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ABSTRACT
Conversational search and recommendation systems can ask clar-
ifying questions through the conversation and collect valuable
information from users. However, an important question remains:
how can we extract relevant information from the user’s utterances
and use it in the retrieval or recommendation in the next turn of the
conversation? Utilizing relevant information from users’ utterances
leads the system to better results at the end of the conversation. In
this paper, we propose a model based on reinforcement learning,
namely RelInCo, which takes the user’s utterances and the context
of the conversation and classifies each word in the user’s utterances
as belonging to the relevant or non-relevant class. RelInCo uses
two Actors: 1) Arrangement-Actor, which finds the most relevant
order of words in user’s utterances, and 2) Selector-Actor, which
determines which words, in the order provided by the arrangement
Actor, can bring the system closer to the target of the conversation.
In this way, we can find relevant information in the user’s utter-
ance and use it in the conversation. The objective function in our
model is designed in such a way that it can maximize any desired
retrieval and recommendation metrics (i.e., the ultimate goal of the
conversation). We conduct extensive experiments on two public
datasets and our results show that the proposed model outperforms
state-of-the-art models.
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1 INTRODUCTION
By enabling retrieval and recommender systems to dynamically
obtain user preferences through conversations with users, conver-
sational search, and recommendation have become increasingly
popular in recent years [7, 16, 17, 28, 36, 42].

This process starts with receiving a request from the user and
continues with asking clarifying questions or suggesting some pos-
sible items or documents by the system. In this way, the system can
get valuable feedback from users to accurately determine the users’
needs. This process repeats until the search or recommendation is
successful, or the user accepts defeat.

Recently, the community has started exploring various settings
of this task [1, 5, 16, 36, 43]. For example, Li et al. [16] have collected
a publicly available large-scale dataset for conversational recom-
mendations, and explored novel neural architectures, procedures,
and approaches for designing conversational recommendation sys-
tems. Moon et al. [25] introduced a collection of conversations
between two crowdsourcing agents about a specific topic or entity.
Zhang et al. [43] proposed a system ask - user respond (SAUR) par-
adigm for conversational search and recommendation. However,
their model is built on aspects of products as questions and their
values as answers. Furthermore, their model cannot optimize the
ranking measures as the ultimate goal of conversational search
and recommendation. Zhou et al. [46] proposed an approach to
incorporate both word-oriented and entity-oriented knowledge
graphs (KG) in conversational recommender systems to compen-
sate for the semantic gap between natural language expression
and item-level user preference. They used knowledge graphs to
add sufficient contextual information for accurately understanding
users’ preferences.

However, most existing works fail to extract relevant information
from the user’s utterances for the retrieval or recommendation in
the next turn of the conversation. The reason is that they focus on
finding terms in the user’s utterances that are semantically similar
to the context of the conversation. However, the main objective
in the information retrieval and recommender systems is finding
relevant information. This means that a word might be semantically
close to the context of the conversation, but does not improve the
rank of the target item or document [23]. This objective is more
important in the conversational version of these tasks, since in each
turn of the conversation if we cannot extract relevant information
from the user’s utterance, it will prolong the conversation making
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it more likely to fail at the end. Even worse, most existing works
indiscriminately add all past information to the context of the con-
versation for the next turns, meaning that non-relevant material is
also preserved in the conversation.

In this paper, we propose RelInCo, a reinforcement-based algo-
rithm to extract relevant information from the user’s utterance in
conversational search and recommendation. The main objective in
our model is improving retrieval performance (i.e., relevancy) e.g.,
any desired retrieval and recommendation metrics. Maximizing
ranking metrics is a challenging problem since ranking metrics
are non-differentiable. Reinforcement learning is an effective ap-
proach to maximize non-differentiable metrics in various problems
[2, 26, 31]. One of the most effective algorithms in reinforcement
learning is the Actor-Critic algorithm [14, 38]. In this approach, the
Actor takes an action and its Critic informs the actor how good the
action was and how it should be improved. In our task, we design
a selector-Actor that determines which words in a user’s utterance
can bring the system closer to the target of the conversation. There-
fore, given a user utterance and the context of the conversation, in
each step, the selector-Actor takes a word of the user utterance and
classifies it as belonging to the relevant or non-relevant class. In
other words, the selector-Actor’s action is selecting or discarding
the word. We update the context of the conversation by the word if
the selector-Actor decides to keep the word.

Given that the selector-Actor judges words in the user’s utter-
ance sequentially, we need to know which arrangement of the
words is most effective in the improving ranking of the target item.
Therefore, we design an arrangement-Actor that takes the user’s
utterance and returns an effective order of words to be used by the
selector-Actor. The workflow of RelInCo is shown in Figure 1.

Both Actors in our model are trained using Actor-Critic algo-
rithm via Proximal Policy Optimization (PPO) [33] which improves
the supervision of Actors.

We model the reward function as a utility calculator such that
it can optimize for different evaluation metrics, such as average
precision or normalized discounted cumulative gain (NDCG) [12].
In the ideal case, the utility calculator can be designed by user
satisfaction signals to capture relevance.

