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ABSTRACT

HISTORY MODELING FOR CONVERSATIONAL
INFORMATION RETRIEVAL

SEPTEMBER 2021

CHEN QU

B.Eng., DALIAN UNIVERSITY OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Conversational search is an embodiment of an iterative and interactive approach

to information retrieval (IR) that has been studied for decades. Due to the recent

rise of intelligent personal assistants, such as Siri, Alexa, AliMe, Cortana, and Google

Assistant, a growing part of the population is moving their information-seeking ac-

tivities to voice- or text-based conversational interfaces. One of the major challenges

of conversational search is to leverage the conversation history to understand and

fulfill the users’ information needs. In this dissertation work, we investigate history

modeling approaches for conversational information retrieval. We start from history

modeling for user intent prediction. We analyze information-seeking conversations

by user intent distribution, co-occurrence, and flow patterns, followed by a study of

user intent prediction in an information-seeking setting with both feature-based meth-

ods and deep learning methods. We then move to history modeling for conversational

viii



question answering (ConvQA), which can be considered as a simplified setting of con-

versational search. We first propose a positional history answer embedding (PosHAE)

method to seamlessly integrate conversation history into a ConvQA model based on

BERT. We then build upon this method and design a history attention mechanism

(HAM) to conduct a “soft selection” for conversation history. After this, we extend

the previous ConvQA task to an open-retrieval (ORConvQA) setting to emphasize

the fundamental role of retrieval in conversational search. In this setting, we learn

to retrieve evidence from a large collection before extracting answers. We build an

end-to-end system for ORConvQA, featuring a learnable dense retriever. We conduct

experiments with both fully-supervised and weakly-supervised approaches to tackle

the training challenges of ORConvQA. Finally, we study history modeling for con-

versational re-ranking. Given a history of user feedback behaviors, such as issuing a

query, clicking a document, and skipping a document, we propose to introduce be-

havior awareness to a neural ranker. Our experimental results show that the history

modeling approaches proposed in this dissertation can effectively improve the per-

formance of different conversation tasks and provide new insights into conversational

information retrieval.
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CHAPTER 1

INTRODUCTION

Conversational search is an embodiment of an iterative and interactive approach

to information retrieval (IR) that has been studied for decades (Belkin et al., 1995;

Croft and Thompson, 1987; Oddy, 1977). Due to the recent rise of intelligent per-

sonal assistant systems, such as Siri, Alexa, AliMe, Cortana, and Google Assistant, a

growing part of the population are relying on these systems to finish everyday tasks.

Examples of these tasks include setting a timer or placing an order. Some users

also interact with them for entertainment or even as an emotional companion. Al-

though current personal assistant systems are capable of completing tasks and even

conducting informal conversations, they cannot handle information-seeking conver-

sations with complex information needs that require multiple turns of interaction.

Conversational personal assistant systems serve as an appropriate media for inter-

active information retrieval, but much work needs to be done to enable functional

conversational search via such systems. In this dissertation, we focus on the history

modeling aspect of conversational IR, as a fundamental step towards conversational

search.

A typical conversational search process involves multiple “cycles”. In each cycle, a

user first specifies an information need and then an agent (a system) retrieves answers

iteratively either based on the user’s feedback or by asking for missing information

proactively (Zhang et al., 2018; Aliannejadi et al., 2019). The user could ask a follow-

up question and shift to a new but related information need, entering the next cycle

of conversational search. For example, in Table 1.1, we show that questions in an
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Table 1.1: An example of an information-seeking conversation from the QuAC col-
lection (Choi et al., 2019). Co-references and related terms are marked in the same
color across history turns. Q2, Q4, Q5 and Q6 are closely related to their immediate
previous turn(s) while Q7 is related to a remote question Q1. Also, Q3 does not follow
up on Q2 but shifts to a new topic.

Topic: Lorrie Morgan’s music career

# ID Role Utterance

1 Q1 User What is relevant about Lorrie’s musical career?
A1 Agent ... her first album on that label, Leave the Light On, was released in 1989.

2 Q2 User What songs are included in the album?
A2 Agent CANNOTANSWER

3 Q3 User Are there any other interesting aspects about this article?
A3 Agent made her first appearance on the Grand Ole Opry at age 13,

4 Q4 User What did she do after her first appearance?
A4 Agent ... she took over his band at age 16 and began leading the group ...

5 Q5 User What important work did she do with the band?
A5 Agent leading the group through various club gigs.

6 Q6 User What songs did she played with the group?
A6 Agent CANNOTANSWER

7 Q7 User What are other interesting aspects of her musical career?
A6 Agent To be predicted ...

information-seeking conversation could be closely related to their conversation history.

It is crucial for a conversational search system to model the conversation history in

order to understand and fulfill the users’ information needs.

Specifically, we work on history modeling for user intent prediction, conversational

question answering, open-retrieval conversational question answering, and conversa-

tional re-ranking. We present our motivations and contributions for each topic as

follows.

1.1 User Intent Prediction

In an information-seeking conversation, users have multiple rounds of information

exchange with conversational assistants to retrieve or specify answers. One of the

challenges in this process is the difficulty of modeling the conversation about the
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information need both before and after an answer has been given. An important step

in modeling conversational interactions is to accurately detect and predict user intent

in information-seeking conversations.

For example, a user issues the following utterance in an information-seeking con-

versation when trying to resolve an issue with Microsoft Office: “After modified the

Windows entry, value of regedit, the error also happened. When I use C++ for cre-

ating another new Microsoft::Office::Interop::PowerPoint::Application instance, the

COMException is throwed ”. In this case, the conversational assistant should be ca-

pable of first recognizing the Negative Feedback from the user, which suggests the

last answer given by the agent is not satisfactory. We then expect the assistant to

improve the previous answer by considering the Further Details provided by the user.

Accurately detecting and predicting user intent is the fundamental starting point

for a conversational assistant to process user’s utterances accordingly. It is crucial

to consider conversation history in the prediction process given the interactive na-

ture of information-seeking conversations. Thus, we study history modeling for user

intent prediction with the MSDialog dataset we create. MSDialog has over 2,000

information-seeking dialogs with 10,000 utterances. It is labeled with crowdsourcing

with 12 user intent types as shown in Table 3.2.

1.2 Conversational Question Answering

It is natural for people to seek information through conversations. In a typical

use case of conversational search, a user initiates a conversation with a specific in-

formation need. The search system conducts multiple turns of question answering

(QA) interaction with the user, including asking proactively, to better understand

this information need. The system then tries to fulfill this need by retrieving answers

iteratively based on the user’s feedback or clarifying questions. The user sometimes

asks follow-up questions with a related but new information need and thus enters the

3



next “cycle” of the conversational search process. In order to keep track of the user’s

latest information need, the system should be capable to make use of the conversa-

tion history. For example, we show that conversation history is highly informative by

highlighting common co-references across history turns in Table 1.1.

In our view, conversational question answering (ConvQA) can be considered as

a simplified setting of conversational search, since current ConvQA systems do not

focus on asking proactively. However, ConvQA is a tangible task for researchers to

work on modeling the change of information needs across cycles. In this dissertation,

we follow Choi et al. (2019) and Reddy et al. (2019) to formulate the ConvQA task as

conversational machine comprehension, where we answer questions in a conversation

by predicting an answer span in a given passage. We study history modeling under

this setting as an integral part of conversational search.

