since
these early works experiment with orders of magnitude slower machines and networks,
the interpretation of their results are hard to apply to today’s systems.

Lin and Zhou implement a distributed IR system on a network of up to 10 DEC5000
workstations using PVM (Parallel Virtual Machine) to coordinate work and network
communication [53]. They use a variation of the signature file encoding scheme to map
document collections over the network. They experiment with a 100 MB collection
and a 200 MB collection and show large speedups for a single query due to parallel
disk access.

Tomasic et al. examine four possible distributed organization for the inverted indices
in a boolean retrieval system: system, host, I/O bus, and system organizations [70,
71]. In the system organization, inverted lists are distributed evenly across all disks
in the system and each disk holds the same number of terms; In the host and I/O
bus organizations, documents are distributed evenly over hosts or I/O buses, and the
inverted lists on each host and I/O bus are evenly distributed over disks attached to
the host and I/O bus; In the disk organization, documents are distributed evenly over
all disks and an inverted index is built for each disk. They offer empirical results for
systems with up to 4 hosts using both synthetic and actual workloads. Their results
using synthetic workloads that represents a legal document database and assume

query terms are uniformly distributed show that the host organization is superior

15

and the system organization performs worst due to the bottleneck of Lan bandwidth.
Their results using actual workloads from a 2 GB INSPEC abstract database where
inverted lists were relatively short show that the system organization performs best,
because it does not pay to split the short lists across the hosts. Their results can
not directly apply to our systems, because the query terms in our experiments are
skewed, our retrieval system is a full-text retrieval system using the inference network
model, and we experiment with up to a terabyte of text.

Ribeiro-Neto et al. compare the global index organization (system organization) and
the local index organization (disk organization) for a retrieval system based on the
vector space model using a 1 GB TREC3 collection and 50 TREC3 queries [61].
They show that the global index organization performs better than the local index
organization when using a 100 Mbps network, but performs worse when using a 8
Mbps network. In our system, we do not favor the global index organization (system
organization), because our system processes 3 orders of magnitude as much data, and
we investigate performance improvements due to searching a small portion of data
instead of all the data.

Couvreur et al. analyze the performance and cost factors of searching large text
collections (up to 112 GB) [20]. They use simulation models to investigate three
different hardware architectures and search algorithms including a mainframe system
using an inverted list IR system, a collection of RISC processors using a superimposed
IR system, and a special purpose machine architecture that uses a direct search. The
focus of the work is on analyzing the tradeoff between performance and cost. Their
results show that the mainframe configuration is the most cost effective. They also
suggest that using an inverted list algorithm on a network of workstations would be
beneficial but they are concerned about the complexity.

Cahoon and McKinley report a simulation study on a large-scale distributed infor-

mation retrieval system [12] built on a network of DEC5000 workstations. They

16

model and analyze a complete system based on a state of the art effective retrieval
engine, InQuery [14]. They experiment with collections up to 128 GB using a vari-
ety of workloads and investigate how different system parameters affect performance
and scalability of a distributed IR system. In their investigation, they simplify each
server as a single CPU system that handles a 1 GB collection. They show that in
many instances a simple distributed architecture performs well under large, realistic
configurations.

In this dissertation, we use a simulator to experiment with collections up to a terabyte.
We distribute data over a cluster of symmetric multiprocessors, and include the com-
ponents that do not exist in the previous research: collection selection and partial
collection partition. Our workloads include three IR commands: query, summary,
and document commands. We analyze the logs from real IR systems and use their
statistics as a guideline of our workloads. We explore balancing hardware resources,
identify bottlenecks, and investigate performance gains of parallelism, collection se-

lection, and partial collection replication.

2.3 Effectiveness of Distributed Information Retrieval

To maintain effectiveness of distributed information retrieval, the system must be able
to select the most relevant subset of collections in order to reduce the search space (the
collection selection problem) and merge the results from different collections (the result
merging problem or the collection fusion problem). The work on collection selection is
directly beneficial to the execution performance of a distributed information system,

since of course searching fewer collections takes less time.

2.3.1 Automatic Collection Selection
Danzig et al. [23] use a hierarchy of brokers to maintain indices for abstracts of

primary databases (individual collections) and support Boolean keyword matching to

17

locate the primary databases. This broker architecture is a component of the Harvest
system [9] and uses the Essence system [35] to generate the meta information. Since
brokers only keep partial information about each primary database, if users’ queries
do not use keywords in the brokers, they have difficulty finding the right primary
databases.

Voorhees et al. exploit the similarity of a new query to previously evaluated queries [74].
They use relevance judgments for previous queries to compute the number of docu-
ments to retrieve from each collection. This technique only works for relatively static
collections. In addition, relevance judgments are not always available for widely dis-
tributed collections.

GLOSS uses document frequency information for each individual collection to esti-
mate whether, and how many, potentially relevant documents are in a collection [32,
31]. In its boolean version, it estimates the number of potentially relevant documents
in collection C as |C| - ILq(df,/|C|), where t is a term in the query @), df, is the
number of documents in the collection C' containing ¢, and |C| is the number of doc-
uments in the collection C'. In its vector-space version, it ranks the collections based
on the sum of the average weight of each query term (w;/df;), where w; is the sum of
weights of the term ¢ over all documents in the collection C'. The GLOSS approach is
easily applied to large numbers of collections, because GLOSS stores only document
frequency and total weight information for each term in each collection. However its
effectiveness remains undetermined due to limited evaluation.

The Netserf system is an example of incorporating AI technology to locate col-
lections [18]. Netserf extracts structured, disambiguated representations from the
queries and matches these query representations to hand-coded representations of
the archives (individual collections) using semantic knowledge from WordNet (a se-
mantic thesaurus) and an on-line Webster’s dictionary. Manually constructing archive

representations makes this approach only practical for a small number of archives.

18

Fuhr proposes a decision-theoretic approach to solve the collection selection prob-
lem [29]. He makes decisions by using the expected recall-precision curve, expected
number of relevant documents, and cost factors for query processing and document
delivery. He does not report on effectiveness.

Callan et al. adapt the document inference network to ranking collections by simply
replacing the document node with the collection node [15, 54]. Similar to GLOSS,
the collection retrieval inference network stores document frequencies and term fre-
quencies for each term. The query processing is the same as that in the document
inference network, except all proximity operators are replaced with the Boolean AND
operators. Effectiveness is demonstrated with the experiments using the InQuery
retrieval system and 3 TREC collections of 1 GB each. The results show that this
method can select the top 50% of subcollections and get about the same level of
effectiveness as searching all subcollections. The significance of this work is that it
shows that techniques which are effective for document retrieval are also effective for
collection selection.

Xu and Callan present further experiments for using the collection retrieval infer-
ence network model to search the top 10% of subcollections. In their baseline, the
precision drop for the top 30 documents is 30% compared with searching the whole
collection. They improve the accuracy of collection selection by adding phrases in the
collection selection index and using query expansion [77]. By using query expansion,
the precision drop of the top 30 documents reduces to around 10%. But they pay for
this precision improvement with the time for query expansion (executing the original
query and analyzing its top documents) and the time to process additional 20 terms
or phrases added by query expansion for each query.

Among the approaches for collection selection, the collection retrieval inference net-

work model is the one that has been tested more thoroughly than others and shown

19

to be the most effective. In this dissertation, we use the collection inference network

model to select collections, and adapt this model to select a relevant partial replica.

2.3.2 Result Merging

The problem of result merging arises from incomparable ranking scores returned by
searches of the different collections in a distributed environment. Directly merging
results based on the incomparable scores hurts effectiveness [15, 74].

Voorhees et al. propose approaches based on document rankings and previous rele-
vance judgments [74]. The first approach is to interleave the document rankings in
a round-robin fashion. The second approach is uneven interleaving, biased by the
expected relevance of the collection to the query. They demonstrate effectiveness
using the TREC collections. The approach is very effective when a query can find a
previous resemblance. The approach can be easily adapted to search using different
retrieval systems. However, relevance judgments are not always available.

Callan et al. propose a merging approach that assumes the scores for collection rank-
ing are available and use the collection scores to weight document scores from different
collections [15]. This approach is effective when the same retrieval system is used to
search all of the collections, and works for dynamic collections. The effectiveness of
this approach is demonstrated in the experiments with the InQuery retrieval system
on 3 TREC collections of 1 GB each. Ranking based on this approach is about as
effective as ranking based on global scores and more effective than Voorhees et al.’s.

We use this approach in our system.

2.4 Parallel Information Retrieval
Although distributed information retrieval exploits parallelism, we use Parallel Infor-
mation Retrieval to refer to information retrieval implemented on a tightly coupled

multiprocessor in this dissertation.

20

There have been a number of papers regarding using multiprocessor machines for
information retrieval [6, 20, 21, 26, 47, 67, 68, 66]. Most of them use a distributed
memory, massively parallel processing (MPP) architecture [6, 21, 26, 57, 66, 67, 68].
In this dissertation, we investigate how to exploit symmetric multiprocessors (SMPs)
to build parallel IR servers, because SMPs are the most popular and affordable mul-
tiprocessors today. The previous work using SMPs either compares the cost factors
of SMP architecture with other architectures or it investigates a subset of the system
such as the disk system [47]. Although commercial information retrieval systems,
such as the Web search engines AltaVista and Infoseek exploit parallelism, parallel
computers, and other optimizations to support their services, they have not published
their hardware and software configurations.

Couvreur et al. analyze the tradeoff between performance and cost when searching
large text collections [20]. They use simulation models to investigate three different
hardware architectures: a mainframe, a collection of RISC processors connected by
a network, and a special purpose machine. The experiments using a mainframe are
most related to our work. They measure the response time under different query
arrival rates and identify the query arrival rate the system can support within 30-40
seconds. By using a 4-CPU IBM 3090/400E mainframe, they achieve 45 searches per
minute when searching a 14 GB collection.

Jeong and Omiecinski investigate two inverted file partitioning schemes in a shared-
everything multiprocessor system [47]. One scheme partitions the posting file by term
identifiers while the other scheme partitions the posting file by document identifiers.
They focus on the effect of adding disks on system performance. They show that
response time decreases as the number of disks increases up to some threshold. Par-
titioning based on term identifiers performs the best when the term distribution is

less skewed (i.e., when the term distribution in the query is uniformly distributed).

21

Partitioning based on document identifiers performs the best when term distribution
is highly skewed.

Recently the TREC conference [42] reported results for SMPs to process a single
query (rather than in a loaded system as we do here) on a 100 GB collection. Their
fastest SMP system used a 8 CPU 266 MHZ Alpha with 8 disks and achieved the
response time for a single query less than 2 second. In this report, the InQuery system
used a 4 CPU 167 MHZ Sun Ultra and achieved 500 seconds for a query, because it
used slower processors and very long queries (more than 50 terms).

Other related studies use MPPs and focus on how to speed up single query processing.
Stanfill et al. implement their IR system on the connection machine (CM), which is
a fine-grained, massively parallel distributed-memory SIMD architecture with up to
65,536 processing elements [66, 67, 68]. Bailey and Hawking report their IR system
on Fujitsu AP1000, which is a 128-node distributed-memory multicomputer and each
node has a 25 MHZ CPU and 16 MB memory [6]. Cringean et al. and Efraimidis
et al. implement their IR systems on a transputer network, which belongs to the
MIMD class of parallel computers [21, 26].

In this dissertation, we focus on a parallel server built on symmetric multiproces-
sors and analyze how different system parameters such as the number of threads, the
number of CPUs, and the number of disks affect the performance of a heavy loaded
system (see Section 6.1). Besides measuring response time, we also measure the sys-
tem utilization and investigate how to balance hardware resources. We only consider
partitioning based on document identifiers in our experiments on parallel IR server,
because observations on query term frequency distributions in previous work show
that query term distribution is skewed and users tend to use frequently used terms

in the collection [12].

22

2.5 Data Replication

2.5.1 Replication Strategies

Replication has been studied in areas of distributed file systems and distributed
database systems in order to improve system availability and performance. Much
work, especially early work, focuses on availability due to replication [2, 3, 16, 19,
25, 30, 51, 65, 69]. Relatively few papers focus on performance due to replica-
tion [1, 24, 44, 76].

Replication strategies can be classified as static and dynamic replication, based on
when the system decides what to replicate. The File Allocation Problem (FAP) is
an example of static replication, where data is replicated at design time based on
probable access patterns, and remains unchanged during run time [24]. The static
scheme works well if the access pattern is known a priori. However access patterns are
not always predictable. In order to overcome this drawback, researchers have started
to study approaches to dynamic data replication [1, 44, 76]. For example, Acharya and
Zdonik propose a dynamic replication scheme based on the object access pattern [1]
in a distributed database system. They use a finite automaton based structure to
maintain statistics about reads and writes, and use it to learn access patterns. They
use predicted access sequences to dynamically reorder, replicate, or delete copies of
data in the network in order to reduce network message costs.

Replication strategies also can be classified as eager replication (synchronous replica-
tion) and lazy replication (asynchronous replication), based on how to deliver update
information to all replicas [33, 60]. Eager replication makes changes to all replicas at
the same time in order to guarantee strict data convergence and the most up-to-date
data. Lazy replication immediately records information about replicated activities
but delivers them later. Data will converge to consistent values over time.

The work on replication in distributed file systems and database systems can not

directly apply to our work, because the objects we are working on are different from

23

theirs. Our objects are text, generally read-only. while their objects are files or
structured records, and read-write. The data consistency is thus critical in their
applications. Of course we can borrow some ideas from their work, for example, we
construct our replicas based on access patterns.

Recently, researchers have used replication techniques to solve the problem of scale
that occurs in large-scale distributed information systems such as the Web. Katz et al.
reported a prototype of a scalable Web server [49]. They treat several identically
configured HTTP servers as a cluster, and use the DNS (Domain Name System)
service to distribute HTTP requests across the cluster in a round-robin fashion.
Bestavros proposes a hierarchical demand-based replication strategy that optimally
disseminates information from its producer to servers that are closer to its consumers
in the environment of the Web [7]. The level of dissemination depends on the popu-
larity of that document (relative to other documents in the system) and the expected
reduction in traffic that results from its dissemination.

Baentsch et al. implement a replication system called CgR/WLIS (Caching goes
Replication/Web Location and Information Service) [5]. As their name suggests,
CgR/WLIS turns Web caches into replicated servers as needed. In addition, the
primary servers forward the data to their replicated servers. A name service WLIS is
used to manage and resolve different copies of data.

Although we also organize replicas as a hierarchy, our work is different from these
works on Web servers, because our system is a retrieval system while their servers

only contain Web documents.

2.5.2 Server Selection
When multiple replication servers exist in the system, the system needs to select

a “best” server in order to minimize network traffic and distribute the workload.

24

The simplest strategy is random selection among a set of replicas [49]. However this
approach only works when the network and server times for requests are nearly equal.
Guyton and Schwartz investigate several server location techniques based on hop
counts as a distance measure to locate the nearby servers [34]. They collect the
information about hop counts by using router support, route probing, and hop-count
probing. They show that route probing is a method with a reasonable cost and
hop-count probing is the most portable method. All their methods need the network
topology as the input. However knowledge of the network topology is sometimes hard
to acquire.

Carter and Crovella propose a dynamic server selection strategy based on round-
trip measurement and available bandwidth [17]. In order to measure the available
bandwidth, they develop two tools: BPROBE which uses ECHO packets to measure
the bottleneck link speed of paths between hosts in the Internet, and CPROBE which
estimates the congestion along a path. They show that performance of this system is
much better than those of using hop counts as a measure. They also discover that the
server load is an important factor to determine the best server, but their experiments
do not show improvement using this factor due to the high overhead of measuring
server load.

Bhattacharjee et al. investigate using application-layer anycasting to select the best
server [8]. They propose a general architecture for server selection based on application-
layer anycasting, which can support any metric. In particular, they discuss four
metrics: server response time, server-to-user throughput, server load, and processor
load. They use the anycast domain name to identify replicated network services. An
ADN (anycast domain name) resolver is used to resolve the name. They investigate
four possible approaches to maintain information in the anycast servers’ database:
remote server performance probing, server push, reading server logs, and user ex-

perience. Their results show that server push and reading server logs can result in

25

high-accuracy, but they require modifications of current servers in order to collect
the metrics; user experience puts the least overhead on collecting metrics, but its
accuracy is low and varied.

The above technologies are directly applicable to our work to help us find a server with
the least loaded or in the nearest place. However there is a problem in our system that
does not exist in their systems: how to select a replica based on relevance, because
we only partially replicate collections which leads to partial replicas and original
collections that are not equally effective for a given query. We propose an approach

to select partial replicas based on relevance and server load.

26

CHAPTER 3
SYSTEM ARCHITECTURES

This chapter describes the architectures of our distributed information retrieval sys-
tem, as shown in Figure 3.1. The distributed system enables multiple clients to
simultaneously access multiple collections over a network. As shown in Figure 3.1(a),
the basic components of the system are a set of clients, a connection broker, and
a set of InQuery servers for storing indexed collections, where are connected by a
network. In this dissertation, we use a local area network. In order to improve
system performance and eliminate bottlenecks, we add full or partial replicas of col-
lections, collection selectors, replica selectors, and replicas of the connection broker.
Figure 3.1(b) and (c) illustrate two examples of our potential architectures. In Fig-
ure 3.1(b), we add a collection selector in the connection broker to select the most
relevant collections on a query-by-query basis and restrict the search to the selected
collections. In Figure 3.1(c), we build partial replicas for the original collections,
add a replica selector in the connection brokers to direct as many queries as possible
to relevant partial replicas, and for the queries going to the original collection, we
use a collection selector to restrict the search to the most relevant collections. For
high performance, we build each server on a symmetric multiprocessor computer. In
the rest of this chapter, we describe the functionality of each component and their

interactions in details.

27

Client 2

| .
Connection Broker . Collections !

Client m

I Collection
| Selector |

|
Connection Broker t \?
A | ; |
) ! : Collections |

Original
Collections |

Connection Broker

Client m

H

Figure 3.1. Architectures for distributed information retrieval.

28

3.1 Clients

The clients are lightweight processes that provide a user interface to the retrieval
system. Clients interact with the distributed IR system by connecting to the con-
nection broker. The clients initiate all work in the system, but perform very little
computation. They issue IR commands and then wait for responses. The clients can
issue the entire range of IR commands but, in this dissertation, we focus on three
basic IR commands: query, summary, and document retrieval commands.

In InQuery, queries could be natural language queries or structured queries. We focus
on natural language queries in this dissertation. A natural language query com-
mand consists of a set of words or phrases (terms), such as “information retrieval”,
or “distributed system.” Query responses consist of a list of document identifiers
ranked by belief values which estimate the probability that the document satisfies
the information need.

For each query, a client may obtain one or several summaries on relevant documents by
sending summary commands. A summary command consists of a set of document
identifiers and their collection identifiers. The summary information of a document
typically consists of the title and the first few sentences of the document. It may also
include information such as source and organization.

A client may also retrieve complete documents by sending a document retrieval
command. The command consists of a document identifier and a collection identifier.

In response, the system returns the complete text of the document from the collection.

3.2 Collections and InQuery Servers

A collection is a set of documents the retrieval system is working on. A large collection
could contain millions even billions of documents. For simplicity, we assume there are
no overlaps between documents in any two collections. In this dissertation, we use the

InQuery retrieval engine [14, 72] as our testbed to index collections and provide IR

29

services such as evaluating queries, obtaining summary information, and retrieving
documents. We refer to the server as the InQuery server. The InQuery server accepts
a command from the connection broker, processes the command, and returns its result

back to the connection broker.

3.3 Connection Broker

Clients and InQuery servers communicate via the connection broker. The connection
broker is a process that keeps track of all registered clients and InQuery servers. A
client sends a command to the connection broker which forwards it to the appropriate
InQuery servers. The connection broker maintains intermediate results for commands
that involve multiple InQuery servers. When an InQuery server returns a result, the
connection broker merges it with other results. After all InQuery servers involved in
a command return results, the connection broker sends the final result to the client.
Besides keeping track of all clients and InQuery servers, we may also enhance the

connection broker to perform collection selection or replica selection.

3.3.1 Collection Selector

When there are a large number of collections, we use a collection selector to auto-
matically select the most relevant collections on a query-by-query basis. A collection
selector maintains a collection selection database that contains collection-level infor-
mation on data distributed over all InQuery servers. When the collection selector
receives a query, it searches the collection selection database and returns a list of
the most relevant collection identifiers and corresponding collection ranking scores.
The connection broker uses the collection ranking scores to weight document scores
from different collections in order to produce comparable overall document rankings

(see [15]).

30

3.3.2 Replica Selector

When we only replicate a small portion of the original collection(s) for efficiency, we
need a replica selector to direct as many queries as possible to partial replicas based on
both relevance and loads. As opposed to collection selection which ranks disjunctive
collections, replica selection ranks partial replicas and the original collection(s), which
hold a subset relationship. A partial replica could be a replica of a single collection,
or a replica of several collections. In Figure 3.1(c), we view all original collections as
a whole, and build partial replicas for the whole original collections. In our system,
we organize our partial replicas as a hierarchy: a smaller replica is a subset of larger
replicas and the original collection(s) (see Section 4.2 for details). A replica selector
maintains a replica selection database and the load information of each server. For
each query command, the replica selector searches this database and returns either
a replica identifier if there is a relevant replica, or a collection identifier. When the
replica selector returns a replica identifier, it sends the query to the replica if it is
not overloaded, otherwise it sends the query to a larger replica or the server(s) that

store(s) the original collection(s).

3.3.3 Interactions

For a query command, the connection broker could perform different functions ac-
cording to the system architecture. In the base system illustrated in Figure 3.1(a),
the connection broker sends the query to all InQuery servers, and then merges the
results. In the system illustrated in Figure 3.1(b), the connection broker uses a collec-
tion selector to obtain a list of top collections, sends the query to the corresponding
InQuery servers maintaining these collections, and then merges the results. In the
system illustrated in Figure 3.1(c), the connection broker first uses a replica selector
to determine whether there is a partial replica that is not only relevant to the query,

but also not overloaded; If there is one, the connection broker sends the query to the

31

InQuery server(s) that maintain the relevant replica, otherwise it uses a collection
selector to obtain a list of top collections out of the original collections, and sends the
query to the InQuery servers that maintain the selected collections.

For a summary command, the connection broker sends the command to the InQuery
servers whose identifiers are described in the command. The connection broker merges
the summary information responses and sends a single message back to the client.
For a document retrieval command, the connection broker sends the command to the
InQuery server that contains the document, and then forwards the document to the

client as soon as it receives the document from the InQuery server.

32

CHAPTER 4
PARTIAL COLLECTION REPLICATION

Partial collection replication is truly useful for information retrieval only when it

satisfies the following four conditions:

1. Query and document accesses localize in a small portion of a collection within

a period of time.
2. There is an effective tool to select a relevant partial replica.
3. The time and space overheads for replica selection are reasonable.
4. The updating costs are reasonable.

In this chapter, we discuss the issues related to these conditions. The remainder
of this chapter is organized as follows: we examine the locality in real systems in
Section 4.1, present our partial replication architecture in Section 4.2, explore how
to select a relevant replica in Section 4.3, discuss how to select a replica based on
loads in Section 4.4, investigate space and time overheads for the replica selection
database in Section 4.5, investigate updating costs and strategies in Section 4.6, and

summarize in Section 4.7.

4.1 Access Characteristics in Real IR Systems
We examine the locality of access in the logs of real IR systems. We analyze two
server access logs, one from THOMAS [52], and the other from Excite [27]. The

THOMAS system is a legislative information service of the U.S. Congress through

33

the Library of Congress, which uses InQuery as the retrieval engine. It contains the
full text of all bills introduced in the 101st - 105th Congresses as well as the text of
the Congressional Records for those Congresses. We analyze the logs of THOMAS
between July 14 and September 13, 1998. During this period, we obtained the full
day logs for 40 days, and partial logs on the remaining 22 days. The reasons for the
latter was lack of disk space in the mailing system of the Library of Congress when
they sent us the logs. The Excite system provides online search for more than 50
million Web pages. We obtained the Excite for the day of September 16, 1997.
Figure 4.1 lists some excerpts from the THOMAS and the Excite logs. The THOMAS
logs contain information on both query and document commands. For each command,
the system records the date and time for receiving the command, the database iden-
tifier, and the response time. In addition, for each query, the system records query
terms and creates a server-side temporary file to save the search results; For each doc-
ument command, the system records its reference to a temporary file that saves the
search results for the corresponding query. The Excite log only contains information
on query commands. It contains the user identifier, the date and time for receiving
the query and query terms for each query.

In examining the logs, we paid attention to the following characteristics.

1. The ratio of query processing and document access. The ratio determines which
database components we need to replicate to maximize the benefit of partial

collection replication.

2. Query locality within a period of time, which determines the usefulness of partial

replication.

3. The overlap of queries between days and weeks, which determines how often we

need to update the replicas.

34

Date & Time DB ID. Queries or Document Commands
[Tue Jul 14 00:14:54 1998] c105: bliley (1 sec.)
[Tue Jul 14 00:14:59 1998] c105: taxpayer relief act (0 sec.)
[Tue Jul 14 00:15:02 1998] r105: GET 2:./temp/"r1051rYH9g:e8650: (0 sec.)
[Tue Jul 14 00:15:02 1998] c105: GET 1:./temp/~c1051k16ck:e13399: (0 sec.)
[Tue Jul 14 00:15:05 1998] c105: Patients (1 sec.)
[Tue Jul 14 00:15:09 1998] c105: GET ./temp/~c105xXJ6Ff (2 sec.)
[Tue Jul 14 00:15:16 1998] c105: religion, persecution (1 sec.)
[Tue Jul 14 00:15:18 1998] r105: Irian Jaya (1 sec.)
[Tue Jul 14 00:15:20 1998] r102: GET 7:./temp/"r102B83a2h:e35483: (1 sec.)
[Tue Jul 14 00:15:24 1998] c105: GET 2:./temp/"c105A4ny:: (0 sec.)
[Tue Jul 14 00:15:38 1998] c105: GET S.1882: (2 sec.)

(a) Excerpts from the THOMAS log

User ID. Date & Time Queries
54DBD92B4F227161 970916121245 adams mark hotel
54DBD92B4F227161 970916121344 adams mark hotel tulsa
B94D2253628531DC 970916154549 site maps
B94D2253628531DC 970916154551 site map
B94D2253628531DC 970916154632 site map servers
B94D2253628531DC 970916154918 site map virtual
B94D2253628531DC 970916160709 web site maps

(b) Excerpts from the Excite log

Figure 4.1. Excerpts from the THOMAS and Excite logs.

4.1.1 Ratio of Query Processing and Document Access

We know an IR system has three basic IR commands: query, summary, and docu-
ment commands. Among them, query commands access term inverted list files to
produce a ranked list of relevant document identifiers; summary commands and doc-
ument commands access document inverted list files and the original data files to
obtain summary information for a set of documents and the full text of a document.
According to the database components each command accesses, we categorize the
commands into two categories: query processing that includes the query command,

and document access that includes both summary and document commands. If one

35

queries : documents
average minimum maximum
1:1.9 1:2.4 1:0.4
percentage of documents falling within ranks
1-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-80 | 81-100 | 101-200 | >200
75.8% | 9.5% | 52% | 3.7% | 3.6% | 0.3% | 0.5% | 0.4% 0.5% 0.6%

Table 4.1. Ratios of queries and documents in the THOMAS log.

of them accounts for the majority of system processing time, we only need to replicate
a subset of database components to improve system performance.

We examine the THOMAS logs for the ratio of query processing and document ac-
cesses, where, on the average, the system receives 5928 queries and 10433 document
commands per day. We do not examine the Excite log, since it does not contain
information about document access. Table 4.1 lists the average, minimum, and max-
imum ratios of queries and viewed documents per day, and the average percentages
of viewed documents that are ranked as from m to n (see Table B.6 in Appendix B
for more details). On the average, for each query command, the user viewed 1.9
documents. 75.8%, 90.5% and 97.8% of the documents the users viewed were ranked
in the top 10, the top 30, and the top 50, respectively. Only 0.6% of documents the
users viewed were ranked higher than 200.

Since we do not have system measurements of the THOMAS system, we estimate
the percentage of the total system processing time used for each type of IR com-
mands by building a test database using the Congress Record for 103rd Congress
(235 MB, 27992 documents), which is a part of the TREC 4 collection [39] and one
of the collections THOMAS is using. We ran the top 1000 unique queries issued on
July 14, 1998 against this test database. The average terms per query for these 1000
unique queries was 1.9. We assume each summary command returns the summary
information for 10 documents, and calculate the average number of summary com-

mand based on the document ranks the users viewed in Table 4.1. For each query

36

command, the user issued 1.5 summary commands. When we obtained the times for
processing each type of commands, we set the ratio of the three basic IR commands
(query:summary:document) to be 1:1.5:2, and chilled the system by reading a large
file before processing each IR, command. The ratio of time used for processing query
command, summary command, and document commands is 1:1.2:0.07, which means
the query processing accounted for 44% of total processing time, obtaining summary
information accounted for 53%, and document retrieval accounted for 3%.

Our analysis suggests that our partial collection replica should be beneficial for speed-
ing up both query processing and document access (summary and document com-
mands), since each of them accounts almost a half of the total system processing

time.

4.1.2 Query Locality

We examine the query locality in the THOMAS and the Excite logs. Since the logs
do not contain document identifiers returned from each query evaluation, we built
test databases. For queries from the THOMAS log, we reran all queries against a
test database that uses the Congress Record for 103rd Congress (235 MB, 27992
documents). For queries from the Excite log, we reran all queries against a test
database using downloads of the websites operated by ten Australian Universities
(725 MB, 81334 documents), which is a part of the TREC 6 collection (see Appendix
A). We use the test databases to automatically cluster queries. We group the queries
whose top 20 documents completely overlap as a topic, i.e., we view these distinct
queries as the same.

Table 4.2 shows the statistics on query locality from the THOMAS and Excite logs.
We collect the average number of queries, unique queries, topics, topics occurring
once, topics occurring more than once, and topics that contain more than one unique

query. We also present the percentage of queries that correspond to the top topics.

37

Num. Topics
Num. unique occurring more than | more than one
queries queries total once once unique query
8143 (7703) 4876 (4651) 4069 2888 (71%) 1181 (29%) 412
percentages of queries that top topics account for
100 200 500 1000 2000
21.2% 28.7% 41.5% 54.1% 73.0%
(a) Query locality in the THOMAS log.
Num. Topics
Num. unique occurring more than | more than one
queries queries total once once unique query
499836 (444899) | 365276 (320987) | 249405 | 196672 (79%) | 52733 (21%) 32750
percentages of queries that top topics account for
500 1000 5000 10000 20000
12.3% 16.0% 27.9% 34.4% 42.0%

(b) Query locality in the Excite log.

Table 4.2. Query locality in the logs.

Table 4.2(a) shows the average numbers in the THOMAS logs over the 40 days with
full day logs (see Table B.1 and Table B.2 in Appendix B for more details). The
numbers in the parentheses in columns 1 and 2 are the numbers of queries that
actually found matching documents from our test database. Some queries did not
find any matching document, due to misspelling, or simply because the query terms
did not exist in the test database. The statistics show that on the average, 71%
of topics occur once, and the remaining 29% of topics account for 63% of queries.
Among the topics that occur more than once, 35% (412) contains more than one
unique query, which means query pattern match would not find this overlap. The
top 2.5% of topics (top 100 topics) account for 21.2% of queries, and the top 12% of
topics (the top 500 topics) account for 41.5%.

Table 4.2(b) shows the numbers in the Excite log on September 16, 1997. The numbers
in the parentheses are the numbers of queries that actually found matching documents

from our test database. The statistics show that the Excite queries also have high

38

query locality: 79% of topics occur once, and the remaining 21% of topics account
for 61% of queries; Among the topics that occurred more than once, 62% (32750)
contain more than one unique query. The top 2% of topics (top 500 topics) account
for 12.3% of queries, and the top 10% of topics (the top 20000 topics) account for
42.0%.

These statistics suggest that it is possible for us to replicate a small portion of col-
lection that contains documents for the top queries. In addition, since a significant
amount of topics contains more than one unique query, caching queries may miss
many overlaps between queries with different terms that in fact return the same top
documents. Instead, we make our replicas searchable to improve both query process-

ing and document access.

4.1.3 Overlap of Queries Over Time

In this section, we examine how many queries on a given day match a topic from the
previous days in the THOMAS logs. We collect the percentages of queries that appear
in the previous day, and in the previous seven days. We also collect the percentages
of queries that appear on a particular day or a particular week, in order to examine
query overlap over time. Table 4.3 summarizes the statistics (see Table B.3-B.5 for
more details).

Table 4.3(a) shows the average percentages of queries on a given day such that the
topics of these queries match a topic, or one of the top 1000 topics from the previous
day or the previous week, respectively. We calculate the numbers in the table from
28 days of our logs. We exclude the first 7 days and include the second day of the
remaining pairs of days which have full logs for both days. We exclude the days in
the first week to enable comparisons between the numbers for the previous day and

the previous week.

39

Overlap with

the previous day the previous week
ave. min. max ave. min. max
all 43.1% | 31.2% 81.1% 57.8% | 49.1% 82.6%
top 1000 || 32.4% | 21.3% 78.1% 34.6% | 26.2% 77.8%
(a) overlap with the previous day(s).
Overlap with
7/14/98 the week on 7/14-7/20/98
date all top 500 | top 1000 all top 500 | top 1000
7/15 43.3% | 24.8% 30.1% n/a n/a n/a
7/16 || 42.6% | 24.0% | 29.2% n/a n/a n/a
7/17 42.0% | 23.5% 28.7% n/a n/a n/a
7/21 41.6% | 23.6% 28.5% 60.2% | 29.0% 36.0%
7/22 42.5% | 24.0% 28.8% 60.7% | 29.8% 36.8%
7/23 41.4% | 23.4% 28.7% 61.0% | 29.2% 36.8%
7/31 38.5% | 21.9% 26.4% 59.1% | 27.3% 34.2%
8/14 38.1% | 21.3% 26.0% 54.6% | 26.8% 32.3%
8/28 34.3% | 18.3% 23.4% 54.0% | 23.5% 30.7%
9/11 44.0% | 8.7% 22.2% 82.7% | 54.5% 64.5%

(b) overlap with a particular day or week.

Table 4.3. Query overlap over time in the THOMAS log.

When our replica contains the top documents for all the topics occurring on the
previous day, 43.1% of queries match a topic in the replica on the average, with
the minimum of 31.2% and the maximum of 81.1%. When our replica just contains
documents for the top 1000 topics occurring on the previous day, 32.4% of queries
match a topic in the replica on the average, with the minimum of 21.3% and the
maximum of 78.1%. When our replica contains documents for all topics occurring
on the previous seven days, 57.8% of queries matched a topic in the replica on the
average, with the minimum of 47.0% and the maximum of 82.6%. When our replica
contains documents for the top 1000 topics occurring on the previous seven days,
the 34.6% of queries match a topic on the average, with the minimum of 26.2% and

the maximum of 77.8%. As compared with the overlap with the previous day, 34.1%

40

and 6.7% more queries match a topic in the replica of the previous week, when we
replicate all topics and top 1000 topics, respectively.

Table 4.3(b) shows the average percentages of queries on a given day such that these
queries matched a topic, or one of the top 500, or one of the top 1000 topics on
July 14, 1998 and in the week from July 14 to July 20, 1998, respectively. The
statistics show that typically query overlap tends to decrease as time elapses, but
occasionally query overlap could increase significantly, e.g, on 9/11/98. In the typical
days when the query overlap decrease, the decrease is very gradual, for example, let
(m,n) represents the query overlap between the day(s) of m and the day of n, the
difference between (7/14, 7/15) and (7/14, 7/17) is 1.3%, 1.3%, and 1.4% when we
replicate all topics, the top 500 topics, and top 1000 topics on 7/14, respectively.
The difference between (7/14-7/20, 7/21) and (7/14-7/20, 7/23) is 0.8%, 0.2%, and
0.8% when we replicate all topics, the top 500, and top 1000 topics on 7/14-7/20,
respectively.