The core contributions of this work, presented in Section 3, are:

• We present RelInCo, a reinforcement-based model to ex-
tract relevant information from users’ utterances in conver-
sational search and recommendation. RelInCo appears to
be the first attempt at extracting relevant information in
conversational search and recommendation.
• RelInCo introduces two Actors, a selector-Actor and an ar-
rangement Actor, which can be trained either simultaneously
or in sequence to find the most effective words in a user’s
conversational search and recommendation process.
• We design an efficient utility calculator as our reward func-
tion to capture relevance and guide both Actors and Critics.

Our contributions are rounded out by a set of experiments on two
public conversational search and recommendation datasets show-
ing the effectiveness of RelInCo in terms of standard evaluation
measures such as NDCG. We start with some helpful background
and notation as well as an overview of related work.

2 RELATEDWORK
2.1 Conversational Search and

Recommendation
Belkin et al. [3] was one of the first papers to propose an interactive
information retrieval system based on scripted conversational inter-
action for search. Croft and Thompson [8] introduced an intelligent
intermediary for information retrieval to enable the system to in-
teract with users during a search session. With the introduction of
intelligent conversational systems and the use of neural methods
in the natural language process (NLP), this field has exploded in
popularity. A Multi-Memory Network (MMN) architecture for con-
versational search and recommendation was proposed by Zhang et
al. [43]. Yang et al [41] proposed an approach to predict the next
question in conversations. A Belief Tracker model was developed
by Sun et al. [36] to derive facet-value pairs from user utterances
during the conversation. They proposed a policy network to decide
between asking a question or recommending an item. Recently, Lei
et al. [15] showed that combining dialogue and recommendation
can significantly increase the performance of these systems. They
also developed a policy network for deciding whether to ask a query
or provide a recommendation. Zou et al. [48] suggested a question-
based recommendation system for eliciting user preferences over
descriptive item attributes. Li et al. [16] released a standard con-
versational recommendation system dataset named REDIAL. They
also proposed a hierarchical RNN model to generate utterances and
recommendations. Chen et al. [7] and Liao et al. [17] use external
Knowledge Graph (KG) to improve conversational recommendation
systems performance. Zhou et al. [47] contributed a new conver-
sational recommendation system dataset named TG-ReDial and
proposed the task of topic-guided conversational recommendation.
They also proposed an effective approach for this task. Moon et al.
[25] proposed another dataset for the conversational search and
recommendation. Each conversation turn is accompanied by a set
of "KG routes" that connect the KG entities and relationships in-
dicated in the dialog. Overall, these systems emphasize accurate
retrievals and recommendations, with simple or heuristic solutions
implementing the dialogue component. Montazeralghaem et al. [20]
introduced a reinforcement-based model for large-scale conversa-
tional recommender systems. Most of the existing models are based
on an assumption that there is a set of effectively pre-defined candi-
date questions for each product to be asked. Montazeralghaem and
Allan [19] proposed an approach based on reinforcement learning
to generate questions from product descriptions in each round of
the conversation.

2.2 Deep Reinforcement Learning
Reinforcement learning (RL) is a machine learning framework for
optimizing an agent’s behavior in relation to the desired reward
[37]. RL algorithms have proven an astonishing potential for solving
a wide range of complicated tasks, from the game playing [? ] to
robotic manipulation [27] and relevance feedback [22], because of
advances in deep learning. One of the most well-known successes
of deep RL is Google’s DeepMind study on the game of Go [34, 35].

The agent and the environment play the most important roles
in RL. The environment is the world that is visible to the agent
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and the agent can interact with. The agent sees observations in the
environment at each step of the interaction and conducts actions
based on these observations. According to its acts, the agent is
rewarded. The reward is a metric that indicates how excellent or
poor the agent’s actions are. The agent’s ultimate objective is to
maximize the total reward.

In this study, we utilize the Actor-Critic framework [14, 38]. In
this paradigm, the Actor generates an action based on the current
state. The Critic takes this state-action pair and generates an action-
value, which is a determination of whether the chosen action is
appropriate for the current state. Finally, based on the judgment
from the Critic, the Actor updates its’ parameters. The Actor-Critic
architecture is preferred for our task since it is suitable for large
state and action space. The Critic estimates the action-value in each
phase in this architecture, which has an intriguing advantage. In
our task, we need to estimate a judgment for each action during
an episode. In other words, we want to maximize the evaluation
measures at the end of an episode. However, we need to estimate a
specific value for each action in the episode. So, we need to design a
Critic to predict a value for each action. Zhao et al. [44] introduced
an Actor-Critic algorithm to generate page-wise recommendations.

Most of the reinforcement learning approaches suffer from high
variances. Proximal Policy Optimisation (PPO) is a recent develop-
ment in Reinforcement Learning [33]. To solve the high variances
in reinforcement learning, PPO guarantees that the updated pol-
icy isn’t too dissimilar from the old policy in order to maintain
low variances in training. The Actor-Critic Model, which uses two
Deep Neural Networks, one taking action (Actor) and the other
handling rewards (Critic) , is the most frequent implementation of
PPO. This approach was suggested and implemented by OpenAI,
and it performed admirably [33].

3 METHODOLOGY
In this section, we outline the problem setup to extract relevant
information from users’ utterances for conversational search and
recommendation. Then, we lay out our RelInCo approach to solv-
ing this problem.

