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ABSTRACT
Existing research on cross-lingual retrieval cannot take good advan-
tage of large-scale pretrained language models such as multilingual
BERT and XLM. We hypothesize that the absence of cross-lingual
passage-level relevance data for finetuning and the lack of query-
document style pretraining are key factors of this issue. In this
paper, we introduce two novel retrieval-oriented pretraining tasks
to further pretrain cross-lingual language models for downstream
retrieval tasks such as cross-lingual ad-hoc retrieval (CLIR) and
cross-lingual question answering (CLQA). We construct distant
supervision data from multilingual Wikipedia using section align-
ment to support retrieval-oriented language model pretraining. We
also propose to directly finetune language models on part of the
evaluation collection by making Transformers capable of accepting
longer sequences. Experiments on multiple benchmark datasets
show that our proposed model can significantly improve upon gen-
eral multilingual language models in both the cross-lingual retrieval
setting and the cross-lingual transfer setting.
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1 INTRODUCTION
Cross-lingual ad-hoc retrieval (CLIR) refers to the task of retrieving
documents in the target language Lt with queries written in the
source language Ls . A search engine with better CLIR capability
has broader impact, as it can fulfill information needs of more users
across language barriers.

Recently, the use of monolingual pretrained language models
based on Transformer [46] neural networks (e.g., BERT [13]) for
ad-hoc retrieval in English has advanced the performance in the
literature to a large degree. For instance, almost all leading competi-
tors in the MS MARCO1 passage and document retrieval tasks rely
on Transformer-based pretrained language models. In the mean-
time, multilingual language models (e.g., mBERT [13] and XLM [9])
were proposed, and they have been proven to perform well on
various downstream cross-lingual tasks, such as cross-lingual text

1https://microsoft.github.io/msmarco/
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classification, cross-lingual named entity recognition, and super-
vised/unsupervised machine translation. Nevertheless, the wave of
multilingual language models has not yet benefited CLIR.

Most related research focuses on the success of cross-lingual
relevance transfer [32, 43]. The language model is first finetuned
on monolingual collection in language Ls with more labelled data,
and then applied for inference to monolingual retrieval in another
language Lt , where there is usually less available training data. This
task, though significantly important, is different from cross-lingual
ad-hoc retrieval. In CLQA literature [29], cross-lingual relevance
transfer is directly referred to as cross-lingual transfer (dubbed
XLT), while the “real” cross-lingual task where question and context
are in different languages is called generalized cross-lingual transfer
(G-XLT). In this paper, we inherit this naming convention and focus
on the G-XLT setting.

The state-of-the-art methodology for CLIR is generally using
learning-to-rank with neural matching models [53] coupled with
pre-acquired cross-lingual word embeddings (CLE) [4, 26]. A few
endeavors to adopt multilingual language models for CLIR have
shown that such models perform inferior to a big margin com-
pared with learning-to-rank with CLE [4]. Obviously, there is a
gap between how language models should be used for monolingual
(English) ad-hoc retrieval and cross-lingual ad-hoc retrieval. This
research focuses on closing this gap.

We first consider the differences between pretraining and apply-
ing cross-lingual LMs. The prerequisite assumption to use cross-
lingual LM for retrieval is that representations are well aligned
across languages on multiple levels of text segments (i.e., word,
sentence, paragraph and document). Conneau et al. [10] showed
that representations from monolingual BERT in different languages
can be linearly mapped to one another on both word and sentence
levels, and that the success of a unified cross-lingual LM is mostly
due to parameter sharing in upper encoder layers. Both mBERT and
XLM focus on word-level and sentence-level tasks during pretrain-
ing: the masked language modeling task (MLM) trains the model to
fill the blanks of monolingual sentences, while the translation lan-
guagemodeling task (TLM) challenges the model to fill the blanks in
pairs of parallel sentences. The fact that they perform well on word
and sentence level tasks but poorly on retrieval tasks suggests that
representations of longer sequences [25] might not be well aligned
in cross-lingual LMs. To that end, we propose two novel pretraining
objectives for better aligning representation of longer texts and
better modeling of query-document interactions. The query lan-
guage modeling task (QLM) masks some query tokens and asks the
model to predict the masked tokens based on query contexts and
full relevant foreign document. We specifically increase the masking
probability compared to autoencoder language modeling tasks to
enforce referencing cross-lingual long sequences. The relevance
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Figure 1: Distribution of document length in CLEF dataset.
512 tokens ismarked for reference. Realistically, documents
with 512 tokens cannot fit considering length of queries.

ranking task (RR) operates on more coarse-grained representations
and directly resembles the cross-lingual ad-hoc retrieval task. Given
a query and several foreign documents, the model is asked to rank
these documents based on levels of relevance.

Our cross-lingual LMs are not fully “self-supervised”, as we re-
quire some knowledge about query-document relevance for both
pretraining objectives. We describe a simple yet effective approach
for building such distant weakly-supervised data from multilingual
Wikipedia (Wiki). Specifically, we match sections of multilingual
versions of Wiki entities based on cross-lingual representation of
section titles. For each pair of matched Wiki sections, we sample a
sentence from one section as query, and use the other section as
relevant document. Wiki sections are sources for more fine-grained
semantics in various retrieval datasets [6, 14], and we extend the
idea to multilingual Wiki [3, 12, 35] in this work. We end up with
millions of raw matched sections for each language pair. Therefore,
we consider this data extraction scheme to be a good balancing
point between quantity and quality for our pretraining tasks.