The statistics on query overlap suggests that if we replicate the top topics on the
previous days, significant amount of queries can match a topic in the replica. Actually
the replica can satisfy more queries than the numbers we report in the tables on
query overlap, because we do not count the queries whose topics do not appear on
the previous days, but their top documents returned from query evaluation appear in
the replica, i.e. the set of top documents of a query is a combination of top documents
of another two or more topics. Since the logs do not contain document identifiers and

our test database is pretty small, we can not obtain the figures about this situation.

Summary
Both the THOMAS logs and the Excite log show there exists high query locality in
the real IR systems. Caching queries and query exact matching miss many overlaps

between queries with different terms that in fact return the same top documents. If

41

we replicate topics appeared on the previous day(s), the replica can satisfy 20% to
80% of queries. Since the IR systems typically perform significant amount of query

processing and document access, our partial replica should support both operations.

4.2 The Partial Replication Architecture

Since our goal is to improve system performance for both query processing and doc-
ument access, each replica is a searchable partial collection, i.e., each replica includes
replicated documents and their corresponding indexes. We determine which portion
of documents to replicate in the following way: for a given query, we tag all top n
documents returned by query processing as “accessed” and count their access fre-
quencies, regardless of whether the user requests the full text of these documents.
We keep the access frequency of each document within a period of time, such as a
week or a month, and then replicate documents based on their access frequencies: the
more frequently “accessed” the documents, the more times they are replicated.

We organize replicas as a hierarchy, illustrated in Fig 4.2. The top node represents
an original collection that could be an actual collection residing on a network node or
a virtual collection consisting of several collections distributed over a network. The
bottom nodes represent users. We may divide users into different clusters, each of
which corresponds to a group of users that reside within the same domain, which
could be an institution, an organization, or a geographical area such as a state or
a country. The inner nodes represent partial replicas. The replica in a lower layer
is a subset of the replicas in upper layers, for example, Replica 1-1 C Replica 1 C
Original Collection. The replica that is closest to a user cluster contains the set of
documents that are most frequently used by the cluster of users. The replica may
contain frequently used documents for more than one cluster of users, for example,
Replica 1 contains the frequently used documents for n user clusters. The solid lines

illustrate data flows disseminated from the original collection to replicas. Along the

42

Original Collection b
Replica 1
P Replica 1-p

\
|
i
i 1 v . '
: Lo Replica 1-p-1 Replica 1-p-m
| h ,’ ;
; ; | ;
Replica Selection ! Replica Selection Replica Selection !
Database 1 '
! Database 2 Database n

User Cluster 1 __ | User Cluster 2}

Figure 4.2. The replication hlerarchy

Replical-1 >

arcs from the original collection, the most frequently used documents are replicated
many times. Requests from the users in a cluster may go to any replica or the original
collection along the arcs from the top node depending on relevance and other criteria,
such as server loads. We build a replica selection database to rank replicas based
on relevance, which directs queries to a relevant partial replica. The dotted lines
illustrate the interaction between users and data. If we do not divide the users into
different groups, the hierarchy simplifies to a linear hierarchy. In this architecture,

replica selection is a two-step process:
1. ranking partial replicas and the original collection based on relevance.

2. selecting one of the most relevant replicas or the original collection based on

loads.

Here we give an example to show how this architecture works. In Figure 4.2, we
replicate the top documents of the most frequently used queries issued by the users

in user cluster 1 in both Replica 1-1 and Replica 1. Replica 1 also contains other

43

less frequently used documents for user cluster 1, and frequently used documents for
other user clusters. When a user in the user cluster 1 issues a query, the query goes
to replica selection database 1 to determine relevance of Replica 1-1, Replica 1, and
the original collection. If the replica selector ranks Replica 1-1 as the top one, it
may send the query to any of Replica 1-1, Replica 1, or the original collection for
processing, based on other criteria, such as server load, network traffic, and network
distance. If the selector ranks Replica 1 as the top one, it may send the query to
either Replica 1 or the original collection. Otherwise it always sends the query to the

original collection.

4.3 Partial Replica Selection Based on Relevance

The first step of replica selection is how to find a partial replica that contains enough
relevant documents for a given query. In this section, we investigate how to do this
task with inference networks, and evaluate the effectiveness of our replica selection
approach using the InQuery retrieval system [14], and the 2 GB TREC 2+3 collection
and the 20 GB TREC VLC collection. We use queries developed for TREC topics
51-350 in our experiments. We compare our proposed replica selection function with
the collection ranking function. We measure the system’s ability to pick the expected
partial replica, and the precision of the resulting response as compared with searching
the original collection.

The rest of the section is organized as follows: Section 4.3.1 investigates how to
rank partial replicas and the original collection using the inference network model,
Section 4.3.2 describes the experimental settings, Section 4.3.3 compares our proposed
replica selection function with the collection selection function, Section 4.3.4 and
Section 4.3.5 further demonstrate the effectiveness of our approach for both replicated
queries and unreplicated queries, and Section 4.3.6 summarizes the results of this

section.

44

Collection
Network

Query
Network

Figure 4.3. The collection retrieval inference network.

4.3.1 Ranking Partial Replicas with the Inference Network Model

We adapt the collection retrieval inference networks that Callan et al. propose to
rank collections [15] to rank partial replicas and the original collection. The collection
retrieval inference network model consists of two component networks: a collection
network and a query network, illustrated in Figure 4.3. The D; nodes correspond
to collections, and the r; nodes correspond to concepts in the collections. The @
node represents a query, and the ¢; nodes correspond to query concepts in the query.
By using the collection retrieval inference network, collection ranking becomes an
estimate of P(I|D;) from combining the conditional probabilities through the network.
When we adapt the collection retrieval inference network model to rank replicas,
we use D; nodes to represent the original collection and partial replicas, where D,
represents the original collection, D;,7 = 1,2,...n — 1 represent partial replicas, and
D, C Dy C ... C D,. (In the collection retrieval inference network, the D; nodes do
not hold the subset relationship.) The purpose of ranking partial replicas is to find
a single replica that satisfies a given query instead of a subset of collections in the
collection retrieval inference network. We refer to this inference network as to the
replica selection inference network. As in the collection retrieval inference network

model, P(cg|r;) is set to 1.0. The central work of applying this inference network

45

o dfi
dfi+k-(1—b) +b- 2

ave_cw

B 1og(% +0.5)
log(|N| + 1.0)
P(leDz) =a+(1—a) -T-1
where
dfi; is the number of documents that contain term r; in collection D;,
cw; is the number of words in collection D;,
ave_cw is the average number of words,
N is the number of collections,
cf is the number of collections that contain ;.
k is a constant that controls the magnitude of df (the default is 200),
b is a constant varying from 0 to 1 used to control the sensitivity of
the function to cw (the default is 0.75), and
! is a default belief (set to 0.4).

Figure 4.4. The collection ranking function in InQuery.

to replica selection is to develop an effective replica ranking function to estimate
P(r;|D;).

Since we adapt the collection retrieval inference network, we first examine whether
the InQuery collection ranking function works well with ranking partial replicas.
The InQuery collection ranking function uses df (the document frequency of each
term) as the basic metric, as shown in Figure 4.4 [15]. In our experiment settings
in Section 4.3.2, the default InQuery collection ranking function directs more than
70% of the replicated queries to the original collection, however, since we use these
replicated queries to build replicas, the replica selector should direct them to the
replicas instead of the original collection. Although we can tune the parameters of
the InQuery collection ranking function to direct more queries to the replicas, the
precision drops too much, for example, the precision drops approximately 25% when
the function directs 80% of replicated queries to the replicas (see Section 4.3.3 for

the details). The InQuery collection ranking function does not work well with replica

46

selection, because it favors collections with larger df, but partial replicas typically
have smaller df than the original collection.

Since a partial replica contains the top documents of the most frequently used queries,
by examining the document ranking function, we know that the top documents are
ranked as the top, just because query terms occur more often in these documents than
the others. Therefore if a replica contains the top documents for a query, the average
term frequency of each query term in the replica should be higher than in the original
collection. Based on this heuristic, we construct a replica selection function based
on the average term frequency. In addition, we find a term is important in selecting
replicas if it occurs often (middle or high term frequency) in that replica/collection
and it also occurs in a certain number of documents (above a cutoff for document
frequency). A term occurring in too few documents does not help even though it
has high term frequency. We need to cut off these terms. Figure 4.5 illustrates
our replica selection function which uses the average term frequency and penalizes
the terms that appear less than a cutoff in the corresponding replica/collection. We
compare this function with the InQuery collection ranking function in Section 4.3.3,
and demonstrate its effectiveness using 350 TREC queries on a 2 GB collection and
a 20 GB collection in Section 4.3.4 and Section 4.3.5.

In order to automatically set the cutoff value in each replica, we examine the statistics
of the document frequency in each replica/collection. We find there is an approximate
relationship between average document frequency and the number of documents, and
between maximum document frequency and the number of documents in replicas
with different sizes, illustrated in Figure 4.6. Figure 4.6(a) shows the statistics for
short queries from test trial 1 described in Section 4.3.2. Figure 4.6(b) illustrates
the equations that describe the relationship between document frequencies derived

from the statistics. When we replicate the top n documents for each frequently used

47

thij

ave_tf =
=,
4 ave_tf if dfy; > cutoff;
=\ avetf i otherwise
cutoff;

AT
T =
AT + k- (1 —b) + b - —ave=doclen; _

ave_ave_doclen
B log(% +0.5)
log(|N| + 1.0)
P(rj|D;))=a+(1—-a)-T-I

where

ctfi; is the number of occurrences of term r; in collection/replica D;,

dfi; is the number of documents that contain term r; in collection/replica D;,

cutoff; is the cutoff number of documents in replica/collection D;,

N is the number of replicas plus the original collection,

rf is the number of replicas and the collection that contain r;,

ave_doclen; is the average document length in collection/replica D;,

ave_ave_doclen is the average ave_doclen;,

k is a constant that controls the magnitude of AT,

b is a constant varying from 0 to 1 used to control the sensitivity of
the function to ave_doclen, and

! is a default belief (set to 0.4).

Figure 4.5. The replica selection function.

query, we set the cutoff of the smallest replica as n, and set the cutoffs for other
replica/collection using the equation shown in Figure 4.6(c).

We implement the replica selection inference network as a pseudo InQuery database,
where each pseudo document corresponds to a replica or collection, its index stores the
df (document frequency) and ctf (replica/collection term frequency) for each term. We
do not store any proximity information in order to minimize the space requirements
of the replica selection database. As in the collection retrieval inference network, all

proximity operators are replaced with Boolean AND operators.

48

Docs log(DN) log(DN)

Top n repl_db (DN) || avedf | log(ave_df) || maz_df | log(max_df)
D1 4,868 19.18 2.87 2,986 1.06
D2 9,495 25.31 2.83 5,584 1.06
100 D3 13,738 29.77 2.81 8,181 1.06
D4 17,555 32.44 2.81 10,498 1.06
D5 21,643 34.29 2.83 12,941 1.05
D1 9,573 23.96 2.88 5,817 1.06
D2 18,336 30.65 2.87 10,868 1.06
200 D3 26,280 36.47 2.83 15,709 1.05
D4 33,133 40.32 2.82 19,941 1.05
D5 40,611 43.10 2.82 24,319 1.05
D1 23,133 33.62 2.86 13,837 1.05
D2 42,669 41.72 2.86 25,447 1.05
500 D3 60,240 49.20 2.83 35,908 1.05
D4 73,747 53.76 2.81 44,329 1.05
D5 88,739 57.48 2.81 52,805 1.05
TREC 243 (2 GB) 567,529 101.13 2.87 255,529 1.06

(a) The statistics for short queries on relationship of document frequencies from test trial 1

log(DN;) log(DN;)

log(ave_df;) log(ave_df;)

log(DN;) log(DN;j)
log(maz_df;) log(maz_df;)

where

DN; is the number of documents in replica/collection D;,

ave df; is average document frequency in replica/collection D,
maz_df; is maximum document frequency in replica/collection D;.

(b) The equations for relationship between document frequencies

log(DN;)
cutoff; = cutoff; °s™@N1)

where

cutoffi is the cutoff value for the smallest replica D;, which we set
as the number of top documents for each query,

cutoff; is the cutoff value for the replica/collection D;,i > 2,

DNy is the number of documents in the smallest replica Dy, and

DN; is the number of documents in replica/collection D;,i > 2.

(¢) The equation for the cutoff

Figure 4.6. The relationship between document frequencies in different replicas with
different sizes.

49

4.3.2 Experimental Settings

We evaluate the effectiveness of our replica selection approach using the InQuery
retrieval system [14, 72|, and a 2 GB TREC collection that contains TREC 2+3
collections, and a 20 GB collection that contains all TREC 6 VLC collections (see
Table A.1). We use queries developed for TREC topics 51-350 in our experiments.
We measure the system’s ability to pick the relevant partial replica, and the precision
of the resulting response as compared with searching the original collection. We use
TREC queries instead of the queries from the logs, because some of TREC queries
have relevance judgments that enable us to produce precision and recall figures for
evaluating the effectiveness.

By using the 2 GB collection, we compare the effectiveness of our replica selection
function with the InQuery collection ranking function using short queries, and demon-
strate the effectiveness of our replica selection function using both short queries and
long queries. A short query is simply a sum of the terms in the corresponding de-
scription field of the topic. Long queries are automatically created from TREC topics
using InQuery query generation techniques [14], which consist of terms, phrases and
proximity operators. Generally, a long query for a topic is more effective than the
short query [14]. The average number of terms per query for the set of short queries
is 8 after removing the stopwords, and the average number of terms per query for the
set of long queries is 120. For each set of queries, we divide queries into two cate-
gories: replicated queries and unreplicated queries, where the replicated queries are
those whose top documents are used to build the replicas. Since only topics 51-150 and
topics 202-250 have relevance judgment files for the 2 GB TREC collection, we ran-
domly pick 50 unreplicated queries from these 149 topics and report the effectiveness
for these topics only.

By using the 20 GB collection, we examine how the size of collection affects the

effectiveness of our replica ranking function. Since we do not have relevance judgment

90

files for topics 51-150 and topics 202-250 against the 20 GB collection, and the 2 GB
collection is a subset of the 20 GB collection, we use the relevance judgment files for
the 2 GB collection to produce the precision figures.

We conduct our experiments by repeating the following procedure 5 times, each trial
uses a different number as the seed to produce random numbers, and thus picks
different queries for a query set. In each trial, we randomly choose 50 queries from
queries {51-150, 202-250} as our unreplicated query set T, and randomly divide the
remaining 250 queries in queries 51-350 into 5 sets: {Q;,¢ = 1,2,3,4,5}, each set
containing 50 queries. We then build a 6-layer replication hierarchy by using the
2 GB TREC collection or the 20 GB collection as the original collection C', and
collecting the top n documents resulting from searching the original collection for

each query in {Q;,7 =1,2,3,4,5} to build 5 partial replicas {D;,i = 1,2, 3,4,5}:

e D;: contains the top n documents for each query in query set @1, |Q1| = 50,

total n * 50 documents.

e D,: contains the top n documents for each query in query sets)1 and @,

|Q;| = 50, total n x 100 documents.

e Djs: contains the top n documents for each query in query sets {Q;,¢ = 1,2, 3},
|Q;| = 50, total n x 150 documents.

e D,: contains the top n documents for each query in query sets {Q;,7 = 1,2, 3,4},
|Q;| = 50, total n * 200 documents.

e Ds: contains the top n documents for each query in query sets {Q;,7 = 1,2,3,4,5},

|Q;i| = 50, total n x 250 documents.

Clearly, D; C Dy C D3 C D5 C C. This structure mimics 5 replicas that increase in

size and thus include more of the top queries for each size increase. We build a replica

o1

selection inference network to rank these five replicas and the original collection. The
queries in query sets {Q;,7 =1,2,3,4,5} are called replicated queries.

Table 4.4 lists the average number of documents in each replica over the five trials
after deleting duplicated documents, the average number of words, and the average
size of replicas when building different replicas by using different numbers of top
documents, as well as the statistics from two original collections. When using the 2
GB collection as the original collection, the size of replicas ranges from 0.3% to 1.5%,
1% to 5%, 2% to 10%, and 5% to 20% of the original collection when replicating the
top 30, 100, 200, and 500 documents, respectively. When using the 20 GB collection
as the original collection, the size of replicas ranges from 0.1% to 0.5%, 0.2% to 1%,
and 0.5% to 2% of the original collection when replicating the top 100, 200, and 500
documents, respectively.

For the 20 GB collection, we conduct one more experiment in order to make up for
insufficient relevance judgments for topics {51-150,202-250}. We use queries 301-350
as our unreplicated query set 7', since these 50 topics are more thoroughly judged
against the 20 GB VLC collection than topics {51-150, 202-250}. We use queries
51-100 as @1, 101-150 as @2, 151-200 as @3, 202-250 as @4, and 251-300 as Qs.
When we evaluate a document or collection ranking function, we say a function is
better than others if and only if it can produce higher precision at selected numbers of
documents or at all standard levels of recall (see Section 2.1.3). In the case of replica
selection, we need to add another criterion for the ranking function: directing as
many queries as possible to the relevant replicas in order to improve system execution
performance. We can tune the parameters of our functions to control the percentage
of replicated queries to the replicas (as shown in Section 4.3.3). The range varies from
0% to 90%. None of the function we tested can direct 100% of replicated queries to

the replicas. However when we direct more queries to the replicas, we have to tolerate

52

Docu— Mega—

Type Top n | Replica ments Words bytes
Dy 1,485 573,664 7

Dy 2,937 1,130,997 14

30 D3 4,357 1,666,232 20

Dy 5,736 2,208,214 26

Ds 7,089 2,790,213 33

Dy 4,876 1,923,076 23

Dy 9,528 3,744,509 45

100 D3 13,968 5,498,714 66

short Dy 18,206 7,121,502 85
queries Ds 22,261 8,858,102 106
(2 GB) Dy 9,636 3,981,842 48
Dy 18,552 7,618,586 91

200 D3 26,888 10,950,917 131

Dy 34,649 14,050,086 168

Ds 41,913 17,071,744 203

D, 23,301 9,932,345 118

D 43,594 18,283,682 218

500 D3 61,710 25,673,460 306

Dy 77,611 31,896,449 380

Dsy 92,063 37.595,894 447

Dy 4,832 2,185,651 26

D 9,394 4,186,336 50

100 D3 13,619 5,886,587 70

Dy 17,716 7,618,973 90

Ds 21,568 9,365,920 111

Dy 9,492 4,341,903 51

long Dy 18,167 8,246,402 97
queries 200 D3 26,017 11,449,203 135
(2 GB) Dy 33,473 14,624,078 173
Ds 40,359 17,693,365 209

Dy 22,826 9,993,915 118

Dy 42,285 18,310,400 217

500 D3 59,149 24,894,518 295

Dy 74,310 30,891,460 366

Ds 87,931 36,408,245 431

Dy 4,945 1,878,596 19

D 9,820 3,773,565 38

100 D3 14,594 5,545,532 56

Dy 19,273 7,395,924 76

Ds 23,862 9,273,290 94

D1 9,854 3,799,082 39

short D»> 19,507 7,621,580 7
queries 200 | D3 28,910 11,222,525 114
(20 GB) Dy 38,040 14,883,811 151
Ds 46,988 18,703,226 190

Dy 24,372 9,558,280 96

Ds 47,763 18,675,898 189

500 D3 70,683 27,381,547 277

Dy 92,701 36,326,863 368

Ds 113,664 44,966,965 455

TREC 243 (2 GB) 567,529 169,886,550 2,073
VLC (20 GB) 7,492,048 | 1,976,187,365 | 20,574

Table 4.4. Statistics of partial replicas

93

a larger precision loss. In our experiments, we compare the precision of each function
when it directs more than 80% of replicated queries to the replicas.

For a replicated query, since we know which replica contains its top documents, we
define its expected replica as the smallest replica that is built with the top documents
for the query. For an unreplicated query, since replicas may contain some relevant
documents, we expect our replica selector will direct some of these queries to a relevant
replica. We define the ezxpected replica for an unreplicated query as the smallest replica
that causes a precision drop less than 5%. For both kinds of queries, especially
unreplicated queries, we expect we will have to tolerate some loss in precision in
order to avoid searching the entire collection. We choose a drop in precision between
0 and 10% for a query as our acceptable range, i.e., searching the selected replica
retrieves at most one less relevant document for every 10 documents as compared
with searching the entire original collection.

We define collection precise queries as those queries that can achieve the precision
above 10% when searching the original collection for the top n documents, i.e., the
query finds at least one relevant document for every ten documents. We exclude
collection imprecise queries when we present the ability of a replica selector to pick
the relevant replicas for unreplicated queries, because a replica with zero relevant
documents is probably an acceptable choice for a query whose precision is below 10%
in the original collection. We define replica precise queries as those for which searching
the selected replica causes a precision loss less than 5% of the precision attained by

searching the original collection.

4.3.3 Comparing Ranking Functions
In this section, we compare the effectiveness of the InQuery collection ranking func-
tion illustrated in Figure 4.4 and our replica selection function illustrated in Figure 4.5

by varying k£ and b for short queries in test trial 1 when we replicate the top 200 doc-

54

Ranking Parameters | Func. Replica % to replicas

Function k,b code D; [D: [D3 [Dg [Ds | C right | smaller [larger C
Expected E 18] 16 | 25 [21 | 19 0 [[100% 0% 0% 0%
Random Ran 17 17 17 16 16 16 16% 35% 33% 16%
InQuery 200, 0.25 I1 0 0 0 0 0 99 0% 0% 0% 100%
Collection 200, 0.75 12 0 1 4 5 20 69 14% 0% 16% 70%
Ranking 200, 1 13 28 14 22 14 10 11 65% 16% 8% 11%
Function 100, 1 I4 28 15 22 14 10 | 10 65% 17% 8% 10%
400, 1 I5 29 14 23 14 8 11 64% 17% 8% 11%
2,0 R1 22 12 10 12 32 11 59% 7% 23% 1%
Replica 2,0.2 R2 20 15 11 17 24 | 12 57% 9% 22% 12%
Selection 2,0.8 R3 6 3 3 5 1 81 15% 1% 2% 82%
Function 1, 0.2 R4 17 6 7 14 28 27 47% 5% 20% 27%
4,0.2 R5 21 10 10 11 26 21 54% 7% 18% 21%

(a) Replicated queries (99 queries)

Replica Precision loss % of replica
Ranking Parameters | Func. C+ 5% — precise
Function k, b code D; | Dy | D3 | Dy | Ds C < 5% 10% | > 10% | queries to C
Expected E 1 6 3 6 2| 19
Random Ran 7 8 5 7 4 6 35% 19% 46% 22%
InQuery 200, 0.25 I1 0 0 0 0 0 37 100% 0% 0% 100%
Collection 200, 0.75 12 0 0 0 0 6 31 89% 3% 8% 89%
Ranking 200, 1 I3 6 5 11 7 2 6 40% 30% 30% 11%
Function 100, 1 14 5 6 12 7 2 5 38% 30% 32% 11%
400, 1 15 6 6 | 11| 11 6 2 40% 30% 30% 11%
2,0 R1 8 7 1 2 9 10 51% 19% 30% 6%
Replica 2,0.2 R2 7 6 2 2 8 12 68% 16% 16% 11%
Selection 2,0.8 R3 0 0 0 0 1 36 100% 0% 0% 94%
Function 1, 0.2 R4 4 2 1 1 13 16 73% 14% 14% 22%
4,0.2 R5 7 2 2 1 10 15 64% 14% 22% 22%

(b) Unreplicated queries (37 collection precise queries)

Table 4.5. Comparing ranking functions using short queries on the 2GB TREC 2+-3
collection (replicas built with top 200 documents)

uments for each query. (We also performed experiments replicating the top 100 and
500 documents with similar results.) We will show that our replica selection function
is comparable in the ability to pick the expected replica with some configurations
of the collection ranking function for replicated queries, but that it significantly im-
proves precision and finds the expected replica much more consistently as compared
with the collection ranking function for unreplicated queries.

Table 4.5 lists the results of replica selection by counting the number of queries and
to which replica or collection each function directs the queries, when the parameters,
k and b, vary. Table 4.5(a) lists the results for 99 replicated queries for which we

have relevance judgments. Table 4.5(b) lists the results for 37 unreplicated collection

95

precise queries, 18 of which are replica precise queries. In both tables, columns 1
through 3 list the name of functions, the values of parameters £ and b, and the function
abbreviations. For replicated queries, columns 4 through 9 contain the number of
queries that the replica selector sends to each of the replicas (D;) as well as the original
collection (C); columns 10 through 13 contain the percentages of queries that are
directed to the expected replica (right), smaller replica, larger replica, and the original
collection. The “expected” (E) row lists the number of judged queries that we would
expect the replica selector to direct to each replica and to the original collection, if it
were perfect with respect to the queries used to build the replicas. For unreplicated
queries, columns 4 through 9 contain the number of collection precise queries the
replica selector sends to each of the replicas as well as the original collection; column 10
contains the percentages of collection precise queries that are directed to the original
collection and the replicas that cause a precision loss less than 5%; columns 11 through
12 contain the percentages of collection precise queries that are directed to replicas
that cause a precision loss from 5% to 10%, and more than 10%. Column 13 contains
the percentage of 18 replica precise queries that are directed to the original collection.
The “expected” (E) row for the unreplicated queries contains the number of queries
that we expect to go to each of replicas and the original collection because the result
will cause a 5% or less drop in precision.

For the InQuery collection ranking function, varying k£ from 100 to 400 does not
significantly change effectiveness (compare 13-15). When we set &k to 200 (the default
of the InQuery collection ranking function) and increase the value of b, the replica
selector directs more queries to the replicas. For the replicated queries, the default
InQuery collection ranking function (k=200,b=0.75) only directs 30% of queries to
the replicas, which is not our choice. When we tune the parameters as k=200 and

b=1, the function directs 89% of queries to the replicas.

o6

at m Precision of Replicated Queries (%)

docs C random 13 14 15 R1 R2

10 || 48.7 | 404 (-17.2) | 47.7 (-2.3) | 48.2 (-1.2) | 472 (-3.3) | 48.4 (-0.8) | 483 (-1.6)
20 || 44.8 | 36.1 (-19.6) | 43.2 (-3.7) | 43.3 (-3.4) | 42.9 (-4.4) | 44.4 (-1.0) | 442 (-1.4)
30 || 40.7 | 32.4 (-20.4) | 39.3 (-3.4) | 39.4 (-3.0) | 39.1 (-4.0) | 40.2 (-1.1) | 40.2 (-1.2)
100 || 31.1 | 23.9 (-23.1) | 29.4 (-5.6) | 29.5 (-5.5) | 29.3 (-6.1) | 30.5 (-2.2) | 30.5 (-2.1)
200 25.1 | 18.7 (-25.3) | 23.0 (-8.4) | 23.0 (-8.4) | 229 (-8.7) | 24.8 (-2.8) | 24.3 (-3.2)

(a) 99 Replicated queries

at m Precision of Unreplicated Queries (%)
docs C random 13 14 15 R1 R2
10 || 39.8 | 24.6 (-38.2) | 30.0 (-24.6) | 29.4 (-26.1) | 30.0 (-24.6) | 33.6 (-15.6) | 35.9 (-9.6)
20 || 36.8 | 23.7 (-35.6) | 27.2 (-26.1) | 26.6 (-27.7) | 27.3 (-25.8) | 32.3 (-12.2) | 34.4 (-7.9)
30 || 33.4 | 22.3 (-33.1) | 24.9 (-25.4) | 24.3 (-27.2) | 24.9 (-25.4) | 30.8 (8) | 3.9 (-4.6)
) (((-35.9) 6)
) (((-44.7) 2)

100 26.4 | 15.0 (-43.1 16.9 (-35.9) | 16.2 (-38.7) | 16.9 (-35.9 23.5 (-10.8)
200 21.1 | 10.4 (-50.5 11.7 (-44.7) | 11.1 (-47.3) | 11.7 (-44.7 18.1 (-14.5)

(b) 50 Unreplicated queries

Table 4.6. Effectiveness of different ranking functions using short queries on the 2
GB TREC2+3 collection (replicas built with top 200 documents)

For the replica selection function, £ = 2 gets better results than £k = 1 and £ = 4
(compare the functions R3-R5). When we decrease the value of b, the replica selector
directs more queries to the replicas. For k=2 and b=0.2, the function directs 88% of
queries to the replicas.

Among the functions listed in Table 4.5, only six functions random, 13, 14, 15, R1,
and R2 direct more than 80% of replicated queries to the replicas. We compare the
precision of these six functions in Table 4.6. The first column lists the number of
documents at which we present the precision. Column 2 lists the precision when
all queries go to the original collection, i.e., what percent of the top m documents
is relevant when searching the original collection. Columns 3 through 8 list the
results using random selection and each ranking function. The numbers in parentheses
show the precision percentage difference as compared with searching the original
collection. Table 4.6(a) lists the results for replicated queries, and Table 4.6(b) lists
the results for unreplicated queries. Replicated queries produce much better results
than unreplicated queries, because their top documents are stored in at least one of

the replicas.

o7

It is not surprising that random selection performs poorly, because it has high prob-
ability of picking a replica with few relevant documents. For unreplicated queries, it
causes a precision percentage loss ranging from 38% to 50% as compared with search-
ing the original collection, C. For replicated queries, it causes a precision loss ranging
from 17% to 25%.

For the other five functions in Table 4.6, when we examine the precision for replicated
queries (Table 4.6(a)), all these functions are acceptable, since the precision drops
less than 8.7%. However, when we examine the precision for unreplicated queries
(Table 4.6(b)), the precision difference is significant. Using InQuery collection ranking
function I3 where we set £ = 200 and b = 1, the precision losses of unreplicated queries
range from 24.6% to 44.7%. We get our best result using our replica selection function
R2 with £ = 2 and b = 0.2. The precision of the replicated queries drops less than
3.2% of the original collection, and is better when fewer documents are returned. The
precision losses of the unreplicated queries range from 4.8% to 14.5%. For the top 30
documents, the precision losses of unreplicated queries range from 4.8% to 9.6%.

In the experiments presented in Section 4.3.4 and Section 4.3.5, the replica selector
uses the replica ranking function with £ = 2 and b = 0.2, because it sends appropriate
queries to replicas with an acceptable precision loss of at most 9.6% for the top 30

documents in this test suit.

4.3.4 Effectiveness with Replicated Queries

This section evaluates our proposed replica selection function for replicated queries
on a wider range of queries and collections. For replicated queries, we want to test
whether the replica selector directs most of them to an expected replica. Note it is
possible for a replica smaller than the expected one to contain all top documents for a

given query, since the top documents of other queries could include the top documents

o8

Query Top Average Num. of Queries to Replica % to Replica
Size Type n Dy Do D3 Dy Ds C right smaller | larger C

Expected 21.6 | 16.6 | 21.4 | 20.6 18.8 0

30 16.0 | 11.6 | 13.2 | 13.2 24.6 204 || 52.7% 4.2% 22.6% | 20.6%
100 17.2 | 13.0 | 15.8 | 15.2 24.0 13.8 58.4% 5.9% 21.8% | 13.9%
2 GB short 200 20.0 | 13.2 | 14.2 | 17.0 21.0 13.6 59.8% 8.1% 18.4% | 13.7%
500 25.0 | 14.4 | 15.8 | 18.6 15.6 9.6 65.1% 12.7% 12.5% 9.7%

Ave. 19.5 | 13.0 | 14.8 | 16.0 21.3 14.3 59.0% 7.7% 18.9% | 14.4%

100 15.8 | 13.4 | 13.2 | 13.2 25.8 17.6 52.7% 5.8% 23.6% | 17.8%
2 GB long 200 18.0 | 17.4 | 12.6 | 14.4 28.2 8.4 57.0% 8.5% 26.0% 8.5%
500 21.8 | 17.6 | 14.0 | 15.0 24.0 6.6 62.4% 10.7% 20.2% 6.7%

Ave. 18.5 | 16.1 | 13.3 | 14.2 26.0 10.9 57.4% 8.3% 23.3% | 11.0%

100 15.6 | 142 | 12.8 | 15.8 20.2 204 || 54.3% 4.2% 21.0% | 20.6%
20 GB short 200 15.4 | 13.2 | 12.0 | 15.4 24.6 18.4 || 56.5% 4.2% 20.6% | 18.6%
500 18.2 | 14.4 | 12.2 | 16.0 25.8 12.4 || 64.2% 4.2% 19.0% | 12.5%

Ave. 16.4 | 13.9 | 123 | 15.7 23.5 17.1 58.3% 4.2% 20.2% | 17.3%

Table 4.7. Replica selection for replicated queries

for this query. Although we use 250 queries to build replicas, we only present the

results for 99 replicated queries which have relevance judgment files in this section.

Finding the Expected Relevant Replica

This section measures the ability of the replica selector to pick the expected replica by
counting the number of queries that are directed to different replicas and the original
collection, as shown in Table 4.7. In Table 4.7, columns 1 and 2 indicate the size
of collection and the type of queries we use in our experiments. Column 3 indicates
the number of top documents for each query. Columns 4 through 9 on the row of
“Expected” list the number of judged queries that are used to build a replica, but
not used in a smaller one. Columns 4 through 9 on other rows list the the number
of queries the replica selector sends to each of the replicas as well as the original
collection. Columns 10 through 12 contain the percentages of judged queries that the
selector directs to the expected replicas (right), smaller replicas, and larger replicas.
Column 13 contains the percentage of queries that the selector directs to the original
collection (C).

For short queries on the 2 GB collection, on the average, our replica selector directs

85.6% (59.0%+7.7%+18.9%) of replicated queries to the replicas, and 66.7% of queries

99

to the expected replica or a replica smaller than we expect. Increasing the number of
replicated documents increases the accuracy of replica selection, because the replicas
contain more relevant documents for replicated queries. For example, using the top
500 documents for each query to build replicas, the replica selector directs 90.3% of
queries to the replicas on the average, while using top 100 documents directs 86.1%
of queries to the replicas on the average.

For long queries on the 2 GB collection, on the average, our replica selector directs
89.0% (57.4%-+8.3%+23.3%) of replicated queries to the replicas, and 65.7% of queries
to the expected replica or a replica smaller than we expect. Increasing the number of
replicated documents also increases the accuracy of replica selection, as for the short
queries. For example, using the top 500 documents for each query to build replicas,
the replica selector directs 93.3% of queries to the replicas on the average, while using
the top 100 documents directs 82.2% of queries to the replicas on the average.

For short queries on the 20 GB collection, on the average, our replica selector directs
82.7% (58.3%+4.2%+20.2%) of replicated queries to the replicas, and 62.5% of queries
to the expected replica or a replica smaller than we expect. Increasing the number
of replicated documents increases the accuracy of replica selection, as against the 2
GB collection. For example, using the top 500 documents for each query to build
replicas, the replica selector directs 87.5% of queries to the replicas on the average,

while using top 100 documents directs 79.4% of queries to the replicas on the average.