1.3 Open-retrieval Conversational Question Answering

A significant limitation of the current ConvQA setting is that an answer is either

selected from a given candidate set (Yang et al., 2018) or extracted from a given

passage (Choi et al., 2019). This simplification neglects the fundamental role of

retrieval in conversational search. To address this issue, we continue studying the

ConvQA task and extending it to an open-retrieval (ORConvQA) setting, where we

learn to retrieve evidence from a large collection before extracting answers.

The open-retrieval setting presents challenges to training the ConvQA system.

We study both full supervision and weak supervision approaches for training. In the

fully-supervised approach, we encourage the model to find the gold passage that comes

with the dataset for a given question and extract an answer from it. In the weakly-

supervised approach, we investigate the performance of span-match weak supervision

and our proposed learned weak supervision. The former identifies weak answers in

the retrieval results by finding a span that is an exact match to the known answer
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while the latter seeks to find a paraphrased span of the known answer in a retrieved

passage as the weak answer. The learned weak supervision enjoys more flexibility

and can be more suitable for the long and freeform answers in information-seeking

conversations.

1.4 Conversational Re-ranking

Although conversational search and ad-hoc retrieval vary greatly in many aspects,

they share the same backbone of document ranking, which is the core of modern

search engines. To fulfill a complicated information need with a search engine, users

typically need to conduct searches for multiple turns. In each turn, the user issues or

reformulates a query, browses search engine result pages (SERPs), and clicks on one or

more documents for further investigation. This iterative information-seeking process

bears a strong resemblance to conversational search. Different types of historical

user behaviors can provide different clues of the information need. This part of

the dissertation focuses on the conversational document ranking task. We are given

history user behaviors, including queries, clicked documents, and skipped documents

in the session, the task is to re-rank a set of candidate documents for the current query.

This task deals with the challenge of user interaction modeling for conversational

search via a concrete task of document ranking.

1.5 Contributions

We highlight the contributions of this dissertation as follows.

• In terms of user intent prediction, we create a large-scale annotated dataset for

multi-turn information-seeking conversations, which is the first of its kind to

the best of our knowledge. We perform in-depth data analysis and characteri-

zation of user intent with these conversations. We then use both feature-based

machine learning methods and neural approaches for user intent prediction.
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Moreover, neural models achieve significant improvements after incorporating

history information.

• In terms of conversational question answering, we introduce a positional history

answer embedding method to incorporate conversation history into a BERT-

based machine comprehension model. We then propose a history attention

mechanism to conduct a “soft selection” for conversation history turns. We

show that conversation history plays a vital role in ConvQA. To learn more

generalizable representations, we jointly learn answer span prediction and dialog

act prediction in a multi-task learning (MTL) setting.

• In terms of open-retrieval conversational QA, we first demonstrate the impor-

tance of a learnable retriever in this task. We then show that our system

can make a substantial improvement when we enable history modeling in all

system components. As for supervision approaches, we verify that full supervi-

sion is more effective than weak supervision. We further show that a learned

weak supervisor can outperform the span-match weak supervisor, proving the

capability of learned weak supervision in dealing with freeform answers, i.e.,

human-generated answers that are not necessarily strict spans of any passage.

Moreover, it leads to a significant improvement when we combine the learned

weak supervisor with the span-match weak supervisor, indicating these two

methods can complement each other.

• In terms of conversational re-ranking, we incorporate history user behaviors into

a BERT-based ranker with Hierarchical Behavior Aware Transformers. We first

show that a BERT ranker without any history information is able to outperform

a recent context aware recurrent model (Ahmad et al., 2019b). We further

show that BERT is capable of modeling session history by simply prepending

history user behaviors to the current query. Moreover, we demonstrate that our
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hierarchical behavior attention mechanism is significantly more powerful in this

scenario than a simple concatenation. This indicates that behavior awareness

is essential in conversational document ranking.

1.6 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we present the

background and related work of history modeling in conversational IR. In Chapter 3,

we conduct user intent analysis and prediction in information-seeking conversations

and study neural approaches to history modeling under this setting. In Chapter 4, we

introduce history modeling methods for conversational question answering. In Chap-

ter 5, we tackle the open-retrieval problem in conversational QA and study history

modeling and training approaches for this task. In Chapter 6, we focus on the ranking

aspect of conversational search and investigate history modeling approaches with the

conversational ranking task. Finally, in Chapter 7, we summarize this dissertation

and discuss future work in history modeling for conversational IR.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This dissertation is related to several research areas, including utterance intent

modeling, single-turn question answering, conversational question answering, session-

based retrieval, and other directions in conversational search.

2.1 Utterance Intent Modeling

Utterance intent and dialog act modeling has been studied in both information re-

trieval and natural language processing (NLP) domains. Stolcke et al. (2000) study di-

alog act prediction using hidden Markov models on the Switchboard corpus that con-

tains spontaneous human-to-human telephone speech. Surendran and Levow (2006)

adopt a combination of linear SVM with hidden Markov models and conduct dialog

act tagging on the HCRC MapTask corpus (Carletta et al., 1997) that consists of

instruction-like conversations. Olney et al. (2003) classify student utterances in an

auto tutoring system with part of speech tagging, cascaded finite state transducers,

and disambiguation rules. Bhatia et al. (2012, 2014) focus on the problem of classify-

ing forum posts based on the purpose in the discussion thread and further apply the

dialog act information to summarize the ongoing discussion. Shiga et al. (2017) work

on detecting conversational information needs in spoken utterances in collaborative

search tasks using temporal, dialog, semantic, linguistic, and statistical features.

Recent advances in deep learning has made it possible to conduct sentence clas-

sification on both the word level (Kim, 2014) and the character level (Zhang et al.,

2015). These deep learning techniques have been applied in user intent classification
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in dialog utterances. Datta et al. (2016) combine convolutional neural networks and

recurrent neural networks to construct the utterance classification model and enhance

it with domain-specific word embeddings. Yu et al. (2019) recognize that an utter-

ance could serve multiple functions and apply deep learning techniques to tag an

utterance with multiple dialog acts. In Chapter 3, we focus on user intent prediction

and history modeling in information-seeking conversations. This specific utterance

classification task presents unique challenges because that the interactive nature of

information-seeking conversations requires a model to consider conversation history.

The user intent information predicted by our model has been shown to be useful in

facilitating response ranking in information-seeking conversations via an intent-aware

utterance attention mechanism (Yang et al., 2020a).

2.2 Single-Turn Question Answering

One of the first modern reformulations of the QA task dates back to the TREC-8

Question Answering Track (Voorhees and Tice, 1999). Its goal is to answer 200 fact-

based, short-answer questions by leveraging a large collection of documents. Many

popular QA tasks and models either follow an answer selection setting or a machine

comprehension setting. We discuss related work in both settings.

2.2.1 Answer Selection

The goal of the answer selection task is to find a piece of text, either short or

long, in a candidate set that answers a given question. Wang et al. (2007) adopt a

generative approach for the answer sentence selection task to model how the question

can be generated from an answer via syntactic and semantic transformations. Iyyer

et al. (2014) introduce a dependency tree recursive neural network to combine clues

across different sentences in relatively long questions. Yang et al. (2015) create the

WikiQA dataset that contains challenging and possibly unanswerable questions and
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conduct baseline experiments with word-match, feature-based, and neural approaches.