We also re-evaluate the pretrain-finetune-inference paradigm of
using language models for ad-hoc retrieval. Due to the square time
and memory complexity of Transformer’s full self-attention mech-
anism [46], Transformers and thus language models have a small
upper limit on the input sequence length (e.g., 512 tokens for BERT).
However, in most circumstances, 512 tokens is not enough to en-
code the query and the full document whilst performing finetuning
(Figure 1). Current research on monolingual retrieval either trun-
cate the documents such that the input sequences meet the size
requirement [22, 36], or finetune language models on passage-level
collections and then perform inference on longer test collection
by post-aggregating relevance scores of document segments [52].
Truncating documents results in some degree of information loss.
Also, there does not exist any multilingual passage-level relevance
dataset like MS MARCO for English retrieval. We seek to finetune
LMs for downstream retrieval tasks directly on evaluation collec-
tions (similar to non-retrieval cross-lingual tasks), but also mini-
mizing information loss in the process. To that end, we replace the
self-attention mechanism in Transformer with the global+sliding-
window (GSW) attention [2] to unlock the ability of cross-lingual

LM to process longer sequences in the “inside-Transformer” way.
Note that there is also an “outside-Transformer” solution, where
the original Transformer slides over a document, and a parame-
terized saturation function aggregates the windows and outputs
a score [21]. In comparison, our solution is more computationally
efficient, especially considering we also perform large-scale pre-
training besides finetuning.We did not conduct comparison of these
two methods in terms of effectiveness, which is left for future work.

The contributions of this paper can be summarized as follows:

• We propose two novel retrieval-oriented tasks for pretraining
cross-lingual language models. We build weak-supervision data
to support cross-lingual LM pretraining with our tasks.

• We employ the global+sliding-window attention in our cross-
lingual language models to better align longer text representa-
tions across languages in both pretraining and finetuning stages,
whilst minimizing information loss.

• We extensively evaluate our proposed models on downstream
CLIR and CLQA tasks. We also conduct detailed experiments to
support the rationale of each component from the empirical per-
spectives. For CLIR, we achieve 13.9% – 29.7% MAP improvement
over vanilla mBERT re-ranker in all 12 language pairs on the
bench-marking CLEF dataset. For CLQA, we see 1.7 and 2.8 point
F1 improvement under XLT setting (German and Spanish), and
3.6 – 9.8 point F1 improvement under G-XLT setting (6 language
pairs) over mBERT on the MLQA dataset.

Table 1: Frequently used acronyms in this paper.

CLE Cross-lingual word embeddings.
(G-)XLT (Generalized) Cross-lingual Transfer.
MLM Masked Language Modeling task [13].
TLM Translation Language Modeling task [9].
QLM Query Language Modeling task proposed in this paper.
RR Relevance Ranking modeling task proposed in this paper.
XLM(-R) Cross-lingual language models proposed in [8, 9].
GSW Global+Sliding Window attention mechanism [2].

2 RELATEDWORK
2.1 Cross-lingual Ad-hoc Retrieval
Cross-lingual ad-hoc retrieval has always been considered as the
combination of machine translation and monolingual ad-hoc re-
trieval. The initial translation resources are borrowed from the field
of statistical machine translation (SMT). Some earlier works [20]
use word-by-word translation. Ture and Lin [45] used translation
tables from SMT to translate query into structured probabilistic
structured query [11]. CLIR methods gradually shift towards using
cross-lingual word embeddings [42] as translation resources. There
are generally two ways to acquire CLE: pseudo-bilingual [4, 47]
and post-projection [1]. Litschko et al. first proposed heuristics to
use CLE for cross-lingual ad-hoc retrieval [30]. Most recently, the
combination of neural matching models and CLE was proposed for
document re-ranking and has yielded impressive performance on
standard benchmarks [4, 53].
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Figure 2: Our cross-lingual language model in detail. Document tokens can only attend to neighboring tokens in a w-token
window. For demonstration, we letw = 2 in the figure. In experiments we use larger window sizes (w = {32, 64, 128, 256}).

2.2 Pretrained LM for Monolingual IR
Pretrained language models [13, 31, 39, 50] have brought a revolu-
tion to the field of human language technologies in general. We use
BERT as an example here. There are two main approaches to ap-
ply BERT for ad-hoc retrieval: (i) single-tower: a query-document
pair is packed into one sequence, separated by an [sep] token and
then fed into one BERT encoder. Every query/document token can
attend to the whole sequence during encoding (also referred to as
cross-attention [6]). We take the output representation of the [cls]
token for predicting ranking score; and (ii) two-tower: query and
document are encoded with separate BERT encoders. The match-
ing score is the cosine similarity of the two sequence embeddings.
Two-tower models are more efficient for indexing query and doc-
ument vector representations and are usually used in first-stage
retrieval [6], while single tower models with full cross-attention
are usually used for final-stage document re-ranking [36, 49, 51, 52].
For document re-ranking, it was shown that incorporating term-
level matching signals from contextualized word embeddings in
addition to output [cls] vector from cross-attention can provide
additional improvement [33]. We study the re-ranking problem in
this work, and we use the single-tower model without resorting to
term-level matching for simplicity.

2.3 Cross-lingual Pretrained LM
Cross-lingual pretrained language models [8, 9, 13, 23] are capable
of simultaneously encoding texts from multiple languages. Mul-
tilingual BERT [13] takes the same model structure and training
objective as BERT, but was pretrained on more than 100 languages
on Wikipedia. In addition to the masked language modeling (MLM)
objective, the XLM model [9] is also pretrained with the translation
language modeling objective (TLM) to take advantage of parallel
sentence resources if available: a pair of parallel sentences are ran-
domly masked, and the language model is challenged to predict
the masked tokens by attending to local contexts as well as distant
foreign contexts. XLM-RoBERTa [8] improves upon XLM by incor-
porating more training data. Two additional word and sentence
level tasks were proposed to pretrain the Unicoder [23]. Evaluations
on a series of word-level and sentence-level cross-lingual transfer
tasks have shown that these cross-lingual LMs have significant
utilities for transferring language knowledge from high-resource
languages to low-resource languages.

In the contexts of retrieval, there are also research works on
cross-lingual transfer for ad-hoc retrieval [32, 43] and question
answering [23, 29, 41]. But different from cross-lingual transfer,
using single-tower model for cross-lingual retrieval requires the
language model to encode two sequences (CLIR: query/document,
CLQA: question/context) from different languages in the same pass.
Bonab et al. [4] reported unsuccessful attempts to use single-tower
model and CEDR-like [33] matching model for CLIR by stating
“pre-trained models with many languages are not providing high
gain for CLIR and needs further investigations for fine-tuning or
training”. To the best of our knowledge, there is only one detailed
report about using single-tower model for CLIR [24], in which the
proposed method decouples query into terms and document into
sentences. Therefore, their model’s complexity is squared on the
basis of vanilla BERT cross-attention and thus far from practical. In
comparison, our proposed model is capable of encoding bilingual
full query and document in one pass.