Precision of Replica Selection versus the Original Collection

Since the replica selector directs a few queries to a replica that is smaller than ex-
pected, we compare the effectiveness of executing queries against replicas or the orig-
inal collection selected by the replica selector with against the original collection.
Table 4.8 compares the average precision of replica selection over 5 test trials with

searching the original collection for short queries on the 2 GB collection, long queries

60

at Precision
m docs || orig. Top 30 Top 100 Top 200 Top 500
10 || 47.3 || 46.9 (-0.8) || 47.0 (-0.6) || 47.4 (+0.3) || 46.9 (-0.8)
20 || 43.5 || 43.0 (-1.2) || 43.0 (-1.1) || 43.3 (-0.4) || 42.9 (-1.3)
30 || 39.6 || 39.0 (-1.5) || 39.1 (-1.3) || 39.4 (-0.7) | 39.2 (-0.9)
100 || 30.8 29.9 (-2.7) || 30.1 (-2.0) || 30.1 (-2.1)
200 || 24.7 24.0 (-3.0) || 24.0 (-3.0)
500 || 16.5 16.0 (-3.1)
(a) short queries on the 2 GB collection
at Precision
m docs || orig. Top 100 Top 200 Top 500
10 || 56.3 || 56.1 (-0.4) || 56.4 (+0.1) || 56.2 (-0.2)
20 || 54.6 || 54.2 (-0.7) || 54.3 (-0.6) || 54.1 (-0.9)
30 || 51.7 || 51.3 (-0.8) || 51.1 (-1.1) || 51.2 (-1.0)
100 || 41.5 || 41.1 (-1.1) || 41.0 (-1.2) || 41.0 (-1.1)
200 || 34.1 334 (-2.1) || 33.6 (-1.6)
500 || 22.9 22.4 (-2.4)
(b) long queries on the 2 GB collection
at Precision
m docs || orig. Top 100 Top 200 Top 500
10 | 155 || 155 (-1.2) || 154 (-1.2) || 15.5 (-0.3)
20 || 15.0 || 15.0 (-0.3) || 15.0 (-0.5) || 15.0 (4+0.0)
30 || 14.0 || 14.0 (4+0.0) || 14.0 (-0.1) || 14.0 (4+0.2)
100 || 11.5 || 11.4 (-0.9) | 11.5 (-0.6) 11 5 (-0.3)
200 || 9.8 9.7 (-0.9) 7 (-0.1)
500 || 7.5 4 (-0.8)

(c) short queries on the 20 GB collection

Table 4.8. Effectiveness of replica selection for replicated queries (each trial has 99
judged queries)

61

on the 2 GB collection, and short queries on the 20 GB collection. In these tables,
column 1 lists the number of documents at which we present the precision figures.
Column 2 lists the precision figures when all queries go to the original collection.
Columns 3 through 6 list the precision figures when building replicas using differ-
ent numbers of top documents. The numbers in the parentheses show the precision
percentage difference.

For short queries on the 2 GB collection, replica selection results in a precision per-
centage loss less than 3.1% of searching the original collection for the same number
of responses or fewer.

For long queries on the 2 GB collection, replica selection results in a precision per-
centage loss less than 2.4%.

For short queries on the 20 GB collection, replica selection results in a precision
percentage loss less than 1.2% as compared to searching the original collection, and
sometimes the precision improves a little, because the replica does not contain some
top-ranked unrelevant documents. In other words, selecting a smaller replica occa-

sionally does no harm.

4.3.5 Effectiveness with Unreplicated Queries
This section evaluates our proposed replica selection function on a wider range of
queries and collections for unreplicated queries. See Section 4.3.2 for detailed exper-

imental setting.

Finding the Relevant Replica

Table 4.9 lists the average expected number of collection precise queries in each replica
over five test trials and shows the results of replica selection by collecting the average
number of collection precise queries that are directed to different replicas as well as

the original collection. We list results for short queries on the 2 GB TREC 243

62

Coll. Precision loss less than 5%
Top Query || Precise Ave. Queries Expected
Size Type n queries D1 D> D3 D4 Ds C
30 38.2 2.6 1.0 | 2.2 1.2 | 1.4 | 29.8
100 37.8 3.8 |28 (32|22 1.0 | 24.8
2 GB short 200 37.8 46 | 3.8 |1 26 | 3.2 | 1.2 | 224
500 37.8 6.2 | 3.8 |44 | 34|14 | 186
Ave. 37.9 43 1293125] 1.3] 23.9
100 42.4 36 | 34|34 | 22| 12| 28.6
2 GB long 200 42.4 52 | 38 |34 |22]| 20| 25.8
500 42.4 82 | 54 | 4.0 | 2.8 | 2.0 | 20.0
Ave 42.4 57 | 4.2 | 3.6 | 2.4 | 1.T | 248
100 18.4 08 | 06 | 0.8] 1.0 | 0.0 | 15.2
20 GB short 200 19.0 04 | 1.0 1.2 1.2 | 0.6 | 14.6
500 19.2 2.2 | 20| 20 1.0 | 1.0 | 11.0
Ave. 18.9 1.1 1.2 1.3 1.1 | 0.5 | 13.7
100 36 0 1 1 0 3 31
20 GB 301-350 200 35 0 0 1 0 4 30
short 500 35 0 1 1 4 29
Ave. 35.3 0 06 | 0.6 | 0.3 | 3.7 | 30.0

(a) Expected number of collection precise queries in each replica

Query Top Ave. Queries to Replica Precision Loss % of Repl.Prec.
Size Type n D; [Dy | D3 | D4 Ds C C+<5% | 5% —10% | > 10% queries to C

30 26 | 20 | 2.0 | 2.8 | 5.6 | 23.2 72.4% 7.4% 16.2% 27.9%
100 26 | 3.0 | 3.2 | 34 8.2 17.4 70.5% 12.2% 17.4% 13.8%
2 GB short 200 4.0 | 34 | 24 | 48 | 6.8 16.4 71.5% 11.2% 17.3% 15.3%
500 48 | 3.0 | 46 | 6.4 | 5.8 13.2 66.2% 22.7% 11.1% 15.4%
Ave. 3.5 | 28 | 3.1 | 44 6.6 17.5 70.2% 13.4% 15.5% 18.1%
100 36 | 24| 1.8 | 2.8 6.6 25.2 77.5% 13.1% 9.4% 25.9%
2 GB long 200 48 | 40 | 1.8 | 3.0 | 11.2 | 17.6 70.6% 17.6% 11.8% 13.1%
500 54 | 48 | 3.2 | 5.0 | 10.2 | 13.8 78.5% 17.4% 4.2% 5.7%
Ave. || 46 | 3.7 | 23| 3.6 | 9.3 18.9 75.5% 16.0% 8.5% 14.9%
100 04|04 |06 | 08]| 22 14.0 84.7% 4.5% 10.8% 37.0%
20 GB short 200 06 | 06 | 1.2 | 14 1.8 13.4 84.2% 6.3% 9.5% 31.6%
500 04|08 | 18| 12| 26 12.4 86.4% 6.2% 7.3% 29.0%
Ave 0506 | 12| 1.1 2.2 13.3 85.1% 5.7% 9.2% 32.5%
100 2 1 0 1 1 31 86.1% 0.0% 13.8% 50.0%
20 GB || 301-350 200 2 1 0 1 1 30 85.7% 0.0% 14.3% 40.0%
short 500 1 1 0 1 2 30 85.7% 5.8% 8.5% 40.0%
Ave 1.7 1 1.0 | 0.0 | 1.0 1.3 30.3 85.8% 1.9% 12.2% 43.3%

(b) Results of replica selection for collection precise queries

Table 4.9. Replica selection for unreplicated queries

63

collection, long queries on the 2 GB TREC 243 collection, and short queries on the
20 GB TREC VLC collection.

In Table 4.9(a), columns 1 and 2 indicate the size of collection and the type of the
query sets. Column 3 indicates the number of documents stored for each query.
Column 4 lists the number of collection precise queries. Columns 5 through 10 list
the average number of replica precise queries over the five trials in each of replicas (D;)
as well as the original collection (C'), where the replica is the smallest replica which
causes a precision loss less than 5%. In Table 4.9(b), columns 4 through 9 contain
the average number of collection precise queries over the five trials the replica selector
sends to each of the replicas as well as the original collection. Column 10 contains
the average percentage of collection precise queries that the selector directs to the
original collection and replicas that causes a precision loss less than 5%. Columns
11 through 12 contain the average percentages of collection precise queries that the
selector directs to replicas that causes precision loss from 5% to 10%, and more than
10%. Column 13 contains the average percentage of replica precise queries over the
five trials that the selector directs to the original collection. We expect the replica
selector to direct the replica precise queries to a replica, because they have replicas
that cause precision losses less than 5%.

For short queries on the 2 GB collection, on the average, our replica selector directs
83.6% (70.2%+13.4%) of collection precise queries to the replicas that cause a preci-
sion loss less than 10% (our acceptable level) as well as the original collection, and
only directs 18.1% of queries which are replica precise to the original collection.

For long queries on the 2 GB collection, on the average, our replica selector directs
91.5% (75.5%+16.0%) of collection precise queries to the replicas that cause a pre-
cision loss less than 10% as well as the original collection, and only directs 14.9% of

replica precise queries to the original collection.

64

For short queries on the 20 GB collection, when we experiment with the same
setting as the 2 GB collection, on the average, our replica selector directs 90.8%
(85.1%+5.7%) of collection precise queries to the replicas that cause a precision loss
less than 10% as well as the original collection. When we experiment with queries
301-350 as our unreplicated queries, our replica selector directs 87.7% (85.8%+1.9%)
of collection precise queries to the replicas that cause a precision loss less than 10%

as well as the original collection.

Precision of Replica Selection versus the Original Collection

We compare the retrieval precision of executing unreplicated queries against replicas
or the original collection selected by our replica selector with only searching the
original collection.

Table 4.10 lists average precision over 5 test trials for short queries on the 2 GB TREC
243 collection, long queries on the 2 GB TREC 243 collection, and short queries on
the 20 GB TREC VLC collection. In these tables, column 1 lists the number of
documents at which we present the precision figures. Column 2 lists the precision
figures when all queries go to the original collection. Columns 3 through 6 list the
precision figures when building replicas using different numbers of top documents.
The numbers in the parentheses show the precision percentage difference.

For the 2 GB collection using short queries, the precision losses range from 6.8% to
17.1%. Increasing the number of replicated documents for each query improves the
precision, because the replicas contain more relevent documents for each replicated
query, which helps determining the similarity between unreplicated and replicated
queries. When the number of top retrieved documents is less than 30 documents,
which are the retrieval levels that concern online users most, our replica selector

causes an average precision percentage loss within 14.6% and 10% of searching the

65

at m Precision
docs || orig. Top 30 Top 100 Top 200 Top 500
10 || 42.8 || 37.8 (-11.9) || 38.9 (-9.2) || 39.4 (-8.0) || 39.9 (-6.8)
20 || 39.4 || 34.0 (-13.8) || 35.8 (-9.1) || 36.1 (-8.4) || 35.6 (-9.7)
30 || 35.5 | 30.3 (-14.6) || 32.6 (-8.2) || 32.7 (-7.8) || 32.7 (-7.9)
100 | 27.2 23.3 (-14.0) | 24.0 (-11.6) || 24.2 (-10.8)
200 || 21.8 18.3 (-16.5) || 18.8 (-13.9)
500 || 14.3 11.8 (-17.1)
(a) short queries on the 2 GB collection
at m Precision
docs || orig. Top 100 Top 200 Top 500
10 || 55.3 || 52.9 (-4.3) || 52.0 (-6.0) || 54.8 (-0.9)
20 || 52.7 || 49.4 (-6.2) || 48.6 (-7.8) || 50.9 (-3.4)
30 || 50.0 || 46.2 (-7.6) || 45.7 (-8.7) || 47.9 (-4.3)
100 || 404 || 35.3 (-12.6) || 35.1 (-13.2) || 36.8 (-8.8)
200 || 33.1 27.3 (-17.4) || 29.1 (-12.0)
500 || 21.8 18.2 (-16.6)
(b) long queries on the 2 GB collection
at m Precision
docs || orig. Top 100 Top 200 Top 500
10 || 128 [124 (-31) || 126 (-1.6) || 124 (-3.4)
20 || 12.3 || 11.6 (-5.5) || 11.9 (-3.1) || 11.8 (-3.4)
30 || 11.8 || 11.4 (-3.1) 11 9 (+0.8) || 11.8 (+0.3)
100 || 10.0 || 9.1 (-9.6) 6 (-4.2) 10 1 (+0 2)
200 8.4 7 (-7.9) 3 (-1.0)
500 6.4 9 (-7.7)
(¢) short queries on the 20 GB collection
at m Precision
docs || orig. Top 100 Top 200 Top 500
10 || 404 || 36.2 (-10.4) || 36.2 (-10.4) || 37.8 (-6.4)
20 || 35.4 | 30.7 (-13.3) || 30.7 (-13.3) || 31.3 (-11.6)
30 || 31.3 || 26.9 (-14.2) || 26.9 (-14.2) || 27.0 (-14.0)
100 || 20.2 || 17.8 (-11.9) || 17.8 (-11.9) || 17.2 (-15.0)
200 || 14.4 12.8 (-10.9) 12 2 (-14.0)
500 7.8 .7 (-14.0)

(d) short queries (topics 301-350) on the 20 GB collection

Table 4.10. Effectiveness of unreplicated queries (each trial has 50 queries)

66

original collection, when we only replicate the top 30 documents and the top 100
documents for each replicated query, respectively.

For the 2 GB collection using long queries, the precision losses range from 0.9% to
17.4%. For the top 30 retrieved documents, on the average, the precision drops less
than 8.7% when we replicate more than 100 documents for each replicated queries,
which is slightly better than short queries.

For the 20 GB collection using short queries, when we experiment with the same
setting as the 2 GB collection and use the relevance files for the 2 GB collection,
the precision ranges from losing 9.6% to improving 0.8%. For the top 30 retrieved
documents, the precision loss is less than 5.5%. When we use short queries 301-350
as our unreplicated queries, the precision loss for the top 30 documents is less than
14.2%. Since topics 301-350 were much more thoroughly judged than topics {51-150,
202-250} for the 20 GB VLC collection, although still only the top 30 documents of
each query were judged, we think the results using topics 301-350 is more accurate,
which means our replica selection performs slightly worse on the 20 GB collection
than on the 2 GB collection. However, the precision percentage loss of 14.2% in our

context only means we retrieve one less relevant document for the top 30 documents.

4.3.6 Summary

Sofar in this chapter, we investigated how to select a relevant partial replica using the
inference network model. Our approach enables a system to efficiently rank partial
replicas and select a replica based on relevance for a given query. We developed a
replica selection function, and demonstrated its effectiveness and superiority over a
collection ranking function using the InQuery retrieval system and TREC collections.
Our results show that the inference network model is a very promising tool for select-
ing a relevant replica. By using our proposed replica selection function, the replica

selector can direct at least 82% of replicated queries to a relevant partial replica rather

67

than the original collection, and it achieves a precision percentage loss less than 10%
for the 2 GB collection and 14.2% for the 20 GB collection for the top 30 retrieved
documents of each query, when we build replicas using more than 100 top documents
for each replicated query.

In the rest of chapter, we will investigate load-balancing, space and time overheads

for the replica selection database, as well as updating costs and strategies.

4.4 Load Balancing

In the previous section, we have discussed how to select a relevant replica using
inference networks. However if we use relevance as the only criterion, the system
could overwhelm one or several replicas by sending them too many IR commands
when replicas are relevant to significant numbers of requests. In this section, we
discuss how to balance the loads among relevant replicas and the original collection
in order to produce a response as quickly as possible.

Since we want to select a replica with the quickest response time, we may choose the
response time as our metric. However simply using the response time will not produce
the best result for a new command when several commands have been in the queue of
a replica or collection. We may also use the outstanding number of commands of each
replica/collection as our metric, and send the new command to the replica/collection
with the shortest queue. However we need to be aware that the least loaded replica
or collection is not the best choice in our situation, because searching the original
collection could take longer time than searching a small replica with higher loads.
In our system, we combine the above two metrics and balance loads as follows: We
predict the response time of each replica (R;) and the original collection (C) using the
average response time and the number of outstanding commands. When the replica
selector chooses a replica based on relevance, we calculate the predicted response time

p-resp; of the replica, the replicas larger than this, and the original collection using

68

Original Largest Replica Replica Selection Database
All Terms in | Percent. of

Size Unique Top || Size | Unique || Terms || Replicas Largest

Collection (MB) Terms n (MB) | Terms || (MB) (MB) Replica
100 104 | 128,435 44 8 7.7%

TREC 2+3 2GB 838,948 || 200 199 | 200,723 45 12 6.0%
500 476 | 325,851 47 20 4.2%

100 95 162,279 741 10 10.5%

TREC VLC || 20 GB | 13,088,064 || 200 191 | 258,107 742 15 7.8%
500 459 | 460,044 746 28 6.1%

Table 4.11. Space overhead for the replica selection database.

ave_resp; - (1+num_wait_mes;), where ave_resp; is the average response time for last
200 responses for either the replica or the original collection, and num_wait_mes; is
the number of the outstanding commands to which either the collection or the replica
has not yet responded. We send the command to the one with the least p_resp;.

Since we have a connection broker to keep track of all servers, we can easily obtain
the information on the response time and the number of outstanding commands. We

demonstrate the performance of our system with load balancing in Chapter 6.

4.5 Space and Time Overheads for the Replica Selection

Database
This section investigates how much space is needed to store a replica selection database,

and how much extra time is used in searching the replica selection database.

4.5.1 Space Overhead

Table 4.11 lists the space overhead for the replica selection database for a 6-layer
replication hierarchy in test trial 1 that we described in Section 4.3.2. We list the size
and the number of unique terms of the original collection, the size and the number
of unique terms of the largest replica, and the size of the replica selection database

when we replicate the top 100, 200, and 500 documents, respectively.

69

For the 2 GB TREC 243 collection, the size of the replica selection database is around
45 MB, which is approximately 2.2% of the size of the original collection, when we
build the index without deleting any terms except stopwords. If we delete the terms
that do not occur in any of replicas, the size of the replica selection database is directly
proportional to the number of unique terms in the largest replica, ranging from 8, 12
to 20 MB, approximately 6 MB for every 100,000 unique terms, when we replicate
the top 100, 200, and 500 documents for each query.

For the 20 GB VLC collection, the size of the replica selection database is around
742 MB, which is approximately 3.6% of the size of the original collection, when we
build the index without deleting any terms except stopwords. If we delete the terms
that do not occur in any of replicas, the sizes of the replica selection database range
from 10, 15 to 28 MB, also approximately 6 MB for every 100,000 unique terms. The
size of replicas are larger than those for the 2 GB collection, because the TREC VLC
collection consists of data from more diverse sources than the TREC 243, and thus
contains more unique terms.

Deleting terms that do not occur in any of replicas significantly reduces the size of the
replica selection database, and it has no significant impact on retrieval effectiveness.
We may modify our ranking algorithm as follows: When a query contains a term that
does not occur in any of replicas, the system assigns the smallest tf (term frequency)

score for the replicas, and assigns the largest tf score for the original collection.

4.5.2 Time Overhead

Unlike the document database we discuss in Chapter 6.1 where the query evaluation
time is strongly related to both the number of terms in the query and the term
frequencies of each term, the time overhead for searching the replica selection database
is only related to the number of terms in the query. Since we typically replicate a

collection several times, the size of an inverted list in the replication selection database

70

Terms || Cold Start | Warm Start
2 0.095 0.005
4 0.194 0.008
8 0.391 0.014
16 0.736 0.026
32 1.178 0.049
64 2.357 0.098
128 4.492 0.197

Table 4.12. Time overhead for searching the replica selection database for the 20
GB collection(seconds).

is very small. There is no significant time difference between processing an inverted
list with one entry and processing one with ten entries.

Since the sizes of the replica selection databases for the 2 GB TREC 243 collection
and the 20 GB TREC VLC collection are about the same, we only list the time
overhead for searching the replica selection database for the 20 GB VLC when we
vary the number of terms per query in Table 4.12. We ran our experiments using a
single CPU on a lightly-loaded 3-CPU DEC Alpha server 2100 5/250 (clocked at 250
MHZ) with 1024 MB main memory and using InQuery version 3.1. We obtained this
data in the following ways: for each data point for the number of terms per query,
we randomly chose terms from the set of terms that occur in the 350 TREC short
queries, and constructed ten queries with the same number of terms; we ran these ten
queries on the replication selection databases in test trial 1 described in Section 4.3.2,
and listed their average evaluation time in the Table 4.12. We ran our experiments
under two start situations: cold start where we chilled the system by reading a large
file before the system processes each query such that each term was read from the
disk, and warm start where each term in the queries has been cached in the memory.
For the 20 GB collection, the time overheads for searching a replica selection database
range from 0.095 to 4.492 seconds for the cold start, and from 0.005 to 0.197 seconds
for the warm start when the number of terms per query varies from 2 terms to 128

terms.

71

4.6 Updating
This section investigates space and time costs for updating databases related to replica
selection, which include costs from updating replicas, and updating the replica selec-

tion database. We then suggest updating strategies based on these costs.

4.6.1 Costs for Updating Replicas

We compare two approaches to updating the replicas:

e delete-and-add — delete the old documents and their inverted lists from the data

and index files of a replica, and add new ones,

e rebuild — build the replica from the scratch.

For obtaining the updating measurements, we directly used or modified the programs
provided by InQuery version 3.1. For rebuild, we used the InQuery indexing program
inbuild to build the replica from the scratch. For delete-and-add, we modified the
InQuery program purgedb-key to delete documents and modify the corresponding
inverted lists, and used inparse to parse new documents, and merge_btl to merge the
inverted lists of new documents into the database. Table 4.13 lists the updating time
for replicas with different sizes when we use a single CPU on a 3-CPU DEC Alpha
server (clocked at 250 MHZ). We constructed test replicas by picking documents
from subcollections of the 2 GB TREC 243 collection in a round-robin fashion. The
numbers in the table are the average times over three runs. For each data point on
the replica size, we collected the times when we update 20%, 40%, 60%, and 80% of
a replica. Since rebuild builds the replica from the scratch, the time for updating a
replica is only related to the size of replica.

The results show that when we update 20% of documents in a replica, delete-and-
add performs significantly better than rebuild. The smaller the replica is, the better
delete-and-add performs. When we update more than 40% of documents in a replica,

rebuild is our choice, especially for large replicas. The larger the replica is, the better

72

Num. Delete-and-Add
Replica of Updating Percentage Rebuild
Size Doc. 20% | 40% | 60% | 80%
100 MB 47,294 | 0.12 | 0.17 | 0.21 0.26 0.18
200 MB || 94,588 | 0.22 | 0.31 | 0.43 | 0.57 0.36
500 MB || 141,882 | 0.50 | 0.86 | 1.35 | 1.97 0.92
1 GB 283,764 | 1.23 | 2.35 | 4.05 6.25 1.89
2 GB 567,529 | 2.96 | 6.93 | 15.46 | 25.59 3.73

Table 4.13. Updating time for replicas with different sizes (hours).

rebuild performs. For example, for updating 60% of a 1 GB replica, rebuild is 2 times
faster than delete-and-add; for updating 60% of a 2 GB replica, rebuild is 4 times
faster than delete-and-add.

Another advantage of using rebuild is the rebuild procedure is much more easily par-
allelized than delete-and-add. The rebuild procedure consists of two parts: parsing
documents into intermediate files, and merging the intermediate files into indices,
where the parsing part accounts for around 94% of total building time. We can easily
partition a replica into several small collections, and parse each of them in parallel,
and then merge the intermediate files. If our machine is n-CPU multiprocessor, we
can finish rebuilding in nearly % -T', where T is the building time using one CPU, as
listed in Table 4.13. If we rebuild a 20 GB replica using 4 CPUs, we may finish it in
less than 10 hours.

Partitioning an index is not trivial work like partitioning documents. It takes 5-6
minutes to segment the index of a 2 GB collection, and an hour to segment the index
of a 20 GB collection. For delete-and-add, if we have a n-CPU multiprocessor, we can
finish updating in nearly % -T + s, where T is the updating time using one CPU and
s is the segmentation time.

For rebuild, the space required to update a replica is around 2 times the size of the

replica. For delete-and-add, the space required is (2 - 2% + 1) times the size of the

73

Replica Size
100 MB | 200 MB | 500 MB | 1GB | 2 GB | 20 GB
time (min.) 0.5 0.8 1.4 2.9 4.3 66.7

(a) time for generating intermediate file (minutes)

Collection Size
2 GB TREC 2+3 20 GB VLC
1rep. | 3rep. | 5rep. | Lrep. | 3 rep. | 5 rep.
time (min.) 1.8 1.8 1.9 30.8 | 31.0 31.3

(b) time for merging intermediate files (minutes)

Table 4.14. Updating time for replica selection database (minutes).

replica, where x% is the updating percentage. For updating percentages less than

50%, delete-and-add uses less space.

4.6.2 Costs for Updating the Replica Selection Database

After we update replicas, we must then update the replica selection database. We first
generate the intermediate files from the indexes of the original collection and replicas,
and then merge the intermediate files to the replica selection database. We wrote
a program to generate an intermediate file that only keeps the document frequency
and collection term frequency of each term from each collection/replica index, and
used the InQuery version 3.1 program merge_btl to merge these intermediate files. We
obtained our measurements using a CPU on a 3-CPU DEC Alpha server clocked at
250 MHZ.

Table 4.14 lists the updating time for the replica selection databases with different
number of replicas and different sizes of the original collection. Table 4.14(a) lists
the time for generating the intermediate file from the index of a replica when we vary
the size of the replica. Table 4.14(b) lists the time for merging the intermediate files.

For both 2 GB and 20 GB collection, we list the merging time for 1 replica with the

74

size of 500 MB, 3 replicas with sizes of 300 MB, 400 MB, and 500 MB, and 5 replicas
with sizes of 100 MB, 200 MB, 300 MB, 400 MB, and 500 MB.

When the size of the original collection is 2 GB, it takes around 10 minutes to update
a replica selection database with 5 replicas. When the size of the original collection
is 20 GB, it takes around one and half hour for updating a replica selection database
with 5 replicas.

The space required to update the replica selection database is around 1.5 times the
size of the replica selection database. For the 2 GB TREC 243 collection, the size
of the replica selection database is around 46 MB, and thus updating needs around
70 MB. For the 20 GB VLC collection, the size of the replica selection database is
around 750 MB, and thus updating needs 1.1 GB.

4.6.3 Updating Strategies

Although updating a large replica is time-consuming, fortunately, the statistics in
Section 4.1.3 show that a replica built using topics that occurred a day ago, even a
month ago may satisfy a significant number of queries. We do not need to update
replicas hourly, or even daily, which makes the costs for updating replicas affordable.
How often to update replicas is domain-dependent. Some domains such as news and
finance may need updates more often than others. Sometimes a system needs to be
updated immediately due to some bursty events.

One strategy for updating replicas is to update replicas at regular intervals, such as
every week. The disadvantages of this strategy are that it could react too slowly to a
bursty event such as the Starr report, and it could waste time when the topics that
users are interested in change very slowly. In order to overcome these problems, we

propose other two more selective strategies:

e Event triggered updating: watch for bursty events, and trigger the updating

procedure when some special events happen.

75

e Performance triggered updating: watch the percentage of workloads that the
replica selector sends to the replicas, and trigger the updating procedure when

the percentage falls below some threshold.

For the event triggered updating strategy, the easiest way to use it is through human
intervention. When the system manager watches a special event, and increasingly
many users issue queries to search it, the manager could start the updating proce-
dure before the scheduled time. Automatic event detection is an on-going research
topic. When the technology can be very efficiently implemented, we can use it to
automatically detect the events and trigger the updating procedure.

The performance triggered updating strategy is very easy to implement in the current
system. We can let the replica selector record the percentage of queries that it sends
to each replica, when the percentage falls below a threshold, the system informs the
system manager. The performance triggered updating strategy also applys to bursty
events, if a lot of users search for an event that does not exist in the replicas.

For bursty events, we could just add documents into replicas without deleting others
for quick updating, which also means we need to save some extra space for bursty

events.

4.7 Summary

In this chapter, we have discussed the issues related to partial collection replication.
Based on our analyses of actual system logs, an IR system can take advantage of
query locality and replicate a small percentage of collections to improve performance.
We presented a method for constructing a hierarchy of partial replicas from a col-
lection where each replica is a subset of all larger replicas. We then extended the
inference network model to rank and select partial replicas. We compared our new
replica selection function to previous work on collection selection over a range of

tuning parameters. For a given query, our replica selection algorithm correctly de-

76

termines the most relevant of the replicas or original collection, and thus maintains
the highest retrieval effectiveness while searching the least data as compared with
the other ranking functions. The space overhead of the replica selection database is
directly proportional to the number of unique terms in the largest replica. Using a
parallel technique to build collections, we can update replicas and replica selection
databases in reasonable time. For example, we can update a 20 GB replica within 10
hours when we use four 250 MHZ CPUs. Of course we can do updating faster with
a machine with more and/or faster CPUs. Although updating large replicas is very
costly, fortunately, the statistics from the real system logs show that updating hourly
or daily is unnecessary. We also proposed two simple strategies for updating replicas.
In Section 6.2, we will demonstrate the performance gain of partial collection repli-

cation under different system configurations and user patterns.

7

CHAPTER 5
THE SIMULATION MODEL

In order to expedite our investigation of possible system configurations, characteristics
of IR collections, and the system performance for distributed information retrieval ar-
chitectures illustrated in Chapter 3, we implement a simulator with numerous system
parameters, and validate it against the prototype implementation. In this chapter,
we present the simulation model.

In our simulator, we model collections and queries by obtaining statistics from test
collections and real query sets. We model query processing and document retrieval
by measuring resource usages for each operation in our multithreaded prototype. The
hardware we model include CPUs, disks, I/O bus, memory, and the network.

Our simulator has two types of parameters: system configuration parameters and
system measurement parameters. The system configuration parameters include the
number of threads, number of disks, number of CPUs, collection size, term frequency
distribution, query length, command arrival rate, command mixture ratio, replication
percentage, distracting percentage, and selection percentage. The system measure-
ment parameters include query evaluation time, document retrieval time, network
time, connection broker time, and time to merge results. The system configuration
values deal with the configuration of the system and data layout on the disks, and
change with each simulation scenario or group of scenarios. The system measure-
ments deal with a change of the IR system and the underlying hardware platform.
The outputs of the simulator include response times for each IR command, utiliza-

tions of each hardware resource, such as the CPU utilization and the disk utilization,

78

and utilizations of each IR software system component, such as the InQuery server
utilization and the connection broker utilization.

We use YACSIM, a process oriented discrete event simulation language [48] to imple-
ment the simulator. YACSIM contains a set of data structures and library routines
that manage user created processes and resources. We model a single server (InQuery
server, connection broker, collection selector, or replica selector) as a set of processes.
Each process simulates the activity of a thread in the real system by requesting ser-
vices from resources. Our simulation model is simple, yet contains sufficient details
to accurately represent the important features of the system, as we show through
performance validation.

The remainder of the chapter is organized as follows: we present the system mea-
surements and their validation in Section 5.1, and the configuration parameters in

Section 5.2.

5.1 System Measurements and Validation

For the experiments in this dissertation, we model the IR system by analyzing a pro-
totype of a distributed multithreaded information retrieval system based on InQuery
and by measuring the resource usage for each operation. We focus on CPU, disk, I/O
bus, and the network resources. For memory and cache effects, we simply assume the
system is either cold started where no cache effects are considered, or warm started
where memory is big enough to hold an index and/or an entire collection. Unless we
explicitly state otherwise, the experiments we present are cold started, i.e., we do not
include cache benefits.

We model the collection of CPUs as a multi-server processor-sharing infinite length
queue. We model a disk, the I/O bus, and the network as a single FCFS infinite length
queue. The processing times (service times) at a hardware resource are modeled

as a deterministic function of overhead plus a linear function of the data size (i.e.

79

ap + data_size * o), where data_size is replaced with a more meaningful concept in
a different operation, such as the term frequency in a query command, the number of
documents in a summary command, and the message size in a network transmission.
We determine the actual values of oy and oy of each hardware resource for each
operation by obtaining measurements from our multithreaded prototype.

We measure resource usages for query evaluation, document/summary retrieval, re-
sult merging, connection brokering, and network transmission. We examine TREC
collections (up to 20 GB) to obtain system measurements (see Appendix A). We ob-
tained the measurements using a client-server IR system based on InQuery version
3.1 running on DEC Alpha Server 2100 5/250 with 3 CPUs (clocked at 250 MHz),
1024 MB main memory and 2007 MB of swap space, running Digital UNIX V3.2D-1
(Rev 41).

5.1.1 Query Evaluation Time

In an earlier study, Cahoon and McKinley demonstrated that the query evaluation
time is very strongly related to the number of terms per query and the collection
frequency of each of the query terms [12, 13]. They model the query evaluation time
as a function of the number of terms per query and the frequency of the individual
query terms plus additional overheads for the CPU and disk. The overheads account
for the time InQuery spends on combining the results of each of the terms. Without
these additional overheads, the evaluation times of long queries are underestimated.
In this work, we adopt their model, but we recollect the measurements, since we
use a faster machine. For each of 1 GB TREC 1, 2 GB TREC 2-3, and 3 GB
TREC 1-3 collections, we collected their Pearson’s correlation coefficients between

term evaluation times and term frequencies. The resulting values were 0.94, 0.95, and

80

query_eval _time

eval _term_time(term)

n

Z eval _term_time(term;) + combining_overhead

i=1

cpu_time(term) + disk_time(term) + I/O _bus_time(term)

[4.643e — 03 + (9.334e — 06 x term) term < 1000
cpu_time(term)) 1.462e — 02 + (2.209e — 06 x term) 1000 < term < 10000
- 2.531e — 02 + (1.089¢ — 06 x term) 10000 < term < 100000
[1.593e — 01 + (1.671e — 07 x term) term > 100000
(5.773e — 02 + (2.048¢ — 05 x term) term < 1000
disk_time(term)) 7.659¢ — 02 + (2.566e — 06 x term) 1000 < term < 10000
B 9.607e — 02 + (5.187e — 07 x term) 10000 < term < 100000
[1.463e — 02 + (8.208e — 07 x term) term > 100000
[5.075e — 06 + (4.044e — 08 x term) term < 1000
1/0_bus.time(term)) 2.318¢ — 05 + (3.936e — 08 x term) 1000 < term < 10000
- 1.288e — 04 + (3.329¢ — 08 x term) 10000 < term < 100000
[2.869¢ — 03 + (9.514e — 09 x term) term > 100000

0.075%y/(n — 1) % Z eval term_time(term;)

i=1

combining_overhead =

Figure 5.1. Query evaluation timing values (seconds).

0.94, respectively, which indicates a very positive relationship!. Our results confirm
Cahoon and McKinley’s findings.

Figure 5.1 lists the formulas for calculating query evaluation time values in our sim-
ulation. We created the formulas for eval_term_time() by fitting the term evaluation
time measurements with four straight lines using a least square method, each of which
covers term frequencies below 1,000, 1,000-10,000, 10,000-100,000, and above 100,000,
respectively. The model is more accurate using four lines rather than a single straight
line for all the data. We divide eval_term_time() into CPU, disk, and I/O bus time.
Although we created eval_term_time() by using measurements obtained from search-
ing the TREC 1 collection, the formulas also match well measurements obtained from

TREC 2-3 and TREC 1-3 (see Section 5.1.5).

! Pearson’s correlation coefficient ranges between -1 and +1. Values -1 and +1 indicate a perfect
linear relationship and occur when all points lie on a downward or upward sloping line, respectively.
A value of 0 indicates there is no linear relationship.

81

Using our measurements, the time to evaluate a single term in the TREC 1 collection
ranges from 0.07 seconds for a term appearing once to 1.2 seconds for a term appearing
995,008 times (the maximum term frequency in TREC 1 after removing stopwords).
The CPU and disk times account for more than 99% of the total evaluation time.
The I/O bus time accounts for 0.007% to 1.0% with an average of 0.16%. The disk
access time is typically larger than CPU processing due to the speed of the Alpha
processor. Our measurements show that disk access time accounts for 32% to 90%
of the total evaluation time with an average of 73%. For slower processors or faster

disks, the CPU processing may be larger than disk time.