We use the Actor-Critic algorithm to train our model to extract
relevant information from users’ utterances [14]. We propose two
separate Actors in ourmodel: 1) Arrangement-Actor, and 2) Selector-
Actor. In each round of the conversation, given the context of the
conversation and the user utterance, the selector-Actor learns to
classify each word in the user utterance as belonging to the relevant
or non-relevant class. In other words, the selector-Actor predicts
whether the word is useful for finding the target document or item
in a list. The order of words in the user utterance is provided by
the arrangement-Actor. This is because the selector-Actor should
have a chance to see sequence of words in the user utterance in
other ways to decide which word is more relevant and useful. This
method prevents the position of words from affecting the final
results. If we use the initial order of words, it is possible that the
selector-Actor will get good rewards for some first words and add
them to the context and discard words that are at the end of the
user’s utterance, while it is possible that the final words can give
better information to the selector-Actor [11, 21, 24].

The Critics evaluates the actions selected by Actors and the
Actors’ parameters will be updated by these evaluations. Figure 1
is an overview of our approach.

In the following sections, we first formulate the problem. Then,
we elaborate on the Actors and Critics architectures. Finally, we de-
scribe how the Actors and Critics are trained by stochastic gradient
descent.

3.1 Problem Statement and Motivation
Let 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚} be a user utterance with 𝑚 terms issued
by a user at a turn of conversation, 𝐶0 = {𝑐1, 𝑐2, ..., 𝑐𝑛} be the con-
text of the conversation without any updates from user utterance,
and 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑘 } be a set of 𝑘 items, documents, or entities
which are supposed to be ranked by the conversational systems
given the user utterance and the context. Using whole terms in
the user utterance in the ranking can limit system performance.
Sometimes using one term can be enough to find the target item,
and using other information can confuse the system in finding it.
Since the true value of each term in user utterance is unknown, we
cannot use supervised learning to train our system. Also, the true
value of each term depends on other terms in the user utterance
which makes the problem more difficult. Therefore, we propose
RelInCo, a reinforcement learning approach based on the Actor-
Critic algorithm to estimate the true value of each term in the user
utterance. The selector-Actor takes the context of the conversation
and the user utterance in the order provided by arrangement-Actor
in each step and decides to select or discard each term in the user
utterance. A utility calculator is included to generate a reward for
each action of Actors. The Critics take the taken actions, the states,
and rewards and learn an action-value for each action. The Actors
can be trained by this action-value. In the following sections, we
present the technical details of components in Actors and Critics,
respectively.

3.2 Architecture of Selector-Actor
The selector-Actor takes a version of user utterance𝑈 ′ (which is
provided by the arrangement-Actor) and the context of the conver-
sation𝐶0 as inputs and outputs a decision i.e., selection or rejection
for each term in the user utterance that maximizes the ultimate
goal of the conversation i.e., optimizing the evaluation metrics
such as NDCG [12] or any desired objectives. Note that these ob-
jectives ideally can be designed based on user satisfaction signals.
The evaluation metrics and objectives, which we aim to maximize,
are non-differentiable. Therefore, we cannot maximize them in su-
pervised learning. Reinforcement learning has been shown to be
an effective approach to solve problems with non-differentiable
metrics through policy gradient.

In reinforcement learning, an agent i.e., the Actor performs an
action and receives a reward signal from the environment (e.g.,
utility calculator). The reward is a numerical value that indicates
to the agent how good or bad the action was. The agent tries to
find out the best actions to do or the best method to operate in
the environment in order to complete its mission as efficiently as
possible in order to earnmore rewards. In this setting, our algorithm
would be able to extract relevant information from users’ utterances
which ultimately maximize the evaluation metrics.
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Figure 1: The workflow of RelInCo.

In the following, we describe how we model the selector-Actor,
the action of this Actor, and the state.
Selector-Actor’s Action: The selector-Actor is supposed to extract
relevant words in the user utterance and add them to the context of
the conversation. Therefore, by giving the current state, which is
the current context and a word from the user utterance, the selector-
Actor’s action is to select or discard the word. After seeing all words
in the user utterance, we have two sets: 1) selected words, and 2)
discarded words. The selected words can be considered as relevant
information and be useful for making the current state closer to
the target item.
State: At the beginning, we get the output of the arrangement-
Actor 𝑈 ′ = {𝑢 ′1, 𝑢

′
2, ..., 𝑢

′
𝑚}. Note that the arrangement-Actor can

be trained either simultaneously or before the selector-Actor. At
the first, the state is equal to the context of the conversation𝐶0 and
the first word in𝑈 ′:

𝑠0 = (𝐶0, 𝑢
′
1) . (1)

Given the action of the Actor for a word in 𝑢 ′𝑡 ∈ 𝑈 ′, we can update
the context of the conversation as follows:

𝐶𝑡 =

{
𝐶𝑡−1 + 𝑢 ′𝑡 , if 𝑎𝑡 = select
𝐶𝑡−1, if 𝑎𝑡 = discard.

(2)

Therefore, the state in the following step is 𝑠𝑡 = (𝐶𝑡 , 𝑢 ′𝑡+1), 𝑡 =

{0, 1, ...,𝑚 − 1}.
Policy Network: A policy is a set of rules that an agent uses to
determine which actions to do. The policy network’s input is the
current state 𝑠𝑡 , and the Actor must forecast a probability distribu-
tion over possible actions. The Actor can take an action based on
this probability distribution, which is selecting or discarding a word.
We explain how we design the policy network’s input, architecture,
and output in the following.