3 MODEL STRUCTURE
The structure of our cross-lingual LM is illustrated in Figure 2. The
input is always a packed sequence containing one query and one
document with [sep] token in between. To encourage learning
language-agnostic representations, unlike XLM, we do not sup-
plement language-specific embeddings. Instead, we simply input
segment embeddings to let the model differentiate between two
parts of input.

A large portion of documents in CLIR datasets (and in real appli-
cations of CLIR generally) exceed the input length limit of mBERT
and XLM (Figure 1). We seek to build a cross-lingual LM that can
encode more document content at pretraining, finetuning and infer-
ence stage. Therefore, we adopt the attention mechanism proposed
in Longformer [2] to replace full self-attention as with mBERT,
such that each Transformer block can encode longer sequences.
Compared with Hofstätter et. al’s solution that slides vanilla Trans-
former over long documents for finetuning monolingual language
models [21], our model is more computationally efficient especially
at pretraining stage.

Longformer is the long-document Transformer, where the O(n2)
complexity self-attention is replaced with a series of linear attention
mechanisms [2]. Specifically, we adopt the “global+sliding window”
(GSW) attention. We let query tokens have global attention and
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limit document tokens to sliding-window attention. Within each
Transformer, all query tokens can still attend to any other tokens in
the sequence, but document tokens can only attend to tokens within
aw-token wide window. Note that special tokens like [sep] and
[cls] also have global attentions. The original Transformer [46]
computes attention scores as:

Attention(Q,K ,V ) = softmax

(
QKT√
dk

)
V , (1)

GSW, on the other hand, uses two sets of projections, {Qs , Ks ,Vs }
to compute attention scores of sliding window attention, and {Qд ,
Kд , Vд } to compute attention scores for the global attention. Intu-
itively, we regard GSW as relocation of computation power: instead
of letting two long-distance document tokens attend to each other,
we can instead let query tokens attend to more document tokens. In
practice, comparing (a) full self-attention with maximum sequence
length 512 and (b) GSW attention with maximum sequence length
1024 and window size 64 both using single-tower model, we ob-
serve that (i) they consume similar GPU memory; (ii) GSW runs
slightly slower; and (iii) GSW is capable of encoding documents
more than twice as long. We perform empirical comparisons of their
effectiveness in § 5.

4 RETRIEVAL-ORIENTED CROSS-LINGUAL
LANGUAGE MODEL PRETRAINING

The goal of task-specific language model pretraining is to further
enhance the model’s performance on downstream tasks by taking
advantage of weak-supervision data applied to task-specific model-
ing objectives [5, 7, 16, 19, 44]. We describe weak-supervision data
construction, and retrieval-oriented cross-lingual modeling tasks
in detail in this section.

4.1 Data
General requirements of the ideal pretraining data for our tasks in-
clude: (i) each positive example contains a pair of short text (query)
and long text (document) in different languages; (ii) query and docu-
ment are semantically related; (iii) the number of training examples
is large enough. There is a trade-off between the granularity of se-
mantic relatedness and the number of available training examples,
and we think Wiki sections is a good balance point. To that end, we
choose to first match multilingual Wiki sections, and then sample
a sentence from one matched section as query, and use the other
section as document. We are motivated by the discussion on the
granularities of semantics in monolingual Wiki [6]. Our approach
is conceptually similar to the Inverse Cloze Task (ICT), where one
sentence is sampled from a Wiki paragraph as query, and the rest
of the paragraph is treated as document. The key differences are
that: (i) we expand from monolingual Wiki to multilingual Wiki; (ii)
we keep longer texts (section v.s. paragraph) as document, which is
more similar to downstream retrieval tasks.

However, accurate cross-lingual Wiki section alignment informa-
tion is unavailable. Multilingual Wiki pages of the same entity are
usually not translation of one another, and they are often organized
to have different structures. In fact, section alignment of multilin-
gual Wiki is itself an active research question [37]. We adopt an
easy, efficient and yet effective method for section alignment based

on cross-lingual word embeddings (CLE). Suppose Pages and Paget
are two Wiki pages in source and target language respectively of
the same entity. We define a section’s title as its immediate pre-
ceding title. For each section Secs (i) in Pages , we acquire its title
embedding by averaging the CLE of all its title’s terms (with stop-
words removed), and similarly for each section Sect (j) in Paget .
If the cosine similarity of title embeddings of Secs (i) and Sect (j)
is greater than a threshold value η, we consider them as matched
sections. The underlying assumptions are that: (i) titles are accurate
summaries of section content; (ii) matched sections are related to
the same aspect of the same entity. Conceptually, the relatedness of
matched sections is “lower-bounded” such that in worst cases, two
sections are related to different aspects of the same entity, which is
still acceptable for retrieval [6]. Note that given two languages, we
only allow one section to match with at most one foreign section,
and we take the highest matching pair if there is conflict. The qual-
ity of the data can be reflected by performance of the pretrained
model on downstream tasks in § 5.

Our model and data construction method support any language
present in multilingual Wiki. We select four languages {English,
Spanish, French, German}2 for demonstration and convenience
of evaluation. We use fastText CLE3 and set η = 0.34. We apply
filter such that a pair of matched sections must have at least five
sentences in both sections. The numbers of aligned sections we end
up with are listed in Table 2.

Table 2: Number of aligned sections in each language pair.

En&De En&Es En&Fr Es&De Fr&De Fr&Es

250.6K 295.8K 202.8K 169.9K 216.7K 171.4K

4.2 Pretraining Tasks
Given the described massive cross-lingual query-document rele-
vance data, we introduce two novel pretraining tasks (Figure 3) for
cross-lingual retrieval.