5.1.2 Document Retrieval Time

We measure InQuery to determine the amount of time it takes to retrieve a document.
Since the size of a document in our test collections is not very large, where the average
size of a document is 2.3 KB in the 1 GB TREC 1 collection, 2.9 KB in the 3 GB
TREC 1-3 collection, and 2.8 KB in the 20 GB VLC collection, the document retrieval
time is very short and does not show a strong relationship with the document size.
The simulator represents the document retrieval time for an InQuery server as a
constant value, 0.027 seconds, which is the average document retrieval time for 2000
randomly selected documents from the TREC 1 collection. The average size of a
document is 2.3 KB. The document retrieval time is also divided into three parts:
CPU time, disk time, and I/O bus time. Our measurements show that disk access
time accounts for 87% of the total retrieval time on average, while I/O bus time
accounts for 0.06%.

To ensure our simulator is accurate for our experiments, the average document size
returned by an InQuery server is the same as the average size in the TREC 1 collec-
tion, i.e., 2.3 KB. The simulator also uses the document retrieval time to compute

the summary information retrieval time. We implement the summary information

82

2.085¢ — 05 + (3.383¢ — 08 x message_size)

receiver_time(message_size) = 2.428e¢ — 05 + (4.848¢e — 08 x message_size)

sender_time(message_size)

network_time(message_size) = message_size X 8/network_speed

Figure 5.2. Network time values (seconds).

operation as a series of document retrieval operations. For each summary entry, an
InQuery server reads a complete document. However, the InQuery servers only re-
turn the summary portion of the document. In our experiments, the average size of

a document summary is 120 bytes.

5.1.3 Network Time

We model the network time as the sender overhead, the receiver overhead, and the
network latency. The sender overhead is the CPU processing time for adding a
message to the network. The receiver overhead is the CPU time for removing a
message from the network. The network latency is the amount of time that the
message spends in transit. These times are a linear function of the message size,
when the bandwidth of the network is fixed. We obtained these measurements using
TTCP by measuring the time to send messages from 32 bytes to 64 KB between
two DEC Alpha Servers connected by a lightly loaded 10 Mbps Ethernet. Figure 5.2
lists the network time equations in our simulator. Using these equations, the sender
overhead for sending a 2 KB message is 0.09 milliseconds, the receiver overhead is

0.12 milliseconds, and the network latency is 1.64 milliseconds.

5.1.4 Connection Broker Time
The connection broker time is the CPU time that a connection broker spends to
distribute an IR, command to the corresponding InQuery servers or send back a result

to a client. We divide the time in the connection broker into three categories: the time

83

Message Encoding and Decoding Time
query() = 7.500e — 05
summary(nsums) = 1.669e — 05 + (2.489¢ — 05 X nsums)
document _list(ndocs) = 8.523e — 04 + (4.852¢ — 06 x ndocs)

Processing Time
6.170e — 04 : c¢md = document
1.329¢ — 03 + (1.694e — 04 x nservers) : otherwise
7.111e — 05 : emd = document
1.291e — 03 : otherwise

command(nservers,cmd) = {

server_result(cmd) = {

Merging Time
query(nanswers) = 2.566e — 05 + (1.814e — 06 x nanswers)
summary(nsums) = —0.751e — 05 + (2.414e — 05 X nsums)

Figure 5.3. Connection broker time values (seconds).

to encode and decode messages, the processing time for handling messages, and the
time to merge results. Figure 5.3 lists the formulas we use to compute the different
values.

Each time a message arrives, the connection broker must decode the message to
determine an appropriate action. The connection broker also creates new messages
and must encode the data into the message format. The time to decode and encode
a query command, query(), is a constant value. The time to decode and encode
a summary information, summary(nsums), is a linear function of the number of
summaries. The document list(ndocs) function is the time to encode and decode
query results; the value depends upon the number of documents returned from the
InQuery server.

The processing time for handling messages depends upon who sends the message
and the message type. For commands from clients, the connection broker places
them in the queues for the appropriate destination InQuery servers. A document
retrieval command is only sent to one InQuery server and takes a constant amount of
processing. A query or summary command is sent to multiple InQuery servers so the

processing time is a function of the number of servers. Similarly, messages from the

84

InQuery servers contain different types of results. We represent the processing times
using constant values.

The connection broker also spends time merging query and summary results. The
time to merge query and summary results depends upon the number of answers or
summaries an InQuery server returns. We model the merge times as linear functions

of the number of results.

5.1.5 Validation of the Query Evaluation Model

This section presents the validation of the simulator’s query evaluation times against
the actual implementation. We divide the validation into three steps: (1) we validate
the term evaluation time that is the base of the query evaluation model; (2) we
validate the query evaluation model; (3) we validate the query evaluation operation

in a multithreaded IR system. The actual system was running InQuery 3.1 on a

3-CPU Alpha Server 2100 5/250 running Digital UNIX V3.2D-1 (Rev 41).

Validation of the term evaluation time

We validated the accuracy of eval_term_time() in Figure 5.1 by comparing the val-
ues calculated using the formulas with measurements we obtained from searching
TREC 1, TREC 2-3, and TREC 1-3 collections. For each collection, we randomly
chose 500 terms and calculated the percentage difference of the times for each of the
terms. The term frequencies for TREC 1, TREC 2-3, and TREC 1-3 we chose range
from 1 to 556,548, from 1 to 1,940,988, and from 1 to 2,935,997, respectively. Before
processing each term, we chilled the system by reading a large file that fills the mem-
ory such that every terms was read from the disk. Table 5.1 shows the validation
results. Column 1 lists the names of collections. Column 2 and 3 show the average
percentage difference of evaluation time between the simulator and the actual system,

and its standard deviation. A positive value means that the simulator overestimates

85

Query Difference
Type Ave. Std. || £5% +10% =+15%
TREC 1 0.1% 0.9% || 100% 100% 100%
TREC 2-3 || 1.7% 3.0% || 8% 97™% 100%
TREC 1-3 || 1.4% 7.8% | 8% 96% 100%

Table 5.1. Term evaluation time validation.

the actual system. Columns 4 through 6 show the percentage of terms running on
the simulator that fall within £5%, £10%, and £15% of the actual system.

Since the formulas were obtaining by fitting the measurements from the TREC 1
collection, the model matches the measurements from TREC 1 best, the average
percentage difference is 0.1% with a standard deviation of 0.9%, and all terms fall
within 5% difference. For TREC 2-3, the average percentage difference is 1.7% with
a standard deviation of 3.0%. 97% of terms fall within 10% and all terms falls within
15%. For TREC 1-3, the average percentage difference is 1.4% with a standard
deviation of 7.8%. 96% of terms fall within 10% and all terms falls within 15%.

These numbers indicate the model matches TREC 2-3, and TREC 1-3 very well.

Validation of the query evaluation model

We validated the accuracy of the query evaluation model by creating artificial queries
and comparing the performance of query function for searching a 1 GB collection in
the actual implementation and the simulator. We randomly generated three sets of
queries: 50 short queries with an average of 2 terms per query, 50 medium queries
with an average of 12 terms per query, and 50 long queries with an average of 27
terms per query. When obtaining measurements, we chilled the system before the
system processes each query.

Table 5.2 shows the validation results. Column 2 and 3 show the average percentage
difference of evaluation time between the simulator and the actual system, and its

standard deviation. A positive value means that the simulator overestimates the

86

Query Difference Ave. Eval.
Type Ave. Std. || £10% £20% +30% +40% | Time (sec)
Short 2.0% 16.2% 42% 2% 96% 100% 0.7
Medium || 4.2% 10.1% 68% 90% 100% 100% 4.6
Long 23% 8.5% 78% 96% 100% 100% 10.1
Ave. 2.8% 11.6% 63% 86% 99% 100% 5.1

Table 5.2. Query model validation.

Total Distribution
Query 0% to | —10% to | —20% to
Type Number | Percentage || —10% | —20% -30%
Short 22 44% 11 7 4
Medium 17 34% 14 3 0
Long 19 38% 18 1 0
Ave. 58 39% 43 11 4

Table 5.3. Distribution of underestimated queries.

actual system. Columns 4 through 7 show the percentage of queries running on the
simulator that fall within £10%, £20%, +30% and +40% of the actual system. The
last column lists the average evaluation query time for each set of queries in the
actual system. On average the simulator is 2.8% slower than the actual system with
the standard deviation of 11.6%. The variation of short queries is twice that for long
queries. All queries fall within 40% of the actual system.

Table 5.3 details the underestimated queries. Columns 2 and 3 show the total num-
ber of underestimated queries and the corresponding percentage in all query sets.
Columns 4 through 6 show the number of the underestimated queries that fall within
—10%, —10% to —20% and —20% to —30% of the actual system. Although we under-
estimate 58 queries out of 150 queries, 43 queries fall within 10% and only four short
queries fall outside of 20%. Thus, we usually overestimate queries. Our validation
results show that our query evaluation model matches the actual system very closely,

although we do not accurately model every query.

87

Arrival

Query Rate A Number of Threads

Type per sec. 1 | 2 | 3 | 4] 8 | 16
.5 1.5% 0.5% | -2.5% | 2.5% | -0.8% | 1.5%

Short 1 13.7% 3.0% 1.9% | -1.5% | 1.0% | -0.3%
5 27.2% | 17.6% | 3.8% | -0.4% | 21% | 1.0%
.5 19.8% 9.0% | 4.4% 1.9% 1.2% | 0.5%

Medium 1 26.0% | 12.0% | 2.5% | -3.9% | 1.9% | -0.4%
5 21.5% | 15.7% | 7.2% 8.8% 50% | 4.1%
.5 15.8% 6.6% | -3.8% | -0.4% | 0.4% | -0.5%

Long 1 10.1% 1.8% | -2.1% | 1.8% 1.0% 1.7%
5 12.7% | 10.3% | 1.7% 2.4% 3.9% | 3.1%

Average 16.5% | 85% | 1.5% | 1.2% | 1.7% | 1.2%

Table 5.4. Percentage difference of average response times between the implemen-
tation and simulator.

Validation of query operation

This section validates query operations for searching a 1 GB collection on a multi-
threaded server using InQuery 3.1 as the query arrival rate and the number of threads
increase on a 3-CPU Alpha Server 2100 5/250 running Digital UNIX V3.2D-1 (Rev
41). We assumed queries arrives as a Poisson process. Each thread executes one
query. The collection was put on one disk. We used the same query sets as used in
validating the query evaluation model.

Table 5.4 lists the percentage difference of the average response time between the
actual system and the simulator for each query set as the arrival rate and the number
of threads increase. Positive numbers indicate the simulator overestimates the actual
system. The simulator reports response times that are 4.5% slower than the actual
system on the average, and range from 3.9% faster to 27.2% slower than the actual
system. The difference between the actual system and the simulator tends to decrease
as the number of threads increases and the query arrival rate decreases. For example,
for a system with 16 threads, the simulator is from 0.3% faster to 4.1% slower than the

actual system. The difference between the simulator and the actual system increases

88

Average Query Response Time (Seconds)

Average Query Response Time (Seconds)

Figure 5.4. Validation of the performance using partial replication.

as a function of the number of queries waiting in the queue, because our query model

usually overestimates the query evaluation time. Overall, the simulator matches the

actual system closely.

60

50

40

30

20

10

60

50

40

30

20

10

Partitioning (4 disks)

o
L

Replication (DP=40%)

T

5 10 15 20
Command Arrival Rate (requests per second)

(a) using the real system

Partitioning (4 disks) <—
Replication (DP=40%) -+--

0 5 10 15 20

Command Arrival Rate (requests per second)

(b) using the simulator

Validation of partial replication performance

This section compares the simulator and the implementation on partial replication
for searching a 16 GB collection on a multi-tasking server using InQuery 3.1 as the
query arrival rate increases on a 3-CPU Alpha Server 2100 5/250 running Digital

UNIX V3.2D-1 (Rev 41). We used a multi-tasking server instead of a multithreaded

server just to save us time from implementing replica selection in a legacy system

89

like InQuery which uses too many global variables. Our earlier work showed that
the multitasking server performs similar to the multithreaded server, although the
multithreaded server is always slightly faster (90% of measured response times fall
within 10% of each other) [55].

In this experiments, we distributed the 16 GB collection over 4 disks and used an
extra disk to store a 4 GB replica. We assumed queries arrives as a Poisson process,
and used 50 short queries with average 2 terms per query. Figure 5.4 compares the
performance of using the real system and the simulator when the replica distracts 40%
of commands, and shows that two systems presented the same trend and expected
improvements from partial replication. Section 6.1.3 and Section 6.2 further explore

the performance of partial replication.

5.2 Configuration Parameters

This section describes the parameters we vary in our experiments. Our configuration
parameters include parameters that define command characteristics such as command
arrival rate, and command mizture ratio, those that define query and collection char-
acteristics such as collection size, terms per query, and query term frequency distri-
bution, those that describe data placement features such as collection size, number of
collections, number of replicas and replica size, and those that describe hardware and
software features such as number of threads, number of CPUs, and number of disks.
Table 5.5 presents the parameters, their abbreviations, and values we use throughout

this dissertation.

Command arrival rate ()
In the simulator, we model light or heavy workloads by slowing down or speeding up

the command arrival rate. We model the command arrival pattern using a Poisson

90

| Parameters | Abbreviation || Values |

Command Arrival Rate d 2 4 6 8 10
Poisson dist. (avg. commands/sec) A 12 14 16 18 20
Command Mixture Ratio

query:summary:document, Rem 1:1.5:2

Terms per Query (average)

shifted neg. binomial dist. Nipg 2 8 12 27

Query Term Frequency Obs.

Distribution Dy Dist.

Number of Collections Neot 1 8 32

1 2 4 8 16 32

Collection Size (GB) Csize 64 128 256 1024
Server speedup Sp 4
Number of CPUs Nepu 1 2 4
Number of Disks Nyisk 1 2 4 8
Number of Threads Nyp, 1 2 4 8 16 32
Number of Replicas Nrept 1 2 4
Replication Percentage Prep 3% 6.25% 125% 25%
10% 20% 30% 40% 50%
Distracting Percentage Pyist 60% T0% 80% 90% 100%
Selection Percentage P, 12.5% 25% 50%
Collection Access Skew
Zipf-like function 0 0 (pure Zipf) 0.3 1 (uniform)

Table 5.5. Configuration parameters.

process with rate A\. We vary A from 0.1 commands per second to 20 commands per

second.

Command mixture ratio (R,)

We simulate user activity by issuing query, summary, and document retrieval com-
mands. We vary the mixture of the commands to model different user patterns. For
example, 1:2:2 means that for each query command, clients issue 2 summary and 2
document commands. In the THOMAS log that we analyzed in Appendix B, if we
assume the response for a summary command contains the summary information for

10 documents, the ratio of query:summary:document is 1:1.5:2.

Number of collections (/N.,), collection size (Cj;.e)
These parameters give the number of collections and the total size of all collections in

gigabytes in the IR system. We vary these two parameters to examine the scalability of

91

an IR system when it processes an increasing number of collections and an increasing

amount of data.

Terms per query (Ny,,)

Cahoon and McKinley demonstrated that shifted negative binomial distributions
closely match the distributions of query length in query sets they investigated [12, 13].
In this dissertation, we use their results, as shown Table 5.6. The characteristics of a
shifted negative binomial distribution are the number of trials, n, the probability of
success, p, and the amount of shift, s. In Table 5.6, there are three sets of (n,p, s),
which produce different lengths of queries. The first row describes short queries with
an average of 2 terms per query that mimic those found in the query sets from the
103rd Congressional Record. The third row describes long queries with an average of
27 terms per query that mimic those found in a TREC 1 query set. The second rows
describes medium queries with 12 terms per query that is an artificial query set that

shows characteristics from short and long queries.

[Description | Query Set | AvgLength [n| p | s |
Short Queries 103rd CR 2 4108 |1
Medium Queries | N/A 12 2107715
Long Queries TREC 1 27 2101 |10

Table 5.6. The values used in terms per query.

Query term frequency distribution (D)

Since there is no agreement about a commonly accepted distribution for term frequen-
cies in queries [75], we use an observed query term frequency distribution obtained
from the TREC 1 query set as described in Cahoon and McKinley’s paper [12]. We
reproduce the figure that shows the term frequency distributions in the TREC 1 col-

lection and the query set, as shown in Figure 5.5. The figure shows that terms used in

92

100

TREC 1 Collection ——
o Observed -]
80 | /
70 +
2
[60
2
5 s0p
3
§ wf
O
30 |
20 |
10}
0 T) ‘ |
1 10 100 1000 10000 100000 1e+06

Term Frequency

Figure 5.5. Query term frequency distributions.

the TREC query set tend to use frequently used terms in the collection. Frequencies
of about 90% of query terms are larger than 1000.

We observe how this distribution changes as the collection size increases, shown in
Figure 5.6. We draw Figure 5.6(a) using raw data. We draw Figure 5.6(b) by nor-
malizing the frequencies by a factor of bsize/size, where bsize is the size of the base
collection (1 GB in this case), and size is the size of the currently observed collec-
tion. Figure 5.6(b) show that the three lines for TREC 1, TREC 12, and TREC
123 overlap after normalizing the term frequency. Therefore, in our simulator, we
generate a query term with term frequency ¢f on a particular collection by using the
base distribution obtained from the base collection (TREC 1 collection in our case) to
generate a base frequency b_tf, and then multiplying b_tf by a factor of size/bsize,
ie, tf =btfxsize/bsize. But we need to note, this relation holds when the collection
size increases, due to data coming from the same sources. If the new data comes from
different sources, the tf could be less than b_t f x size/bsize, because many new terms
could be added.

For replicas, we use tf = repl_f*b_t fxsize/bsize, where repl_f > 1, since replicas will
contain documents for most frequently used queries, and thus query term frequencies
should be larger than the average. By examining query term frequencies of replicated

queries in the replicas we built for the experiments in Section 4.3.2, we find that

93

100

TREC1-1G
TREC 12-2
TREC 123 -
80 | C123-3
N
> 60
=
8
3
E 4wl
o
20 |
0 e ‘ ‘
1 10 100 1000 10000 100000 1e+06
Term Frequency
(a) original
100 ‘ . . —
TREC 1-1GE —
%0 r TREC 12-2GB —— 1
TREC 123 -
80 | C123-3;
70
N
> 60
=
T 50
=}
E 4wl
o
30 |
20 |
10 b
0 s = L L L
1 10 100 1000 10000 100000 1e+06

Term Frequency

(b) normalized

Figure 5.6. Query term frequency distributions with increasing collection size.

generally repl_f decreases as b_tf increases. We obtained the following formulas by

dividing b_tf into several intervals and averaging the values within each interval:

543 : btf < 1000
2.92 : 1000 < b_tf < 5000
2.60 : 5000 < b_tf < 10000

F=19 150 : 10000 < b_tf < 50000
1.31 : 50000 < b_tf < 100000
1.21 : otherwise
If = f o 1 fxsize/ori_size < 1,where ori_size is the original collection size
repi-l = oresze otherwise

Server speedup (Sp)

We adjust this parameter to simulate a server S, times as fast as our base system.

94

Number of CPUs/disks/threads per machine (N,y,/Nyisk/Nin)

The number of CPUs per machine and the number of disks per machine affect the
machine processing capability and data layout of a IR system. The number of threads
affects the utilization of hardware components. We vary these numbers to examine

how to effectively exploit hardware resources to build a high performance IR server.

Number of replicas (V,.;), replication percentage (P,), distracting per-
centage (Pys)

These three parameters together describe the features of partial replication: how
many replicas in the system (/V,p), what percentage of data is replicated (Pyep), and
what percentage of queries is directed to the replicas (Pys). When we say a partial
replica satisfies Py of queries, it also indicates that the replica will satisfy the same
percentage of summary and document commands, because we use the same distribu-
tion to distribute summary and document commands. Therefore, “a replica distracts
Py of queries” has the same meaning as “a replica distracts Py, of commands” in
our context. “A replica distracts or satisfies a query” means that the replica selector

sends the query to that replica.

Selection percentage (Ps), collection access skew ()

These two parameters describe the features of collection selection: what percentage of
collections the system searches at a time (Py), and the frequency of each collection
being accessed after collection selection (8).

We model the collection access skew using a Zipf-like function as follows: assume that
we want to select W collections to search at a time, we use W trials. In each trial,
we choose a collection from the collections C' that have not been chosen according to

the distribution function Z(3):,

Z(i) = ¢/i"™’, where c=1/5,(1/5'7%),1<i < C.

95

As 0 varies from 1 to 0, the probabilities vary from an uniform distribution to the
pure Zipf distribution. We do not have logs for collection access patterns in a real
multiple collection searching environment, but since queries have locality, the actual

distribution probably closes to a pure Zipf than an uniform function.

96

CHAPTER 6

PERFORMANCE EVALUATION OF OUR DISTRIBUTED
INFORMATION RETRIEVAL SYSTEM

This chapter investigates the performance and scalability of our distributed infor-
mation retrieval system using the simulator presented in Chapter 5. We evaluate
the performance of parallel IR servers using symmetric multiprocessors. We examine
how to balance hardware and software resources with respect to numbers of threads,
CPUs, disks, and the collection size. We compare the data placement strategies when
we have additional disks. We evaluate the performance of partial collection replica-
tion and collection selection in a distributed IR system. We compare the performance
of partial replication and collection partitioning, and the performance of collection
selection and partial collection replication.

Our experiments demonstrate that adding hardware resources improves system per-
formance only when hardware resources are carefully balanced, otherwise it can de-
grade the performance. Using extra disks or servers to build partial replicas of a
collection performs significantly better than using them to partition the collection
when the replica(s) distract a certain amount of IR commands. The improvements
occur when the replica distracts less than 10% of commands in many cases. Re-
stricting the search to a subset of the collections improves system performance when
either the collection access after collection selection is fairly uniform or only a small
percentage of collections are searched.

In the experiments in this chapter, we model the command arrival as a Poisson

process. The users use short queries with an average of 2 terms per query, and issue

97

query, summary, and document commands, with a ratio of 1:1.5:2, as we found in
the Thomas logs (see [22] and Section B). We measure response time, CPU and
disk utilization, and determine the largest command arrival rate at which the system
supports an average query response time under 10 seconds. We chose 10 seconds
arbitrarily as our cutoff point for a reasonable response time.

The remainder of the chapter is organized as follows: we evaluate the performance
of parallel servers in Section 6.1, the performance of partial collection replication in
Section 6.2, the performance of collection selection in Section 6.3, and summarize the

results of this chapter in Section 6.4.

6.1 Parallel Information Retrieval Using Symmetric Multi-

processors

This section explores how to achieve high performance for information retrieval using
symmetric multiprocessors. We investigate how to balance software and hardware
with respect to multiple threads, CPUs, and disks as the collection size increases. We
compare the performance of replication and partitioning over additional disks.

We start with a base system that consists of one thread, CPU, and disk. Our base
system is disk bound where the disk is a bottleneck. We improve the performance
of our IR server through better software (multithreading), and with additional hard-
ware (CPUs and disks). Our parallel information retrieval server uses InQuery as
the retrieval engine [46]. In our parallel IR server, as shown in Figure 6.1, when the
server receives an IR command, it assigns the command to one or multiple threads ac-
cording to the command type and collection partitioning. For example, we distribute
a collection over 4 disks; when the server receives a query command, it assigns the
query command to four threads, each of which evaluates the command against the
data on one disk, and then the server merges the results from the 4 threads. For a

summary command, the server assigns it to n threads, where n is the number of disks

98

Shared Memory

CPU1

DISK1

{ y
—
DISK2
Responses
CPUm :
I
| r @

DISKn

INQUERY Server

Figure 6.1. The parallel InQuery server

[Parameters | Abbreviation || Values |
Command Arrival Rate d 2 4 6 8 10
Poisson dist. (avg. commands/sec) A 12 14 16 18 20
Command Mixture Ratio
query:summary:document, Rem 1:1.5:2
Terms per Query (average)
shifted neg. binomial dist. Nipg 2
Query Term Frequency Obs.
dist. from queries Dy Dist
Number of CPUs Nepu 1 2 4
Number of Disks Nyisk 1 2 4 8 16
Number of Threads Ny 1 2 4 8 16 32

Table 6.1. Configuration parameters for parallel experiments.

that contain the documents whose identifiers are described in the command, and then
the server merges the summaries. For a document command, the server assigns it to
one thread, which retrieves the full text of that document.

Table 6.1 presents parameters, their abbreviations, and values we use in the experi-
ments of this section. The rest of this section is organized as follows: Section 6.1.1
investigates the effects of threading and factors that affect the necessary number of

threads. Section 6.1.2 investigates balancing hardware when adding CPUs and disks.

99

Section 6.1.3 compares the performance of replication with partitioning when we have

additional disks. Section 6.1.4 summarizes the results of this section.

6.1.1 Threading

This section examines how the number of threads affects system scalability, and what
factors affect the necessary number of threads that leads the system to its peak
performance.

Figure 6.2 to Figure 6.4 illustrate how the average query response time and resource
utilization change as the number of threads increases with varying numbers of CPUs
and disks. When multiple disks exist in the system, we distribute the collection over
disks in a round-robin fashion.

Figure 6.2 illustrates configurations when the disk is a bottleneck. We show the re-
lationship between performance and the number of threads when we put more data
on the disk, and add CPUs. We start with one disk and one CPU for a 1 GB col-
lection (Figure 6.2(a)), and then increase the collection size from 1 GB to 4 GB
(Figure 6.2(b)), and add one CPU (Figure 6.2(c)). Figure 6.2(d) shows the CPU and
disk utilizations at some interesting data points in configurations (a) to (c). The box
on the top of each figure lists the system parameters for the experiment. In all these
configurations, threading significantly improves the query response time as the num-
ber of threads increases. However, after the number of threads increases to 4, more
threads improve the performance very little. By examining the utilization shown in
Figure 6.2(d), 4 threads result in disk utilization of 97.4% for A = 8. There is lit-
tle room for further increasing the disk utilization. When we increase the collection
size (see Figure 6.2(b)), the system shows the same trend as configuration (a), the
system performance significantly improves until the the number of threads reaches
4, although searching 4 GB takes longer time than searching 1 GB. When we add

an additional CPU into the configuration (b) (see Figure 6.2(c)), the system perfor-

100

Average Query Response Time (Seconds)

8 threads -
16 threads -4

32 threads -

1 15 20
Average Arrival Rate (requests per second)
(a)
Rem thq Dqtf Csize Nc;Uu Ngisk
1:1.5:2 2 Obs. | 4 GB 1 1
= 60 T T
2 1 thread <—
3 2 threads —+--
3 50 - 4 threads -8--]
o 8 threads -
IS 16 threads -&-
[= 40 - 32 threads -*-- 7
2
8 30 - B
[
[0}
o
Fenl 20 |- R
[}
3
(]
g 10 | B
©
9]
>
<< 0 1 1
0 5 10 15 20
Average Arrival Rate (requests per second)
(b)
Rem thq Dqtf Csize Ncpu Ndisk
1:1.5:2 2 Obs. | 4 GB 2 1
= 60 T T T
[72] I
2 /,/X 1 thread <—
3 S 2 threads -+
& 50 |- A 4 threads 8- |
o ﬁ'(;r’/ 8 threads -
£ g 16 threads -2
= 40 i* 32 threads -*-- 7
[i
2 i
8 30 - i B
@ iif
2 il
T i
> 20 - i i
[} I
=1 i
e] i
% 10 / gf E
g e
< 0 1 1 1
0 5 10 15 20
Average Arrival Rate (requests per second)
(c)
Config. (a) Config. (b) Config. (c)
A=28 A=6 A=6
Res. Nth =1 Nth =2 Nth =4 Nth =2 Nth =4 Nth =2 Nth =4
CPU 23.0% 27.5% 30.3% 31.1% 34.7% 17.7% 18.1%
DISK 73.8% 87.9% 97.4% 83.4% 94.3% 93.5% 98.7%

Figure 6.2. Performance as the number of threads increases (disk bottleneck).

(d) hardware utilization at some interesting data points

101

mance still significantly improves until the number of threads is 4. But 2 threads in
configuration (c) is very close to 4 threads, since an additional CPU means more com-
putation power that shortens the waiting time for CPU. Although fewer threads in
this configuration could bring more improvement than the other two configurations,
the maximum improvement of the system is still limited by the disk utilization.
Figure 6.3 illustrates configurations when the CPU is a bottleneck. We start with a
system using 1 CPU for a 1 GB collection distributed over 4 disks (Figure 6.3(a)), and
then increase the collection size to 4 GB (Figure 6.3(b)), and add 4 disks which dis-
tributes the 4 GB collection over 8 disks (Figure 6.4(c)). Figure 6.3(d) shows the CPU
and disk utilization at some interesting data points in configurations (a) to (c¢). In
these configurations, the average query response time significantly improves until the
number of threads reaches 8, when the CPU becomes overutilized (see Figure 6.3(d)).
As in the case of the disk bottleneck (see Figure 6.2), adding data causes longer
searching time, but does not significantly affect the number of threads that leads the
system to peak performance. Adding additional 4 disks makes the performance worse
than fewer disks due to two reasons. First, although with 8 disks each disk holds
half as much data as 4 disks, searching it takes more than half time of searching all
the data (it takes around 3/5 of the time according to our measurements). Second,
searching more disks requires more coordination time. Therefore the total amount of
the CPU time for searching 8 disks is more than searching 4 disks, which overwhelms
the CPU sooner.

Figure 6.4 illustrates configurations when CPUs and disks are well balanced as the
collection size increases. Figure 6.4(a)-(c) show the configurations using 2 CPUs and
4 disks for 2 GB, 4 GB, and 8 GB of data, respectively. Figure 6.4(d) shows the
CPU and disk utilization at some interesting data points in configurations (a) to (c).

In these three configurations, the average query response time significantly improves

102

Rem thq Dqtf Csize Ncpu Ndisk

1:1.5:2 2 Obs. 1 GB 1 4
™ 60 T L T
2 / 1 thread <—
3 2 threads —+-
3 50 - A 4 threads -8--]
o . 1gtﬂreags e
£ threads —4--.-§
Fo40r / 32 threags -
S 30 | ,’/ _
g / ' . x A‘i;%
g 2r A
(¢} / / N
© L / e]
% 10 o
) / 2
z 0 b= .

0 5 10 15 20

Average Arrival Rate (requests per second)

(a)

thq Dqtf Csize Nc;uu Ndisk
Obs. | 4 GB 1 4

™ T T =z
B [n) &l thrﬁad -
8 © X 2fhreads -+
3 50 . _~#&%hreads -8-- |
Y] A 8threads -
IS ! X/ 16threads -
[= 40 4 32 threads -*-- 7
@ ¥
8 30 N i
Q %
o a
Fenl 20 4 R
[}
3
¢]
g 10 B
o
[
3: 0 Il 1

0 5 10 15 20

Average Arrival Rate (requests per second)
(b)
Rem thq Dqtf Csize Ncpu Ndisk

4 GB 1 8

1thread <—

2 threads —+-
4 threads -8-- 7
8 threads -
16 threads —4--
32 threads -

Average Query Response Time (Seconds)

5 10 15 20
Average Arrival Rate (requests per second)
(c)
Config. (a) Config. (b) Config. (c)
A=10 A=28 A=8

Res. Nth =4 Nth =8 Nth =4 Nth =8 Nth =4 Nth =8

CPU 68.5% 83.7% 80.4% 92.7% 86.8% 98.2%

DISK 54.1% 65.7% 40.4% 48.1% 23.7% 26.8%
(d) hardware utilization at some interesting data points

Figure 6.3. Performance as the number of threads increases (CPU bottleneck).

103

Rem thq Dqtf Csize Ncpu Ndisk
1:1.5:2 2 Obs. | 2 GB 2 4
™ 60 T s T
2 1 thread <—
3 ¥ 2 threads —+--
& 50 |- 4 threads -8-- 7
o / 8 threads -
IS / 16 threads —4- .0
[40 - / 32 threads &~ |
[/ o=
B by
g s f ;
3 / H X
D: l’ S
> 20 / I
g / o XUl
a / - o LK
% or //’ /' - v//v' ’ 7
g —L/ ></§
z 0 e R .
0 5 10 15 20
Average Arrival Rate (requests per second)
(a)
Rem thq Dqtf Csize Nc;Uu Ngisk
1:1.5:2 2 Obs. | 4 GB 2 4
m 60 T 7 T T h
g 1 thread a—
o + 2 threads =+
3 50 - 4threads -5]
° ! _8threads ~x--
£ / 16 threads —2--
= 40 / @ 32 threads - -.7
© / X7
S 30 | X 4
> 20f 2 S
[} / ; P
g /7‘ X K
o 10 L S e i
o / / S
[} / R
z 0 B T e S I
0 5 10 15 20
Average Arrival Rate (requests per second)
(b)
Rem thq Dqtf Csize Ncpu Ndisk
:1.5: Obs. | 8 GB 2 4
o 60 ® T
2 ‘ 1 thread -%—
3 2 threads —+
3 50 threads -2-- 7|
o g Bthreads -x--
£ ,r 16 threads —4--—
[= 40 : X032 thregdg R)
] LK
2 X e
8 30 g K B
8 X ¥
> 20 5 -
[} a ’
=1 ;o
a JSO*k
) - ®
>
< 0 1 1
5 10 15 20
Average Arrival Rate (requests per second)
(c)
Config. (a) Config. (b) Config. (c)
A=10 A=10 A=6
Res. Nth =38 Nth =16 Nth =38 Nth =16 Nth =38 Nth =16
CPU 56.9% 59.7% 65.1% 76.6% 63.9% 64.1%
DISK 64.7% 65.7% 67.5% 78.7% 58.6% 59.3%

Figure 6.4.
well balanced).

104

(d) hardware utilization at some interesting data points

Performance as the number of threads increases (CPUs and disks are

until the number of threads reaches 16. As the collection size increases from 2 GB to
8 GB, more threads bring very small further improvement for a larger collection.

In all the configurations shown in Figure 6.2-6.4, the average query response time
improves significantly as the number of threads increases until either the disk or
the CPU is overutilized. Too few threads limit the system’s ability to achieve its
peak performance. For example in Figure 6.4(b), using 4 threads only supports 7
requests per second for an average query response time under 10 seconds, while using
16 threads supports 11 requests per second under the same hardware configuration.
Both CPUs and disks affect the necessary number of threads.

In our configurations, when the CPU is not a bottleneck, a disk needs 4 threads to fully
utilize its capacity. When the CPU is a bottleneck, the system needs fewer threads.
Increasing the collection size causes longer searching time, but does not significantly
affect the number of threads that leads the system to its peak performance.

In general, the necessary number of threads is system dependent, which is affected by
any change of the command mixture ratio, the IR system itself, and the underlying
hardware platform. However we may estimate the necessary number of threads in a
server that uses N, CPUs and Ny, disks for processing a (Vg - M) GB collection

as follows:

1. Run a batch of sample queries against the M data on a single disk using a
single CPU and a single thread, and collect the total CPU time and the total
disk time for all query commands (Tgcp, and Tgaisk), and the total CPU time

and the total disk time for all summary and document commands (Tpep, and

Tpisk)-

2. Calculate the base necessary number of threads (BNy,) using:

Toepu + Todisk + (Toepu + Tpdisk) [Naisk
min(Toepu + Toepu/Naisk, Todisk + Tpdisk/Naisk)

BNy, =

105

Note the workloads involved in the summary and document commands are

distributed over disks.

3. Estimate the necessary number of threads (N Ny,) using

NNy, = Naisk - BNip.

Here we give an example how to use the above formula to estimate the necessary
number threads for a server using 1 CPU and 4 disks for 4 GB data. From our

simulation results for using 1 CPU and 1 thread for 1 GB data on 1 disk, we collected:

TQepu = 19.9 seconds
TQaisk = 64.2 seconds
Tpepu = 35.8 seconds

Tpaisk = 115.8 seconds

We calculated BNy, = (19.9 + 64.2 4 (35.8 + 115.8)/4)/(19.9 + 35.8/4) = 4.2, which
means we need 4 threads for a disk. For a server using 1 CPU and 4 disks for
processing 4 GB of data, we need approximately 16 threads in total, which matches

our finding in Figure 6.3(b).

6.1.2 The Hardware Balancing Act
This section investigates how to balance hardware components with respect to varying

the numbers of CPUs and disks.