Yang et al. (2016) propose an attention-based neural matching model to rank short

answer texts. It introduces a value-shared weighting scheme that is tailored for the

semantic match between a question and an answer. Cohen and Croft (2016) adopt

a Bidirectional Long Short Term Memory (BiLSTM) network with a rank sensitive

loss function and focus specifically on non-factoid QA.

2.2.2 Machine Comprehension

The machine comprehension (MC) task aims to extract an answer span or syn-

thesize an answer for a question using a given passage. It is particularly relevant

to this dissertation because we adopt this technique in Chapters 4 and 5. One of

the most influential benchmarks in this field is SQuAD (The Stanford Question An-

swering Dataset) (Rajpurkar et al., 2016, 2018). The reading comprehension task in

SQuAD is conducted in a single-turn QA manner. The system is given a passage and a

question. The goal is to answer the question by predicting an answer span in the pas-

sage. Extractive answers in this task enable easy and fair evaluations compared with

other datasets that have abstractive answers generated by human. Other widely-used

datasets include MS MARCO (Nguyen et al., 2016) that features real user search

queries and human rewritten answers, TriviaQA (Joshi et al., 2017) that features

complex and compositional questions, and Google Natural Questions (Kwiatkowski

et al., 2019) that features real user questions with both long and short answers.

These high-quality challenges and datasets have greatly boosted the research

progress in machine comprehension, resulting in a wide range of model architec-

tures. Seo et al. (2016) enable a bidirectional attention flow between the question

and the context (passage) to obtain question-aware context representations for pre-

diction. Gardner and Clark (2018) focus on machine comprehension with multiple

paragraphs with a shared normalization training objective that teaches the model to
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predict globally correct answer spans. Hu et al. (2018) enhance the traditional training

approach with reinforcement learning and further propose a reattention mechanism

that refines the current attention with the past attention. Wang et al. (2017) employ

a self-matching mechanism (matching the passage against itself) to refine the pas-

sage representation and to encode the information from the whole passage. Huang

et al. (2018a) propose a fully-aware attention mechanism that leverages the “history

of word” information, which is the information from the lowest word-level embedding

up to the highest semantic-level representations. Yu et al. (2018) leverage convolution

to model local interactions and self-attention to model global interactions and gain

considerable improvement in model efficiency compared to recurrent neural models.

In addition to extracting or synthesizing an answer from a passage, another body of

work studied multiple-choice machine comprehension (Liu et al., 2020; Chen et al.,

2019b), which selects an answer from a candidate set given a question and a pas-

sage. This resembles the reading comprehension tasks in school exams, which is less

relevant to our information-seeking goal.

The recently proposed BERT (Devlin et al., 2019) model pretrains language rep-

resentations with bidirectional transformers. It achieves exceptional results on ex-

tractive machine comprehension by fine-tuning the task specific layers (a token clas-

sification head) on top of the pretrained language model. BERT and other pretrained

language models (Lan et al., 2019; Clark et al., 2020; Yang et al., 2019c; Liu et al.,

2019b) have become part of the common recipe of many recent machine compre-

hension models. In Chapters 4 and 5, we also use a BERT-based MC model and

study history modeling approaches that can be seamlessly integrated into BERT for

conversational question answering.
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2.2.3 Open Domain Question Answering

In contrast to the conventional MC tasks that offer a pre-selected passage for

answer extraction, open domain QA tasks provide the model with access to a large

corpus (Dhingra et al., 2017; Voorhees and Tice, 1999) or at least a set of candidate

documents for each question (Nguyen et al., 2016; Joshi et al., 2017; Dunn et al., 2017;

Dhingra et al., 2017; Cohen et al., 2018). Some previous work (Lee et al., 2019a; Htut

et al., 2018; Kratzwald and Feuerriegel, 2019; Wang et al., 2018) learns to rerank or

select from a closed set of passages for open domain QA. These methods may not scale

well to an open-retrieval setting. Another body of work, starting from DrQA (Chen

et al., 2017), presents end-to-end open-domain QA systems following a retrieve-and-

read framework. DrQA (Chen et al., 2017) uses TF-IDF to retrieve from a Wikipedia

document collection and then reads the top passages with a multi-layer recurrent

neural network machine comprehension model. Similarly, BERTserini (Yang et al.,

2019b) uses BM25 as the retriever and a BERT model as the reader.

More recent work has been starting to conduct the retrieval phase with a dense

retriever, which is typically a learnable dual-encoder architecture that encodes the

question and the passage into low-dimensional dense vectors. Retrieval is then con-

ducted with Maximum Inner Product Search (MIPS) or Approximate Nearest Neigh-

bor (ANN) search. Such retrievers often feature pretrained language models as the

encoders. Specifically, ORQA (Lee et al., 2019b) leverages a dual-BERT retriever

pretrained with the inverse cloze task (finding the context for a given sentence) and

a BERT reader. REALM (Guu et al., 2020) augments ORQA by adding a novel

language model pretraining step for the retriever, enabling back-propagation into the

MIPS index. ANCE (Xiong et al., 2020) also enhances the retriever training process

with ANN retrieved negative passages, which are considered more informative than

the in-batch negatives used in ORQA and REALM. Both ANCE and REALM re-

fresh the index asynchronously during training so that the training process is more
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effective. Similar to ANCE, DPR (Karpukhin et al., 2020) digs into the negative

sampling strategies during training by studying different combinations of in-batch

negatives and retrieved negatives. Different from aforementioned research, Das et al.

(2019) design the dense retriever and the reader to interact with each other itera-

tively via query reformulation. ReQA (Ahmad et al., 2019a) also uses a similar dense

retriever to retrieve sentence-level answers directly. These learnable dense retrievers

have been shown to be highly effective and scalable in open-domain QA. Although

these works are limited to single turn QAs, they are valuable resources for us to study

how to extend ConvQA to an open-retrieval setting in Chapter 5.

2.3 Conversational Question Answering

Similar to the answer selection and MC tasks in single-turn QAs, existing ConvQA

research can be generally classified into two categories, response ranking, and conver-

sational machine comprehension. These tasks are also the testbeds to study history

modeling approaches for conversational QA. Our approach in Chapters 4 and 5 be-

longs to conversational MC.

2.3.1 Response Ranking

The Ubuntu Dialog Corpus (UDC) (Lowe et al., 2015) is one of the most prevalent

benchmarks for response ranking. It consists of multi-turn and unstructured dialog

data extracted from Ubuntu chat logs. Other popular datasets include the Douban

Conversation Corpus (Wu et al., 2016) that contains large-scale open-domain conver-

sations and our MSDialog-ResponseRank (Yang et al., 2018) that features technical

support dialogs. A rich body of work studies response ranking with these benchmark

datasets. Wu et al. (2016) propose a sequential matching network that first matches

a response with each context utterance sequentially and then aggregates these match-

ing signals with a recurrent neural network. Yang et al. (2018) incorporate external
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knowledge to the response ranking process with pseudo-relevance feedback and QA

correspondence knowledge distillation. Yang et al. (2019a) combine the merits of

retrieval-based methods and generation-based methods for a hybrid approach for re-

sponse ranking. Yang et al. (2020a) introduce an intent-aware neural response ranking

model to capture the importance of utterances by leveraging user intent information.