4.2.1 Query languagemodeling (QLM). Given a pair of cross-lingual
query and document, we mask some percentage of query tokens at
random, and then predict thosemasked tokens. The final hidden vec-
tors corresponding to the mask query tokens are fed into an output
softmax over the vocabulary. This task is conceptually motivated
by the query likelihood model [38] where a query is assumed to be
generated based on words that appear in a prototype document. If
we mask 15% of query tokens as in [13], QLM becomes easier than
MLM, because there is an extra full foreign document to support
predictions. To that end, we increase the masking probability to
30% to enforce attention from query to foreign document. If we
also mask document tokens, QLM reduces to approximate TLM [9].
However, masking document does not promote cross-lingual atten-
tion, as the information from short foreign query is neglectable for
helping complete long document. Therefore, we think masking just
query tokens with higher probability best promotes cross-lingual
2Language codes: En=English, Es=Spanish, Fr=French, De=German
3https://fasttext.cc/docs/en/aligned-vectors.html
4CLE usually has lower cosine similarities than monolingual embeddings [53]
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QD+ cls sep… and lectured them on the rights of asylum en respuesta a los esfuerzos …… ante su presencia y les leyó los derechos de asilo sep

QD- cls sep… and lectured them on the rights of asylum el 4 de septiembre …… del mundo y el más largo de una mujer en toda la historia sep

Figure 3: Proposed cross-lingual retrieval-oriented pretraining tasks.

query-document interaction understanding. We justify our choices
using empirical experiments in § 5.3.2.

4.2.2 Relevance ranking (RR). This task directly resembles cross-
lingual ad-hoc retrieval task, but the data has more coarse-grained
semantics compared with finetuning data. Given a pair of cross-
lingual query and document, we encode the packed sequence QD+

with the model, and a learnable weight matrix W multiplies the
output hidden vector of [cls] token and yield a ranking score S+.
Then, we randomly sample an irrelevant document, form sequence
QD−, and similarly acquire a ranking score S−. We optimize the
model with cross entropy loss, which supports multiple negative
examples. We sample one negative per positive example in this
work. Given query Q and document D, where Q ∈ Secs (i) ∈ Pages
and D = Sect (j) ∈ Paget , then {Sect (k)}k,j are considered hard
negative examples. To avoid repeating the same negative document
across training epochs when there are few sections in Paget , the
probability of sampling hard negative examples is dynamically
adjusted according to the source entity, from which the positive
query-document pair is created. The probability of sampling hard
examples is set to αT = 1 − (3/4)T , where T is the number of
sections in Paget . With probability 1 − αT , we randomly sample a
section in language Lt as irrelevant document.

4.3 Pretraining Details
Pretraining a language model from scratch is of high computa-
tional cost. We continue pretraining our retrieval-oriented language
models from the public mBERT checkpoint5. Therefore, our cross-
lingual LM is implicitly pretrained with three objectives (MLM,
QLM and RR). We name different variants of our models as “(model,
objective, epochs)”. Model with full self-attention is directly called
mBERT, while the model with GSW attention is named mBERT-
GSW. For example, (mBERT-GSW, QLM-RR, 10 epochs) is the GSW
attention model pretrained with both QLM and RR for 10 epochs.
When pretraining with both objectives, we first train with RR in

5https://huggingface.co/bert-base-multilingual-uncased

random order of language pairs, then train with QLM in random
order of language pairs in each iteration. Each epoch contains 32K
positive query-document pairs per language pair for each objective.
We train our models with 16 Nvidia VOLTA (16GB) GPUs. We use
Adam for model optimization [27]. Learning rate is set to 1e-5 and
batch size is set to 32. We train for 20 epochs at maximum. Training
mBERT takes about 24 hours, and training mBERT-GSW (window
size=64, max sequence length=1024) takes about 40 hours.

We acquire mBERT-GSW with 1024 tokens by replacing the
attention module in mBERT with GSW attention, and copying the
positional embeddings from the first 512-token positions to the
second 512-token positions [2]. Therefore, a naive mBERT-GSW
is of worse language modeling ability (reflected in high bits-per-
character measure) due to the copied non-optimized positional
embeddings. Following [2], we use the MLM task on the Wikitext-
103 dataset6 and perform 2K gradient updates such that mBERT-
GSW has similar BPC compared with base mBERT.

5 EXPERIMENTS
5.1 Cross-lingual Ad-hoc Retrieval
5.1.1 Evaluation Data and Metric. We adopt the standard gold
CLIR dataset CLEF for evaluating cross-lingual ad-hoc retrieval
effectiveness. We use the test collections from the 2000-2003 ad-
hoc retrieval test suite7 combined together. Two hundred topics
in different languages are regarded as queries for retrieving news
articles in different languages. We choose four languages in our pre-
training data and thus form twelve cross-lingual query-document
evaluation pairs. Following the standard practice [4, 30, 47], queries
were created by concatenating the title and the description of each
topic. Queries without any relevant document are removed. We
do not employ a first-stage retrieval model like BM25 to get top
candidates for re-ranking, for that such a method would require a
query translation module and thus might introduce bias. Since hu-
man evaluators were presented with top-ranked documents when
6https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
7http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
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creating the relevance labels, we directly use all labelled documents
with respect to a query as re-ranking candidates, following [53]. We
report mean-average-precision (MAP) on query level. Statistically
significant differences in MAP are determined using the two-tailed
paired t-test with p < 0.05. The statistics of the CLEF dataset are
shown in Table 3.

Table 3: Statistics of CLEF: number of queries (#query), av-
erage number of relevant (#pos) and irrelevant (#neg) docu-
ments per query, and average number of document tokens
after mBERT tokenization (doc. length) for each language.