Migration of balancing points with adding hardware components
In general, adding hardware components improves system performance by provid-
ing more computation capacity. Figure 6.5 gives an example of how the hardware

balancing points migrate as we handle a 4 GB collection by adding CPUs and disks.

106

10

Rem thq Dqtf Csize Ncpu Naisk Nip
1:1.5:2 2 Obs. | 4 GB | varied | varied 32
m 60 T T X
2 1 CPU + 1.dfsk —o—
3 1 CPU + 2'disks —+--
K 50 2 %RUSX+ 2disk -3]
o 1CV PU + 4 disks ;j
IS 2.CPUs + 4 disks-<#~~""
£ 40 Pt
) x A+ .8
2 P
o) 30 S .
% /f' -
o oo T
> 20 e a” g
Q S .
()
(=)
©
9]
>
<

5 10 15 20
Average Arrival Rate (requests per second)

(a) average response time

Resource 1 CPU+1 disk | 1 CPU+2 disks | 2 CPUs+2disks | 1 CPU+4 disks | 2 CPUs+4disks
CPU 30.9% 72.9% 36.3% 92.3% 49.4%
DISK 98.4% 80.7% 80.4% 47.7% 50.2%

(b) hardware utilization when A = 6

Figure 6.5. Performance as the hardware configuration changes for a 4 GB collection.

In the case of 1 CPU and 1 disk, the system is disk bound (see Figure 6.5(b)). When
we add one disk, the disk bottleneck is relieved, and the system is well balanced.
The largest command arrival rate at which the system supports an average query
response time under 10 seconds increases by 100%. When we add one CPU into
this well-balanced system, the performance further improves, but the improvement
is relatively small. The largest arrival rate at which the system supports a query
response time under 10 seconds increases by 2%. If we add two more disks instead
of adding one CPU, forming a system with 1 CPU and 4 disks, the system becomes
CPU bound due to additional overheads to access each disk. The performance using
4 disks is worse than 2 disks, which indicates adding disks can degrade performance
when the hardware components are not well balanced. When we add one more CPU,
the system is well balanced again, the performance further improves. By comparing
two well balanced cases, more hardware components greatly improves the system.

For example, for a 4 GB collection, the system with 1 CPU and 2 disks supports 8

107

commands per second with an average query response time under 10 seconds, while
the system with 2 CPUs and 4 disks supports 12 commands per second.

The above observations suggest that adding hardware components improves system
performance only for a well-balanced system. If we do not pay attention to the
hardware balancing act, we can degrade system performance although we invest more
hardware.

As in the case of the number of threads, the right ratio of the number of CPUs and the
number of disks is system dependent, which is affected by any change of the command
mixture ratio, the IR system itself, and the underlying hardware platform. Assume
we want put a M GB collection on a disk, we may estimate the ratio Nepy/Naisk as

follows:

1. Run a batch of sample IR commands against a M GB collection on a single disk
using a single CPU and a single thread, and collect the total CPU time and the
total disk time for all query commands (Tqep, and Tgaisk), and the total CPU
time and the total disk time for all summary and document commands (Tpepy

and Tpaisk);

2. Collect the time overhead (T,,) for dispatching and merging results for query
and summary commands when using two disks, each of which stores a M GB

collection.

3. Estimate Ngpy/Naisk using

Ncpu _ Ndisk) TQcpu + TDcpu + (Ndisk - 1)) Toh

Naisk Naisk - Todisk + Tbdisk

Here we give an example how to use the above formula to estimate the number of
CPUs when we plan to distribute a 4 GB collection over 4 disks. From our simulation

results for using 1 CPU and 1 thread for 1 GB data on 1 disk, we collected:

108

TQepu = 19.9 seconds
TQaisk = 64.2 seconds
Tpepu = 35.8 seconds

Tpaisk = 115.8 seconds

From our simulation results for using 1 CPU and 1 thread for 2 GB data over 2 disks,

we collected T, to be 16.2 seconds.

4x19.9+35.8+(4-1)+16.2 - o
4x64.2+115.8 -

We substituted these value in the formula, we obtained N, = 4x
Therefore, we need 2 CPUs for handling the 4 GB collection over 4 disks, which

matches our finding in Figure 6.5.

Increasing the collection size

This section examines how to balance hardware components as the collection size
increases. When the collection size increases, we may cope with this problem by
either buying more disks where each disk holds the same amount of data as before,
or replacing the current disks with larger ones where each disk holds more data.
Figure 6.6 illustrates the average query response time and the resource utilization for
adding 4 disks and keeping the same amount of data on each disk, and using the same
number of disks but putting twice as much data on each disk, when the collection
size increases from 16 GB to 32 GB.

From measuring our system, we know it takes each disk less time and each CPU
more time to search the same amount of data distributed over twice as many disks,
because each disk handles less data, but the total time increases as the number of
disks increases because each CPU has more work.

In a 2 CPU server illustrated in Figure 6.6(a), where 2 CPUs and 4 disks constitute a
well-balanced server, adding 4 more disks and partitioning 32 GB over 8 disks makes
the server become CPU bound, and thus performs worse than a server using the same

number of larger disks, because the CPUs are overwhelmed. By examining CPU and

109

Rem thq Dqtf Csize Ncpu Naisk Nip,
1:1.5:2 2 Obs. | varied | varied | varied 32

= 60
©
c
]
@ 50
@
g
= 40 .
[0
2
8 30 B
[
Q
o
fenl 20 R
Q
]
¢]
g 10 B
©
9]
o
< 0 1 1
0 5 10 15 20
Average Arrival Rate (requests per second)
(a) Nepu =2
60 T ’, T I//
16 GB (4 GB/disk) —
32 GB (4 GB/disk) -+--
50 - / 32 GB (8 GB/digk) -

Average Query Response Time (Seconds)

0 5 10 15 20
Average Arrival Rate (requests per second)
(b) Nepu =4

16 GB 32 GB

Num. 4 disks 8 disks 4 disks
CPUs | Resource | (4 GB/disk) | (4 GB/disk) | (8 GB/disk)

CPU 59.0% 96.9% 73.6%
2 DISK 57.6% 43.8% 84.4%
CPU 29.3% 54.7% 40.5%
4 DISK 57.3% 49.5% 86.9%

(c) hardware utilization when A\ = 4

Figure 6.6. Increasing the number of disks versus increasing the data size per disk
as the collection size increases.

110

disk utilization in Figure 6.6(c), putting more data on a disk moves the balance point
a little bit (the ratio of CPU and disk utilization moves from 1:02:1 to 0.9:1 for 2
CPUs), but not significantly. The balance point moves because the term frequency of
a given term increases as the collection size increases, and the term evaluation time
is a linear function of the term frequency (refer to Section 5.1.1).

In a 4 CPU server illustrated in Figure 6.6(b), where 4 CPUs and 4 disks constitute a
disk-bound system, adding 4 more disks and partitioning 32 GB over 8 disks performs
better than a server using the same number of larger disks, because it relieves the
disk bottleneck and makes the server well-balanced.

The above observations suggest that how to handle additional data is determined by
the balance between hardware resources. Putting more data on each disk is superior

to adding disks when the server is already well-balanced.

6.1.3 Partitioning Versus Replication
In this section, we examine how to place the collection on the available disks. We
may either partition the collection over all the disks or partition it over some disks

and replicate it on some disks. We investigate both full and partial replication.

Partitioning Versus Full Replication

For a unloaded system, partitioning over additional disks reduces the command re-
sponse time, because a command is processed against the disks with less data in
parallel, while full replication does not, because each disk still handles the same
amount of data. For a loaded system, by using full replication, each set of disks
handles half the workload, and thus reduces the command response time due to re-
ducing the waiting time for the disk service. By partitioning a collection over twice
as many disks, each disk handles half of the data, but it handles more than half the
load, because it needs to access each disk to process a query command. In addition,

searching half of the data takes more than half the time and searching more disks

111

needs more coordination time. Therefore, full replication supports a larger command
arrival rate under a given query response time than partitioning for a loaded system.
As an example, we demonstrate the performance of searching a 16 GB collection
using partitioning and full replication. We assume we have 8 disks, we compare the
performance of partitioning the collection over 8 disks and building two copies of the
collection, each of which uses 4 disks, illustrated in Figure 6.7.

In Figure 6.7(a) and (b), partitioning over 8 disks performs worse than 4 disks, because
the additional overheads overwhelm the CPU(s) sooner. In Figure 6.7(a) where the
CPU is a bottleneck for 4 disks, full replication does not degrade performance, because
the system still searches 4 disks at a time, and thus does not pose additional overheads
on the CPU. However, it does not improve performance either, because the CPU is
already overutilized and there is no room for further improvement. In Figure 6.7(b),
where 2 CPUs and 4 disks constitute a well balanced system, full replication improves
performance, by shortening the waiting time for the disk service and further increasing
both CPU and disk utilizations (see Figure 6.7(d). However the high CPU utilization
limits its further improvement.

In Figure 6.7(c) where 4 CPUs and 4 disks constitute a system with a disk bottleneck,
and 4 CPUs and 8 disks constitute a well balanced system, both partitioning the
collection over 8 disks and full replication significantly improves system performance,
because the disk bottleneck is relieved. However full replication performs better,
because each disk and CPU handles less workloads than partitioning. In this case,
because the system is well-balanced, full replication achieves it largest improvement,
and supports twice as many commands with an average query response time below
10 seconds compared with partitioning over 4 disks (from 7.3 commands per second
to 14.5 commands per second).

The above results confirm that full replication supports a larger command arrival rate

under a given cutoff for response time than partitioning the collection over additional

112

Rem thq Dqtf Csize Ncpu Naisk Nip
1:1.5:2 2 Obs. | 16 GB | varied | varied 32

= 60 T T
2 4 disks -- Partitioning —<—
3 8 disks -- Partitioning -+ --
A 50 8 disks -- Replication -2-- 7
g
= 40 .
[0
(%]
e
8 30 B
[
[0}
[
fenl 20 R
Q
]
a
g 10 B
©
9]
3: 0 Il 1
5 10 15 20
Average Arrival Rate (requests per second)
(a) Nepu =1
I 60
2
o n
3 50 |
@
g
= 40 - B
3
j
8 30 - B
7]
Q
o
oy 20 | R
[}
i
a
S 10 | B
o
5
o el
< 0 1
0 5 10 15 20
Average Arrival Rate (requests per second)
(b) Nepu =2
= 60 T T T
2 4 disks -- Partitioning —<—
3 8 disks -- Partitioning -+--
K 50 - 8 disks -- Replication -5 |
g
= 40 I P
3 .
2 A
8 30 - A i
[A
F 20 A
5 /# =
e} %/ 7'113
S 10 | a’ 1
© s i
[$] K Ea
<?: 0 —p- H l? 1
0 5 10 15 20
Average Arrival Rate (requests per second)
(¢) Nepu =4
Num. part.+ part.+ full

CPUs | Resource | 4 disks | 8 disks repl.
CPU 99.3% 99.8% | 99.4%

1 DISK 48.1% 20.4% | 24.7%
CPU 85.3% 98.5% | 97.9%
2 DISK 84.1% 40.3% | 48.4%
CPU 46.9% 84.0% | 70.2%
4 DISK 90.6% 71.3% | 68.8%

(d) hardware utilization when A = 10

Figure 6.7. Partitioning versus full replication for a 16 GB collection.

113

disks for a loaded system. However, we do use partitioning instead of replication
to keep the response time below a given cutoff, when users typically issue very long
queries, or when each disk holds a large collection. For example, our measurements
show that it takes 2.5, 1.4, and 0.8 seconds to process a query with 2 terms on a 16,
8, and 4 GB collection on a single disk. If we expect our server produces a response
time below 1 second for a 16 GB collection, we need to partition it over 4 disks, each

of which holds 4 GB of data.

Partitioning Versus Partial Replication

In the case of full replication, we may evenly distribute the workloads over full replicas
and thus improve system performance. However, in the case of partial replication, how
much partial replication improves performance depends on the distracting percent-
age, i.e., how many commands partial replicas satisfy. Partial replication performs
better than partitioning only when the replicas distract (satisfy) a certain number
of commands. Assume partitioning the collection over Nyjsk_orig disks supports Agpig
commands per second with an average query response time under some cutoff and
partitioning the collection over additional Ngyisk_new disks (Naisk_orig + Naisk_new i tO-
tal) supports Ae, commands per second with the same average response time, then
building partial replicas using additional Ngsk_new disks achieves the same average

response time as partitioning when the replicas distract less than W -100% of

Anew _)\om'g

>t 100% of commands do not overload the replicas.

commands, if
As an example, we present a set of experiments to compare the performance of parti-
tioning and partial replication for a 16 GB collection. We assume each disk can store
at most 4 GB of data, and thus we need 4 disks to store the 16 GB collection, which is
our baseline. When we have an additional disk, we may store the collection by either

partitioning the collection over 5 disks, or building a partial replica on the 5th disk

which contains 25% of the original collection. If query locality is high, the replica

114

selector may send more queries to the replica than the original collection, which may
result in load imbalance. We balance the loads using the method we described in
Section 4.4.

Figure 6.8 presents the average query response time versus the distracting percentage
when commands arrive at 10 per second as well as the average query response time
versus the command arrival rate for partitioning over 4 or 5 disks. In Figure 6.8(d),
the rows of “DISK” list the average disk utilization over all disks for partitioning,
and average utilization over the disks that store the original collection; the rows of
“DISK (repl)” list the utilization of the disk that stores the partial replica.

In Figure 6.8(a), where one CPU is a bottleneck for 4 disks, partitioning the collection
over 5 disks is actually worse than partitioning it over 4 disks, because additional
CPU overheads due to searching more disks exacerbate the CPU bottleneck. It is not
surprising that partial replication performs much better than partitioning at all data
points of the distracting percentage, because searching the replica on single disk takes
less CPU time than searching 4 or 5 disks, and thus relieves the CPU bottleneck.

In Figure 6.8(b), where 2 CPUs and 4 disks constitute a well balanced system, par-
titioning the collection over 5 disks performs slightly better than partitioning over 4
disks. By examining the right figure, partitioning over 4 disks and 5 disks support
5.7 and 6 commands per second with an average query response time under 10 sec-
onds, respectively. Partial replication performs better than partitioning over 5 disks
when the replica distracts more than 5% of commands from the left figure, which is
consistent with our formula (6 — 5.7)/6=5%.

In Figure 6.8(c) where 4 CPUs and 4 disks constitute a disk bound system, both
partitioning the collection over 5 disks and partial replication significantly improve
system performance, because each disk handles less loads, which relieves the disk
bottleneck. Partial replication performs better than partitioning over 5 disks when

the replica distracts more than 13% of commands. By examining the right figure,

115

Average Query Response Time (Seconds) Average Query Response Time (Seconds)

Average Query Response Time (Seconds)

120

100

80

60

40

20

120

100

80

60

40 F

20

120

100

80

60

40

20 |

(d) hardware utilization when Pg;s; = 50%

Figure 6.8. Partitioning versus partial replication for a 16 GB collection.

116

Rem | Nipg | Dgiy | Csize | Nepu | Naisk | Nin
1:1.5:2 2 Obs. | 16 GB | varied | varied 32
et > 60 T T
Partitioning (4 disks 2 Partitioning (4 disks) <—
Partitioning %5 disEs) - 153 Partitioning (5 disks) -—+-
Replication (No Load balancing) -8-- 7 3 50 7]
Replication (Load Balancing) -x o
Q A E 40]
Q g | §_ 30 i
éﬁ X] < 20 |
[
>
(¢]
. g 10 .
©
]
1 1 1 1 é 0 1 1
20 40 60 80 100 15 20
Distracting Percentage (%) Average Arrival Rate (requests per second)
() Nepu =1
T T T T ™ 60 T T o
Partitioning (4 disks) —<— 2 Partitioning 44 disks) <—
Partitioning (5 disks) -+- 3 Partitioning 45 disks) -+-
Replication (No Load balancing) -8--] 3 50 7
Replication (Load Balancing) - °
. IS
.) ':]
[E— 15 i
: g
Q
, o
Pl 3 > .
t t t t t o t §
g B 7 D 7
Tepgeena X X * g
1 1 1 1 :: 1
20 40 60 80 100 0 5 10 15 20
Distracting Percentage (%) Average Arrival Rate (requests per second)
(b) Nepu = 2
T T T T m 60 T T T
Partitioning (4 disks) —<— 2 Partitioning (4 disks) —<—
Partitioning (5 disks) -+- 153 Partitioning (5 disks) -—+-
Replication (No Load balancing) -8-- 7 3 50 7]
Replication (Load Balancing) -x o .
g .
A = 40 7
[s
: & -
. < s
P 8 30 |)]
R 3 #
i c ’
E 2 20 7 E
o’ 3 7
. e} Vi
g ‘ e S 1 +---3 % 10 | /*/ 7
[-
! " e e z 0 T ! !
20 40 60 80 100 0 5 10 15 20
Distracting Percentage (%) Average Arrival Rate (requests per second)
(¢) Nepu =4
Num. partitioning partial replication
CPUs Resource 4 disks | 5 disks | no load bal. | with load bal.
CPU 99.3% 99.5% 99.0% 99.4%
1 DISK 48.1% 36.0% 35.6% 38.2%
DISK(repl) 78.5% 53.3%
CPU 85.3% 95.1% 81.0% 88.9%
2 DISK 84.1% 68.7% 64.4% 70.8%
DISK(repl) 97.0% 85.1%
CPU 46.9% 62.6% 40.0% 48.0%
4 DISK 90.6% 89.5% 50.1% 71.5%
DISK(repl) 99.2% 86.6%

partitioning over 4 disks supports 7.0 commands per seconds with an average query
response time under 10 seconds, and partitioning 5 disks supports 8.4 commands
per second. Partial replication should achieve the same average response time as
partitioning over 5 disks when the replica distracts less than (8.4 — 7.0)/8.4=17%,
which is consistent with our finding in the left figure.

By examining Figure 6.8, we also find that the improvement due to partial replication
increases as the replica distracts increasingly many commands until the replicated disk
load gets too high. At that point, load balancing is necessary. It also suggests that
more than one replica will be helpful when the system exhibits high query locality

(> 40%).

6.1.4 Summary

Since the IR workload is heterogeneous, i.e., it consists of significant amounts of both
CPU and I/0O processing, multithreading improves performance of the base system by
introducing well-known multiprogramming benefits - increasing the hardware resource
utilization because I/O and computation overlap. The necessary number of threads
that leads the system to its peak performance is directly related to the number of
CPUs and disks. The size of collection has very little effect on the necessary number
of threads.

Adding disks improves performance because partitioning the collection across mul-
tiple disks introduces a finer-grain execution of IR commands in parallel and using
additional disks for building replicas improves the system throughput. Adding CPUs
also improves performance because more CPUs provide more computation capability.
However adding hardware components significantly improves performance only when
they are well-balanced. Otherwise, adding disks can degrade the performance when
the CPU is a bottleneck, and adding CPUs does not improve performance when the

disk is a bottleneck, as we show through the experiments in this section. Increasing

117

the collection size does not significantly change hardware balance point; the server
performance is more related to the balance of hardware components than to the col-
lection size. We present several formulas that use simple measurements to estimate
the necessary number of threads, the number of CPUs and disks that constitute a
well-balanced system.

Our results also show that when the response time for searching a collection dis-
tributed over a set of disks is below a cutoff for the response time, full replication
supports a larger command arrival rate under this response cutoff than partition-
ing the collection over twice as many disks, and partial replication supports a larger
command arrival rate under this cutoff than partitioning a collection over additional
disks when the replica distracts a modest number of commands. When the response
time is above the cutoff, we need to use partitioning instead of replication to keep the

response time down.

6.2 Partial Collection Replication in a Distributed Informa-

tion Retrieval System
This section investigates the performance of a distributed information retrieval system
with partial collection replication. During the experiments, we vary the command
arrival rate, the replication percentage that indicates what percentage of the original
collection is replicated, and the distracting percentage that indicates what percent-
age of commands the replica selector directs to the replicas instead of the original
collection. In the experiments of this section, we configure servers with 4 CPUs and
8 disks, and each server handles 32 GB of text and its index. According to our mea-
surements from InQuery, this server supports at most 7 commands per second with
an average query response time under 10 seconds for short queries with an average
2 terms per query. We configure the server in this way just to give an example to

show the performance trends of a distributed IR system. Of course we can build a

118

[Parameters | Abbre. || Values [

Command Arrival Rate 0.1 2 4 6 8

Poisson dist. (avg. commands/sec) A 10 12 14 16 18 20

Command Mixture Ratio

query:summary:document Rem 1:1.5:2

Terms per Query (average)

shifted neg. binomial dist. Nipg 2

Query Term Frequency Obs.

dist. from queries Dy Dist.

Number of CPUs Nepu 4

Number of Disks Ngisk 8

Number of Threads Ngp, 32

Collection Size Clize 64 GB 128 GB 256 GB

Replication Percentage Prepl 6.25% 125% 25% 50%
10% 20% 30% 40% 50%

Distracting Percentage Pyist 60% 70% 80% 90% 100%

Table 6.2. Configuration parameters for replication experiments.

server with the same performance by using fewer and faster CPUs and disks. We
include a replica selector in the connection broker. Table 6.2 presents parameters,

their abbreviations, and values we use in the experiments of this section.

6.2.1 Varying the Distracting Percentage

Figure 6.9 illustrates performance when we use 4 servers to store the 128 GB original
collection and build a 32 GB replica (25% of the original collection) on the 5th
server. Figure 6.9(a) illustrates the average query response time versus the distracting
percentage when the commands arrive at 10 commands per second. Figure 6.9(b)
illustrates the average query response time versus the command arrival rate when the
replica distracts 10%, 20%, and 50% of IR commands.

Similar to the behavior on a single server, Figure 6.9(a) shows that the performance
of partial replication improves as the distracting percentage increases until too many
commands are directed to the replica and load balancing is needed to direct a subset of
commands back to the original collection. The redirecting point is when the response
time for searching a replica equals to the response time for searching the original
collection (40% in this experiments). For using a single replica, the redirecting point
is less than 50%, because for the same command arrival rate, the server used to store

the replica handles more load than an individual server used to store the original

119

A Remd thq Dqtf Csize
varied | 1:1.5:2 2 Obs. 128 GB
Nepu Naisk | Nin Pist Prept
4 8 32 varied 25%
™ 60 T T T
o n
c Partitioning (4 servers) ’
8 Partitioning (5 servers) —+-
3 50 |- Replication (No Load balancing) -8--"
o Replication (Load Balancing) XE]
£
= 40 - B
3 ,
j /
% 30 S ,' i
Q AR ,
o .
g o SR S
S K
¢] .
:.f, 10 | i
o e s VSO
>
< 0 1 1 1 1
0 20 40 60 80 100
Distracting Percentage (%)
(a) A = 10 commands/second
60 T T T

Partitioning (4 servers) <

Average Query Response Time (Seconds)

0 5 10 15 20
Command Arrival Rate (requests per second)

(b) varying the command arrival rate.

Figure 6.9. Varying the distracting percentage.

collection, since the replica uses fewer servers, and workloads involved in summary
and document commands are distributed. More than one replica is useful when the
distracting percentage is high.

When the distracting percentage is p%, we may roughly estimate the improvement on
the command arrival rate under a certain average query response time due to partial
replication as a factor of ; (7, if p% of commands do not overload the replicas. This
is a lower bound of the improvement when replicas are not overloaded, since it is
derived by assuming both the replica and the original collection produce the same
average query response time (the redirecting point). Actually, an under-loaded replica

produces much quicker response than the original collection, which makes the original

120

collection tolerate more commands for the same average query response time. When
load-balancing redirects some commands back to the original collection for a high
distracting percentage, we can not attain this improvement.

As an example, examine Figure 6.9(b). Distracting 10%. 20%, and 50% of commands
increases the command arrival rate under 10 seconds by a factor of 1.2, 1.4, and 1.9,
while our prediction is 1.1, 1.3, and 2.0. Distracting 50% of commands performs a
little worse than we predict, because load balancing redirects some commands back

to the original collection (see Figure 6.9(a)).

6.2.2 Partial Replication Versus Collection Partitioning

Partial replication in a distributed system performs better than collection partitioning
when it distracts a certain number of commands which is less than the command
difference that partitioning over additional servers can handle.

As an example, we compare the performance of partial replication with collection
partitioning for a 128 GB collection, as shown in Figure 6.9. In Figure 6.9, we either
use 4 servers to store the original collection and build a 32 GB replica (25% of the
original collection) on the 5th server or partition the collection over 5 servers. As
illustrated in Figure 6.9(b), partitioning the collection over 4 and 5 servers support
6.2 and 7.5 commands per second with an average query response time under 10
seconds, i.e., partitioning the collection over 4 servers handles 17% less commands
than partitioning it over 5 servers. In Figure 6.9(a), partial replication with load
balancing performs better than partitioning over 5 servers when the replica distracts
14% of commands, which is slightly less than the command percentage difference of

partitioning (17%).

6.2.3 Varying the Replicating Percentage
This section examines the effect of varying the replica size on performance. Figure 6.10

illustrates the average query response time for a 128 GB collection when we use 4

121

A Rcm thq Dqtf Csize
varied | 1:1.5:2 2 Obs. 128 GB
Nepu Naisk | Nin Pist Prept
4 8 32 varied varied
/(}J\ 60 T T T T
2 Partitioning (4 servers) <—
8 Partitioning (5 servers) -+--
3 50 |- Replication (Load balancing ,RP=6.25%) -&--- 7
o Replication (Load Balancing,RP=12.5%) -x
IS Replication (Load Balancing,RP=25%) -&--
= 40 - B
3
j
2 ok -
Q R
o
ey 20 F B
[}
i
g
% 10 | B
o = Bt o e SR)
3: 0 1 1 ?éé """)
0 20 40 60 80 100
Distracting Percentage (%)
(a) A=10
60 T T T

Partitioning (4 servers)

Partitioning (5 servi -

50 - Replication (Load Balancing,RP=6.25%) -5---7
Replication (Load Balancing,RPz12.5%)-<% -
Replication (Load Balancing;RP=25%) - -

m
°
c
I}
o
ol
@
g
= 40 .
© y
@
c
8 30]
(7]
2 PN
[a
) 20 7]
- e
% 10 S x g
o g
N oo S -
< o F I 1 L
0 5 10 15 20

Command Arrival Rate (requests per second)
(b) Pgist = 50%

Figure 6.10. Varying the replication percentage.

servers to store the original collection, each of which stores 32 GB, and an additional
server to store a replica. We vary the replica size from 8 GB, 16 GB, and 32 GB,
which is 6.25%, 12.5% and 25% of the original collection. We vary the command
arrival rate and the distracting percentage.

Figure 6.10 shows that reducing the replication percentage of course reduces the
average query response time, and it significantly affects system performance only
for high commands rate (> 10 commands per second in Figure 6.10(b)). When the
replica distracts 50% of commands, reducing the replication percentage from 25% to
6.25% for a 128 GB collection increases the command arrival rate with an average

query response time below 10 seconds by a factor of 1.5.

122

6.2.4 Varying the Collection Size

In this set of experiments, we vary the collection size from 64 GB to 256 GB. For a N
GB collection, we use N/32 servers to store the original collection, and an additional
server to store a replica with the size of 32 GB. Figure 6.11 lists the average query
response time when the commands arrive at 10 per second for a collection of 64 GB,
128 GB, and 256 GB, i.e., the partial replica contains 50%, 25% and 12.5% of the
original collection, respectively.

Figure 6.11(a) to (c) show the query response time when commands arrive at 10
commands per seconds for 64 GB, 128 GB, and 256 GB, respectively. The results
show that performance improvement due to partitioning over an additional server
decreases as the collection size increases, because an additional server distributes
a smaller portion of data for a larger collection, while partial replication on the
additional server consistently decreases the query response time as the distracting
percentage increases, no matter what the collection size is, because the query locality
indicated by the distracting percentage determines the performance improvement.
Partial replication brings down the query response times from 35.8 to 3.8 seconds,
from 31.4 to 3.5 seconds, and from 29.2 to 3.1 seconds when commands arrive at 10
commands per second for 64 GB, 128 GB, and 256 GB, respectively. Here we can find
another interesting phenomenon: when each server holds the same amount of data,
searching a 256 GB collection (over 8 servers) is faster than searching a 128 GB (over
4 servers) and 64 GB (over 2 servers), because the workload involved in the summary
and document commands is distributed over more servers, and each server handles

less work.

6.2.5 Replication Hierarchy
In this set of experiments, we assume we have several additional servers, each of which

stores a partial replica, and we organize the servers as a hierarchy of replicas. We

123

A Rem thq Dqtf Csize
10 1:1.5:2 2 Obs. Varied
Ncpu Ndisk Nth Pdist Prepl

4 8 32 varied | varied
im 60 T T T T)
2 Partitioning (2 servers) <—
3 Partitioning (3 servers) -+
3 50 |- Replication (No Load balancing) -8--
° Replication (Load Balancing) -~
E 40 B
° ,
(2] "
c
8 30 - i
3
¢ - i
= 20 fo s | | | | | | P
3 9*.(g
a ;:é =
g 10 | B
(=) .
g e SV
3: 0 1 1 1 1
0 20 40 60 80 100
Distracting Percentage (%)
(a) 64 GB (Prepr = 50%)
60 T T T T L
Partitioning (4 servers) <— -
Partitioning (5 servers) -+-- -
50 |- Replication (No Load balancing) -2--" 7
Replication (Load Balancing) -%-

40 | -

Average Query Response Time (Seconds)

o i
10 ;L
ﬁ' e NI
0 1 1 1 1
0 20 40 60 80 100
Distracting Percentage (%)
(b) 128 GB (Pg;st = 25%)
m 60 T T T T L
g Partitioning (8 servers) —<—
3 Partitioning (9 servers) -+--
3 50 |- Replication (No Load balancing) -£:+
° Replication (Load Balancing) -3
E ",
= 40 - i
3
j K
§ 30 + + + + + + + ? +
> 20| 1
© P
g B
[0} - i .
S 10 e
° R B TV VSO
>
< 0 1 1 1 1
0 20 40 60 80 100

Distracting Percentage (%)
(c) 256 GB (Pyist = 12.5%)

Figure 6.11. Varying the collection size.

124

assume each server handles at most 32 GB of data. For a N GB collection, we use
N/32 servers to store the original collection, the first additional sever stores 32 GB
of data and satisfies p% of commands, the second additional server stores 16 GB of
data and satisfies (p% - 10%) less commands, which is a subset of the commands
that the first additional server satisfies, and the i-th extra server stores 32/2°"! GB
and satisfies (p% -(i-1)*10%) of commands, which is a subset of commands that the
larger replicas satisty.

Figure 6.12 illustrates the query response time when we have 1, 2, and 4 additional
servers for a 128 GB collection. We compare the performance of partial replica-
tion with different hierarchies, and full replication using 4 additional servers. Fig-
ure 6.12(a) to (c) illustrate the scenarios where the largest replica satisfies 40%, 50%
and 80% of commands, respectively. Our results show that when we have twice as
many servers, full replication performs better than partitioning over these servers,
and in our example, using additional servers to build a full replica improves the com-
mand arrival rate with an average query response time below 10 seconds by a factor
of 1.3, as compared with partitioning over 8 servers. Partial replication using fewer
servers could achieve similar or better performance than full replication. Partial repli-
cation with one replica is able to achieve similar performance to full replication when
the partial replica distracts 40% of commands. Partial replication with a hierarchy
of two replicas improves the command arrival rate with an average query response
time below 10 seconds by a factor of 1.7 as compared with full replication when the
replicas distract 50% of commands (see Figure 6.12(b)), because searching a smaller
replica takes less time, and it also eliminates the result merging time and reduces the
necessary message exchange between the connection broker and servers. When the
largest replica satisfies 80% of commands, the query response time for partial repli-
cation with a hierarchy of 4 additional servers is insensitive to the command arrival

rate that we consider in this experiment. This result indicates that partial replication

125

A Rem thq Dqtf Csize
varied | 1:1.5:2 2 Obs. 128GB
Ncpu Ndisk Nth Pdist P’repl

4 8 32 varied 25%

= 60 T T T
°
c
3
o) 50
@
£
E 40
@
[72]
c
S 30
(7]
9
o
el 20
9]
>
a
o 10
&
)
> !

0 15 20

5 10
Command Arrival Rate (requests per second)
(a) the largest replica satisfies 40% of commands

60 T T T
Partitioning (4 servers)

50

40

30

20

10

Average Query Response Time (Seconds)

0 5 10 15 20
Command Arrival Rate (requests per second)

(b) the largest replica satisfies 50% of commands

60 T T T

50

40

30

20

10

Average Query Response Time (Seconds)

5 10 5
Command Arrival Rate (requests per second)

(c) the largest replica satisfies 80% of commands

Figure 6.12. Performance with a hierarchy of replicas.

126

with a hierarchy of replicas has the potential to improve performance and scalability

significantly over full replication.

6.2.6 Summary

In this section, we demonstrate the performance of partial collection replication in
a distributed information retrieval system. The performance improvement due to
partial collection partition is determined by the distracting percentage that indicates
access locality. We compare the performance of partial replication with collection
partitioning. We show that using one additional server to build one replica performs
better than further partitioning the collection over this additional server, even when
the replica distracts less than 10% of commands in many cases. It also achieves com-
parable performance with partitioning over twice as many servers, and full replication
when the replica distracts 40% of commands. When replicas can distract more than

40% of commands, a hierarchy of replicas further improves system performance.

6.3 Collection Selection in a Distributed Information Re-

trieval System
This section investigates the performance of a distributed information retrieval system
using collection selection. As an example to show the performance improvement due
to collection selection, we perform a set of experiments that handle 256 GB of data
using 8 servers, each of which has 4 CPUs and 8 disks, and handles 32 GB of data. We
include a collection selector in the connection broker. During the experiments, we vary
the command arrival rate, the collection selection skew, the selection percentage, and
the number of collections. We also compare collection selection with partial collection
replication. Table 6.3 presents parameters, their abbreviations, and values we use in

the experiments of this section.

127

[Parameters | Abbre. || Values I

Command Arrival Rate 0.1 2 4 6 8

Poisson dist. (avg. commands/sec) A 10 12 14 16 18 20
Command Mixture Ratio

query:summary:document Rem 1:1.5:2

Terms per Query (average)

shifted neg. binomial dist. Nipg 2

Query Term Frequency Obs.

dist. from queries Dy Dist.

Number of CPUs Nepu 4

Number of Disks Ngisk 8

Number of Threads Nyp, 32

Collection Size Clsize 256 GB

Collection Access Skew

Zipf-like function 0 0.0 (Zipf) 0.3 1.0(uniform)
Selection Percentage Pget 12.5% 25% 50%
Number of Collections Neot 8 32

Table 6.3. Configuration parameters for collection selection experiments.

6.3.1 Varying the Collection Access Skew and the Selection Percentage

The performance improvements due to collection selection are mainly determined
by the popularity of the most frequently used collection after collection selection.
In addition, searching a subset of collection saves the time for merging results and
exchanging messages, which also contributes to the performance improvements. If
p% of commands go to the most frequently used collection, collection selection will
improve the largest command arrival rate under a certain average query response time
by a factor of p%%, which means the system can handle W more commands than
a system without collection selection. If nearly 100% of commands go to the most
frequently used collection, performance improvements are small and only due to less
result merging time and network competition.

There are two factors that determine the popularity of the most frequently used col-
lection: the collection access skew and the percentage of collections being chosen.
The system with collection selection achieves the largest improvement when the col-
lections are uniformly accessed and the system selects as few collections as possible
while maintaining acceptable precision.

We model the collection access skew using the Zipf-like distribution [50]:

128

Z(i) = ¢/i'™?, where ¢ = 1/2]?:1(1/j1_6), 1<i<C.

As 6 varies from 1 to 0, the probabilities vary from an uniform distribution to a
pure Zipf distribution. We do not have statistics about the collection access skew
resulting from collection selection in a real multiple collection searching environment,
but locality suggests that uniform distributions are unlikely.