Policy network’s input: The selector-Actor takes the state 𝑠𝑡 =

(𝐶𝑡 , 𝑢 ′𝑡+1) at timestep 𝑡 . To feed the state into the selector-Actor,
we need to compute representations for the context and the word
in the user utterance. These representations should satisfy two
constraints: 1) be context-dependent to find relevant information
from the user utterance based on the context of the conversation,
and 2) be computationally efficient. To achieve these goals, we use

sentence-BERT (SBERT) implementation [30], a variant of the pre-
trained BERT network that employs Siamese and Triplet network
architectures to generate semantically relevant phrase and word
embeddings that can be compared using cosine-similarity (see sec-
tion 4.1 for more details). Therefore, by using SBERT as our encoder
we can generate representations for the context and the word in
the user utterance as follows:

®𝐶𝑡 = 𝑒𝑛𝑐 (𝐶𝑡 ) = SBERT(𝐶𝑡 ) (3)
®𝑢 ′𝑡+1 = 𝑒𝑛𝑐 (𝑢 ′𝑡+1) = SBERT(𝑢 ′𝑡+1), (4)

where ®𝐶𝑡 and ®𝑢 ′𝑡+1 ∈ 𝑅
1×𝐷 are embedding vectors for the context

and the word in the user utterance. One can use other powerful
encoders to achieve more accurate representations [39]. In the next
step, we concatenate ®𝐶𝑡 and ®𝑢 ′𝑡+1 as an input of the selector-Actor:

®𝑠𝑡 = [ ®𝐶𝑡 | | ®𝑢 ′𝑡+1] . (5)

Policy network’s architecture and output: We create a deep policy
network to choose one of the actions based on the input of the
selector-Actor. The policy network is designed of a feed-forward
neural network with the following layers: 1) input layer 𝑧0, hidden
layer 𝑙 − 1, and output layer 𝑧𝑙 . The input layer is fed by the state
representation 𝑧0 = ®𝑠𝑡 . Each hidden layer ®𝑧𝑖 is a fully-connected
layer ®𝑧𝑖 = 𝜑 (𝑊𝑖 . ®𝑧𝑖−1 + 𝑏𝑖 ), 1 ≤ 𝑖 ≤ 𝑙 − 1, where 𝜑 is a non-linear
activation function e.g., Rectified Linear Units (ReLU). The output
layer ®𝑧𝑙 is also a fully-connected layer, but the activation function
for the output layer is a softmax function.

The softmax function returns a probability distribution across all
potential outcomes (i.e., actions which can be selected or discarded
in this task). As a result, if the policy network’s parameters are
represented by \𝜋 , the probability to select a word at timestep 𝑡

given the current state is estimated as 𝜋\𝜋 (𝑎𝑡 1 |𝑠𝑡 ) =
𝑒
𝑧𝑙1

𝑒
𝑧𝑙1 +𝑒𝑧𝑙2 . As a

result, the probability to discard the word is 𝜋\𝜋 (𝑎𝑡 2 |𝑠𝑡 ) =
𝑒
𝑧𝑙2

𝑒
𝑧𝑙1 +𝑒𝑧𝑙2 .

Reward: At timestep 𝑡 , the Actor takes an action 𝑎𝑡 given the state
𝑠𝑡 . Given the action and the state, we need to generate a reward
𝑅(𝑎𝑡 , 𝑠𝑡 ) to guide the selector-Actor. We wait until an episode fin-
ishes i.e., the selector-Actor extracts relevant words in the user’s
utterance𝑈 ′, then we compute the reward by utility calculator as
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follows:

𝑅(𝑎𝑡 , 𝑠𝑡 ) =
{Utility(𝑠𝑡 , 𝑃,𝐶𝑡 ,𝐶0) If 𝑡 =𝑚

0 Otherwise
(6)

where Utility(𝑠𝑡 , 𝑃,𝐶𝑡 ,𝐶0) measures the reward depending on the
evaluation function or any specified objective which is computed
by the utility calculator (section 3.4).

3.3 Architecture of Arrangement-Actor
The arrangement-Actor takes the user utterance𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}
and returns a new order of its words 𝑈 ′ = {𝑢 ′1, 𝑢

′
2, ..., 𝑢

′
𝑚}. The

arrangement-Actor is supposed to return the order of words in the
user utterance which maximizes an evaluation metric or objective
which is computed by the utility calculator.

In the following, we describe how we model the arrangement-
Actor, the action of this Actor, and the state.
Arrangement-Actor’s Action: The arrangement-Actor is sup-
posed to return a new order of words in the user utterance. There-
fore, in each step, by giving the current state, the arrangement-
Actor’s action is to finds the most relevant order of words (Forward
or Backward) in the user utterance as follows:

𝑎𝑡 =

{0 Backward i.e., {𝑢𝑚, 𝑢𝑚−1, ..., 𝑢1}
1 Forward i.e., {𝑢1, 𝑢2, ..., 𝑢𝑚}

(7)

Note that the arrangement-Actor’s action should be able to choose
any order of words in the user utterance e.g., {𝑢2, 𝑢𝑚−1, ..., 𝑢1}.
However, the number of possible actions in this situation can be
order of factorial and it is not feasible in the real world. So, we
simplified it to choosing between backward and forward order of
words in the user utterance.
State: At the beginning, we get the original version of the user
utterance𝑈 . In the first step, the state is equal to all words in𝑈 :

𝑠0 = {𝑢1, 𝑢2, ..., 𝑢𝑚}. (8)

Given the action of the arrangement-Actor, we update as follows:

𝑠𝑡 =

{{𝑢𝑚, 𝑢𝑚−1, ..., 𝑢1} if 𝑎𝑡 = 0
{𝑢1, 𝑢2, ..., 𝑢𝑚} if 𝑎𝑡 = 1.