#query #pos #neg doc. length
En 176 18.5 404.0 699.2
Es 156 50.7 319.5 490.2
Fr 185 22.0 267.3 454.3
De 192 25.0 324.3 448.7

5.1.2 Competing Methods. We compare our models with several
recent competitive CLIR methods.

(i)BWE-AGG. It is an unsupervised approach that first builds query
and document embeddings by summing the CLE of their constituent
terms [30]. Candidate documents are ranked by the cosine simi-
larity of their embeddings with the query embeddings. There are
two variants based on different summing weights for constructing
document embedding: BWE-AGG-ADD uses uniform weight for
all terms, and BWE-ADD-IDF weights document terms with IDF in
the target language collection. We use fastText embeddings3.
(ii) TbT-QT-QL. It is an unsupervised query translation approach
based on CLE [30]. Each source language query term is translated
to its nearest target language term in the CLE space. The CLIR task
is thus reduced to monolingual retrieval task, and the translated
queries are used with query likelihood model [38]. We use Galago8
for building inverted indexes and retrieving documents. We use
fastText embeddings3 for query translation.
(iii) DRMM and K-NRM. We select the two matching models [17,
48] from an earlier study on neural CLIR [53]. They build term-level
query-document interactions from CLE, but use different pooling
methods to output matching scores. We implement the two models
based on Matchzoo [18]. For CLE, we test fastText embeddings3
and smart-shuffling bilingual word embeddings [4]. The former is
an example of post-projection CLEs, and aligns fastText embed-
dings trained on monolingual Wikipedias in 44 languages into one
space using the relaxed CSLS method [26]. Smart-shuffling is a
pseudo-bilingual method, but instead of randomly shuffling words
in parallel sentences, it also leverages word-level parallel data (i.e.,
translation dictionaries) to guide to process in order to bridge the
“translation gap”. We use smart-shuffling embeddings with win-
dow size set to 10, kindly provided by the authors. Note that the
smart-shuffling embeddings are bilingual, and only overlap with
our evaluation language on {En&Fr, En&De}. Therefore, we can only
report its performance on four query-document language pairs.
(iv) mBERT. We use the public checkpoint of multilingual BERT5.
It was originally pretrained with the masked language modeling
8https://www.lemurproject.org/galago.php

(MLM) and next sentence prediction (NSP) objectives [13] on the
top 102 languages with the largest Wikipedia dumps.
(v) XLM-R. We use the public checkpoint9 [8]. It was originally
pretrained with the MLM objective on the CommonCrawl corpus
in 100 languages.

5.1.3 Evaluation Details. As mentioned earlier, we use all labelled
query-document pairs on CLEF as hard candidates, and report re-
ranking MAP. For unsupervised methods, we test on all queries. For
methods that require training, we adopt five-fold cross validation to
overcome the small number of queries per language pair. Evaluation
is performed separately in terms of language pairs. Specifically, each
training (finetuning) epoch contains all positive query-document
pairs. Each positive document is paired with one randomly sampled
hard negative document, and we optimize with pairwise cross en-
tropy loss. Maximum number of training (finetuning) epochs is set
to 20. We record MAP on test set when the model yields best MAP
on valid set. For DRMM, bin size is set to 30 and histogram mode
is set to “log-count”. For KNRM, we set the number of Gaussian
kernels to 20 (plus another one for exact matching), and σ to 0.1.
For finetuning Transformer-based models (mBERT, XLM and ours),
we only finetune the last three encoder layers to avoid overfitting.
Also, before finetuning we re-initialize (“reset”) the parameters of
the last three encoder layers for better stability [34].

5.1.4 Results. The overall results of all competing CLIR models
on all evaluation language pairs are summarized in Table 4. We
provide detailed analysis below.

Unsupervised approaches: BWE-AGG and TbT-QT-QL are un-
supervised CLIR methods based on fastText CLE. In most cases,
TbT-QT-QL is better than BWE-AGG by a large margin, which is
consistent with findings reported in prior research [30, 53]. How-
ever, these two studies only perform experiments where English is
the query language, while our experiments aremore comprehensive.
We found that on some occasions ({De-Es, De-Fr, Es-De, Fr-De}),
BWE-AGG performs closely or even slightly better than TbT-QT-
QL. The latter heavily relies on the quality of top-1 term translation.
We suspect that the German embeddings are not aligned well with
Spanish/French embeddings in a way that provides quality top-1
nearest-neighbor term translation.

Neural matching: DRMM and KNRM represent the category
of neural matching. We see a big drop from the numbers reported
in [53]. The main difference between their evaluation and ours is
that they truncate documents to the first 500 terms, while we keep
everything. We observe similar performance with their report if we
employ the same truncation strategy: neural matching performs
significantly better than unsupervised methods, but still worse than
mBERT baseline in this paper. This suggests that KNRM and DRMM
cannot handle long documents very well. We also present the first
direct empirical comparison of smart-shuffling embeddings and
fastText embeddings for retrieval. We observe that smart-shuffling
has smaller vocabulary coverage in the CLEF collection, which can
be a big factor to its inferior performance. We leave the qualitative
comparison of these two CLEs for future work.

General languagemodels: this category includes XLM-R,mBERT
and mBERT-GSW. XLM-R’s bad performance is consistent with

9https://huggingface.co/xlm-roberta-base
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Table 4: CLIR performance on CLEF. Numbers are MAP. Best performance on each language pair is marked bold. ∗ indicates
statistically significant improvement over mBERT (paired t-test, p < 0.05).