We use the collection inference retrieval network to select the most relevant collec-
tions [15]. The experiments presented in [15, 54, 77] demonstrated that when we built
collections such that each collection contains documents from the same source, using
this method to select the top 50% of collections achieves comparable accuracy with
searching all collections, and selecting the top 10% and 20% of collections causes a
loss of precision around 30% and 25% for the top 30 retrieved documents. Xu et
al. [77] further demonstrated that query expansion can reduce the precision loss for
searching the top 10% of collection to 10%, but it is paid by the time for query ex-
pansion (executing an original query and analyzing the top documents) and the time
to process at least 20 additional 20 terms or phrases added by query expansion for
each query.

We demonstrate the performance improvements due to collection selection for 256
GB of data distributed over 8 servers. We view the data on each server as a single
collection, i.e., 8 collections in total. Table 6.4 lists the percentage of commands that

go to the most frequently used collection based on the Zipf-like distribution when

Selection Percentage

0 12.5% | 25% 50%
1 (uniform) 12.5% | 25.0% | 50.0%
0.3 24.0% | 49.0% | 76.0%
0.0(pure Zipf) | 35.0% | 60.0% | 87.0%

Table 6.4. The percentage of commands that goes to the most frequently used
collection

129

we vary the collection access skew from an uniform to a pure Zipf function, and the
selection percentage from 12.5% to 50%. Figure 6.13 illustrates the corresponding
average query response time versus the command arrival rate resulting from our
simulator.

Figure 6.13(a) illustrates the scenarios where the collections are uniformly accessed.
Selecting 12.5% of the collections is insensitive to the commands arrival rate that we
consider in this experiment; selecting 25% of the collections increases the command
arrival rate with a response time below 5 seconds by a factor of 4.0; selecting 50%
of the collections increases the command arrival rate with a response time below 10
seconds by a factor of 2.1. These numbers are consistent with our prediction based
on the first row in Table 6.4: 8 (1/12.5%), 4 (1/25.0%), 2 (1/50.0%).

Figure 6.13(b) illustrates the scenarios where the collection access skew follows a Zipf-
like distribution with # = 0.3. Selecting 12.5% of the collections is insensitive to the
commands arrival rate that we consider in this experiment; selecting 25% and 50%
of the collections improve the command arrival rate with a response time below 10
seconds by a factor of 2.1 and 1.3, respectively. These numbers are consistent with
our prediction based on the second row in Table 6.4: 4.0 (1/24.0%), 2.0 (1/49.0%),
and 1.3 (1/76.0%).

Figure 6.13(c) illustrates the scenarios where the collection access skew follows the
pure Zipf distribution. Selecting 12.5% of the collections increases the command
arrival rate with a response under 5 seconds by a factor of 3.1, and selecting 25% and
50% of the collections improve the command arrival rate with a response time below
10 seconds by a factor of 1.8 and 1.2, respectively. These numbers are consistent with
our prediction based on the third row in Table 6.4: 2.9 (1/35.0%), 1.7 (1/60.0%), 1.1
(1/87.0%).

These results demonstrate that the performance improvements due to collection se-

lection are a function of the collection access skew and the percentage of collections

130

A Rem thq Dqtf Csize Ncol Psel 0 |
varied | 1:1.5:2 2 Obs. | 256 GB 8 varied | varied |

™ 60 T T T
2 No Selection
8 Selection (top 12.5%]) —+-
3 50 |- Selection (t) 8-
o Selection ftop 50%) —x-
£
= 40 1
3
j
8 30 1
[7]
Q
o
> 20 P
% X
g X<
S 10 1
g N R ki
z B R

0 5 10 15 20

Command Arrival Rate (requests per second)
(a) uniform (0 = 1).

™ 60 T T T
g ~ No Selection
8 50 |- Selection (to? 12, jg: |
@
: o
e 40 - A
% X
j
8 30 - 1
[7]
Q
o
oy 20 |- R
[}
5
o 10 F g-a Y
2 X -
9] g - 1
2 0 z J;f;ﬁ:;;,i,” »77—}“»—+»r+»7*—*’

0 5 10 15 20

Command Arrival Rate (requests per second)
(b) Zipf-like (8 = 0.3).
= 60 T T T
g No Selection
8 50 |- Selection (to?12. 6 fg,” E
2 A
= 40 - 1
[0
(%]
e
8 30 - 1
[
[0}
o -
Feal 20 |- BT A
[}
]
¢]
% 10 | 1
=l

5 I e s
z 0 e

5 10 15 20
Command Arrival Rate (requests per second)

(c) pure Zipf (8 = 0).

Figure 6.13. Performance with collection selection for 256 GB of data on 8 servers.

131

A Rem thq Dqtf Csize Ncol Psel 0
varied | 1:1.5:2 2 Obs. | 256 GB | varied | 25% | varied
T T

No Selection
Selection (8,Zi
50 Selection (8
Selectio
Selection (32,

2]
o

(32,Zipf) x
40

30
20

10

Average Query Response Time (Seconds)

0 5 10 15 20
Command Arrival Rate (requests per second)

Figure 6.14. Varying the number of collections for 256 GB of data on 8 servers.

being chosen: higher collection access skew and/or more collections being chosen

produce smaller performance improvements

6.3.2 Varying the Number of Collections

In this section, we still use 8 servers, but we divide the data into 32 collections, and
each server holds 4 collections. We compare the performance of this configuration
with the one used in Section 6.3.1 (8 collections).

Figure 6.14 illustrates the average query response time versus the command arrival
rate when we select the top 256% of collections. When the collections are uniformly
accessed, 8 collections and 32 collections present similar performance. Reducing the
selection percentage by a half doubles the largest command arrival rate with an av-
erage query response time under a certain cutoff. When the collection access skew
follows the pure Zipf distribution, fewer collections perform better, because the most
frequently used collection is chosen with a lower probability when selecting a smaller
number of collections. For selecting the 25% of 8 collections according to the Zipf dis-
tribution, 60% of commands go to the most frequently used collections. For selecting
the 25% of 32 collections according to the Zipf distribution, 90% of commands go to

the most frequently used collections.

132

Query Collection Access Skew + Number of Selected Collections
Locality | Low + Small | Low + Large | High 4+ Small | High + Large
Low Col.Sel Part.Repl

High Col.Sel | Part. Repl.

Figure 6.15. Collection selection versus partial collection replication.

6.3.3 Collection Selection Versus Partial Collection Replication

Both collection selection and partial collection replication let us search a subset of
data. For collection selection, the collection access skew after collection selection
and the number of selected collections affect the system performance. The number of
selected collections also affects the retrieval accuracy of the system. Our current tech-
niques only guarantee that selecting half the collections achieves accuracy comparable
to searching all collections when we do not apply query expansion. In this case, when
the collection access is highly skewed (following the pure Zipf distribution), collection
selection contributes little to improving system performance. For partial collection
replication, the performance improvement is limited by query locality. If there is not
enough query locality in a system, partial collection replication is useless. Therefore,
each of these two techniques performs well in different circumstances, as illustrated
in Figure 6.15.

As an example, Figure 6.16 compares collection selection with partial replication for
256 GB of data using 8 servers. For collection selection, we distribute the 256 GB
data over 8 collections, each of which resides on one server. For partial replication, we
use 7 servers to store the 256 GB data, and build a 32 GB replica on the 8th server.
Figure 6.16(a) illustrates the scenarios where collections are uniformly accessed after
collection selection, which is the best case. Selecting the top 50% of collections
presents similar performance to using one replica when the replica distracts 40% of
commands. Selecting the top 25% of performs significantly better than all the cases

of partial replication we consider in this experiment.

133

A Rem thq Dqtf Csize Neot Psel 6
varied | 1:1.5:2 2 Obs. | 256 GB | varied | varied | varied
60 T T T

No Selection
Selection (unlform 25%) -

50

Average Query Response Time (Seconds)

0 5 10 15 20

Command Arrival Rate (requests per second)
(a) uniform.

60 T T T

No Selection
Selection (Z|pf like(0. 3) 25%) -

50

Average Query Response Time (Seconds)

0 5 10 15 20
Command Arrival Rate (requests per second)

(b) Zipf-like with § = 0.3.

™ 60 T T T

g No Selection
o Selection (Z|pf2 %) -+ 1
3 50 Selection /‘2
£

E 4

[0}

(2]

j

S 30

[7]

Q

o

feed 20

[}

i

a

o 10

o

[}

>

< 0

0 5 10 15 20
Command Arrival Rate (requests per second)

(c) pure Zipf.

Figure 6.16. Collection selection versus partial collection replication for 256 GB on
8 servers.

134

Figure 6.16(b) illustrates the scenarios where the collection access follows a Zipf-like
distribution with 6 = 0.3 after collection selection. Selecting the top 50% performs
worse than all the cases of partial collection replication we consider in this experi-
ments. Selecting the top 25% performs better than all these cases.

Figure 6.16(c) illustrates the scenarios where the collection access follows the pure Zipf
distribution after collection selection. Selecting the top 25% of collections presents
similar performance to partial replication using one replica when the replica distracts
40% of commands. Selecting the top 50% of performance performs worse than partial
replication.

The above results suggest that collection selection performs better than partial collec-
tion replication when either the collection access is fairly uniform or a small number
of collections are sufficient to maintain retrieval accuracy. In practice, because of
locality, uniform access is unlikely to be realized; the current techniques for collection
selection require to select 50% of collections for search at a time in order to maintain
the retrieval accuracy. In contrast, we find high query locality in real IR system
logs (typically 30%-40% in THOMAS and Excite logs). All these indicate that par-
tial collection replication performs better than collection selection using the current

techniques.

6.3.4 Summary

In this section, we demonstrated the performance of collection selection in a dis-
tributed information retrieval system, and compared the performance of collection
selection with partial collection replication. The performance improvements due to
collection selection are determined by the collection access skew and the number of
selected collections. Each of collection selection and partial collection replication can
perform better than the other under different situations. Collection selection performs

significantly better when either collection access is fairly uniform or a small number

135

of collections are sufficient to maintain the retrieval accuracy. However, in practice,
neither of these two conditions is likely to satisfy by using the current collection

selection techniques.

6.4 Summary

In this chapter, we explored how best to build a parallel IR server with respect to
the number of threads, CPUs, and disks, evaluated the performance of a distributed
IR system, and demonstrated the performance improvement due to partial collection
replication and collection selection.

Our results show that on a parallel server, the necessary number of threads that
leads the system to its peak performance is directly related to the number of CPUs
and disks. The size of collection has very little effect on the necessary number of
threads. On a parallel server, adding hardware components significantly improves
performance only when they are well-balanced. Otherwise, adding disks can degrade
the performance when the CPU is a bottleneck, and adding CPUs does not improve
the performance when the disk is a bottleneck. We presented several formulas that
use simple measurements to estimate the necessary number of threads, the number
of CPUs and disks that constitute a well-balanced system.

In a parallel IR server or a distributed IR system, when we have additional hardware
resources, such as an additional disk or an additional server, using additional hard-
ware components to build replicas produces significantly better performance than
partitioning when there is modest query locality. The improvements occur even when
the replica satisfies as few as 10% of queries.

Collection selection also improves performance, but its improvement is limited by
the popularity of the most frequently used collection after collection selection. The
collection access skew and the number of selected collections are two factors that affect

the popularity of the most frequently used collection. Collection selection performs

136

significantly better than partial collection replication when the collection access is
fairly uniform or a small number of collections are sufficient to maintain the retrieval
accuracy. Partial collection replication performs better than collection selection when
the query locality is high. In practice, partial collection replication performs better

than collection selection using the current techniques.

137

CHAPTER 7
TOWARD SEARCHING A TERABYTE OF TEXT

In this chapter, we present experiments for searching a terabyte of text on a cluster
of symmetric multiprocessors using the architectures illustrated in Chapter 3. We
first estimate the sizes of replicas, the replica selection database, and the collection
selection database in Section 7.1. We then demonstrate the performance for short
queries with an average of 2 terms per query by using 32 servers, 8 servers but with
larger disks, and 8 faster servers in Section 7.2, Section 7.3, and Section 7.4. At
last, we demonstrate the performance for longer queries with an average 8 terms per
query. Table 7.1 presents parameters, and their abbreviations and values we use in
the experiments of this chapter.

Our results show that a replica with 32 GB is sufficient to store the top 200 documents
of the top topics that satisfy around 40% of queries based on the Excite log. Our
results show that using one replica to distract 20% and using 2 replicas to distract
40% and 60% of commands improves the largest command arrival rate under a cutoff
for the average query response time by a factor of 1.3, 2.2, and 3.5. Selecting the
top 25% of 8 collections improves the largest command arrival rate under a cutoff for
the average query response time by a factor of 1.8 when the collection skew follows
the Zipf distribution. Our results also show that although using fewer large servers,
speeding up servers, and using longer queries affect the response time, none of them
change the relative improvements due to partial replication and collection selection

with uniform access. When the collection access follows the Zipf-like distribution

138

[[Parameters | Abbre. || Values [
Command Arrival Rate 0.1 2 4 6 8 10
Poisson dist. (avg. commands/sec) A 12 14 16 18 20
Command Mixture Ratio
query:summary:document Rem 1:1.5:2
Terms per Query (average)
shifted neg. binomial dist. Nipq 2 8
Query Term Frequency Obs.
dist. from queries Dy Dist.

Number of CPUs Nepu 4

Number of Disks Nyisk 8

Number of Threads Ngp 32

Size of Collection Csize 1TB

Number of Collections Neot 8 32

Server Speedup Sp 1 4

Replication Percentage Prepi 3%

Distracting Percentage Pyist 20% 40% 60%
Collection Access Skew

Zipf-like function 9 0.0 (Zipf) 1.0(uniform)
Selection Percentage Py 25% 50%

Table 7.1. Configuration parameters for terabyte experiments

with the exponent # < 1, the number of collections affects the popularity of the most

frequently used collection, and thus affects the performance.

7.1 The Sizes of Replicas, Replica Selection Database, and

Collection Selection Databases

Before we present the performance of our distributed IR system for searching a ter-
abyte of text, we first estimate how big a replica needs to be in order to cover the
documents for top queries, and the sizes of a replica selection database and a collection
selection database.

Table 7.2 estimates the replica size for a terabyte of text. The replica size is deter-
mined by two factors: the average document size and query locality. The average
document size varies from source to source. For examples, the average document size
of the USENET News is 2 KB; the average document size of the Associate Press
Newswire and Wall Street Journal is 3 KB; the average document size of the websites
operated by 10 Australia Universities is 9 KB; the average document size of the 20

GB TREC VLC collection is 2.8 KB. Our estimation uses three different numbers:

139

Top % of Replica Size (top 200 documents per query)
Topics | Queries | (2 KB per doc) | (3 KB per doc) | (9 KB per doc)

1000 | 16.0% 400 MB 600 MB 1.8 GB

5000 | 27.9% 2 GB 3GB 9 GB
10000 | 34.4% 4 GB 6 GB 18 GB
20000 | 42.0% 8 GB 12 GB 36 GB

Table 7.2. The replica size based on the Excite log

2 KB, 3 KB, and 9 KB. For query locality, we use the statistics obtained from the
Excite log, since its workloads are at the level of the system we investigate. We collect
the top 200 documents for each query. We also assume there are no overlaps among
the documents, although there exists overlap in reality. In Table 7.2, columns 1 and
2 show the query locality in the Excite log (refer to table 4.2); columns 3 through 5
show the estimated size of the replica when we vary the average document size. The
results show that, for example, the replica of 4 GB, 6 GB and 18 GB satisfies at least
34% of queries for the average document size of 2 KB, 3 KB, and 9 KB, respectively.
As discussed in Section 4.5, the size of the replica selection database is directly pro-
portional to the number of unique terms in the largest replica. Based on the statistics
we obtained in Section 4.5 (6 MB every 100,000 unique terms) and the number of
unique terms in the 20 GB TREC VLC collection (13,088,064 unique terms), we es-
timate that the size of our replica selection database is from 1GB to 2GB, which is
0.1% to 0.2% of the total collection size.

The size of the collection selection database is around 2% of the total size of collections
based on the observation of the collection selection database for the 20 GB TREC

VLC collection. For 1 terabyte of text, its size is around 20 GB.

7.2 Performance Using Queries with an Average of Two Terms
In this section, we present a set of experiments for searching a terabyte of text using
short queries with an average 2 terms per query. As our baseline, we use 32 servers to

store 1 terabyte of text, each of which stores a collection of 32 GB plus its indices. We

140

view all the data on each server as a collection, and we have 32 collections in total.

We then compare the performance of the following configurations with the baseline:

e Partitioning over twice as many servers: partitioning 1 TB of text over 64

servers, each of which stores 16 GB of data and its indices.

e Partial collection replication: using one additional server to store a 32 GB
replica and using two additional servers to store a hierarchy of replicas with a
16 GB replica and a 32 GB replica, when the largest replica distracts 20%, 40%,

and 60% of commands.

e Collection selection: using collection selection to select the top 25% or 50% of

collections.

e Partial collection replication plus collection selection: conducting partial replica
selection first, and when the replica selector directs a query to the original

collection, the collection selector selects the top 50% of collections for searching.

We put the replica selector and collection selector in the connection broker as shown
in Figure 3.1(c).

Figure 7.1 illustrates the average query response time versus the command arrival rate
in the above configurations. In Figure 7.1(a), we demonstrate the average response
time when we replicate 32 GB (3% of the total size) on 1 or 2 servers. Using one
replica to distract 20%, 40%, and 60% of commands improves the largest command
arrival rate with an average response time below 10 seconds by a factor of 1.3, 1.8,
and 2.0, and using two replicas to distract 20%, 40%, and 60% of commands improves
the largest command arrival rate with an average response time below 10 seconds by
a factor of 1.3, 2.2, and 3.4, while partitioning over 64 servers improves it by a factor
of 1.5. Using one or two additional server to replicate 3% of the data achieves similar

performance to partitioning over 64 servers (32 additional servers as compared to

141

A Rem thq thf Csize Ncpu Ndisk

varied | 1:1.5:2 2 Obs. 1TB 4 8
Puist Prepl [Pser Neot Sp
varied 3% varied | varied 32 1

60 T T T

Nip,
32
m
2 Partitioning (32 servers) ——
IS} Partitioning (64 servers) —+-
3 50 Replication (one replica,20%)~5--
o Replication (one replica,40%) -x
-
E ; .
[) O
%) -+ 4
-~
g % S
[0}
o A
> 4
= 20 =X
3 o
g 10 B
o e
[
> i
< 0
0 5 10 15 20
Command Arrival Rate (requests per second)
(a) partial replication
60 T T T

Partitioning (32 servers)
Partitioning (64 servers)
50 |- Col.sel.(top 25%, Zjp
Col.sel.(top 25%, unj m;
)

m

©

c

[e}

(]

Q

@

[0} &

£ Col sel.(to 509%, Zipf

[= unlfo -]
[0

(2]

e A
3 A
@D L

[0} -7

[¥ |
> T A
Q ¥

(] B

e}

[-
&

o s

>

<

10 15 20
Command Arrival Rate (requests per second)
(b) collection selection
60 T T T
Partitioning (32 servers

)
Partitioning (64 servers)
50 Repl.(Pdist=20%)+Col.Sel.(top 50%,unifo S 7
)

Repl. (Pdlst 40%)+Co| Sel. (top 50%,uniférm

Average Query Response Time (Seconds)

10
Command Arrival Rate (requests per second)
(c) partial replication (one replica) plus collection selection

Figure 7.1. Performance when searching a terabyte of text using queries with an
average of 2 terms.

142

the baseline) when the replica distracts 20% of commands, and performs significantly
better when the replica(s) distract more than 40%.

In Figure 7.1(b), we demonstrate the average response time when we select the top
25% and 50% of collections using the pure Zipf and uniform distributions. Using
the Zipf distribution illustrates a case where collection selection has no significant
impact on performance, since almost all commands (100% and 90% when selecting
the top 50% and 25%) go to the top 1 collection. Selecting the top 256% and 50% of
collections using the pure Zipf distribution improves the largest command arrival rate
with an average response time below 10 seconds by a factor of 1.2 and 1.04. Using
the uniform distribution illustrates the best case for collection selection. Selecting
the top 256% of collections using uniform distribution improves the largest command
arrival rate with an average response time below 5 seconds by a factor of 3.9, and
selecting the top 50% of collections improves the largest command arrival rate with
an average response time below 10 seconds by a factor of 1.9.

In Figure 7.1(c), we illustrate scenarios where partial collection replication and col-
lection selection work together to improve performance. In this example, we use one
additional server to store a 32 GB replica and do replica selection first. When the
replica selector directs a query to the original collection(s), the collection selector se-
lects the top 50% of collections for processing the query. From Figure 7.1(a), we know
using a single replica to distract 20% and 40% of commands improves the command
arrival rate with a average response time below 10 seconds by a factor of 1.3 and 1.8.
Plus using collection selection with the uniform collection access, the performance
further improves to a factor 2.3 and 2.9. When the collection access skew follows the
Zipf distribution, using a replica to distract 40% of queries plus selecting the top 50%

of collections improves performance to a factor of 1.9.

143

A Rem thq thf Csize Ncpu Ndisk

varied | 1:1.5:2 2 Obs. 1TB 4 8
Nin Paist Prepl 0 Py Neot SP
32 varied 3% varied | varied 8 1
& 60 : ™ .
2 Partitioning (8 servers) —<—
8 Replication (Pdist=20%) -+--
K 50 /Replication (Pdist=40%) -=- |
o * Replication (Pdist=60%) -x--
£ 40 R
= ,
@ x
g * -
&
> 20 e]
[0}
& X
S 10 Lx7 1
[
5 o
>
< 0 1 1 1
0 5 10 15 20

Command Arrival Rate (requests per second)
(a) partial replication

T B /,‘F T T
4~ Partitioning (8 servers
Col.sel.(top 25%, Zipf

)

/)
4 Col.sel.(top 25%, uniform;,

)

Ji Col.sel.(top 50%, Zipf

ey
B
cE--

x

/i Col.sel.(top 50%, uniform) -a---

Average Query Response Time (Seconds)

5 10 15 20
Command Arrival Rate (requests per second)

(b) collection selection

Figure 7.2. Performance when searching a terabyte of text using larger disks

7.3 Performance with Larger Disks

In this section, we present another set of experiments for searching a terabyte of text
using short queries with an average 2 terms per query. Each server still has 4 CPUs
and 8 disks, but each disk stores 16 GB of data and its indices. Therefore each server
handles 128 GB, and a terabyte of text needs 8 servers. We view all the data on each
server as a collection, and we have 8 collections in total.

Figure 7.2 illustrates the performance gain by using partial replication and collection
selection in this case. In Figure 7.2(a), we demonstrate the average query response
time when we replicate 32 GB (3% of the total size) on one additional server. Since

a server can hold 128 GB in total, we put four copies of the replica on this server.

144

Comparing the baseline in Figure 7.1(a) where 1 terabyte of text is distributed over 32
servers and it supports an average response time under 10 seconds at 6.7 commands
per second, using 8 servers supports an average response time under 10 seconds at
1.7 commands per second, which is 3 times less than the system with 4 times the
servers (32 servers). Distracting 20%, 40%, and 60% of commands increases the
largest command arrival rate with an average response time below 10 seconds by a
factor of 1.3, 2.1, and 3.5, which is similar to the improvement of partial replication
for distributing a terabyte over 32 servers (1.3, 2.2, 3.4).

In Figure 7.2(b), we demonstrate the average response time when we select the top
25% and 50% of collections using the pure Zipf and uniform distributions. Selecting
the top 25% and 50% of collections using the Zipf distribution improves the largest
command arrival rate with an average response time below 10 seconds by a factor of
1.8 and 1.2, which is better than using 32 servers (Figure 7.1(b)), because the number
of collections is smaller in this case. Selecting the top 256% and 50% of collections
using uniform distribution improves the largest command arrival rate with an average
response time below 10 seconds by a factor of 3.9 and 2.0, which are similar to those

using 32 servers.

7.4 Performance with Faster Servers and Network

In this section, we present a set of experiments using faster servers and a faster
network. We assume we have 8 servers and each server handles 128 GB of data as in
Section 7.3. We assume servers and the network are 4 times as fast as those used in
Section 7.3. Figure 7.3 illustrates the performance gain by using partial replication
and collection selection in this case.

In Figure 7.3(a), we demonstrate the average response time when we replicate 32 GB
(3% of the total size) on one additional server. As in Section 7.3, we put four copies

of the replica on this server. Comparing with Figure 7.2(a) where the system with 8

145

A Rem thq thf Csize Ncpu Nd'isk

varied | 1:1.5:2 2 Obs. 1 TB 4 8
Nth Pdist Prepl Decas Psel Ncol Sp
32 varied 3% varied | varied 8 4
™ 60 T T T
2 Partitioning (8 servers) ——
8 Replication (Pdist=20%) -+--
3 50 |- Replication (Pdist=40%) -5--]
o Replication (Pdist=60%) -
£
= 40 |- R
3
j
§ 30 | R
Q
o
> 20 =
4] A
5
% 10 /,*/ r
o T LB
3 o & & ; m,,,_ffar:’.fjg;m-m»""EJ“'I”E ¢
0 5 10 15 20

Command Arrival Rate (requests per second)
(a) partial replication

™ 60 T T T

g Partitioning (8 servers) <—

3 Col.sel.(top 25%, Zipf) —+--

3 50 |- Col.sel.(top 25%, uniform) -8--]

o Col.sel.(top 50%, Zipf) —x

£ a0 L Col.sel.(top 50%, uniform) -2~ |

=

3

j

§ 30 - R

& P

g 20 - % E

8 .

2 10 X -4

9] NS

3 0 = o :??q%ft,:, g &---- h
0 10 15 20

5
Command Arrival Rate (requests per second)
(b) collection selection

Figure 7.3. Performance when searching a terabyte of text using faster servers and
network

servers supports an average query response time under 10 seconds at 1.7 commands
per second, using a system with 4 time as fast supports an average query response
time under 10 seconds at 9.9 commands per second, which is 5.8 times as many as the
old system. When using partial replication, distracting 20% of commands increases
the largest command arrival rate with an average response time below 10 seconds
by a factor of 1.4 and distracting 40% of commands increases the largest command
arrival rate with an average response time below 5 seconds by a factor of 2.1, which

is similar to the improvement of partial replication for the system in Section 7.3 (1.3

146

and 2.1). Distracting 60% of commands is insensitive to the command arrival rate
that we consider in this experiments.

In Figure 7.3(b), we demonstrate the average response time when we select the top
25% and 50% of collections using a pure Zipf and an uniform distribution. Selecting
the top 25% and 50% of collections using the Zipf distribution improves the largest
command arrival rate with an average response time below 10 seconds by a factor
of 1.9 and 1.2. Selecting the top 50% of collections using uniform distribution im-
proves the largest command arrival rate with an average query response time below
10 seconds by a factor of 2.0 and selecting the top 25% of collections using uni-
form distribution is insensitive to the command arrival rate that we consider in this
experiments.

The results of this section show that although using faster machines reduces the re-
sponse time, it does not significantly change the relative improvement due to collection

selection and partial replication.

7.5 Performance with Longer Queries

In this section, we present a set of experiments for searching a terabyte of text using
longer queries with an average 8 terms per query. The system configuration of this
section is the same as in Section 7.4. Figure 7.4 illustrates the performance gain by
using partial replication and collection selection in this case.

In Figure 7.4(a), we demonstrate the average response time when we replicate 32
GB (3% of the total size) on one additional server. As in Section 7.3 and 7.4 we
put four copies of the replica on this additional server. Comparing the baseline in
Figure 7.3(a) where the system using queries with an average of 2 terms per query
supports an average query response time under 10 seconds at 9.9 commands per
second, the system using queries with an average of 8 terms per query supports a

response time under 10 seconds at 1.7 commands per second, which is 5 times less

147

A Rem thq thf Csize Ncpu Ndisk

varied | 1:1.5:2 8 Obs. 1TB 4 8
Nth Pdist Prepl Decas Psel Ncol Sp
32 varied 3% varied | varied 8 4
™ 60 T T T
2 Partitioning (8 servers) ——
8 Heplication (Pdist=20%) -+--
K 50 ~Replication (Pdist=40%) -5--]
o - Replication (Pdist=60%) ~x--.
£ o x
E 40 : O
[; .
% - X
c -
é_ 30 . X i
feed 20 x7]
[} o
>
g
N 10 X i
[
9] Lol
>
< 0 1 1 1
0 5 10 15 20

Command Arrival Rate (requests per second)
(a) partial replication
T T

'/ Partitioning (8 servers)
/ Col.sel.(top 25%, Zipf)
Col.sel.(top 25%, uniform;
)-

Col.sel.(top 50%, Zipf

D
e
o
e

Col.sel.(top 50%, unifoJer -

,‘B</

Average Query Response Time (Seconds)

5 10 15 20
Command Arrival Rate (requests per second)

(b) collection selection
Figure 7.4. Performance when searching a terabyte of text using an average of 8
terms

than the system using 2 terms. Distracting 20%, 40%, and 60% of commands increases
the largest command arrival rate with an average response time below 10 seconds by
a factor of 1.3, 2.1, and 3.5.

In Figure 7.4(b), we demonstrate the average response time when we select the top
25% and 50% of collections using Zipf and uniform distributions. Selecting the top
25% and 50% of collections using the Zipf distribution improves the largest command
arrival rate with an average response time below 10 seconds by a factor of 1.8 and 1.2.

Selecting the top 25% and 50% of collections using uniform distribution improves the

148

largest command arrival rate with an average response time below 10 seconds by a
factor of 4.0 and 2.0.

The results of this section show that although the system using longer queries increases
the response time, it does not significantly change the relative improvement due to

collection selection and partial replication.

7.6 Summary

This section presented the performance of our distributed IR system for searching a
terabyte of text. We first justified that a replica with 32 GB is sufficient to store the
documents of the top topics that satisfy 40% of queries according to the Excite log.

We then presented and compared the performance using partial collection replication
and collection selection for different system configurations: 32 GB per server, 128 GB
per server with larger disk, using faster servers and networks, and using longer queries.
Our results show that using one replica to distract 20% and using 2 replicas to distract
40% and 60% of commands improves the largest command arrival rate under a cutoff
for the average query response time by a factor of 1.3, 2.2, and 3.5. Selecting the
top 25% of 8 collections improves the largest command arrival rate under a cutoff for
the average query response time by a factor of 1.8 when the collection skew follows
the Zipf distribution. These results suggest that partial collection replication and
collection selection can significantly improve the system performance for searching a
terabyte of text. Our results also show that although they affect the response time,
none of them change relative improvements due to partial replication and collection
selection with uniform access. For collection access with the Zipf-like distribution
(f < 1), the number of collections affects the popularity of the most frequently used

collection and thus affects performance.

149

CHAPTER 8
CONCLUSIONS

The goal of this dissertation was to develop and evaluate distributed information re-
trieval architectures that attain quick response for rapidly increasing data and work-
loads while maintaining retrieval accuracy. Our architectures include components
that do not appear in previous IR architectures: partial collection replication and
selection, and collection selection. We considered both performance and accuracy
(efficiency and effectiveness) of IR systems and how to make best use of available
resources. In this final chapter, we summarize the results of each chapter, review the

research contributions of this dissertation, and discuss future research directions.

8.1 Summaries

In this dissertation, we first investigated how to use partial collection replication for
information retrieval, and then presented and evaluated distributed architectures that
incorporate parallel information retrieval, partial collection replication and selection,
and collection selection. We evaluated the performance improvements due to each of
these three components one by one. We also compared the performance of partial col-
lection replication with collection partitioning, as well as compared partial collection
replication with collection selection. We used inference networks to select relevant
replicas and collections in order to maintain retrieval effectiveness.

In Chapter 4, we investigated using partial collection replication for information re-
trieval. Our analyses on actual system logs demonstrated that there is sufficient

query locality to justify partial collection replication. Our evidence also indicated

150

that a searchable replica achieves better performance than caching queries, because
the replica selection algorithm finds similarity between non-identical queries, and thus
increases the observed locality. We presented a method for constructing a hierarchy of
partial replicas from a collection where each replica is a subset of all larger replicas.
We extended the inference network model to rank and select partial replicas. We
proposed a new replica selection function and showed that it works better for replica
selection than other ranking functions. We examined time and space overheads to
build and update replicas and the replica selection database. Although updating
large replicas is costly, fortunately, the statistics from the real system logs show that
updating hourly or daily is unnecessary that makes the update affordable. We also
proposed two simple strategies for updating replicas.

To expedite our investigation of possible system configurations, characteristics of IR
collections, and the basic IR system performance, we implemented a simulator with
numerous system parameters. We presented and validated the simulator against our
prototype implementation in Chapter 5.

In Chapter 6, we first explored how to build high performance IR servers using sym-
metric multiprocessors. We investigated how to balance the hardware and software
resources with respect to number of threads, CPUs, and disks as the collection size in-
creases. We investigated the factors that affect the necessary number of threads. We
showed that adding disks can degrade the performance when the CPU is a bottleneck,
and adding CPUs does not improve performance when the disk is a bottleneck. In-
creasing the collection size does not significantly change the hardware balance point,
and the server performance is more related to the balance of hardware components
than the collection size. We presented several formulas that use simple measurements
to estimate the necessary number of threads, the number of CPUs and disks that con-
stitute a well-balanced system. We also compared the performance of partitioning

and replicating data over additional disks.

151

We then investigated the performance of partial replication in a distributed IR sys-
tem. We showed the query locality determines the improvement due to partial col-
lection replication, load balancing is necessary when the replicas distract too many
commands. We also showed that partial collection replication with load balancing
consistently performs better than collection partitioning, even with fewer hardware
resources, and requires modest query locality. A hierarchy of replicas further increases
performance for large command rates and high distracting percentages.

We also investigated the performance of collection selection in a distributed IR system.
We showed the performance of collection selection is determined by the popularity of
the most frequently used collection and the number of selected collections. We also
compared the performance of collection selection with partial collection replication.
Our results showed that either of these two techniques can performs better than the
other under some circumstances. Partial collection replication is better than collection
selection when a system has high query locality. Collection selection performs better
than partial collection replication when the collection access is fairly uniform after
collection selection, but because of locality, this result is unlikely to be realized in
practice.

In Chapter 7, We presented experiments for searching a terabyte of text using our
technologies. We presented and compared the performance using partial replication
and collection selection for different system configurations: 32 GB per server, 128 GB
per server with larger disk, using faster servers and networks, and using longer queries.
Our results show that using one replica to distract 20% and using 2 replicas to distract
40% and 60% of commands improve the largest command arrival rate under a cutoff
for the average response time by a factor of 1.3, 2.2, and 3.5, respectively. Selecting
the top 25% of 8 collections improves the largest command arrival rate under a cutoff
for the average response time by a factor of 1.8 when the collection skew follows

the Zipf distribution. These results suggest that partial collection replication and

152

collection selection can significantly improve the system performance for searching a
terabyte of text. Our results also showed that although using fewer and faster servers
and issuing longer queries affect the absolute response time, none of them change
relative improvements due to partial replication and collection selection with uniform
access. When the collection access follows the Zipf-like distribution (6 < 1) after

collection selection, reducing the number of collection achieves better performance.

8.2 Contributions

This dissertation presents a significant step towards providing fast and effective dis-
tributed information retrieval in large-scale information retrieval systems. We pre-
sented and evaluated distributed architectures that attain quick response for rapidly
increasing data and workloads while maintaining retrieval accuracy. Our architec-
tures include components that do not appear in previous IR architectures: partial
collection replication and selection, and collection selection. We considered both per-
formance and accuracy (efficiency and effectiveness) of IR systems and how to make

best use of available resources. The specific contributions of this dissertation are:

e First work on partial collection replication and selection in information retrieval:

— justifying the usefulness of partial replication for IR based on traces;
— developing a replication architecture;

— developing an effective replica selection function and demonstrating its

performance;
— estimating updating costs for replicas and replica selection database;

— proposing updating strategies.
e Scalable distributed architectures and an evaluation of their performance:

— implementing and validating a simulator for distributed IR systems;

153

— performance evaluation of parallel servers using symmetric multiproces-

SOTS;
— performance evaluation of partial replication;

— comparison of partial collection replication and collection partitioning;
— performance evaluation of collection selection;

— comparison of collection selection and partial collection replication;

— mechanisms for searching a terabyte of text.