(9)

Policy Network: The policy network’s input is the current state 𝑠𝑡 ,
and the arrangement-Actor must forecast a probability distribution
over possible actions. Note that the number of actions is equal to 2
i.e., backward or forward. We need to design a policy network that
is flexible to the size of the input.

In the following, we explain how we design the policy network’s
input, architecture, and output.

Policy network’s input: The arrangement-Actor takes the state
𝑠𝑡 at timestep 𝑡 . To feed the state into the arrangement-Actor, we
need to compute a representation for the state which is the words
in the user’s utterance. To achieve this goal, same as the selector-
Actor, we use sentence-BERT (SBERT) implementation to generate
representations for all words in 𝑠𝑡 as follows:

{®𝑢𝑖 = 𝑒𝑛𝑐 (𝑢𝑖 ) = SBERT(𝑢𝑖 ) |𝑢𝑖 ∈ 𝑠𝑡 } (10)

where ®𝑢𝑖 ∈ 𝑅1×𝐷 is an embedding vector. Therefore, we can write
the state representation as follows:

®𝑠𝑡 =
{
{ ®𝑢𝑚, ®𝑢𝑚−1, ..., ®𝑢1} if 𝑎𝑡 = 0
{ ®𝑢1, ®𝑢2, ..., ®𝑢𝑚} if 𝑎𝑡 = 1.

(11)

Policy network’s architecture and output: The policy network for
the arrangement-Actor should be able to handle the different sizes
of the input. In order to achieve this goal, we use a Recurrent Neural
Network (RNN) with Gated Recurrent Units (GRU). The internal
states of GRU are defined as follows:

®𝑧𝑡 = 𝜎 (𝑊𝑧 ®𝑢𝑡 +𝑈𝑧
®ℎ𝑡−1)

®𝑟𝑡 = 𝜎 (𝑊𝑟 ®𝑢𝑡 +𝑈𝑟
®ℎ𝑡−1)

®ℎ𝑡 = (1 − ®𝑧𝑡 ). ®ℎ𝑡−1 + ®𝑧𝑡 . ®̂ℎ𝑡
®̂
ℎ𝑡 = tanh[𝑊 ®𝑢𝑡 +𝑈 ( ®𝑟𝑡 . ®ℎ𝑡−1)] .

(12)

We use the final hidden state ®ℎ𝑡 as the representation of the cur-
rent state. Given ®ℎ𝑡 , we use a feed-forward neural network and
the softmax function to generate a probability distribution across
two actions. As a result, if the policy network’s parameters are
represented by \[ , the probability to choose an action at timestep 𝑡
given the current state is estimated as:

𝜋\[ (𝑎𝑡 = 0|𝑠𝑡 ) =
𝑒𝑧𝑙0

𝑒𝑧𝑙0 + 𝑒𝑧𝑙1 , 𝜋\[ (𝑎𝑡 = 1|𝑠𝑡 ) =
𝑒𝑧𝑙1

𝑒𝑧𝑙0 + 𝑒𝑧𝑙1 (13)

where ®𝑧𝑙 is the output of the feed-forward neural network.
Reward: To generate 𝑅(𝑎𝑡 , 𝑠𝑡 ) to guide the arrangement-Actor, we
compute the reward by the utility calculator same as Eq.6.

3.4 Utility Calculator
Utility calculator takes the context of the conversation, the word in
the user utterance, and the descriptions of some non-relevant items
and relevant items and returns a reward as a signal that helps the
Actors to generate optimal actions. Figure 2 illustrates the utility cal-
culator workflow. The reward is supposed to be computed based on
the rank of the target item. In this way, the Actors try to get more re-
wards, i.e., improving the rank of the target items in the ranking list,
by selecting relevant information in the users’ utterances. However,
in most cases, there are lots of non-relevant items in a collection. So,
instead of using all non-relevant items, we select 𝑁 non-relevant
items by negative sampling 𝑃𝑁,𝑝𝑢 = {𝑝1, 𝑝2, ..., 𝑝𝑁 } ⊂ 𝑃 \𝑝𝑢 where
𝑝𝑢 is the relevant item. Negative sampling is proposed by Mikolov
et al. [18] and has now been extensively used for machine learning
and information retrieval [1, 29]. For each item we collect a short
description by using Wikipedia and DBpedia [6] (see section 4.3.1
for more details) to find more relevant words in the user’s utterance.
In the next step, we convert each description to its representation
by SBERT encoder ®𝑝𝑖 = 𝑒𝑛𝑐 (𝑝𝑖 ) = SBERT(𝑝𝑖 ).