Query language De En Es Fr

Document language En Es Fr De Es Fr De En Fr De En Es

BWE-AGG-ADD 0.126 0.280 0.194 0.186 0.247 0.133 0.238 0.118 0.190 0.234 0.116 0.273
BWE-AGG-IDF 0.146 0.325 0.235 0.197 0.258 0.147 0.238 0.132 0.221 0.224 0.125 0.293
TbT-QT-QL 0.361 0.344 0.229 0.263 0.395 0.310 0.244 0.396 0.300 0.215 0.327 0.357
DRMM (smart-shuffling) 0.143 - - 0.226 - 0.133 - - - - 0.156 -
DRMM (fastText) 0.195 0.304 0.164 0.238 0.313 0.187 0.264 0.192 0.143 0.225 0.211 0.284
KNRM (smart-shuffling) 0.199 - - 0.274 - 0.194 - - - - 0.167 -
KNRM (fastText) 0.227 0.337 0.263 0.285 0.372 0.250 0.310 0.187 0.240 0.298 0.180 0.345
XLM-R 0.124 0.233 0.178 0.269 0.307 0.222 0.211 0.149 0.212 0.199 0.148 0.293
mBERT 0.400 0.507 0.395 0.465 0.545 0.437 0.463 0.438 0.412 0.442 0.419 0.519
Ours (mBERT-GSW) 0.419∗ 0.511 0.425∗ 0.501∗ 0.564∗ 0.477∗ 0.471 0.448 0.434∗ 0.479∗ 0.442∗ 0.543∗
Ours (mBERT, QLM-RR, 10) 0.472∗ 0.555∗ 0.476∗ 0.524∗ 0.577∗ 0.495∗ 0.524∗ 0.489∗ 0.499∗ 0.518∗ 0.476∗ 0.588∗
Ours (mBERT, QLM-RR, 20) 0.472∗ 0.573∗ 0.476∗ 0.534∗ 0.590∗ 0.516∗ 0.526∗ 0.491∗ 0.504∗ 0.524∗ 0.497∗ 0.594∗
Ours (mBERT-GSW, QLM-RR, 10) 0.501∗ 0.581∗ 0.491∗ 0.536∗ 0.614∗ 0.527∗ 0.540∗ 0.530∗ 0.519∗ 0.536∗ 0.520∗ 0.602∗
Ours (mBERT-GSW, QLM-RR, 20) 0.519∗ 0.601∗ 0.506∗ 0.545∗ 0.621∗ 0.524∗ 0.554∗ 0.545∗ 0.534∗ 0.550∗ 0.532∗ 0.616∗

Bonab et. al’s findings [4]. We are first (to the best of our knowl-
edge) to report decent performance of mBERT on CLIR. It seems
counter-intuitive that XLM-R performs much worse than mBERT:
they have similar model structure and pretraining objective (MLM),
but XLM-R is trained with more data and is reported to outperform
mBERT on various cross-lingual tasks.We conduct controlled exper-
iments to exclude tokenizers and text casing as factors. We suspect
that the failure of XLM-R for CLIR is due to the way pretraining
data is fed to the model: unlike BERT, XLM-R takes in streams of
tokens such that a sequence in a mini-batch can contain more than
two consecutive sentences [9]. This may work well for word-level
tasks like extractive QA (shown in § 5.2), but could cause confusion
for tasks like CLIR which require representation alignment of long
texts. Comparing mBERT and mBERT-GSW, we observe statisti-
cally significant improvement of the latter upon the former in most
circumstances. This indicates that the benefit of accepting longer
input sequence is not limited to the pretraining phase, but also at
the finetuning and inference phase. Less information loss during
finetuning can lead to significant difference at inference time.

Retrieval-oriented language models: this category describes
cross-lingual LMs pretrained with QLM and RR objectives. By com-
paring (mBERT, QLM-RR) to base mBERT, we can see significant
improvement on re-ranking effectiveness on all language pairs. This
proves that (i) our proposed pretraining objectives are effective for
downstream CLIR task; and (ii) the pretraining weak-supervision
data constructed with section alignment from multilingual Wiki
is of high quality and the learned knowledge is generalizable to
non-Wiki collections. By comparing retrieval-oriented LMs with
GSW attention (mBERT-GSW, QLM-RR) to ones with self-attention
(mBERT, QLM-RR), we observe additional statistically significant
improvement. It indicates that natively expanding Transformers’s
input length to encode more document content can provide further
benefits for ad-hoc retrieval, which are additional to the benefits of
retrieval-oriented pretraining. Our full model (mBERT-GSW, QLM-
RR, 20) provides up to 29.7% MAP improvement on vanilla mBERT
re-ranker.

5.2 Cross-lingual Question Answering
Cross-lingual extractive question answering is a word-level re-
trieval task, and it does not have explicit connection with either of
our pretraining objectives. Therefore, it can better demonstrate the
ability of generalization of our proposed language model pretrain-
ing strategies.

5.2.1 Evaluation Datasets. We use the MLQA dataset [29] for test-
ing. There is no dedicated training data in MLQA, and following
standard practice, we perform finetuning with SQuAD v2.0 training
data10 [40], and use the dev and test sets in MLQA for evaluation un-
der two settings. (i) zero-shot XLT: dev/test sets are monolingual
QA in a language different from finetuning language; and (ii) G-
XLT: question and context/answer in dev/test sets are in different
languages. Note that G-XLT may not be zero-shot in terms of lan-
guage because either query or context language might be English.
As there is no French data in MLQA, we end up with six language
pairs for G-XLT and two languages (Spanish and German) for XLT.
We measure F1 score and exact-match score, which are standard
metrics for extractive QA. SQuAD and MLQA are much larger than
CLEF, so we are able to finetune all encoder layers of language
models. We report results on test set when the model yields best F1
score on dev set. We still conduct statistical significance test using
two-tailed paired t-test with p < 0.05.

5.2.2 Results. The overall results of CLQA are summarized in
Table 5. Comparing general language models, XLM-R performs
slightly better than mBERT under XLT setting, but much worse
under G-XLT setting. mBERT-GSW performs slightly better than
mBERT, but the improvement is mostly not statistically significant.
Our language models pretrained with QLM and RR yield statisti-
cally significantly improvement over mBERT when fully trained,
and the improvement is more significant on G-XLT than XLT. This

10SQuAD v1.1 used in [29] is no longer publicly available. Therefore, numbers in two
papers are not directly comparable.
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Table 5: CLQA performance on MLQA. Numbers are F1/Exact-Match scores (%) in percentile format by convention. Best per-
formance on each language pair is marked bold. * indicates statistically significant improvement over mBERT (p < 0.05).