2.3.2 Conversational Machine Comprehension

CoQA (Reddy et al., 2019)1 and QuAC (Choi et al., 2019)2 are two large-scale

MC-style ConvQA datasets. The ConvQA task in these datasets is very similar to

the MC task in SQuAD. A major difference is that the questions in ConvQA are

organized in conversations. Although both datasets feature ConvQA in context, they

come with different properties. Information-seekers in QuAC have access to the title

of the passage only, simulating an information need. QuAC also comes with dialog

acts, which is an essential component in this interactive information seeking process.

The dialog acts provide an opportunity to study the multi-task learning of answer

span prediction and dialog act (user intent) prediction. On the other hand, CoQA

offers freeform human-generated answers, making it possible to study the training

challenges of weakly-supervised open-retrieval ConvQA. We take advantage of the

different unique properties offered by these datasets in our study.

In terms of modeling, Zhu et al. (2018) leverage both self-attention and inter-

attention between the question and the passage and enhance this model with con-

textualized embeddings generated from BERT. Choi et al. (2019) augment the bidi-

rectional attention flow mechanism (Seo et al., 2016) with self attention and con-

textualized embeddings. They also incorporate conversation history by encoding the

dialog turn number within the question embedding and marking the history answers

1https://stanfordnlp.github.io/coqa/

2http://quac.ai/
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in the passage with concatenated marker embeddings. Reddy et al. (2019) adopt the

same reader model in DrQA (Chen et al., 2017) and enhance it by prepending his-

tory questions and answers. This model also uses a Pointer-Generator network (See

et al., 2017) to transform the predicted answer span to a natural answer. Huang

et al. (2019) use recurrent structures to integrate the intermediate representations

generated when answering previous questions and thus can grasp the latent seman-

tics of the history. Chen et al. (2019a) propose to construct a context graph at each

conversation turn that considers the question and the conversation history, followed

by a recurrent graph neural network to model the temporal dependencies of these

context graphs.

In Chapter 4, we propose a “history selection - history modeling” framework to

handle conversation history in ConvQA. In terms of history selection, most existing

works mentioned above (Choi et al., 2019; Reddy et al., 2019; Zhu et al., 2018; Huang

et al., 2019) adopt a simple heuristic of selecting immediate previous turns. This

heuristic, however, might not work well for complicated dialog behaviors. None of

this research focuses on learning to select or re-weight conversation history turns.

To address this issue, we propose a history attention mechanism, which is a learned

strategy to attend to history turns with different weights according to how helpful they

are on answering the current question. In terms of history modeling, most existing

methods at the time typically prepend history turns to the current question (Reddy

et al., 2019; Zhu et al., 2018) or use a recurrent structure to model the representations

of history turns (Huang et al., 2019), which could have a lower training efficiency. In

this dissertation, we propose a history answer embedding method to learn two unique

embeddings to denote whether a passage token is in history answers. This method is

tailored for BERT-like pretrained language models. We further enhance this method

by incorporating the position information into history answer embeddings.
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2.4 Session-based Retrieval

The Session Track in TREC focuses on studying information retrieval over user

sessions rather than one-time queries (Carterette et al., 2016). Due to the lack of

large-scale session datasets, most approaches are mainly limited to non-parametric or

feature-based models. Typical techniques include query expansion (Hagen et al., 2013;

Cui and Cheng, 2014; Technology et al., 2013) and learning to rank (Cui and Cheng,

2014; Technology et al., 2013). Query expansion methods identify useful terms from

the session history, such as those in previous queries, to expand the current query.

Learning to rank methods consider the search history by extracting history-specific

features, such as the similarity of the candidate document and the session virtual

document. These techniques can also be used together. Shen et al. (2005) propose

context-sensitive statistical language models to combine the queries and summaries

of the clicked documents in the search session. White et al. (2010) study different

search behaviors and develop effective weighting schemes to combine the query with

these context search behaviors. Xiang et al. (2010) propose context-aware ranking

principles and develop context features based on these principles for a learning to rank

model. Bennett et al. (2012) investigate how short-term session behavior and long-

term historic behavior interact and propose models to learn to combine these features

for enhanced performance. In addition to exploiting the current session only, White

et al. (2013) work from a different angle by leveraging other similar tasks from historic

search logs. Recently, IR researchers have begun to revisit the issue of session-based

retrieval with deep models. Ahmad et al. (2018, 2019b) employ hierarchical recurrent

structures to model queries and click-through information across history turns. They

adopt a multi-task learning setting to optimize for both document ranking and query

suggestion. Our work in Chapter 6 focuses on the contextual ranking task with BERT,

a pretrained language model, as a further step for conversational search.
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2.5 Other Directions in Conversational Search

The area of conversational search is broad and covers many directions beyond the

ones mentioned above. We briefly describe more studies in this area to paint a more

complete picture of research on conversational search.

The concept of conversational search can be traced back to early research on

interactive information retrieval. Oddy (1977) develops the THOMAS system that

allows users to conduct searches through man-machine dialogs. Croft and Thompson

(1987) introduce a system that is driven by user interactions, such as stating the goals

and evaluating system output, at several given stages of a search session. Belkin et al.

(1995) explore and demonstrate the justifiability of using information interaction

dialogs to design the interaction mechanisms in IR systems. Marchionini (2006)

and White and Roth (2009) address the importance of exploratory search, where the

behavior of search is beyond a simple look up and more like learning and investigating.

In this setting, the interpretation of user intent would rely heavily on the interactions

between human and computers.

Recent years have witnessed the revival of conversational search. Researchers

have been actively working on the user-oriented aspect for conversational information

seeking. Radlinski and Craswell (2017) describe a conceptual framework for conver-

sational IR and the major research issues that must be addressed. Thomas et al.

(2017) introduce the MISC dataset that consists of audio and video recordings of

information-seeking conversations between human users and intermediaries. Trippas

et al. (2017) observe how people conduct mixed initiative conversational search with

different cognitive complexity levels in an acoustic setting. They also analyze the ini-

tial turns for patterns to classify with a qualitative analysis approach. Chuklin et al.

(2019) apply four different prosodic modifications to the voice responses output by a

text-to-speech system so that the responses are easier to comprehend by users. Trip-

pas et al. (2018) carry out observational studies of how people conduct search tasks
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in an audio-only setting to inform the design of spoken conversational search systems.

Qu et al. (2019b) study three answer presentation and interaction approaches in a

non-factoid question answering setting. Trippas et al. (2020) create an annotation

schema for spoken conversational search data to investigate the interactivity in these

conversations.

Another rich body of work targets on the modeling aspect of a variety of conver-

sation tasks. Shah and Pomerantz (2010) consider community QA as an information-

seeking process and build models to predict the answer quality. Yang et al. (2017)

study neural matching models based on LSTM and CNN for question retrieval and

next question prediction. Zhang et al. (2018) explore a “System Ask, User Respond”

paradigm for a unified conversational search and recommendation framework. It fea-

tures a system that can proactively ask aspect-specific questions to understand the

user needs. Bi et al. (2019) develop a conversational product search system that is

driven by users’ positive and negative feedback for the presented items. Aliannejadi

et al. (2019) use a question retrieval model and a question selection model to ask

clarifying questions proactively and show it boots the retrieval performance dramat-

ically. Zamani et al. (2020) introduce supervised and reinforcement learning models

to generate clarifying question, as well as methods to generate candidate answers of

these question for users to specify. Hashemi et al. (2020) learn better representa-

tions from transformers for conversational search by leveraging external sources, such

as top retrieved documents, to guide the training process. The studies presented

in our dissertation join the diverse research in this field towards building functional

conversational IR systems.
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CHAPTER 3

HISTORY MODELING FOR USER INTENT PREDICTION

3.1 Introduction

To build functional and natural conversational assistants that can reply to more

complicated tasks, we need to understand how users interact in these information-

seeking environments. Thus, it is necessary to analyze and predict user interactions

and utterance intent. At the CAIR1 workshop at SIGIR’17, researchers indicated

that there is a lack of conversational datasets to conduct studies. Also, the Learn-

IR workshop2 at WSDM’18 highlighted the significant research need for user intent

analysis and prediction in an interactive information-seeking process. Therefore, in

this chapter, we address these research demands by a two-part effort. The first part is

to create the MSDialog3 dataset with information-seeking conversations and analyze

user intent patterns. The second part is to study user intent prediction with MSDialog

using both feature-based methods and neural methods.