To evaluate the word in the user utterance 𝑢 ′
𝑡+1 in finding the

relevant item, we include this word to the context𝐶 ′𝑡 = 𝐶𝑡 +𝑢 ′𝑡+1 and
compute its representation ®𝐶 ′𝑡 = 𝑒𝑛𝑐 (𝐶 ′𝑡 ) = SBERT(𝐶 ′𝑡 ). Given the
context of the conversation without any updates ®𝐶0, we first rank
relevant item and non-relevant items by cosine similarity between
items and context representations:

score(𝐶0, 𝑝𝑖 ) = cos( ®𝐶0, ®𝑝𝑖 ) . (14)

Likewise, we can compute the score of each item and the updated
context 𝐶 ′𝑡 , score(𝐶 ′𝑡 , 𝑝𝑖 ) = cos( ®𝐶 ′𝑡 , ®𝑝𝑖 ). By generating these scores
we can rank the items given the context and the updated context
and compute an evaluation function eval(𝐶, 𝑃𝑁,𝑝𝑢 , 𝑝𝑢 ) e.g., NDCG
[12]. In the following, we show it abridged eval(𝐶).
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Figure 2: An illustration of Utility Calculator.

Finally, by comparing the evaluation function for the context
and the updated context we can compute a signal as follows:

Utility(𝑠𝑡 , 𝑃,𝐶𝑡 ,𝐶0) = eval(𝐶 ′𝑡 ) − eval(𝐶0) . (15)

If the utility is greater than zero, this means that the Actors find
relevant information from the user’s utterance which can improve
the performance. Otherwise i.e., the utility is less than zero, and
the Actors should avoid these actions.

3.5 Architecture of Critics
In the Actor-Critic algorithm, the Critic takes the state, the taken
action, and the reward and learns an action-value function 𝑄 (𝑠, 𝑎)
to evaluate the action in the current state. In other words, instead
of assigning a constant reward for each action in a state, we train it
with a Critic. The action-value can be used by the Actor to update
its parameters. Because the state spaces are so large in our task, the
action-value function 𝑄 (𝑠, 𝑎) can be more effective in a non-linear
fashion. Therefore, we build our Critics with deep neural network
and GRU to estimate 𝑄 (𝑠, 𝑎) same as the Actors (see section 4.1 for
more details). The Critics network’s parameters are represented by
\` and \𝜌 for selector-Critic and arrangement-Critic, respectively.

In the following sections, we’ll go over how the Critics’ parame-
ters will be updated.

3.6 Training and Test Procedure
3.6.1 Critics Training Procedure. The following is the loss func-
tion for the Critic, which is known as Temporal Difference (TD)
learning and is derived from Bellman equation [4]:

L(\` ) = E𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1,𝑅 [(𝑅 + 𝛾𝑄\`′ (𝑠𝑡+1, 𝜋\𝜋′ (𝑠𝑡+1)) −𝑄\` (𝑠𝑡 , 𝑎𝑡 ))
2],
(16)

where \` , 𝛾 , and 𝑅 denote all parameters in the selector-Critic,
discount factor, and reward, respectively. The parameters of the
selector-Critic from the previous iteration are shown in \`′ and
will be fixed in the loss function L(\` ). The derivations of the loss
function with respect to parameters \` is \` ← \`′ − 𝛼∇\`L(\` )
where 𝛼 is the learning rate for the selector-Critic training. The
parameters of the arrangement-Critic are updated in the same way.

3.6.2 Actors Training Procedure. The loss function forces the
Actor to predict the true action for each word as follows:

L(\𝜋 ) = log𝜋\ (𝑎 |𝑠), (17)

where 𝜋\ (𝑎 |𝑠) is a probability of an action taken by the Actors given
the state. However, this loss function might have high variance in

Table 1: Basic statistics of the experimental datasets.

Dataset #Dialog #Utterance Domains

REDIAL 10, 006 182, 150 Movie
OpenDialKG 13, 802 91, 209 Movie, Book

the training. To improve this problem we use Proximal Policy Opti-
mization (PPO) [33]. PPO guarantees that the updated policy isn’t
too dissimilar from the old policy in order to maintain a low level
of training variation. This approach is proposed and implemented
by OpenAI and showed remarkable performance. By using PPO,
we replace the loss function as follows:

L𝐶𝐿𝐼𝑃 (\𝜋 ) = min(𝑟𝑡 (\ ), 𝑐𝑙𝑖𝑝 (𝑟𝑡 (\ ), 1 − 𝜖, 1 + 𝜖)), (18)

where 𝑟𝑡 (\ ) is the probability ratio between the action under the
current policy and the action under the previous policy as follows:

𝑟𝑡 (\ ) =
𝜋\ (𝑎𝑡 |𝑠𝑡 )

𝜋\𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )
, (19)

and 𝜖 is a hyperparameter that shows the limit of the range within
which the update is allowed. In other words, by using this loss
function we make sure that the old policy is not too different from
the new policy.

Finally, we utilize REINFORCE algorithm [40] to update parame-
ters in the selector-Actor as follows:

∇\𝜋 𝐽 (\𝜋 ) ≈ E𝜋\ [∇\𝜋L𝐶𝐿𝐼𝑃 (\𝜋 )𝑄\` (𝑠, 𝑎)] (20)

where𝑄\` (𝑠, 𝑎) denotes the action value which is the output of the
selector-Critic. Now, we can update the parameters in the selector-
Actor by \𝜋 ← \𝜋 ′ − _∇\𝜋L(\𝜋 ) where _ is the learning rate of
the selector-Actor. The parameters of the arrangement-Actor are
updated in the same way.