Task G-XLT XLT

Language pair (Q-A) De-En De-Es En-De En-Es Es-De Es-En De-De Es-Es

XLM-R 57.8/42.9 41.4/28.5 57.8/45.2 54.4/41.0 49.5/32.2 63.9/43.5 60.8/45.3 64.8/44.3
mBERT 60.1/44.6 53.7/40.0 63.7/50.3 64.1/49.8 57.5/38.7 64.4/43.3 60.7/44.5 63.7/42.2
Ours (mBERT-GSW) 60.9/45.6 55.3∗/39.9 65.1/51.2 64.7/51.2 58.9/40.2∗ 65.1/44.4 61.5/45.5 64.8/43.3
Ours (mBERT, QLM-RR, 10) 62.6∗/46.3∗ 56.4∗/39.8 70.6∗/56.4∗ 68.3∗/53.2∗ 62.6∗/40.0 67.3∗/45.8∗ 61.9/44.9 63.9/41.8
Ours (mBERT, QLM-RR, 20) 62.3∗/45.6 61.4∗/44.6∗ 73.2∗/58.9∗ 71.6∗/57.1∗ 65.9∗/43.5∗ 68.3∗/46.7∗ 62.3∗/46.4∗ 66.5∗/44.1∗
Ours (mBERT-GSW, QLM-RR, 10) 63.5∗/46.8∗ 59.3∗/42.7∗ 72.1∗/58.4∗ 69.2∗/53.0∗ 64.9∗/44.0∗ 67.7∗/46.1∗ 61.6/44.3 65.2/42.2
Ours (mBERT-GSW, QLM-RR, 20) 63.7∗/47.3∗ 60.8∗/43.5∗ 73.5∗/60.2∗ 71.5∗/57.0∗ 65.0∗/42.7∗ 68.1∗/46.1∗ 62.4∗/46.6∗ 66.1∗/44.8∗

is because we strictly pretrain the models with only bilingual query-
document pairs. In other words, XLT is a zero-shot task with respect
to our pretraining data, and it is more difficult to improve on.

We also perform cross-task comparisons (Tables 4 and 5), and
observe that when pretrained with the same objectives for the same
number of epochs, mBERT-GSW consistently performs better than
mBERT on CLIR, but two models perform similarly for QA. Doc-
uments (“contexts”) in SQuAD and MLQA dataset are paragraphs
and are in general shorter than news articles in CLEF. Therefore,
pretraining on longer texts does not provide additional gains for
QA, as finetuning and testing data have smaller sequence length.

5.3 Ablation Studies and Parameter Analysis
5.3.1 Utilities of pretraining tasks. We conduct experiments to
investigate the effect of each pretraining objective on downstream
tasks. For efficiency, we use language models that have limit input
sequences to first 512 tokens (with self-attention) instead of those
that limit inputs to 1024 tokens (with GSW attention). We pretrain
two more models, one with only QLM objective, and one with only
RR objective. We record all compared models’ performance in each
available evaluation language pair in both CLIR and CLQA task.
We do not observe significant differences in the patterns shown
across language pairs, so we select two language pairs per task
for demonstration. The results are shown in Figure 4. We use the
same evaluation strategies and report performances at different
pretraining epochs. Note that the starting points (pretrained epochs
= 0) in all subfigures refer to the base mBERT model.

In the case of CLIR, both RR and QLM provide positive gains for
retrieval, while the former is much more effective than the latter.
This is not surprising considering that RR takes the same form as ad-
hoc retrieval using languagemodels.We do observe that there exists
mutual complement between these two objectives, as QLM+RR
performs significantly better than either alone. For CLQA, again
both RR and QLM provide benefits towards this downstream task.
However, QLM is more effective compared to RR in this case. The
two pretraining objectives are also reciprocal as the LMs pretrained
with both objectives perform the best in terms of F1.

In conclusion, we show that QLM and RR have positive influ-
ence on downstream cross-lingual retrieval tasks individually, and
those positive effects are also additive such that language models
pretrained with both tasks give the best performance.
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Figure 4: CLIR andCLQAperformance ofmodels pretrained
with different objectives (QLM, RR, QLM+RR). Epochs=0
refers to base mBERT without RR or QLM pretraining. Best
viewed in color.

5.3.2 QLM masking. Two choices distinguish QLM from other
pretraining tasks: (i) we only mask query tokens; and (ii) we in-
crease probability of masking from 15% to 30%. Here we conduct
controlled experiments to justify our choices. We pretrain five mod-
els with only QLM objective under different settings. We regard
masking query with 30% probability as a baseline. Two models are
trained with different query masking probability (15% and 45%).
Other two models are trained with masking probability 30%, but
masking different regions (documents and query+document). Their
performances on CLEF are reported in Figure 5.

Masking probability: Comparing red, blue and black plots, we
observe that p = 0.15 is consistently out-performed by higher
query masking probability. This indicates that p = 0.15 makes the
QLM task too easy for the language model to learn cross-lingual
query document interactions. Query masking probability p = 0.45
performs slights better thanp = 0.30when themodel is well trained,
suggesting that further increasing query masking probability can
provide additional gains. Masking region: Comparing blue, pink
and green plots, it is obvious that masking just document tokens
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Figure 5: CLIR performance of models pretrained with
QLM objective under different parameters (masking region,
masking probability). Epochs=0 refers to base mBERT.

greatly hurts CLIR performance at the beginning of pretraining,
and cannot recover to the level of vanilla mBERT re-ranker after 20
epochs of pretraining. Masking just query and masking both query
and document can spark improvement, but the former performs
significantly better when the model is well trained.

In conclusion, we show that masking only query tokens with
higher probability (≥0.3) is the better setting for the QLM task. This
finding aligns well with our intuitions.

5.3.3 Semantic alignment on sentence and document level. In order
to investigate if our proposed cross-lingual retrieval-oriented mod-
eling tasks can promote cross-lingual alignment on more coarse-
grained semantics, we evaluate pretrained LMs on two cross-lingual
alignment tasks, namely, cross-lingual sentence alignment (XSA)
and cross-lingual document alignment (XDA). XSA/XDA requires
that parallel sentences/documents should have embeddings that are
proximate in the representation space. We encode a sentence (doc-
ument) with the LM as “[cls] Content [sep]”, and take the [cls]
token’s last hidden state as the sentence (document) embedding.