For effective analysis of user intent in an information-seeking process, the data

should be multi-turn information-seeking dialogs. Also, conversational systems should

be designed to support natural dialogs. Thus, the data should come from conversa-

tion interactions between real humans. As shown in Table 3.1, we found that most

existing dialog datasets are not appropriate for user intent analysis. The most similar

data to ours is the Ubuntu Dialog Corpus (UDC), which also contains multi-turn

1https://sites.google.com/view/cair-ws/

2https://task-ir.github.io/wsdm2018-learnIR-workshop/

3https://ciir.cs.umass.edu/downloads/msdialog
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Table 3.1: Comparison of dialog datasets.

Dataset Multi-
turn

Human-
human

Information-
seeking

User intent
label

DSTC 1-3 (Henderson et al., 2014) X
DSTC 4-5 (Kim et al., 2017) X X
Switchboard (Godfrey and Holliman, 1997) X X
Twitter Corpus (Ritter et al., 2010) X X
DSTC 6 (2nd Track) (Hori and Hori, 2017) X X X –

Ubuntu Dialog Corpus (Lowe et al., 2015) X X X
MSDialog (ours) X X X X

QA conversations in the technical support domain. However, the user intent in this

dataset is unlabeled. In addition, UDC dialogs are in the IRC (Internet Relay Chat)

style. This informal language style contains a significant amount of typos, internet

language, and abbreviations. Another dataset, the DSTC 6 Conversation Modeling

track data contains knowledge grounded dialogs from Twitter. However, this dataset

contains scenarios where users do not request information explicitly, which do not fit

the information-seeking narrative. Thus, these datasets are not appropriate for user

intent analysis.

For open-domain chatting, it is common practice to train chatbots with social me-

dia data such as Twitter (Ritter et al., 2011). Similarly, real human-human multi-turn

QA dialogs are the appropriate data for characterizing user intent in information-

seeking conversations. In technical support online forums, a thread is typically initi-

ated by a user-generated question and answered by experienced users (agents). The

users may also exchange clarifications with the agents or give feedback based on an-

swer quality. Thus the flow of a technical support thread resembles the information-

seeking process if we consider threads as dialogs and posts as turns/utterances in

the dialogs. We create MSDialog by crawling multi-turn QA threads from the Mi-
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crosoft Community4 and annotating them with 12 fine-grained user intent types on

an utterance level based on crowdsourcing on Amazon Mechanical Turk (MTurk).5

With this new dataset, we analyze the user intent distribution, co-occurrence pat-

terns and flow patterns of large-scale QA dialogs. We gain insights on human intent

dynamics during information-seeking conversations. One of the most interesting find-

ings is the high co-occurrence of negative feedback and further details, which typically

occurs after a potential answer is given. This co-occurrence pattern provides feedback

about the retrieved answer and critical information about how to improve the previ-

ous answer. In addition, negative feedback often leads to another answer response,

indicating that the co-occurrence and flow patterns associated with negative feedback

can be the key to iterative answer finding.

We then conduct experiments on user intent prediction with the MSDialog data.

In addition, we also annotate a small portion of Ubuntu Dialog Corpus (Lowe et al.,

2015) with the same user intent types as in MSDialog to further validate our findings.

The purposes of user intent prediction are threefold. First, it is necessary for con-

versational assistants to accurately identify user intent in information-seeking con-

versations. Only in this way can they process the information accordingly and use

it to provide answers and adjust previous answers. Similar to customer service over

phones, routing user questions to different sub-modules in a conversational retrieval

system is only possible if the user intent is correctly identified. Second, the con-

versational assistants need to learn and imitate the behavior of human agents. By

identifying user intent in information-seeking conversations, we expect the conversa-

tional assistants to learn the use of different intent and when to issue requests for

more information or details spontaneously. Finally, user intent prediction models can

4https://answers.microsoft.com

5https://www.mturk.com/
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be used to automatically annotate more dialog utterances for data analysis and other

tasks such as conversational answer finding.

Previous work typically focused on dialog act classification for open-domain con-

versations (Stolcke et al., 2000; Liu et al., 2018; Khanpour et al., 2016). In human-

computer chitchat, the goal of the conversational assistants is to generate responses

that are as realistic as possible with the primary purpose of entertaining. In contrast

to chatting, users initiate information-seeking conversations for specific information

needs. Human behaviors in chatting and information-seeking conversations can be

very different due to the fundamentally distinct purposes. In addition, the Dia-

log State Tracking Challenges (DSTC)6 focus on goal-oriented conversations. These

tasks are typically tackled with slot filling (Zhang and Wang, 2016; Yan et al., 2017).

In information-seeking conversations, slot filling is not suitable because of the diver-

sity of the information needs. User intent analysis and prediction are needed for an

information-seeking setting.

We conduct experiments using two different approaches to predict user intent

in information-seeking conversations. Firstly, we extract rich features to capture

the content, structural, and sentiment characteristics of utterances and learn mod-

els with traditional machine learning (ML) methods. Secondly, we use the implicit

representation learning in neural architectures to predict user intent without feature

engineering. We then build upon the neural models to incorporate context utter-

ances, the utterances preceding and following the current utterance, for enhanced

performance. Compared with traditional ML methods, it is easier and more natural

for neural models to incorporate context information since they can consume the raw

context utterances as input and require no context-specific feature engineering. We

present more details in Section 3.6.1.2.

6https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/
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Our contributions in this chapter can be summarized as follows. (1) We create a

large-scale annotated dataset for multi-turn information-seeking conversations, which

is the first of its kind to the best of our knowledge. We have made our dataset freely

available to encourage relevant studies. (2) We perform in-depth data analysis and

characterization of multi-turn human QA conversations. We analyze the user intent

distribution, co-occurrence and flow patterns. Our characterizations also hold in sim-

ilar data (UDC). Our findings could be useful for designing conversational search

systems. (3) We extract rich features, including feature groups related to content,

structures, and sentiment, to predict user intent in information-seeking conversations.

We perform an in-depth feature importance analysis on both group and individual

level to identify the key factors in this task. (4) We design several variations of neu-

ral classifiers to predict user intent without explicit feature engineering. We show

that neural models can achieve comparable performance compared to feature en-

gineering based methods. Moreover, neural models achieve statistically significant

improvements over traditional methods after incorporating context information. (5)

Our experiments show that the trained model achieves relatively good generalization

performance on another open benchmark information-seeking conversation dataset

(UDC). The code of the implemented user intent prediction models has been released

to the research community.7

3.2 The MSDialog Data

Our data collection contains two sets: the complete set and a labeled subset.