3.6.3 The Test Procedure. At test time, we simply use the Actors
\[ and \𝜋 to generate an order of words in the user’s utterance
and select or discard them. The arrangement-Actor takes the user’s
utterance and returns a new order of its words. Then, we feed this
sequence as a new version of the user’s utterance in the selector-
Actor. The selector-Actor takes the context of the conversation
and the new version of the user’s utterance. The selector-Actor
returns selected and discarded words. We update the context of
the conversation by selecting words as relevant information. In the
end, we used the updated context to retrieve items.
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Table 2: Comparison of proposed model RelInCo (trained to maximize NDCG@100 as eval function in Eq.15) and baselines. The
superscript ▲ indicates that the improvements over all baselines are statistically significant.

Dataset Metric ReDial KBRD KGSF RelInCo

REDIAL
NDCG@1 0.0127 0.0389 0.0347 0.0415▲

NDCG@10 0.0326 0.1004 0.0975 0.1136▲

NDCG@50 0.0586 0.1396 0.1398 0.1531▲

OpenDialKG
NDCG@1 0.0117 0.2271 0.2220 0.2410▲

NDCG@10 0.0230 0.3370 0.3287 0.3427
NDCG@50 0.0403 0.3556 0.3465 0.3698▲

4 EXPERIMENTS
4.1 Experimental and parameter settings
We utilize CRSLab [45] for our experiments, which is an open-
source toolkit for conversational systems that includes a number
of state-of-the-art models and datasets. We used Tensorflow to
implement and train our model1. Our code is publicly available2.
The network parameters in the Actors and Critics models is trained
using the Adam optimizer [13], which uses the back-propagation
algorithm [32]. The learning rate for the Actors and Critics were
selected from [1𝑒 − 3, 5𝑒 − 4, 1𝑒 − 4, 5𝑒 − 5], and [1𝑒 − 2, 5𝑒 − 3, 1𝑒 −
3, 5𝑒 − 4], respectively. For the selector-Actor and selector-Critic
networks we used 3 or 2 hidden layers, respectively. The layer
size was selected from {400, 200, 100, 50}. We used Rectified Linear
Units (ReLU) activation function for hidden layers and Softmax
for the last layer of the selector-Actor. For arrangement-Actor and
arrangement-Critic, the number of units in GRU is selected from
{10, 100, 200}. Because we want Critics to learn faster than Actors,
the learning rate for Critics is higher than Actors. The discount
factor in Eq.16 was set to 0.99 since it has been shown this value
works well in the reinforcement learning [14]. The number of non-
relevant samples for each sample is set to 100. 𝜖 in Eq.18 is set to
0.2 which is proposed by the original paper [33]. For our encoder
(i.e., SBERT) we used all-MiniLM-L6-v2 which is trained on a large
and diverse dataset of over 1 billion training pairs [30]. Note that in
the inference time we take the top 100 items or entities using KGSF
as a candidate set for our model and re-rank them by our model.
Re-ranking the top items or documents, as Diaz [9] demonstrated, is
as successful as obtaining from the whole collection at a far cheaper
cost.

4.2 Evaluation Measures
For all experiments, we report NDCG@{1, 10, 50} [12] which are
used as retrieval and recommendation metrics in CRSLab. Note
that in our training we used NDCG@100 as eval function in Eq.15.
Statistically significant differences of performance are determined
using two-tailed paired t-test at 95% confidence level (p_value <

0.05).

4.3 Datasets
We use two commonly-used human-annotated conversational sys-
tems datasets 1) OpenDialKG [25], and 2) REDIAL [16].

1https://www.tensorflow.org/
2https://drive.google.com/drive/folders/1QV2Ypz_nEOmge5Ba0jcu4CrhJa18CMd5?
usp=sharing

OpenDialKG [25] is an Open-ended Dialog with knowledge
graph (KG) corpus which includes two different tasks: 1) Recom-
mendation, and 2) Chit-chat. We use the first task in our work.
OpenDialKG contains 13, 802 human-to-human role-playing di-
alogs with 91, 209 utterances. For the recommendation task, we
have movies and books domains in this dataset.

REDIAL is a REcommendations through DIALog dataset which is
a conversational recommendation dataset collected by [16]. REDIAL
is constructed through Amazon Mechanical Turk (AMT). In seeker-
recommender pairs, the AMT workers generate conversations for
recommendations on movies. It contains 10, 006 conversations con-
sisting of 182, 150 utterances related to 51, 699 movies.

Table 1 shows the basic statistics of these two datasets. The
datasets are split into training, validation, and test sets using a ratio
of 8:1:1.

4.3.1 Collecting Item Descriptions. To find more relevant informa-
tion in the users’ utterances, we need to enrich the descriptions of
the items or entities. Therefore, we collect more information about
each item or entity from Wikipedia and DBpedia [6].

For each item in the REDIAL dataset, we collect the first 100
words of its abstract from DBpedia. We clean it by removing non-
alphabet chars from descriptions.