Metric. Given a set of sentences S and a set of corresponding
parallel (translation) sentences T , we measure precision at top-1
(P@1), which is defined as

P@1 =
1
|S|

∑
si ∈S

1
(
(argmax
j,tj ∈T

Sim(si , tj )) = i
)
, (2)

where 1 is the indicator function, and Sim is a function that mea-
sures the similarity of two cross-lingual sentences. We use the
CSLS measure [28] with neighborhood size set to 10 [5] as the Sim
function, which is a modified version of cosine similarity measure.
CSLS is widely adopted for evaluating cross-lingual word alignment
for two advantages over cosine similarity: (i) CSLS is a symmetric
measurement, meaning that switching S and T in evaluation does
not affect the degree of alignment; and (ii) CSLS can mitigate the
hubness problem [15].

Data. Evaluating XSA and XDA requires parallel sentences and
documents. For XSA, we adopt the XNLI-15way dataset11. It con-
tains 10K sentences that are manually translated into 15 languages.
We select the four languages that overlap with our pretraining lan-
guages and form six evaluation pairs. For XDA, we use the United
Nations Parallel Corpus12, which contains 86,307 documents in six
languages that are official United Nations languages. Out of the
11https://github.com/facebookresearch/XNLI
12https://conferences.unite.un.org/uncorpus

four languages in our pretraining languages, German is not in the
corpus. Therefore we use English, French and Spanish data and
form three language pairs. Same as in Section 5.3.1 and 5.3.2, we
use LMs with input limit to 512 tokens for efficiency.

Results. We report the XSA and XDA performance of base
mBERT, as well as cross-lingual LMs that have been additionally
pretrained with our retrieval-oriented modeling tasks for 20 epochs
in Table 6 and Table 7. We observe that base mBERT generates poor
cross-lingual sentence and document alignment, except between
Spanish and French documents. In terms of XSA, QLM and RR can
bring improvement upon base mBERT. The improvement is more
prominent with QLM, and that the effect is not additive on XSA.
In terms of XDA, QLM and RR work similarly well, and combin-
ing two modeling tasks together can spark further improvement
on cross-lingual document alignment. The differences between
XSA and XDA is understandable considering that QLM is more
focused on sentence-level semantics (sentence completion given
foreign document) and that RR is more focused on document-level
(ranking documents with respect to foreign sentence). In all cir-
cumstances, pretraining the model with either RR or QLM on the
Wiki weak-supervision data can significantly improvement cross-
lingual coarse-grained semantics alignment. This might lead to
improvement on more applications beyond cross-lingual retrieval.

Table 6: Cross-lingual sentence alignment (XSA) results on
XNLI-15way dataset. Numbers are P@1 in percentage (%).

Language pairs De&En De&Es De&Fr En&Es En&Fr Es&Fr

Base mBERT 1.9 4.3 6.3 1.6 2.2 7.4
+ QLM 27.4 51.9 52.3 53.2 50.9 63.5
+ RR 16.6 25.8 28.4 33.8 22.5 46.0
+ QLM&RR 22.7 36.4 45.4 45.4 43.1 57.9

Table 7: Cross-lingual document alignment (XDA) results on
MultiUN dataset. Numbers are P@1 in percentage (%).

Language pairs En&Es En&Fr Es&Fr

Base mBERT 2.6 5.2 30.3
+ QLM 24.9 23.3 61.0
+ RR 19.1 22.5 65.1
+ QLM&RR 40.3 43.1 81.5

5.3.4 Effect of window size in GSW attention. An assumed key pa-
rameter in the global+sliding window (GSW) attention is the win-
dow sizew . In the context of cross-lingual retrieval, it represents the
number of neighboring tokens a document token can “attend” to in
a single Transformer layer. Although GSW is theoretically superior
to full self-attention in terms of efficiency (linear versus square),
a large window size might void the effort in practice. Therefore,
it is important to evaluate how the setting of window size might
influence the performance on desired tasks. To that end, we choose
four different window sizew = {32, 64, 128, 256} for experiments.
For all four models, we set input sequence limitation to 1024 tokens,
pretrain them on English-French part of the weak-supervision data
(described in Section 4.1) on QLM+RR pretraining modeling tasks,
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Table 8: The effect of window size w in GSW attention on
CLIR performance. Numbers are MAP.

Languages (Q→D) En→Fr Fr→En

w = 32 0.512 0.509
w = 64 0.510 0.506
w = 128 0.516 0.512
w = 256 0.509 0.503

and perform CLIR evaluation on CLEF dataset (as in Section 5.1)
in two directions (En→Fr and Fr→En). The results are reported
in Table 8. We observe no statistically significant differences on
downstream CLIR performance caused by different window sizew
in GSW attention. Taking into account the randomness of model
training, we conclude that window sizew in the GSW attention has
no obvious impact on the CLIR task. In practice, one is suggested
to prioritize longer sequence length over larger window size when
facing a trade-off.

6 CONCLUSION
In this work, we show that the absence of cross-lingual passage-
level relevance data and the lack of proper query-document style
pretraining are key reasons for the inferior performance in adopt-
ing multi-lingual language models for CLIR. To overcome such
difficulties, we introduce two novel pretraining objectives to im-
prove Transformer based cross-lingual language models for re-
trieval tasks. We also propose building fine-grained cross-lingual
query-document style weak-supervision data from multilingual
Wiki to support large-scale pretraining. We employ global+sliding-
window attention to allow language models to encode much longer
documents in all three stages (pretraining, finetuning, and infer-
ence) efficiently. Extensive experiments demonstrate the effective-
ness of our contributions on both cross-lingual ad-hoc retrieval and
cross-lingual extractive question answering. Detailed ablation stud-
ies justify our modeling choices and parameter selections. We also
discover that our model can significantly improve coarse-grained
semantic alignment across languages, which might lead to a wider
range of applications beyond retrieval.
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