Both are publicly available. The complete set could be useful for unsupervised/semi-

supervised model training. The data used in user intent analysis and prediction is the

7https://github.com/prdwb/UserIntentPrediction
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labeled subset. In this section, we describe the three stages of generating MSDialog,

which are data collection, taxonomy definition, and user intent annotation.

3.2.1 Data Collection

We crawled over 35,000 dialogs from Microsoft Community, a forum that provides

technical support for Microsoft products. This well-moderated forum contains user-

generated questions with high-quality answers provided by Microsoft staff and other

experienced users including Microsoft Most Valuable Professionals.

To ensure the quality and consistency of the dataset, we selected about 2,400 di-

alogs that meet the following criteria for annotation: (1) With 3 to 10 turns. (2) With

2 to 4 participants. (3) With at least one correct answer selected by the community.

(4) Falls into one of the categories of Windows, Office, Bing, and Skype, which are

the major categories of Microsoft products.

We observe that dialogs with a large number of turns or participants can contain

too much noise, while dialogs with limited turns and participants are relatively clean.

By choosing dialogs with at least one answer, we can use this dataset for other tasks

such as answer retrieval. Also, by limiting the categories to several major ones, we

can ensure language consistency across different dialogs, which is better for training

neural models.

3.2.2 Taxonomy for User Intent in Conversations

We classify user intent in dialogs into 12 classes shown in Table 3.2. Seven of the

classes (OQ, RQ, CQ, FD, PA, PF, NF ) were first introduced in FIRE’108. Bhatia

et al. (2012) added the eighth class of Junk as they observed a significant amount of

posts with no useful information in their data (200 dialogs labeled with eight classes).

8https://www.isical.ac.in/~fire/2010/task-guideline.html
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Table 3.2: User intent taxonomy and distribution in MSDialog.

Code Label Description %
OQ Original Question The first question from the user to initiate the dialog. 13
RQ Repeat Question Other users repeat a previous question. 3
CQ Clarifying Question User or agent asks for clarifications. 4
FD Further Details User or agent provides more details. 14
FQ Follow Up Question User asks for follow up questions about relevant issues. 5
IR Information Request Agent asks for information from users. 6
PA Potential Answer A potential answer or solution provided by agents. 22
PF Positive Feedback User provides positive feedback for working solutions. 6
NF Negative Feedback User provides negative feedback for useless solutions. 4
GG Greetings/Gratitude Greetings or expressing gratitude. 22
JK Junk No useful information in the utterance. 1
O Others Utterances cannot be categorized using other classes. 1

We add four more classes to Bhatia et al. (2012)’s taxonomy: Information Request,

Follow Up Question, Greetings/Gratitude, and Others. We observed that agents’

inquiries about user’s version of software or model of computer are common in this

technical support data and does not necessarily overlap with Clarifying Question.

Follow Up Question is another utterance class in MSDialog as users sometimes expect

agents to walk them step-by-step through the technical problem. Greetings/Gratitude

is quite common in the data. Finally, the Others class is for utterances that cannot

be classified with other classes. Note, each utterance can be assigned multiple labels

because an utterance can cover multiple intent (e.g., GG+FQ).

3.2.3 User Intent Annotation with MTurk

3.2.3.1 Procedure

We employed crowdsourcing workers through MTurk to label user intent of each

utterance using a set of 12 labels that is described in Section 3.2.2. The workers are

required to have a HIT (Human Intelligence Task) approval rate of 97% or higher, a

minimum of 1,000 approved HITs, and be located in the US, Canada, Australia or

Great Britain. The workers are paid $0.3/dialog.
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Table 3.3: Dialog properties of MSDialog

Items Min Max Mean Median

# Turns Per Dialog 3 10 4.56 4
# Participants Per Dialog 2 4 2.79 3
Dialog Length (Words) 27 1,467 296.90 241
Utterance Length (Words) 1 939 65.16 47

In this annotation task, the workers are provided with a complete dialog. They

are instructed to go through a table of labels with descriptions and examples before

they proceed. For each utterance, the workers are tasked to choose all applicable

labels that represent the user intent of the utterance and leave a comment if they

choose the Others label.

3.2.3.2 Quality Assurance

To ensure the annotation quality, we employed two workers on each dialog. We

calculated the inter-rater agreement using Fuzzy Kappa (Kirilenko and Stepchenkova,

2016) for this one-to-many classification task. We applied the threshold of 0.18 to

filter the dialogs with too small Kappa scores, which reduced the number of dialogs

by 9%.

3.3 User Intent Analysis and Characterization

3.3.1 Data Statistics

The annotated dataset contains 2,199 multi-turn dialogs with 10,020 utterances.

Table 3.3 summarizes the properties of MSDialog. Each utterance has 1.83 labels on

average. More statistics of the dataset are presented in Table 3.4.

3.3.2 User Intent Distribution

Figure 3.1 shows the user intent distribution. Labels without a percentage are

under 10%. Greetings/Gratitude and Potential Answer are the most frequent labels.
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Figure 3.1: User intent distribution
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FurDetailsFurDetails

Figure 3.2: User intent co-occurrence

This suggests that good manners and answers are at the center of human QA con-

versations. Repeat Question is the most infrequent label except for Junk and Others,

which is because the number of participants is limited to four.

3.3.3 User Intent Co-occurrence

Label co-occurrence in the same utterance can be useful for understanding user

intent. Preliminary results indicate that the most frequent co-occurrence is between

Greetings/Gratitude and another label, suggesting good manners of forum users. Nev-

ertheless, we removed GG for the analysis later to emphasize more on crucial user

intent of information-seeking interactions.

We present the user intent co-occurrence graph with undirected edges weighted by

co-occurrence count in Figure 3.2. We observe that Potential Answer often co-occurs

with Further Details or Information Request. This indicates that agents tend to enrich

possible solutions with details, or send Information Requests in case the solutions do

not work. Also, users tend to give Negative Feedback with Further Details to explain

how the suggested answer is not working. In addition, Further Details is observed

to co-occur with Follow Up Question or Clarifying Question, suggesting that when

people raise a relevant question, they tend to add details to them.

27



INITIAL
FD

OQ

TERMINAL

PA

FQ

RQ

NF

PF

CQ

IR

JK

O

Figure 3.3: Flow pattern with a Markov model. Node colors: red (questions), green
(answer related), yellow (feedback). Edges are directed and weighted by transition
probability.

3.3.4 User Intent Flow Pattern

We use a Markov Model to analyze the flow patterns in the dialogs as shown in

Figure 3.3. Because of the complexity and diversity of human conversations, many

utterances are labeled with multiple user intent. We preprocess the traces (complete

user intent flow in a dialog) with multiple labels by only using one label each time. For

example, if we have a trace of “OQ→PA+FD→PF ”, we transfer it into two separate

traces. The first one is “OQ→PA→PF ”, and the second one is “OQ→FD→PF ”. This

preprocessing step can lead to a more concise model compared with using the original

multi-labels as nodes. However, it does magnify some user intent non-proportionally.

We alleviate the issue by only using dialogs that generate no more than 100 traces.

This only filtered 30 dialogs.

In addition, we remove Greetings/Gratitude because of the same reason described

in Section 3.3.3. Instead of simply hiding the GG node from the final graph, we

remove the occurrences of Greetings/Gratitude if the utterance has multiple labels or

change GG to JK if the utterance only has one label.