8.3 Future Work

Although we have largely achieved the research goal set for this dissertation, there

are a number of directions in which the work in this dissertation can pursue further:

e Replica Selection.
Although our current replica selection function works fairly well (approximately
10% precision percentage loss for the top 30 documents), a better selection
function may exist that reduces the precision loss. In addition, when we tested
our selection function, we built replicas using the top documents of each query
resulting from searching all collections. How well our function works when we
only use the results from searching a subset of collections (due to collection
selection) needs to be further tested. We also need to test our current selection

function using larger collections and more queries.

e (Collection Selection.
We need to develop a better collection ranking function that can produce com-
parable retrieval accuracy when searching a small percentage of collections,
since the current ranking function only works well for searching the top 50% of

collections. Although query expansion can reduce the precision loss to around

154

10% when searching the top 10% of collection [77], we prefer to develop a better
function instead of query expansion, because query expansion needs additional
computation that easily cancels out the performance gain due to searching less

data, as compared with using original queries.

Unifying Replica Selection and Collection Selection.

In our work, we assume replica selection and collection selection are two distinct
processes. It will be interesting to see whether our replica selection works well
in collection selection. If this function works well, we may combine these two

processes into one.

Caching.
During our performance evaluation, we do not consider caching. It will be
interesting to investigate how caching further improves the system performance,

and to compare caching to building partial replicas.

Trace Analyses.

In our work, the traces we obtained only reflect two specific IR applications.
We need to obtain more traces to analyze the user access patterns in different
applications, and obtain the collection access patterns in a multiple collection

searching environment.

Heterogeneous Environments.

The work demonstrated in this dissertation used a homogeneous environment.
We assumed we used the same machines with the same number of CPUs and
disks, and used a local area network. In an environment with heterogeneous
computers and/or using a wide area network, many new issues will occur, for
example, how to offset the speed difference of each server in order to produce
high performance since the best performance of multiple collection searching is

achieved when all servers can produce response at the same time. In a wide area

155

network such as the Internet, how to route messages to avoid link congestions
is more critical than in a local area network. Therefore how to adapt our

technologies in that environment needs to be studied.

e Uncontrollable Environments.
All our work in this dissertation assumed we work in a controllable environment,
i.e., we are able to access all indices to build a replica selection database, and
collection selection database. There are environments where documents within
a system is protected, and we we can only guess their contents by sending
probing queries. How to achieve high retrieval accuracy using partial replication

and collection selection in this kind of environment needs to be studied.

e Multimedia Environments.
In our work, we only investigated and evaluated the architectures for searching
text. How to provide fast and effective retrieval in a multimedia environment

needs to be studied.

The most important problem for IR systems is to attain quick response for rapidly
increasing data and workloads while maintaining retrieval accuracy, regardless of
computing environments that will change with time. This dissertation attacked on

this key problem and made significant contributions.

156

APPENDIX A
TREC COLLECTIONS

The TREC collections are large test collections distributed by National Institute of
Standards and Technology (NIST) for testing and comparing the current text retrieval

techniques [36, 37, 38, 39, 40]. In this thesis, we use TREC collections as our testbed.

A.1 Data Sources

TREC collections come from 18 different data sources, such as news, patents, and

the Web. We list all the data sources in this section.

AAG
Legal information made available by the Australian Attorney-General’s Department.

It includes legislation and judgments.

ADIR
The FATEXT database of industrial relations documents supplied by the Australian

Department of Industrial Relations.

AP
Associate Press Newswire, 1988, 1989, 1990.

APLT
A virtually complete collection of proceedings within the Australian Federal Parlia-
ment (1970 - 1995) including Hansard reports of both chambers plus notice papers,

committee reports etc.

157

AUNI

Downloads of the websites operated by ten Australian Universities: Australian Na-
tional University, Victorian University of Technology, Latrobe University, Murdoch
University, Ballarat University, Edith Cowan University, University of Newcastle,
Charles Sturt University, University of Tasmania, Adelaide University, and the Unis-

erve academic clearing house.

CR
Congressional Record, the proceedings of the legislative branch of the U.S Goverment

(1993).

DOE

Short Abstracts from DOE publications.

FBIS
Selected non-U.S. broadcast and print publication from Foreign Broadcast Informa-

tion Service.

FR
Federal Register, the official record of the executive branch of the U.S Government

(1989, 1988, 1994).

FT
Financial Times (1988 - 1990, 1991-1994).

GH
Glasgow Herald, Glasgow, Scotland. (1995 - 1997).

LATIMES

Articles that appeared in the newspaper LA Times in 1989 and 1990.

158

NEWSxy
The NEWS collections consist of USENET NEWS postings collected by the University
of Waterloo. The items have been filtered to remove some or all encoded binaries and

image files.

PATENTS
U.S patents (1993).

PGUT
Project Gutenberg collection of electronic transcriptions of out-of-copyright books.

Obtained from a Project Gutenberg F'T'P site.

SIM

San Jose Mercury News (1991).

WEBO01

Downloads of websites operated by: Australian Broadcasting Commission, Australian
National Library, Australian Department of Defence, Australian Computer Society,
Federal Parliament of Canada, Commonwealth Scientific and Industrial Research Or-

ganisation.

WSJ
Wall Street Journal (1987 - 1989, 1990 - 1992).

ZIFF

Articles from Computer Selects (Ziff-Davis Publishing).

159

A.2 Statistics of TREC Collections

Name Size Num.

(Megabytes) | Documents

AP ’89 254 84,678

DOE 184 226,087

TREC 1 FR ’89 260 25,960
WSJ '87-89 267 98,732

Ziff 1 242 75,180

AP ’88 237 79,919

FR ’88 209 19,860

TREC 2 WSJ '90-92 242 74,520
Ziff 2 175 56,920

AP 90 237 78,321

PATENTS 243 6,711

TREC 3 SJM 91 287 90,257
Ziff 3 345 161,021

CR 235 27,922

TREC 4 FR94 395 55,630
FT 564 210,158

FBIS 470 130,471

TREC 5 LATIMES 475 131,896
AAG 1875 561,566

ADIR 775 42,841

APLT 1540 421,681

AUNI 725 81,334

GH 394 135,477

FT 527 202,433

NEWS01 955 446,106

TREC 6 VLC | NEWS02 943 450,027
NEWS03 934 482.395

NEWS04 966 483,145

NEWSO05 1170 590,202

NEWS06 1121 571,891

NEWS07 1080 520,282

NEWS08 1728 856,609

PGUT 431 3,303

WEBO1 142 8,513

plus all TREC 1-5 collections

Table A.1. The TREC Collections

160

APPENDIX B
ACCESS LOG ANALYSIS

This appendix presents analyses of two server logs we obtained from THOMAS, a
legislative information service of the U.S. Congress through its Library [52], and

Excite, a Web search engine [27].

B.1 The THOMAS Log

The THOMAS system is a legislative information service of the U.S. Congress through
the Library of Congress, which uses InQuery as the retrieval engine. It contains the
full text of bills introduced in the Congresses from 101st to 105th as well as the text

of the Congressional Records for those Congresses.

B.1.1 Query Locality

We examine the query locality by analyzing the log of THOMAS between July 14
and September 13, 1998. We collect the total number of queries, number of unique
queries, number of topics, and overlap of topics between days, and weeks. Since the
log does not contain document identifiers returned from each query evaluation, we
built a test database using the Congress Record for 103rd Congress (235 MB, 27992
documents), which is a part of the TREC 4 collection [39], and also a part of collection
THOMAS uses. We reran all queries against this test database, and view distinct
queries be as the same if their top 20 documents completely overlap, i.e., we group
these queries and call them a topic. Table B.1 to B.5 summarize the statistics.
Table B.1 lists the number of queries, number of unique queries, number of topics,

number of topics occurring once, number of topics occurring more than once, and

161

number of topics that contain more than one query on a day by day base. The
number of queries or unique queries with results represents the queries that actually
match documents from our test database. We mark the days that we only got a
part of the log with a *. The statistics show that around 29% of topics occur more
than once, and account for 63% of total queries. Among the topics that occur more
than once, around 35% contains more than one unique query, which indicates caching
queries which requires an exact match would not detect this locality.

Table B.2 presents how many queries account for the daily top 100, 200, 500, 1000,
and 2000 topics. On a typical day, the top 100 topics (top 2%) account for around
17% of total queries; the top 200 topics (top 4%) account for around 25%; the top
500 topics (top 10%) account for around 40%; the top 1000 topics (top 20%) account
for 54%, and the top 2000 topics (top 25%) account for 70%. We notice that the data
from September 10 to September 13 presents significantly different characteristics
from the other days. These were days when the Starr report was published on the
Internet. The top queries on these days are some variations of starr, starr report,
clinton, Monica lewisky, and impeachment. The 100 topics account as high as 73.4%
of queries on the days.

Table B.3 presents the percentages of queries whose topics match a topic or one of the
top 100, 200, 500, or 1000 topics on the previous day or on July 14, 1998 respectively.
The left part of the table lists the statistics on overlap between days. The right part
of the table lists the statistics on overlap with July 14. Typically, when we replicate
all topics of the previous day, around 43% of queries match a topic in the replica;
when we replicate the top 1000 topics of the previous day, around 28% of queries
match a topic in the replica. However, on the days the Starr report came out, as high
as 85% of queries match a topic on the previous day. If we only replicate the topics
on July 14, we find fewer queries match a topic in the replica as time elapses. For the

top 1000 topics, the percentage of queries that matches a topic decreases from 30%

162

Number of

queries unique queries topics
date with with occurring | more than | more than one
total results | total | results | total once once unique query
7/14 | 9969 9619 6226 5973 5182 3620 1562 564
7/15 | 9656 9281 6067 5805 5036 3544 1492 545
7/16 | 9730 9338 6027 5776 5007 3491 1516 541
T/17 | 8429 8071 5399 5158 4469 3172 1297 510
*7/18 | 2104 1985 1479 1396 1285 969 316 93
*x7/19 | 2128 2036 1555 1486 1385 1076 309 84
7/20 | 10113 9715 6324 6055 5195 3615 1580 609
7/21 9905 9573 6205 5985 5176 3667 1509 556
7/22 | 10650 | 10271 | 6497 6236 5409 3756 1653 585
7/23 | 10527 | 10168 | 6388 6149 5333 3695 1638 596
7/24 | 8461 8131 5177 4944 4360 3055 1305 416
*7/25 | 2095 1986 1479 1405 1288 973 315 94
x7/26 | 2218 2095 1554 1458 1330 969 361 103
*7/27 | 1705 1664 1308 1274 1156 878 278 98
*7/28 1542 1498 1140 1109 1001 754 347 87
*7/29 1529 1488 1163 1133 1019 774 245 91
*7/30 n/a n/a n/a n/a n/a n/a n/a n/a
7/31 7850 7527 5053 4830 4183 2919 1264 473
x8/01 1996 1865 1460 1369 1250 914 336 95
*8/02 211 194 160 148 141 106 35 7
*8/03 1288 1247 1026 991 902 704 198 71
8/04 | 8826 8514 5549 5332 4636 3245 1391 502
8/05 | 9376 9041 5955 5707 4902 3387 1515 566
8/06 | 9445 9110 5965 5713 4981 3498 1483 523
8/07 | 7049 6801 4642 4440 3916 2815 1101 375
*8/08 1687 1610 1213 1154 1059 799 260 75
x8/09 1740 1641 1235 1162 1072 785 287 68
8/10 | 7577 7334 4951 4766 4193 2983 1210 432
8/11 7811 7542 5110 4920 4328 3031 1297 440
8/12 | 7428 7117 4877 4674 4155 3027 1128 394
8/13 | 7084 6796 4722 4529 3989 2812 1177 415
8/14 | 5160 4934 3542 3389 3024 2189 835 269
*8/15 1450 1329 1052 997 926 725 201 60
*8/16 1458 1361 1101 1029 967 741 226 53
8/17 | 6129 5881 4110 3938 3510 2513 997 326
8/18 | 6673 6365 4480 4262 3813 2740 1073 350
8/19 | 6201 5974 4161 3993 3592 2563 1029 310
8/20 | 5915 5656 3953 3772 3409 2455 954 301
8/21 | 4844 4632 3417 3265 2983 2206 T 238
*8/22 1311 1229 980 916 859 652 207 52
*8/23 1445 1357 1093 1033 952 716 236 66
8/24 | 5823 5569 4012 3823 3394 2414 980 339
8/25 | 6168 5913 4148 3974 3568 2576 992 323
8/26 | 6164 5921 4213 4032 3611 2585 1026 324
8/27 | 6201 5945 4182 4000 3568 2557 1011 346
8/28 | 5126 4913 3569 3416 3120 2303 817 250
*8/29 1661 1585 1188 1128 1044 et 267 73
*8/30 2028 1921 1459 1389 1281 949 332 93
8/31 6309 6040 4254 4059 3635 2612 1023 339
9/01 6927 6639 4538 4327 3863 2781 1082 347
9/02 | 7422 7128 4759 4568 4047 2912 1135 388
9/03 | 7230 6919 4731 4524 4029 2896 1133 393
9/04 | 6838 5584 3947 3761 3320 2377 943 330
x9/05 1831 1765 1340 1262 1174 856 318 74
*9/06 1711 1614 1251 1179 1096 836 260 73
*9/07 | 2768 2621 1886 1783 1650 1197 453 119
9/08 | 8508 8103 5398 5126 4496 3164 1332 455
9/09 | 8800 8430 5583 5368 4717 3321 1396 485
9/10 | 14540 | 13695 | 6623 6181 5251 3694 1557 580
9/11 | 15657 | 13487 | 4546 4111 3300 2396 904 338
9/12 | 12114 10220 3017 2696 2020 1466 554 217
9/13 | 7095 6236 2719 2473 2049 1486 563 197

Table B.1. The statistics from the THOMAS log (I)

163

percentages of queries percentages of queries
date that top topics account for date that top topics account for
100 200 500 1000 2000 100 200 500 1000 2000

7/14 | 16.4% | 23.9% 37.5% 50.7% 66.9% 8/14 18.6% | 26.8% | 42.1% | 59.0% 79.2%
7/15 17.5% | 25.1% 38.1% 51.2% 67.3% x8/15 | 30.2% | 45.3% | 67.9% | 100.0% | 100.0%
7/16 17.2% | 24.8% 38.5% 51.5% 67.8% x8/16 | 27.0% | 41.7% | 65.7% | 100.0% | 100.0%
7/17 | 18.2% | 25.8% 39.5% 53.3% 69.4% 8/17 17.2% | 25.1% | 40.4% | 57.3% 74.3%
«7/18 | 27.4% | 39.5% 60.5% 85.6% 100.0% 8/18 15.8% | 23.8% | 38.9% | 54.7% 71.5%
*«7/19 | 25.3% | 36.4% 56.5% 81.1% 100.0% 8/19 17.0% | 24.5% | 39.4% | 56.1% 73.4%
7/20 16.4% | 24.2% 37.8% 50.8% 67.1% 8/20 17.5% | 25.6% | 40.5% | 57.4% 75.1%
7/21 16.5% | 24.3% 37.8% 51.1% 66.8% 8/21 16.4% | 24.6% | 40.4% | 57.2% 78.8%
7/22 17.8% | 25.5% 38.2% 50.8% 66.8% *8/22 | 29.5% | 45.8% | 70.8% | 100.0% | 100.0%
7/23 18.2% | 25.4% 38.3% 51.1% 67.2% x8/23 | 27.2% | 41.9% | 66.7% | 100.0% | 100.0%
7/24 | 16.8% | 23.5% 35.8% 48.6% 63.8% 8/24 16.2% | 24.2% | 39.4% | 57.0% 75.0%
*7/25 | 27.4% | 39.4% 60.3% 85.5% 100.0% 8/25 16.4% | 24.2% | 39.8% | 56.6% 73.5%
«7/26 | 26.4% | 38.4% 60.4% 84.2% 100.0% 8/26 15.1% | 23.2% | 38.6% | 55.5% 72.8%
«7/27 | 25.7% | 37.9% 60.6% 90.6% 100.0% 8/27 16.9% | 24.6% | 39.8% | 56.6% 73.6%
*7/28 | 30.0% | 43.4% 66.6% | 999.9% | 100.0% 8/28 15.9% | 24.4% | 40.2% | 56.8% 77.2%
x7/29 | 28.5% | 41.9% 65.1% 98.7% 100.0% || = 8/29 | 29.7% | 42.5% | 65.7% | 97.2% 100.0%
*7/30 n/a n/a n/a n/a n/a *8/30 | 25.0% | 36.9% | 59.3% | 85.4% | 100.0%
7/31 17.3% | 25.3% 39.7% 54.2% 71.0% 8/31 15.8% | 23.9% | 39.4% | 56.0% 72.9%
x8/01 | 24.0% | 36.4% 59.8% 86.6% 100.0% 9/01 16.3% | 24.6% | 40.1% | 55.6% 71.9%
x8/02 | 78.9% | 100.0% | 100.0% | 100.0% | 100.0% 9/02 18.1% | 26.3% | 40.9% | 55.4% 71.3%
x8/03 | 27.8% | 43.7% 67.8% 100.0% | 100.0% 9/03 16.6% | 24.6% | 39.7% | 54.3% 70.7%
8/04 | 18.3% | 25.8% 39.1% 52.7% 69.0% 9/04 17.5% | 25.8% | 41.6% | 58.5% 76.4%
8/05 17.2% | 24.6% 37.7% 51.1% 67.9% *9/05 | 25.2% | 38.1% | 61.8% | 90.1% 100.0%
8/06 17.0% | 24.2% 37.7% 51.0% 67.3% *9/06 | 27.9% | 40.8% | 63.1% | 94.1% 100.0%
8/07 | 18.2% | 26.1% 40.7% 55.6% 71.8% x9/07 | 23.8% | 35.0% | 56.1% | 75.2% 100.0%
x8/08 | 29.3% | 42.9% 65.3% 96.3% 100.0% 9/08 17.0% | 24.9% | 38.8% | 52.8% 69.2%
«8/09 | 28.0% | 41.6% 65.1% 95.6% 100.0% 9/09 16.3% | 23.6% | 37.2% | 51.2% 67.8%
8/10 16.2% | 24.2% 38.6% 53.6% 70.1% 9/10 40.4% | 46.0% | 55.7% | 64.9% 76.3%
8/11 16.2% | 23.7% 37.8% 51.9% 69.1% 9/11 65.5% | 69.5% | 76.2% | 82.9% 90.4%
8/12 17.4% | 25.1% 39.3% 53.8% 69.7% 9/12 73.4% | 78.1% | 84.6% | 90.0% 99.8%
8/13 15.8% | 23.3% 38.1% 53.4% 70.3% 9/13 57.5% | 63.4% | 74.2% | 83.2% 99.2%

Table B.2. The statistics from the THOMAS log (II)

164

to 22.2% within 2 months. Comparing with the left part of the table, the percentage
drop is very gradual, which suggests that we do not need to update replicas everyday.
However, on the special days when the Starr report came out, if we replicate the
top 1000 topics, as high as 82% of queries match a topic on the previous day, which
suggests that we need a specific mechanism to handle this kind of bursty event.
Table B.4 presents the percentage of queries whose topics match a topic or one of the
top 100, 200, 500, or 1000 topics on the previous seven days or on the week of July 14
to July 20, 1998, respectively. The left part of the table lists the statistics on overlap
between the current day with the previous seven days. The right part of the table
lists the statistics on overlap with the week of July 14 to July 20. Typically, when we
replicate all topics of the previous seven days, around 58% of queries match a topic in
the replica; when we replicate the top 1000 topics of the previous day, around 35% of
queries match a topic in the replica. However, on the days the Starr report came out,
as high as 85% of queries match a topic on the previous day. If we only replicate the
topics on the week of July 14 to July 20, fewer queries match a topic in the replica
as time elapses.

Table B.5 presents the percentage of queries whose topics match a topic or one of
the top 100, 200, 500, or 1000 topics that we accumulate from the very beginning,
i.e. we count the frequency of each topic without considering the time. The statistics
are very similar to those in Table B.4 except when we replicate all topics, which
is not feasible in real situations. The statistics suggest we may only need to count

frequencies of topics within a period of time.

B.1.2 Document Access Patterns
In this section, we examine the ratio of query commands and document retrieval
commands, and how many documents being viewed fall into the top n documents.

Unlike a typical IR system where users can issue more than one summary commands

165

percentages of queries

percentages of queries

date that match a top topic that match a top topic
on the previous day on 7/14

all 100 200 500 1000 all 100 200 500 1000
7/14 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
7/15 43.3% | 13.4% 18.0% | 24.8% | 30.1% 43.3% | 13.4% | 18.0% | 24.8% | 30.1%
7/16 44.4% | 12.9% 18.0% | 24.4% | 30.4% 42.6% | 12.7% | 17.9% | 24.0% | 29.3%
7/17 44.0% | 14.1% 18.9% | 25.5% | 30.4% 42.0% | 12.9% | 17.4% | 23.5% | 28.7%
*7/18 | 40.2% | 13.7% 17.7% | 23.3% | 28.2% 41.0% | 12.8% | 17.9% | 23.5% | 28.8%
*7/19 | 25.7% | 11.3% 15.3% 19.5% | 24.0% 39.4% | 13.8% | 18.2% | 23.6% | 28.0%
7/20 22.3% 8.2% 11.1% 15.3% | 19.2% 41.3% | 12.1% | 16.5% | 23.1% | 28.4%
7/21 43.0% | 12.5% 17.9% 24.7% | 29.8% 41.6% 12.3% | 16.7% | 23.6% | 28.5%
7/22 44.4% | 14.0% 19.9% 27.4% | 31.9% 42.5% 124% | 17.2% | 24.0% | 29.6%
7/23 45.9% | 14.3% 19.7% | 27.3% | 31.5% 41.4% | 12.6% | 17.2% | 23.4% | 28.7%
7/24 45.1% | 15.7% | 20.3% | 27.3% | 31.8% 42.5% | 12.6% | 17.4% | 23.4% | 28.6%
*7/25 | 42.5% | 15.0% 18.4% | 24.5% | 30.1% 42.1% | 13.0% | 17.8% | 23.9% | 28.1%
«7/26 | 27.1% | 11.7% 14.2% 18.9% | 23.5% 43.4% 11.3% | 17.3% | 25.4% | 30.2%
*7/27 | 22.2% 8.1% 11.2% 16.7% | 20.7% 43.9% | 10.0% | 14.1% | 23.0% | 28.9%
*7/28 | 30.6% | 10.3% 15.0% | 20.0% | 26.7% 44.3% 9.5% 13.3% | 23.2% | 29.2%
*«7/29 | 26.7% | 10.4% 12.9% 17.7% | 26.7% 40.8% 10.0% | 14.4% | 21.9% | 27.1%
*7/30 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
7/31 n/a n/a n/a n/a n/a 38.5% | 11.2% | 15.1% | 21.9% | 26.4%
x8/01 | 38.0% | 11.6% 17.0% | 22.6% | 26.5% 36.5% | 11.0% | 15.3% | 21.5% | 26.1%
x8/02 | 28.9% | 8.76% 14.4% | 23.7% | 26.8% 43.3% 8.8% 14.4% | 20.6% | 35.1%
*8/03 2.9% 2.3% 2.9% 2.9% 2.9% 40.3% 8.7% 13.3% | 22.1% | 27.0%
8/04 19.1% 6.4% 9.4% 13.7% | 19.1% 39.8% | 11.0% | 15.1% | 22.7% | 27.7%
8/05 41.5% | 13.4% 17.3% | 23.9% | 28.6% 38.4% | 10.6% | 15.4% | 21.6% | 26.6%
8/06 41.5% | 12.5% 17.8% | 24.3% | 28.7% 37.8% | 10.4% | 14.3% | 21.3% | 26.0%
8/07 43.1% | 13.9% 17.9% | 24.9% | 29.4% 38.6% | 10.4% | 15.3% | 21.9% | 26.0%
*8/08 | 39.4% | 14.2% 19.0% | 24.8% | 29.3% 35.6% | 11.6% | 16.8% | 22.1% | 25.9%
x8/09 | 24.7% 9.9% 13.0% 18.3% | 23.5% 41.6% | 11.6% | 16.3% | 23.9% | 28.2%
8/10 20.4% 7.2% 9.8% 14.8% | 19.6% 37.2% 9.8% 13.9% | 20.1% | 24.7%
8/11 38.6% | 11.3% 15.5% | 20.9% | 26.0% 37.3% | 10.3% | 14.6% | 20.1% | 24.5%
8/12 40.7% | 12.1% 16.6% | 23.2% | 28.3% 38.5% | 10.0% | 14.4% | 21.3% | 26.2%
8/13 37.1% | 10.9% 15.2% | 22.0% | 26.8% 36.1% 9.8% 13.8% | 20.0% | 24.5%
8/14 36.6% | 11.7% 15.4% 21.9% | 26.1% 38.1% 11.6% | 16.1% | 21.3% | 26.0%
x8/15 | 35.1% | 12.3% 16.0% | 21.7% | 26.2% 37.9% | 12.5% | 17.3% | 23.0% | 26.3%
x8/16 | 20.0% 6.8% 9.8% 13.8% | 20.0% 35.8% | 10.0% | 14.0% | 19.0% | 23.4%
8/17 18.3% 7.2% 8.8% 12.3% | 18.3% 34.6% | 10.0% | 14.0% | 19.3% | 22.9%
8/18 33.4% 9.4% 13.9% 19.0% | 24.4% 36.2% 9.7% 13.4% | 19.2% | 23.7%
8/19 34.6% | 10.9% 15.0% | 20.0% | 24.6% 35.3% 9.8% 13.3% | 19.3% | 23.3%
8/20 34.8% | 10.8% 13.3% 19.0% | 24.4% 34.5% 9.6% 12.9% | 18.6% | 22.7%
8/21 31.2% 8.7% 12.3% 16.7% | 21.3% 35.2% 9.4% 13.2% | 18.4% | 23.3%
*«8/22 | 32.9% | 10.1% 14.2% | 20.1% | 24.8% 35.5% | 10.3% | 15.3% | 20.0% | 25.1%
x8/23 | 20.0% 7.7% 11.0% 15.0% | 20.0% 37.1% 10.4% | 15.0% | 19.1% | 24.2%
8/24 16.6% 5.3% 8.3% 11.6% | 16.6% 37.2% | 10.1% | 13.8% | 19.2% | 24.1%
8/25 33.7% | 11.0% 14.6% 19.4% | 25.0% 36.7% | 10.4% | 14.3% | 19.8% | 24.3%
8/26 35.6% | 10.3% 13.9% 19.4% | 24.5% 36.9% 9.2% 13.0% | 19.0% | 24.1%
8/27 36.1% 9.7% 13.5% | 20.2% | 25.9% 37.4% 9.9% 13.6% | 19.7% | 25.2%
8/28 32.9% 9.3% 13.5% 19.1% | 23.0% 34.3% 9.5% 12.8% | 18.3% | 23.4%
*8/29 | 35.2% | 10.2% 15.8% | 20.9% | 26.3% 40.6% | 11.9% | 16.7% | 22.8% | 28.4%
x8/30 | 24.3% | 11.4% 14.7% 19.5% | 24.3% 37.0% 10.0% | 14.6% | 20.6% | 26.3%
8/31 20.4% 6.9% 9.4% 13.6% | 17.5% 37.3% 9.9% 13.9% | 19.6% | 24.8%
9/01 35.4% | 10.8% 14.1% | 20.2% | 25.7% 37.6% 9.5% 13.6% | 19.6% | 24.5%
9/02 40.0% | 11.6% 15.7% | 24.3% | 29.4% 39.1% | 10.5% | 14.6% | 21.0% | 26.2%
9/03 39.3% | 11.4% | 16/4% | 22.6% | 27.4% 38.0% 9.8% 13.6% | 20.1% | 25.7%
9/04 38.3% | 11.4% 15.6% | 22.5% | 26.4% 36.5% 9.5% 12.9% | 18.9% | 23.9%
x9/05 | 36.3% | 12.5% 15.4% | 21.7% | 26.1% 36.2% | 10.6% | 14.8% | 20.5% | 24.9%
x9/06 | 24.0% | 11.6% 14.7% 18.6% | 22.8% 38.3% 8.8% 14.9% | 21.7% | 26.9%
x9/07 | 22.8% 9.6% 12.1% 16.3% | 21.3% 36.1% | 11.1% | 15.1% | 21.0% | 25.7%
9/08 24.6% 8.2% 11.8% 17.4% | 20.2% 36.1% 9.9% 13.9% | 19.7% | 24.3%
9/09 38.8% | 11.3% 15.9% | 21.9% | 27.0% 36.5% 9.8% 13.4% | 18.9% | 23.4%
9/10 57.1% | 30.8% | 43.1% | 40.9% | 47.0% 38.2% 7.5% 10.4% | 14.3% | 20.5%
9/11 78.1% | 63.1% | 65.5% | 69.2% | 71.7% 44.0% 4.1% 6.2% 8.7% 22.2%
9/12 81.1% | 71.5% | 73.3% | 76.2% | 78.1% 47.6% 3.0% 5.2% 6.8% 24.6%
9/13 65.4% | 53.0% | 56.1% | 59.7% | 62.0% 44.8% 5.5% 8.6% 11.2% | 25.6%

Table B.3. The statistics from the THOMAS log (III)

166

percentages of queries

percentages of queries

date that matches a top topics that matches a top topic
on the previous seven days on the week of 7/14-7/20

all 100 200 500 1000 all 100 200 500 1000
7/14 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
7/15 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
7/16 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
T/17 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
*7/18 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
*7/19 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
7/20 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
7/21 60.2% | 13.2% | 18.9% | 28.2% | 33.2% 60.2% | 13.2% | 18.9% | 28.2% | 33.2%
7/22 61.6% | 13.5% | 19.8% | 28.2% | 34.9% 60.7% | 14.6% | 21.2% | 29.8% | 36.8%
7/23 62.6% | 14.0% | 19.6% | 28.8% | 34.6% 61.0% | 15.2% | 21.1% | 29.2% | 36.8%
7/24 62.0% | 15.8% | 21.6% | 28.8% | 34.2% 60.4% | 16.4% | 22.2% | 29.9% | 36.7%
*7/25 | 60.2% | 16.6% | 21.0% | 27.4% | 33.3% 58.3% | 16.4% | 21.8% | 28.8% | 35.5%
x7/26 | 63.1% | 14.1% | 19.9% | 29.2% | 35.8% 61.0% | 13.7% | 20.4% | 30.5% | 38.6%
*7/27 | 63.0% | 12.6% | 18.7% | 27.4% | 34.4% 61.1% | 12.6% | 19.6% | 27.7% | 35.9%
*7/28 | 64.7% | 13.4% | 20.1% | 27.8% | 35.4% 61.5% | 13.5% | 19.4% | 26.6% | 36.4%
*x7/29 | 55.2% | 12.9% | 18.5% | 25.8% | 32.5% 58.0% | 12.7% | 18.3% | 26.9% | 35.1%
*7/30 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
7/31 49.8% | 12.4% | 17.6% | 24.5% | 30.0% 59.1% | 13.6% | 19.0% | 27.3% | 34.2%
x8/01 | 48.5% | 11.3% | 16.9% | 23.4% | 28.5% 56.4% | 12.0% | 17.6% | 26.6% | 31.7%
x8/02 | 47.4% 8.2% 12.4% | 26.8% | 31.4% 62.9% | 12.4% | 14.9% | 27.3% | 33.5%
*8/03 | 48.4% | 11.2% | 17.3% | 26.3% | 32.4% 59.1% | 11.5% | 17.3% | 26.1% | 33.9%
8/04 47.0% | 13.9% | 18.8% | 26.1% | 31.5% 61.3% | 14.3% | 20.4% | 29.1% | 36.3%
8/05 50.4% | 13.9% | 18.7% | 26.1% | 31.1% 59.4% | 13.5% | 19.2% | 27.6% | 35.0%
8/06 52.7% | 13.6% | 18.9% | 26.2% | 32.5% 58.7% | 13.5% | 19.0% | 26.7% | 34.2%
8/07 55.9% | 13.7% | 19.2% | 27.1% | 33.5% 57.9% | 13.5% | 18.5% | 26.6% | 34.6%
*8/08 | 56.3% | 15.4% | 20.8% | 28.2% | 31.9% 57.5% | 13.3% | 20.0% | 28.8% | 34.3%
x8/09 | 56.7% | 13.5% | 19.8% | 28.2% | 33.8% 57.0% | 13.3% | 19.7% | 31.3% | 37.6%
8/10 56.0% | 12.7% | 17.8% | 25.8% | 31.9% 58.8% | 12.8% | 17.8% | 26.8% | 33.8%
8/11 56.3% | 12.8% | 17.3% | 25.2% | 31.5% 59.0% | 12.1% | 17.6% | 25.7% | 32.2%
8/12 58.9% | 13.7% | 19.1% | 27.0% | 33.3% 59.6% | 13.4% | 18.3% | 27.3% | 34.2%
8/13 55.3% | 11.7% | 16.2% | 24.1% | 29.6% 57.0% | 12.3% | 17.0% | 24.9% | 31.5%
8/14 54.1% | 12.7% | 18.4% | 24.9% | 29.8% 54.6% | 13.8% | 19.3% | 26.8% | 32.3%
x8/15 | 56.5% | 13.5% | 19.9% | 26.4% | 32.2% 58.4% | 14.1% | 18.4% | 26.6% | 34.5%
x8/16 | 53.1% | 11.9% | 16.2% | 24.8% | 30.9% 56.7% | 13.4% | 17.9% | 25.8% | 31.4%
8/17 52.9% | 12.1% | 16.2% | 23.3% | 29.5% 56.5% | 12.0% | 17.2% | 24.5% | 31.5%
8/18 51.7% | 11.2% | 16.4% | 23.4% | 28.8% 59.4% | 11.9% | 16.4% | 25.1% | 32.0%
8/19 52.1% | 11.4% | 15.8% | 23.1% | 28.1% 58.2% | 12.6% | 16.9% | 24.5% | 31.2%
8/20 50.3% | 11.3% | 15.1% | 21.7% | 27.5% 56.9% | 11.3% | 15.9% | 23.9% | 30.2%
8/21 49.1% | 10.5% | 14.5% | 20.5% | 26.2% 53.4% | 11.0% | 15.7% | 23.4% | 29.1%
*8/22 | 53.7% | 12.4% | 17.5% | 24.6% | 30.7% 56.8% | 14.0% | 18.8% | 27.6% | 35.3%
x8/23 | 53.6% | 11.7% | 15.0% | 21.7% | 28.4% 56.7% | 11.5% | 16.7% | 23.2% | 30.7%
8/24 52.4% | 11.3% | 16.2% | 23.6% | 29.5% 58.1% | 11.9% | 16.4% | 25.5% | 32.5%
8/25 51.5% | 11.2% | 16.3% | 23.7% | 29.0% 57.9% | 12.7% | 17.0% | 25.2% | 32.0%
8/26 51.4% | 11.3% | 15.5% | 22.9% | 28.2% 57.6% | 11.0% | 16.0% | 24.2% | 31.6%
8/27 51.2% | 11.3% | 16.1% | 22.3% | 28.2% 58.0% | 11.8% | 16.7% | 25.0% | 32.9%
8/28 49.5% | 11.2% | 15.6% | 22.2% | 26.7% 54.0% | 11.5% | 16.0% | 23.5% | 30.7%
*8/29 | 53.9% | 14.6% | 18.9% | 27.7% | 32.5% 58.4% | 13.9% | 18.5% | 28.0% | 34.7%
x8/30 | 49.8% | 12.8% | 17.0% | 25.5% | 30.8% 57.6% | 11.6% | 16.6% | 26.1% | 33.3%
8/31 51.5% | 10.9% | 15.7% | 23.5% | 28.5% 57.5% | 11.4% | 16.8% | 25.0% | 32.3%
9/01 51.8% | 11.3% | 16.3% | 24.3% | 30.0% 60.1% | 11.3% | 16.5% | 26.5% | 33.4%
9/02 55.5% | 12.2% | 17.7% | 27.0% | 31.1% 60.3% | 12.5% | 17.3% | 27.0% | 34.9%
9/03 53.3% | 11.5% | 16.9% | 25.3% | 30.4% 58.8% | 11.6% | 16.7% | 25.9% | 32.9%
9/04 53.8% | 11.0% | 16.2% | 25.1% | 30.3% 55.9% | 11.0% | 16.3% | 25.1% | 31.8%
x9/05 | 53.2% | 13.5% | 17.5% | 25.6% | 32.1% 55.8% | 12.0% | 17.1% | 24.5% | 31.9%
x9/06 | 54.2% | 13.1% | 19.0% | 26.3% | 32.2% 56.3% | 10.7% | 15.9% | 26.4% | 33.1%
*9/07 | 52.6% | 13.4% | 18.9% | 24.6% | 29.6% 71.0% | 12.7% | 16.5% | 25.6% | 33.1%
9/08 52.1% | 11.8% | 17.3% | 25.0% | 30.5% 72.9% | 121% | 17.0% | 26.0% | 32.6%
9/09 53.6% | 11.9% | 16.4% | 23.9% | 28.9% 75.6% | 12.0% | 17.0% | 24.8% | 32.0%
9/10 66.9% | 23.3% | 34.4% | 41.3% | 45.8% 81.1% | 28.3% | 35.1% | 41.7% | 50.0%
9/11 82.6% | 60.3% | 63.9% | 68.6% | 71.3% 82.8% | 33.5% | 47.8% | 54.5% | 64.5%
9/12 86.6% | 68.8% | 71.6% | 75.8% | 77.8% 84.3% | 28.0% | 47.1% | 57.0% | 67.9%
9/13 77.5% | 53.4% | 57.1% | 61.6% | 64.9% 91.1% | 23.2% | 38.2% | 48.7% | 58.9%