For entities in the OpenDialKG, we use Wikipedia to collect
the first 100 words of its summary and clean it. We release this
information to help other researchers in this task.

4.4 Baselines
The following methods are baseline models for the experiments:

• ReDial [16]: ReDial has been proposed with REDIAL dataset.
The recommendation module is built on auto-encoder [10]
and a sentiment analysis module.
• KBRD [7]: KBRD or Knowledge-Based Recommender Dialog
system which is integration the recommender system and
the dialog generation system. This model utilizes DBpedia
[6] to enhance the semantics of contextual items or entities.
• KGSF [46]: KGSF is a novel KG-based semantic fusion ap-
proach for CRS. KGSF employs a KG-enhanced recommen-
dation component for making accurate recommendations.
To improve data representations in CRSs, KGSF uses both
word-oriented and entity-oriented knowledge graphs (KG),
as well as Mutual Information Maximization to align the
word-level and entity-level semantic spaces.

https://www.tensorflow.org/
https://drive.google.com/drive/folders/1QV2Ypz_nEOmge5Ba0jcu4CrhJa18CMd5?usp=sharing
https://drive.google.com/drive/folders/1QV2Ypz_nEOmge5Ba0jcu4CrhJa18CMd5?usp=sharing
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Figure 3: The cumulative reward over training for selector-Actor (left), and arrangement-Actor (right).

4.5 Results and Discussion
4.5.1 Comparison with the Baselines. In the first experiment,
we evaluate our model against baselines. Note that in our experi-
ments, we try to maximize NDCG@100 as eval function in Eq.15.
The results for our model and baselines are reported in Table 2.
The first observation from Table 2 is that the results of KBRD and
KGSF are better than ReDial in the two datasets. The reason is that
both of these models try to use the knowledge graph in this task. In
other words, they use other information to understand user needs.
But we argue that it is important to extract relevant information
before using other knowledge to understand users’ utterances. Ac-
cording to the Tabel 2, our model significantly outperforms other
baselines in most cases. The reason is that our model uses other
information (such as baseline models) and at the same time maxi-
mizes evaluation metrics to find more relevant information in users’
utterances.

4.5.2 Analysis of the Rewards. In this section, we analyze the
rewards earned by both Actors. We want to make sure that both
Actors are learning to get more rewards which means that they are
improving the retrieval performance.

In the training, we first let the arrangement-Actor train for 3 or
4 steps. Then we freeze the parameters of the arrangement-Actor
and start to train the selector-Actor. The reason is that the output of
the arrangement-Actor is the input of the selector-Actor. Therefore,
we need to make sure that the arrangement-Actor generates better
order of words in the user’s utterance compared to the original one.

Then, we check that the selector-Actor can extract relevant in-
formation from the user’s utterance.

To show the learning curve of both Actors in RelInCo, we de-
picted the cumulative reward that each Actor has earned in the
training in Figure 3. In this experiment, we just report the results of
the REDIAL dataset for the sake of space. However, we had similar
observations for another dataset. According to this figure, both
Actors earn more rewards after some steps. The arrangement-Actor
finds more effective orders of words in the users’ utterances since
we show the difference between the performance of the system
with the original context and updated context by all words in the
user’s utterance (without reordering) in both figures. This means
that if we reorder words in the user’s utterance by arrangement-
Actor, we can achieve better performance. Also, we can see that the
selector-Actor is more stable compared to the arrangement-Actor

since the selector-Actor learns to discard non-relevant information
and just use relevant information.

Figure 4: Histogram of the percentage of terms selected by
the selector-Actor at each stage of the training.

4.5.3 Analysis of the Number of Words Selected by Selector-
Actor. In this section, we analyze the percentage of words of the
users’ utterances selected by the selector-Actor in the training. The
result of this experiment is shown in Figure 4. At the first steps,
the selector-Actor has not selected even one word from the user’s
utterance for some of the training data (the blue bar that shows
zero percent of words are selected). By increasing the training time,
the selector-Actor learns to select at least some words to get more
rewards. Also, it is obvious from the figure that the selector-Actor
discards about 50% of the words and selects others as relevant
information.

5 CONCLUSIONS AND FUTUREWORK
We proposed RelInCo, a reinforcement-based algorithm to extract
relevant information from the user’s utterance in conversational
search and recommendation. RelInCo uses two Actors to reorder
and select words from the user’s utterance and use in the retrieval
in the next turn of the conversation. RelInCo is able to maximize
any evaluation metrics or objectives and can easily be replaced by
any user satisfaction signals. To reduce the high variances in the
training, we use Proximal Policy Optimisation which was proposed
recently in reinforcement learning. Our results show that our model
is able to increase retrieval performance while discarding some of
the words in the user’s utterance. This can show extracting relevant
information from the user’s utterance in conversational search and
recommendation is essential.
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We used on-policy reinforcement learning in our model. How-
ever, the training time and sampling are not efficient in the on-policy
approach. This can be a bigger problem in information retrieval and
recommender systems. Finding more efficient sampling in this area
can be an interesting future work. We used SBERT as our encoder
in RelInCo, and these representations of words are input for our
Actors and affect the results. So, finding more rich representations
for words and the context of the conversation would help to in-
crease the performance. In this study, we use relevant information
for finding the target item or entity. However, it is important to use
this information in generating question in the conversation which
we leave it to future work.
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