The flow pattern with a Markov model is presented in Figure 3.3. As high-

lighted in the graph, a typical user intent transition path of MSDialog is “ INI-

TIAL→OQ→PA→FD→PA→PF→TERMINAL”. This represents the frequent user
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intent transition pattern in an information seeking process. We can make some obser-

vations from the graph : (1) In most cases, dialogs begin with an Original Question,

sometimes accompanied by Further Details. (2) Original Question tends to lead to

Potential Answer and Information Request. (3) Information Request and Clarifying

Question tend to lead to Further Details. (4) Positive Feedback tends to terminate the

dialog while Negative Feedback tends to lead to Potential Answer or Further Details.

(5) Dialogs tend to end after Others or Junk.

Besides the Markov transition graph, we use a different perspective to inspect the

flow pattern by focusing on the user intent transition between turns in each dialog.

We find that a quite significant flow path across turns is “INITIAL→OQ→(PA→FD)

×3→PA→PF→TERMINAL”. The “PA↔FD” circle pattern is typically caused by

the “PA+IR”, “PA+CQ ”, “NF+FD” co-occurrences described in Section 3.3.3 and the

“IR→FD”, “CQ→FD”, “NF→PA” sequential relationship suggested in Figure 3.3.

3.3.5 Comparison with Ubuntu Dialog Corpus

Although UDC is less suitable for user intent analysis due to the informal language

style, we investigate the characterizations of UDC and compare them to MSDialog

since they are both in the technical support domain. We sampled 200 UDC dialogs

and annotated user intent with MTurk using the same method with MSDialog. The

informal language style of UDC may impact the annotation quality.

3.3.5.1 Statistics

For this section, we present the statistics for UDC (complete set) and MSDialog.

As shown in Table 3.4, UDC dialogs have shorter utterances because of the informal

language style.
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Table 3.4: Statistics of UDC and MSDialog

Items UDC MSDialog (complete) MSDialog (labeled)

# Dialogs 930,000 35,000 2,199
# Utterances 7,100,000 300,000 10,020
# Words (in total) 100,000,000 24,000,000 653,000
Avg. # Participants 2 3.18 2.79
Avg. # Turns Per Dialog 7.71 8.94 4.56
Avg. # Words Per Utterance 10.34 75.91 65.16

3.3.5.2 Data Characterization

Potential Answer and Further Details are the most significant user intent in UDC,

which is consistent with MSDialog. Interestingly, the most common user intent in MS-

Dialog, Greetings/Gratitude, is quite rare in UDC. In addition, we observe the exact

same top 5 label co-occurrences in UDC as described in Section 3.3.3. Note that they

are not necessarily in the same order. Finally, we found that the flow patterns ob-

served in MSDialog also hold in UDC, except for the tendency from Positive Feedback

to TERMINAL. This can be explained by the scarcity of Positive Feedback in UDC.

Although the UDC dialogs with informal language style are drastically different from

the formal written style of MSDialog, the resemblance in user intent characterizations

indicates that human QA conversations, regardless of the communication medium,

follow similar patterns.

3.3.6 Discussion

In this section, we discuss the limitations of our findings. The patterns we discov-

ered are closely related to several design choices, including using dialogs from a well

moderated forum in a specific domain. These choices were made to keep the setting

as clean as possible as the research community is at an initial stage of this study.

Although MSDialog does not cover every aspect of the highly diverse information-

seeking conversations, it should be a first step to analyze and predict user intent in

an information-seeking setting.
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3.4 The User Intent Prediction Task

3.4.1 Task Definition

The research problem of user intent prediction in information-seeking conversa-

tions is defined as follows. The input of the system is an information-seeking dialog

dataset D = {(Ui,Yi)}Ni=1 and a set of user intent labels L = {l1, l2, . . . , lc}. A

dialog Ui = {u1i , u2i , . . . , uki } contains multiple turns of utterances. uki is the utter-

ance at the k-th turn of the i-th dialog. Yi consists of annotated user intent labels

{y1
i ,y

2
i , . . . ,y

k
i }, where yk

i = {yk(1)i , y
k(2)
i , . . . , y

k(c)
i }. Here y

k(m)
i , . . . , y

k(n)
i = 1 denotes

that the utterance uki in dialog Ui is labeled with user intent {lm, . . . , ln}. Given an

utterance uki and other utterances in dialog Ui, the goal is to predict the user intent Yi

of this utterance. The challenge of this task lies in the complexity and diversity of hu-

man information-seeking conversations, where one utterance often expresses multiple

user intent (Trippas et al., 2018).

3.4.2 Dataset

We use the labeled subset of the MSDialog data introduced in Section 3.2. In

order to test the generalization performance of our findings, we use a small portion

of UDC that is annotated with the same user intent types as in Section 3.2.2. This

part of experiment is presented in Section 3.6.3.

3.4.3 Data Preprocessing

The purpose of this classification task is to identify and predict user intent so that

conversational assistants can process the information accordingly to satisfy the users’

information needs. However, utterances which were labeled Greetings/Gratitude,

Junk, and Others do not contribute to the purpose of providing information about

QA related user intent. Therefore, we remove occurrences of these labels. Note that

we only remove these labels if there are more than one label of the given utterance.

For example, if the annotation for the given utterance is GG+OQ, we transform the
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annotation into OQ. If the annotation is just GG, no transformation is needed. This

reduces the number of unique label combinations from 316 to 152.

In addition, some label combinations of user intent labels are quite rare in the

data. As indicated in Figure 3.4a, the top frequent label combinations have hundreds

of occurrences in the data (e.g. PA, OQ, PF, FD+PA, FD), while the least frequent

labels only have exactly one occurrence (e.g. CQ+FD+IR+RQ, CQ+FD+FQ+PF ).

These rare label combinations are very likely due to minor annotation errors or noise

with MTurk. Annotation quality assurance was performed based on the dialog-level

inter-rater agreement to keep the complete dialog intact and thus may result in minor

noise on an utterance level. We also plot the cumulative distribution of label combina-

tions for better illustration in Figure 3.4b. The most frequent 32 label combinations

constitute 90% of total label combination occurrences as marked in the figure. All

12 user intent labels are individually present in these 32 most frequent combinations

except for Others. For the rest of the label combinations, we randomly sample one of

the labels from each combination as the user intent label for the given utterance. For

example, if the annotation for the given utterance is CQ+FD+IR+RQ, we transform

it into a single label by randomly sampling one of the four labels, such as CQ. There-

fore, the total number of label combinations in the data was reduced to 33 (including

Others). We adopt this setting since these rare label combinations are very likely

due to minor annotation errors. In addition, it would be very difficult to learn a

prediction model for these label combinations with few instances.

For UDC, we observe a similar label combination distribution. So we preprocess

the data in the same way. We have 34 label combinations for the UDC with 27 of

them overlapping with MSDialog.
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Figure 3.4: Intent label combination distribution

3.5 User Intent Prediction with Feature-based Methods

In this section, we extract several features following previous work (Bhatia et al.,

2012; Ding et al., 2008) and adopt different ML methods to build baseline models.

In addition to reporting baseline performance, we also perform feature importance

analysis to identify key factors in user intent prediction.