Table B.4. The statistics from the THOMAS log (VI)

167

percentages of queries
date that matches a top topic

on all previous days
all 100 200 500 1000
7/14 n/a n/a n/a n/a n/a
7/15 | 43.3% | 13.4% | 18.0% | 24.8% | 30.1%
7/16 | 52.5% | 12.8% | 18.9% | 26.2% | 31.6%
7/17 | 55.1% | 14.1% | 19.7% | 27.5% | 33.6%
*7/18 | 56.9% | 13.9% | 19.3% | 27.2% | 34.4%
*«7/19 | 54.5% | 14.1% | 19.3% | 26.3% | 31.2%
7/20 | 57.8% | 13.1% | 18.4% | 26.0% | 32.3%
7/21 60.2% | 13.2% | 18.9% | 28.0% | 33.2%
7/22 | 62.8% | 13.5% | 19.4% | 28.7% | 35.0%
7/23 | 64.7% | 14.2% | 19.3% | 28.7% | 34.8%
7/24 | 65.2% | 15.4% | 20.9% | 28.7% | 34.4%
*7/25 | 63.9% | 14.6% | 20.5% | 28.2% | 33.6%
*7/26 | 67.1% | 12.4% | 19.8% | 29.9% | 35.5%
«7/27 | 67.8% | 12.1% | 17.7% | 27.8% | 34.9%
*7/28 | 70.6% | 11.1% | 17.5% | 28.2% | 35.8%
*«7/29 | 68.5% | 11.3% | 17.5% | 27.2% | 33.5%
*7/30 n/a n/a n/a n/a n/a
7/31 | 65.1% | 12.5% | 18.3% | 25.5% | 31.6%
x8/01 | 61.2% | 12.0% | 16.6% | 25.4% | 31.7%
x8/02 | 69.1% | 13.4% | 18.6% | 27.8% | 40.7%
*8/03 | 69.3% | 10.0% | 15.9% | 27.1% | 33.2%
8/04 | 68.1% | 12.5% | 18.9% | 27.7% | 34.9%
8/05 | 67.5% | 13.2% | 19.1% | 27.2% | 32.8%
8/06 | 67.6% | 12.4% | 18.7% | 26.5% | 32.5%
8/07 | 68.8% | 12.2% | 18.4% | 26.7% | 33.2%
*«8/08 | 69.1% | 13.7% | 19.1% | 27.5% | 33.2%
x8/09 | 67.2% | 13.0% | 20.0% | 29.4% | 35.4%
8/10 | 68.9% | 11.4% | 17.3% | 25.3% | 31.6%
8/11 | 69.1% | 12.1% | 17.6% | 25.6% | 31.9%
8/12 | 70.5% | 12.6% | 18.1% | 27.0% | 33.8%
8/13 | 68.7% | 12.1% | 17.0% | 25.2% | 30.9%
8/14 | 67.2% | 14.0% | 19.2% | 25.9% | 31.4%
x8/15 | 69.7% | 13.8% | 18.7% | 26.1% | 32.6%
x8/16 | 68.7% | 12.7% | 17.0% | 22.9% | 30.1%
8/17 | 68.8% | 11.4% | 16.2% | 23.7% | 29.8%
8/18 | 70.6% | 11.0% | 16.3% | 24.2% | 30.7%
8/19 | 70.6% | 11.4% | 16.7% | 23.9% | 29.8%
8/20 | 70.9% | 10.5% | 15.5% | 23.3% | 28.9%
8/21 | 67.9% | 10.7% | 15.6% | 23.0% | 28.6%
*«8/22 | 68.9% | 11.7% | 18.9% | 25.4% | 32.1%
x8/23 | 7T1.1% | 11.1% | 16.7% | 23.0% | 29.6%
8/24 | T1.1% | 11.4% | 16.5% | 24.6% | 30.6%
8/25 | 69.7% | 11.6% | 16.8% | 24.8% | 30.7%
8/26 | 70.6% | 10.4% | 15.8% | 23.4% | 29.7%
8/27 | 70.5% | 11.1% | 16.4% | 24.3% | 31.1%
8/28 | 69.2% | 10.7% | 16.0% | 23.4% | 29.2%
x8/29 | 70.1% | 12.4% | 18.8% | 26.4% | 33.6%
x8/30 | 71.0% | 11.0% | 16.7% | 25.5% | 31.4%
8/31 | 72.1% | 10.8% | 17.0% | 24.5% | 31.0%
9/01 | 73.3% | 10.6% | 16.3% | 25.6% | 32.1%
9/02 | 73.6% | 11.9% | 17.4% | 26.6% | 34.1%
9/03 | 72.8% | 10.6% | 16.6% | 25.7% | 31.5%
9/04 | 71.0% | 10.7% | 15.8% | 24.4% | 30.6%
x9/05 | 69.6% | 11.7% | 18.0% | 24.7% | 29.8%
x9/06 | 73.6% | 11.0% | 17.5% | 25.4% | 31.5%
x*9/07 | 79.1% | 11.7% | 17.3% | 25.6% | 31.4%
9/08 | 82.0% | 11.4% | 17.0% | 24.5% | 30.8%
9/09 | 83.8% | 10.7% | 15.9% | 24.0% | 30.1%
9/10 | 87.3% | 8.2% | 15.9% | 24.9% | 44.6%
9/11 | 89.2% | 46.4% | 57.7% | 63.3% | 69.5%
9/12 | 91.0% | 62.2% | 65.7% | 71.3% | 75.0%
9/13 | 95.4% | 48.9% | 54.0% | 59.3% | 63.9%

Table B.5. The statistics from the THOMAS log (V)

168

for a query, i.e., the system returns the summary information of the top n documents
based on the user’s requests, the THOMAS system returns all summary information
of the top n documents at a time, i.e., it does not provide explicit summary commands
for users to use. Table B.6 summarizes the statistics. Column 1 lists the date. Column
2 lists the number of queries. Column 3 lists the number of document being accessed.
Column 4 lists the ratio of document to query command. Columns 5 through 14 list
the number of document commands that access a document that is ranked as 1-10,
11-20, 21-30, 31-40, 41-50, 51-60, 61-80, 80-100, 101-200, and larger than 200.

On the average for each query command, the user views 1.9 documents. 97.7% of
the documents the users viewed are ranked as the top 30. Only 0.6% of documents
the users viewed are ranked higher than 200. On a typical day, for each query, the
user views around 2 documents. But on the days when the Starr report came out, for
each query, the user viewed as few as 0.4 documents, i.e., the users did not find any
interesting document for many queries. The reason is that many users entered into
the system just to read the Starr report, however, at that time, the Starr report had
not input to the system. Actually, several days later, the THOMAS system became
aware of this problem, and set up another link to lead the users who just want to

read the Starr report to another page instead of searching the whole database.

B.2 The Excite Log

The Excite log we obtained contains one day log information on September 16, 1997.
We used the same methodology as we used in analyzing the THOMAS log. We built a
test database to automatically disseminate queries by using downloads of the websites
operated by ten Australian Universities (725 MB, 81334 documents), which is a part
of the TREC 5 collection [40].

Table B.7 lists the statistics for the Excite log: the numbers of queries, unique queries,

topics, topics occurring once, topics occurring more than once, and topics that contain

169

Num. | Num. | doc percentage of documents falling within ranks

date of of : 1- 11- 21- 31- 41- 51- 61- 81- 101- >
qry doc. qry 10 20 30 40 50 60 80 100 200 200
7/14 9969 | 18046 | 1.8 || 78.1% | 89% | 4.6% | 3.3% | 3.4% | 0.3% | 0.6% | 0.6% | 0.2% | 0.1%
7/15 9656 | 17867 | 1.9 || 77.5% | 9.7% | 5.3% | 3.2% | 3.1% | 0.2% | 0.2% | 0.2% | 0.4% | 0.1%
7/16 9730 | 17661 | 1.8 || 78.2% | 9.2% | 4.8% | 3.4% | 3.2% | 0.3% | 0.2% | 0.2% | 0.3% | 0.2%
/17 8429 | 14830 | 1.8 || 79.1% | 9.4% | 4.6% | 3.0% | 3.0% | 0.2% | 0.3% | 0.3% | 0.1% | 0.1%
*7/18 2104 3938 1.9 || 727% | 114% | 5.7% | 4.3% | 4.8% | 0.0% | 0.3% | 0.3% | 0.4% | 0.3%
*7/19 2128 4410 2.1 68.7% | 13.9% | 8.2% | 4.6% | 4.1% | 0.0% | 0.1% | 0.1% | 0.3% | 0.1%
7/20 10113 | 19162 | 1.9 || 78.3% | 9.6% | 4.8% | 3.4% | 3.1% | 0.2% | 0.2% | 0.1% | 0.2% | 0.1%
7/21 9905 18380 1.9 77.7% 9.3% 4.9% | 3.0% | 29% | 0.2% | 0.2% | 0.2% | 0.2% | 1.5%
7/22 10650 | 19600 | 1.8 || 77.2% | 9.6% | 5.5% | 3.3% | 3.3% | 0.2% | 0.4% | 0.3% | 0.2% | 0.1%
7/23 10527 | 20805 | 2.0 || 77.3% | 9.1% | 4.9% | 3.3% | 3.3% | 0.3% | 0.3% | 0.3% | 0.2% | 1.1%
7/24 8461 | 15372 | 1.8 || 77.8% | 9.5% | 4.7% | 3.2% | 3.0% | 0.3% | 0.4% | 0.4% | 0.6% | 0.2%
*7/25 2095 4081 20 || 75.1% | 96% | 5.4% | 4.6% | 4.1% | 0.1% | 0.2% | 0.3% | 0.3% | 0.3%
*7/26 2218 4319 20 || 75.7% | 9.7% | 5.3% | 4.3% | 4.2% | 02% | 0.2% | 0.2% | 0.3% | 0.1%
*7/27 1705 3108 1.8 || 77.9% | 91% | 3.9% | 2.0% | 1.7% | 1.3% | 1.9% | 1.0% | 0.3% | 0.9%
*7/28 1542 2252 1.5 || 80.0% | 9.0% | 3.8% | 1.6% | 1.2% | 0.8% | 1.0% | 1.5% | 1.0% | 0.1%
*7/29 1529 2876 1.9 79.3% 7.7% 4.9% | 21% | 1.4% | 0.6% | 0.9% | 0.9% | 0.2% | 2.0%
*7/30 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
7/31 7850 | 16601 | 2.1 81.6% | 7.8% | 3.8% | 2.6% | 3.2% | 0.2% | 0.3% | 0.2% | 0.1% | 0.1%
*8/01 1996 4302 2.2 75.6% 9.1% 51% | 4.0% | 4.2% | 0.2% | 0.4% | 0.2% | 0.5% | 0.7%
x8/02 211 485 2.3 || 66.8% | 12.0% | 83% | 6.0% | 5.8% | 0.0% | 0.0% | 0.4% | 0.0% | 0.0%
x8/03 1288 2250 1.8 84.5% 6.0% 4.0% | 1.6% | 1.5% | 1.0% | 1.0% | 0.4% | 0.0% | 0.0%
8/04 8826 | 18634 | 2.1 80.8% | 7.8% | 41% | 3.2% | 3.3% | 0.1% | 0.3% | 0.2% | 0.1% | 0.1%
8/05 9376 | 19987 | 2.1 80.2% | 8.4% | 4.4% | 3.2% | 2.9% | 0.2% | 0.2% | 0.3% | 0.2% | 0.2%
8/06 9445 | 19321 | 2.1 79.2% | 93% | 47% | 3.1% | 3.0% | 0.2% | 0.2% | 0.2% | 0.1% | 0.1%
8/07 7049 | 14605 | 2.1 79.1% | 8.5% | 48% | 3.2% | 3.1% | 0.3% | 0.5% | 0.3% | 0.1% | 0.2%
x8/08 1687 3275 1.9 || 73.2% | 11.0% | 5.6% | 3.9% | 4.5% | 0.4% | 0.4% | 0.1% | 0.4% | 0.6%
x8/09 1740 4135 2.4 63.9% 9.4% 6.0% | 4.2% | 51% | 1.0% | 2.1% | 1.8% | 4.1% | 2.4%
8/10 7577 | 15558 | 2.1 78.3% | 89% | 45% | 3.2% | 3.1% | 0.2% | 0.4% | 0.4% | 0.7% | 0.3%
8/11 7811 | 16317 | 2.1 77.4% | 92% | 5.0% | 3.1% | 3.2% | 0.2% | 0.5% | 0.4% | 0.7% | 0.2%
8/12 7428 | 15195 | 2.1 77.4% | 91% | 5.0% | 3.6% | 3.1% | 0.3% | 0.5% | 0.3% | 0.7% | 0.1%
8/13 7084 | 14259 | 2.0 || 74.4% | 89% | 52% | 3.6% | 3.5% | 0.7% | 1.0% | 0.8% | 0.8% | 1.2%
8/14 5160 | 10569 | 2.1 75.6% | 8.6% | 4.8% | 3.8% | 3.5% | 0.5% | 1.0% | 0.6% | 0.6% | 0.9%
x8/15 1450 2879 2.0 || 73.2% | 10.3% | 5.7% | 4.9% | 4.6% | 0.2% | 0.5% | 0.1% | 0.4% | 0.1%
x8/16 1458 2728 2.0 73.5% | 11.0% | 6.2% | 4.4% | 3.9% | 0.3% | 0.2% | 0.1% | 0.3% | 0.0%
8/17 6129 | 12113 | 2.0 || 77.7% | 8.7% | 5.3% | 3.7% | 3.1% | 0.2% | 0.2% | 0.2% | 0.9% | 0.1%
8/18 6673 | 12561 | 1.9 || 79.1% | 8.4% | 4.4% | 3.1% | 2.9% | 0.3% | 0.5% | 0.3% | 0.5% | 0.6%
8/19 6201 | 12576 | 2.0 || 76.4% | 7.9% | 4.6% | 3.5% | 3.4% | 0.2% | 0.5% | 0.6% | 1.6% | 1.5%
8/20 5915 | 10980 | 1.9 || 77.0% | 9.5% | 4.7% | 3.5% | 3.3% | 0.3% | 0.4% | 0.4% | 0.7% | 0.3%
8/21 4844 9775 20 || 76.7% | 9.7% | 5.1% | 3.8% | 3.6% | 0.2% | 0.2% | 0.1% | 0.1% | 0.7%
*8/22 1311 2480 1.9 || 75.0% | 104% | 5.6% | 3.7% | 3.9% | 0.1% | 0.0% | 0.3% | 0.0% | 1.1%
*8/23 1445 2610 1.8 70.5% | 12.1% | 6.1% | 4.8% | 54% | 02% | 0.1% | 0.2% | 0.5% | 0.3%
8/24 5823 | 11146 | 1.9 || 75.2% | 9.2% | 52% | 3.8% | 3.5% | 0.4% | 0.7% | 0.5% | 0.6% | 1.1%
8/25 6168 | 11915 | 1.9 || 75.3% | 9.2% | 5.7% | 3.6% | 3.7% | 0.5% | 0.6% | 0.2% | 0.3% | 0.9%
8/26 6164 | 12269 | 2.0 || 76.9% | 8.7% | 4.8% | 3.2% | 3.5% | 0.4% | 0.5% | 0.5% | 1.0% | 0.6%
8/27 6201 | 12312 | 2.0 || 73.5% | 95% | 5.7% | 4.0% | 3.4% | 0.2% | 0.3% | 0.3% | 0.8% | 2.2%
8/28 5126 9501 1.9 || 76.6% | 87% | 51% | 3.6% | 3.4% | 0.4% | 0.6% | 0.5% | 0.8% | 0.4%
*8/29 1661 3321 2.0 || 64.3% | 10.5% | 5.8% | 4.2% | 5.1% | 0.2% | 0.8% | 0.9% | 3.2% | 5.0%
x8/30 2028 3233 1.6 || 721% | 11.0% | 71% | 4.7% | 4.3% | 0.0% | 0.1% | 0.0% | 0.4% | 0.2%
8/31 6309 | 11591 | 1.8 || 77.3% | 9.4% | 4.8% | 3.4% | 3.4% | 0.3% | 0.5% | 0.4% | 0.3% | 0.2%
9/01 6927 | 12527 | 1.8 || 78.1% | 9.1% | 51% | 3.2% | 3.4% | 0.1% | 0.4% | 0.2% | 0.3% | 0.1%
9/02 7422 | 14608 | 2.0 || 75.0% | 85% | 4.9% | 3.6% | 3.3% | 0.4% | 0.6% | 0.6% | 1.4% | 1.6%
9/03 7230 | 13238 | 1.8 || 78.1% | 9.2% | 4.8% | 3.2% | 3.4% | 0.2% | 0.2% | 0.2% | 0.6% | 0.2%
9/04 6838 | 10839 | 1.6 || 75.5% | 9.2% | 53% | 3.7% | 3.1% | 0.2% | 0.5% | 0.5% | 1.3% | 0.7%
x9/05 1831 3227 1.8 || 73.3% | 10.1% | 5.6% | 4.6% | 4.7% | 0.1% | 0.1% | 0.1% | 0.5% | 0.9%
x9/06 1711 3242 1.9 || 69.5% | 10.7% | 6.5% | 54% | 5.2% | 0.5% | 1.0% | 0.9% | 0.2% | 0.1%
x9/07 2768 5434 2.0 || 66.1% | 10.2% | 6.8% | 5.6% | 6.3% | 1.2% | 1.7% | 1.7% | 0.4% | 0.0%
9/08 8508 | 15591 | 1.8 || 78.3% | 9.2% | 4.7% | 3.5% | 3.4% | 0.2% | 0.3% | 0.2% | 0.2% | 0.1%
9/09 8800 | 16127 | 1.8 || 77.3% | 9.6% | 5.1% | 3.4% | 3.5% | 0.1% | 0.4% | 0.4% | 0.2% | 0.1%
9/10 14540 | 16784 | 1.2 || 78.2% | 9.3% | 4.8% | 3.4% | 3.6% | 0.2% | 0.2% | 0.2% | 0.2% | 0.1%
9/11 15657 | 8144 05 || 771% | 8.7% | 49% | 3.7% | 5.0% | 0.1% | 0.1% | 0.0% | 0.2% | 0.2%
9/12 12114 | 5005 0.4 || 73.6% | 10.5% | 6.0% | 4.2% | 4.9% | 0.2% | 0.2% | 0.1% | 0.1% | 0.2%
9/13 7095 5488 0.8 || 72.2% | 10.8% | 6.4% | 5.0% | 5.1% | 0.2% | 0.1% | 0.1% | 0.1% | 0.1%
ave 5928 | 10433 | 1.9 || 75.8% | 9.5% | 52% | 3.7% | 3.6% | 0.3% | 0.5% | 0.4% | 0.5% | 0.6%

Table B.6. Document access statistics from the THOMAS log

170

Number of
queries unique queries topics
occur. | more than | more than one
date total w /results total w /results total once once unique query
09/16/97 || 499836 444899 365276 320987 249405 | 196672 52733 32750
percentages of queries that the top topics account for
500 1000 5000 10000 15000 20000
09/16/97 12.3% 16.0% 27.9% 34.4% 38.6% 42.0%

more than once unique query. It also list how many of queries the top 500, 1000, 5000,
10000, and 20000 topics cover respectively. The statistics show that the Excite queries
also have high query locality; the top 500 topics (around 2% of the total topics) cover
11.5% of queries, and the top 20000 topics (around 10% of the total topics) cover
39.6%. Among the topics that occurred more than once, 62% (32750) contain more

than one unique query. Since we only have this one day log, we can not collect the

Table B.7. The statistics from the Excite log.

information about overlap of topics between days.

171

1]

2]

3]

[4]
[5]

[6]

[7]

8]

[9]

[10]

BIBLIOGRAPHY

Acharya, S., and Zdonik, S.B. An efficient scheme for dynamic data replication.
Tech. Rep. CS-93-43, Department of Computer Science, Brown University, Sept.
1993.

Agarwal, D., and Abbadi, A.E. The tree quorum protocol: An efficient approach
for managing replicated data. In Proceedings of the 16th VLDB Conference
(1990).

Ahamad, M., and Ammar, M.H. Performance characterization of quorum-
consensus algorithms for replicated data. IEEE Transaction of Software En-
gineering 15, 4 (Apr. 1989).

AltaVista. http://www.altavista.com/ .

Baentsch, M., Molter, G., and Sturm, P. Introducing application-level replication
and naming into today’s Web. In Proceedings of Fifth International World Wide
Web Conference (Paris, France, May 1996).

Bailey, P., and Hawking, D. A parallel architecture for query processing over a
terabyte of text. Tech. Rep. TR-CS-96-04, The Australian National University,
June 1996.

Bestavros, A. Demand-based document dissemination to reduce traffic and bal-
ance load in distributed information systems. In Proceedings of SPDP’95: The
7th IEEE Symposium on Parallel and Distributed Processing (San Anotonio,
Texas, Oct. 1995).

Bhattacharjee, S., Ammar, M.H., Zegura, E.W., Shah, V., and Fei, Z.
Application-layer anycasting. In Proceedings of INFOCOM 97 (1997).

Bowman, C.M., Danzig, P.B., Hardy, D.R., Manber, U., and Schwartz, F. Har-
vest, a scalable, customizable discovery and access system. Tech. Rep. CU-CS-
732-94, Department of Computer Science, University of Colorado at Boulder,
July 1994.

Buckley, C. Implementation of the smart information retrieval system. Tech.
Rep. 85-686, Computer Science Department, Cornell University, Ithica, NY, May
1985.

172

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Burkowski, F. J. Retrieval performance of a distributed text database utiliz-
ing a parallel process document server. In 1990 International Symposium On
Databases in Parallel and Distributed Systems (Trinity College, Dublin, Ireland,
July 1990), pp. 71-79.

Cahoon, B., and McKinley, K. S. Performance evaluation of a distributed ar-
chitecture for information retrieval. In Proceedings of the Nineteenth Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (Zurich, Switzerland, Aug. 1996), pp. 110-118.

Cahoon, B., McKinley, K. S., and Lu, Z. Evaluating the performance of dis-
tributed architectures for information retrieval using a variety of workloads. ACM
Transaction on Information Syetems (submitted) (1999).

Callan, J. P.; Croft, W. B., and Harding, S. M. The INQUERY retrieval sys-
tem. In Proceedings of the 3rd International Conference on Database and Ezxpert
System Applications (Valencia, Spain, Sept. 1992).

Callan, J. P., Lu, Z., and Croft, W. B. Searching distributed collections with
inference networks. In Proceedings of the Eighteenth Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval (Seat-
tle, WA, July 1995).

Carey, M.J., and Livny, M. Distributed concurrency control performance: A
study of algorithms, distribution and replication. In Proceedings of the 14th
VLDB Conference (Los Angeles,CA, 1988).

Carter, R.L., and Crovella, M.E. Dynamic server selection using bandwidth
probing in wide-area networks. Tech. Rep. BU-CS-96-007, Boston University,
Mar. 1996.

Chakravarthy, A.S., and Haase, K.B. Netserf: Using semantic knowledge to find
internet information archives. In Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Seattle, WA, July 1995), pp. 4-11.

Cheung, S.Y., Ammar, M.H., and Ahamad, M. The grid protocol: a high per-
formance scheme for maintaining replication data. In Proceedings of the sixth
International Conference on Data Engineering (Jan. 1990), pp. 438—445.

Couvreur, T. R., Benzel, R. N., Miller, S. F., Zeitler, D. N., Lee, D. L., Singhai,
M., Shivaratri, N., and Wong, W. Y. P. An analysis of performance and cost
factors in searching large text databases using parallel search systems. Journal
of the American Society for Information Science 7, 45 (1994), 443-464.

Cringean, J. K., England, R., Mason, G. A., and Willett, P. Parallel text search-
ing in serial files using a processor farm. In Proceedings of the Thirteenth Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (Brussels, Belgium, Sept. 1990).

173

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

Croft, W. B., Cook, R., and Wilder, D. Providing government information on the
Internet: Experiences with THOMAS. In The Second International Conference
on the Theory and Practice of Digital Libraries (Austin, TX, June 1995).

Danzig, P. B., Ahn, J., Noll, J., and Obraczka, K. Distributed indexing: A
scalable mechanism for distributed information retrieval. In Proceedings of the
Fourteenth Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (Chicago, IL, 1991), pp. 221-229.

Dowdy, D., and Foster, D. Comparative models of the file assignment problem.
Computing Surveys 14, 2 (June 1982).

Eager, D.L., and Sevick, K.C. Achieving robustness in distributed database
systems. ACM Transactions on Database Systems 8, 3 (Sept. 1983), 354-381.

Efraimidis, P., Glymidakis, C., Mamalis, B., Spirakis, P., and Tampakas, B.
Parallel text retrieval on a high performance supercomputer using the vector
space model. In Proceedings of the Fighteenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (Seattle, WA,

1995), pp. 58-66.
Excite. http://www.excite.com.

Faloutsos, C., and Christodoulakis, S. Signiture files: An access methods for doc-
uments and its analytical performance evaluation. ACM Transaction on Olffice
Information Systems 2, 4 (Oct. 1984), 267-288.

Fuhr, N. A decision-theoretic approach to database selection in networked ir. In
Workshop on Distributed IR (Germany, 1996).

Gifford, D. Weighted voting for replicated data. In Proceedings of 7th ACM
Symposium on Operating System Principles (1979), pp. 150-162.

Gravano, L., and Garcia-Molina, H. Generalizing gloss to vector-space databases
and broker hierarchies. In Proceedings of the 21st VLDB Conference (Zurich,
Switchland, 1995).

Gravano, L., Garcia-Molina, H., and Tomasic, A. The effectiveness of gloss for
the text database discovery problem. In Proceedings of the SIGMOD 94 (Sept.
1994), pp. 126-137.

Gray, J., Helland, P., O'Neil, P., and Shasha, D. The dangers of replication and
a solution. In Proceedings of ACM SIGMOD’96 (Montreal, Canada, June 1996),
pp- 173—-182.

Guyton, J., and Schwarz, M. Locating nearby copies of replicated internet
servers. Tech. Rep. CU-CS-762-95, University of Colorado at Boulder, Feb. 1995.

174

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

Hardy, D.R., and Schwartz, M.F. Customized information extraction as a basis
for resource discovery. ACM Transactions on Computer Systems 14, 2 (May
1996), 171-199.

Harman, D., Ed. The First Text REtrieval Conference (TREC-1). National In-
stitute of Standards and Technology Special Publication 200-217, Gaithersburg,
MD, 1992.

Harman, D., Ed. The Second Text REtrieval Conference (TREC-2). National In-
stitute of Standards and Technology Special Publication 300-217, Gaithersburg,
MD, 1993.

Harman, D., Ed. The Third Text REtrieval Conference (TREC-3). National In-
stitute of Standards and Technology Special Publication 500-225, Gaithersburg,
MD, 1994.

Harman, D., Ed. The Fourth Text REtrieval Conference (TREC-4). National
Institute of Standards and Technology Special Publication, Gaithersburg, MD,
1995.

Harman, D., Ed. The Fifth Text REtrieval Conference (TREC-5). National
Institute of Standards and Technology Special Publication, Gaithersburg, MD,
1996.

Harman, D., McCoy, W., Toense, R., and Candela, G. Prototyping a distributed
information retrieval system that uses statistical ranking. Information Processing
& Management 27, 5 (1991), 449-460.

Hawking, David, Craswell, Nick, and Thistlewaite, Paul. Overview of trec-7 very
large collection track. In Proceedings of the 7th Text Retrieval Conference (1998).

Howard, J. H., Kazar, M. L., Menees, S. G., A.Nichols, D., Satyanarayanan, M.,
Sidebotham, R. N., and West, M. J. Scale and performance in a distributed file
system. ACM transactions on Computer Systems 6, 1 (Feb. 1988).

Huang, Y., and Wolfson, O. A competitive dynamic data replication algorithm.
In IEEE Proceedings of 9th International Conference on Data Engineering (Vi-
enna, Austria, 1993), pp. 310-337.

Infoseek. http://quide.infoseek.com.
InQuery. http://ciir.cs.umass.edu/info/highlights.html.

Jeong, B-S., and Omiecinski, E. Inverted file partitioning schemes in multiple
disk systems. IEEE Transactions on Parallel and Distributed Systems 6, 2 (Feb.
1995), 142-153.

Jump, J. R. YACSIM Reference Manual, version 2.1.1 ed. Rice University, 1993.

175

[49] Katz, E.D, Butler, M., and McGrath, R. A scalable HTTP server: the NCSA
prototype. In Proceedings of First International World Wide Web Conference
(Geneva, Switzerland, May 1994).

[50] Knuth, D.E. The Art of Computer Programming Vol 3: Sorting and Searching.
Addison-Wesley.

[51] Kumar, A., Rabinovich, M., and Sinha, R.K. A performance study of general grid
structures for replicated data. In Proceedings of 13th International Conference
on Distributed Computing Systems (1993).

[52] legislative Information on the Internet, THOMAS. hittp://thomas.loc.gov.

[53] Lin, Z., and Zhou, S. Parallelizing I/O intensive applications for a workstation
cluster: a case study. Computer Architecture News 21, 5 (Dec. 1993), 15-22.

[54] Lu, Z., Callan, J. P., and Croft, W.B. Applying inference networks to multiple
collection searching. Tech. Rep. TR96-42, Department of Computer Science,
University of Massachusetts at Amherst, 1996.

[55] Lu, Z., McKinley, K. S., and Cahoon, B. The hardware/software balancing
act for information retrieval on symmetric multiprocessors. In Proceedings of
FEuropar98 (Southhampton, UK, 1998).

[56] Macleod, I. A., Martin, T. P., Nordin, B., and Phillips, J. R. Strategies for
building distributed information retrieval systems. Information Processing &
Management 23, 6 (1987), 511-528.

[57] Mamalis, B., Spirakis, O., and Tampakas. Parallel techniques for efficient search-
ing over very large text collections. In Proceedings of The Fifth Text RFEtrieval
Conference (TREC-5) (Gaithersburg, MD, 1996), National Institute of Stan-
dards and Technology Special Publication.

[58] Martin, T. P., Macleod, I. A., Russell, J. I., Lesse, K., and Foster, B. A case
study of caching strategies for a distributed full text retrieval system. Information
Processing € Management 26, 2 (1990), 227-247.

[59] Martin, T. P., and Russell, J. I. Data caching strategies for distributed full text
retrieval systems. Information Systems 16, 1 (1991), 1-11.

[60] Oracle Company. Strategies and techniques for using Oracle7 replication.
http://www.oracle.com/products/servers /replication/html/collateral. html (May
1995).

[61] Ribeiro-Neto, B. A., and Barbosa, R. A. Query performance for tightly coupled
distributed digital libraries. In Proceedings of ACM Digital Libraries Conference
(Pittsburgh, PA, 1998).

176

[62] Robertson, S.E. The probability ranking principle in ir. Journal of Documenta-
tion 33, 4 (1977), 294-304.

[63] Salton, G. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley, 1989.

[64] Salton, G., and McGill, M. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[65] Shah, A., and Marzull, K. Trade-offs between replication and availability in
distributed databases. Tech. Rep. TR89-1065, Cornell University, Dec. 1989.

[66] Stanfill, C. Partitioned posting files: A parallel inverted file structure for in-
formation retrieval. In Proceedings of the Thirteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (Brus-
sels, BELGIUM, 1990), pp. 413-428.

[67] Stanfill, C., and Kahle, B. Parallel free-text search on the connection machine
system. Communications of the ACM 29, 12 (Dec. 1986), 1229-1239.

[68] Stanfill, C., Thau, R., and Waltz, D. A parallel indexed algorithm for informa-
tion retrieval. In Proceedings of the Twelfth Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (Cambridge,
MA, June 1989), pp. 88-97.

[69] Thomas, R.H. A majority consensus approach to concurrency control for multiple
copy database. ACM Transactions on Database Systems 4, 2 (June 1979), 180
2009.

[70] Tomasic, A. Distributed Queries and Incremental Updates In Information Re-
trieval Systems. PhD thesis, Princeton University, June 1994.

[71] Tomasic, A., and Garcia-Molina, H. Performance of inverted indices in shared-
nothing distributed text document information retrieval systems. In Proceedings
of the Second International Conference on Parallel and Distributed Information
Systems (San Diego, CA, 1993).

[72] Turtle, H. R. Inference Networks for Document Retrieval. PhD thesis, University
of Massachusetts, Feb. 1991.

[73] Van Rijsbergen, C.J. Information Retrieval. Butterworths, 1979.

[74] Voorhees, E. M., Gupta, N. K., and Johnson-Laird, B. Learning collection fusion
strategies. In Proceedings of the Fighteenth Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (Seattle, WA,
1995).

[75] Wolfram, D. Applying informetric characteristics of databases to IR system file
design, part I: Informetric models. Information Processing € Management 28, 1
(1992), 121-133.

177

[76] Wolfson, O., and Jajodia, S. An algorithm for dynamic replication of data. In
Proceedings of 11th ACM Symposium on the Principles of Database Systems (San
Diego, California, June 1992).

[77] Xu, J., and Callan, J.P. Effective retrieval with distributed collections. In Pro-
ceedings of SIGIR98 (Melbourne, Australia, Aug. 1998).

(78] Yu, P. S., and MacNair, E. A. Performance study of a collabortive method for
hiearchical caching in proxy servers. In Proceedings of 7th International World
Wide Web Conference (Brisbane, Australia, Apr. 1998).

[79] Zobel, J., Moffat, A., and Ramamohanarao, K. Inverted files vesus signiture files
for text indexing. Tech. Rep. CITRI/TR-95-5, Collaborative Information Tech-
nology Research Institute, Deparment of Computer Science, Royal Melbourne
Institute of Technology, Australia, July 1995.

178