3.5.1 Features

We extract three groups of features to detect user intent in information-seeking

conversations, including content, structural, and sentiment features. An overview of

the features is provided in Table 3.5. Although MSDialog is derived from forum data,

it is considered as a dialog dataset. Thus, we refrain from developing features that

can only be extracted from the metadata of the forum, such as user authority level

or answer votes, so that our method can be applied to dialog systems. The features

are designed to capture the content and sentiment characteristics of the utterances

as well as the structural information of the dialogs.

Content features. We build a TF-IDF representation of utterances and compute

the cosine similarity of the given utterance with the dialog initial utterance (which
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Table 3.5: Features extracted for user intent prediction in information-seeking conver-
sations. “Str”, “Con”, “Sen” refer to “Structural”, “Content”, “Sentiment” respectively.
“R”, “B”, “O”, “N” refer to “Real”, “Binary”, “One-hot”, “Nuemerical” respectively.

Feature Name Group Description Type

Initial Utterance Similarity Con CosSim between the utterance and the first utterance R
Dialog Similarity Con CosSim between the utterance and the entire dialog R
Question Mark Con Does the utterance contain a question mark B
Duplicate Con Does the utterance contain same, similar B
5W1H Con Does the utterance contain what, where, when, why, who, how O
Absolute Position Str Absolute position of an utterance in the dialog N
Normalized Position Str Absolute Position divided by # utterances R
Utterance Length Str Total number of words in an utterance after stop words removal N
Utterance Length Unique Str Unique # words in an utterance after stop words removal N
Utterance Length Stemmed Unique Str Unique # words in an utterance after stop words removal and stemming N
Is Starter Str Is the utterance made by the dialog starter B
Thank Sen Does the utterance contain the keyword thank B
Exclamation Mark Sen Does the utterance contain an exclamation mark B
Feedback Sen Does the utterance contain the keyword did not, does not B
Sentiment Scores Sen Sentiment scores by VADER (Hutto and Gilbert, 2014) R
Opinion Lexicon Sen Number of positive and negative words from an opinion lexicon N

typically is the question that initiates the QA dialog), and the entire dialog. These

features are meant to capture the relevance level of the given utterance to the dialog

in a general way. In addition, the presence of question marks is a strong indicator that

the current utterance contains a question. Moreover, we assume that 5W1H keywords

(what, where, when, why, who, and how) can suggest the type of the question.

Structural features. The position of an utterance in a dialog can reveal cru-

cial information about user intent. Intuitively, answers tend to be at even number

positions in a dialog, while user feedback and follow up questions tend to be at odd

number positions. In addition, we include the utterance length with and without

duplication removal and stemming. We analyzed the data and found that utterances

containing positive feedback are relatively short, while utterances containing ques-

tions or answers tend to be long as they typically contain details. Finally, if the given

utterance is generated by the information seeker (dialog starter), it is more likely

to contain user related questions or user feedback. The structural features not only

provide individual characteristics for utterances, but also evaluate the utterances on

a dialog level.

Sentiment features. We expect sentiment features to be useful in identifying

user feedback and gratitude expressions. In information-seeking conversations, posi-
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tive and negative sentiments do not necessarily determine the feedback type. However,

we expect them to be correlated to some extent. We also include classic indicators

of sentiment, such as the presence of “thank”, “does not/did not” and exclamation

marks. In addition, we use VADER (Hutto and Gilbert, 2014) to compute the pos-

itive/negative/neutral sentiment scores. We also count the number of positive and

negative words using an opinion lexicon (Liu et al., 2005).

3.5.2 Methods and Evaluation Metrics

3.5.2.1 Methods

For each utterance, we extract a set of features as described in Section 3.5.1. To

apply traditional ML methods with features to this task, we need to transform this

multi-label classification problem to multi-class classification. Three transformation

strategies are typically used: binary relevance, classifier chains, and label powerset.

Binary relevance does not consider the label correlations and label powerset gener-

ates new labels for every label combination. So we choose classifier chains as the

transformation strategy for traditional ML methods. This strategy performs binary

classifications for each label and take predictions for previous labels as extra features.

This transformation strategy is the best fit for our task as it considers the label de-

pendency without explicitly generating new labels for every label combination. We

adopt classic ML methods, including Naive Bayes classifier, SVM, random forest,

and AdaBoost as baseline classifiers. In addition, we use ML-kNN, which supports

multi-label classification by nature.

3.5.2.2 Metrics

Due to the nature of the intent prediction task, we adopt metrics suitable for

multi-label classification problems as follows.

Accuracy (Acc). It is known as the intersection over the union (IoU) in the

multi-label classification settings. Accuracy is defined as the number of correctly
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Table 3.6: Statistics of training, validation, and testing sets

Item Train Val Test

# Utterances 8,064 986 970
Min. # Turns Per Dialog 3 3 3
Max. # Turns Per Dialog 10 10 10
Avg. # Turns Per Dialog 4.58 4.48 4.43
Avg. # Words Per Utterance 70.42 67.53 68.64

predicted labels divided by the union of predicted and true labels for every utterance

( TP
TP+FP+FN

, where TP , FP , and FN refer to True Positive, False Positive, and False

Negative respectively). For example, if the model predicts “PA+CQ ” for the given

utterance while the ground truth is “PA+IR”, then the accuracy is 1
3
. The reported

performance is the average metric over all utterances.

Precision, recall and F1 score. Precision is defined as the number of correctly

predicted labels divided by predicted labels. Recall is defined as the number of cor-

rectly predicted labels divided by true labels. F1 is their harmonic mean. These

metrics provide an overall performance evaluation for all utterances.

3.5.3 Main Experiments and Results

3.5.3.1 Experimental Setup

We split the labeled subset of MSDialog into training, validation, and test sets.

Table 3.6 gives the statistics of the three sets. The models are trained with scikit-

multilearn9 and scikit-learn10 on the training set. We tune the hyper-parameters on

the validation set based on accuracy and report the performance on the test set.

9http://scikit.ml/

10http://scikit-learn.org/stable/
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Table 3.7: Experiment results for baseline classifiers

Methods Acc Precision Recall F1

ML-kNN 0.4715 0.6322 0.4471 0.5238
NaiveBayes 0.4870 0.5563 0.4988 0.5260
SVM 0.6342 0.7270 0.5847 0.6481
RandForest 0.6268 0.7657 0.5903 0.6667
AdaBoost 0.6399 0.7247 0.6030 0.6583

3.5.3.2 Baseline Results

The baseline results are presented in Table 3.7. Two ensemble methods, random

forest and AdaBoost achieve the best overall performance of all baseline classifiers.

AdaBoost achieves the best accuracy while random forest achieves the best F1 score.

Surprisingly, ML-kNN performs relatively poorly despite its nature of an adapted

algorithm for multi-label classification.

3.5.4 Additional Feature Importance Analysis

3.5.4.1 Feature Group Analysis

We use one of the best baseline classifiers, random forest, and different combi-

nations of feature groups to analyze the feature importance on a group level. The

hyper-parameters are set to the best ones tuned on all features.

For using a single feature group, structural features is the most important fea-

ture group as presented in Table 3.8. Structural features and content features are

significantly more important than sentiment features. We expect the sentiment fea-

tures to capture the sentiment in user feedback but they might not be able to effec-

tively discriminate other user intent. Structural features provide better performance

than content features. We believe that this can be explained by the fact that hand-

crafted content features cannot capture the complex user intent dynamics in human

information-seeking conversations.
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Table 3.8: Experiment results for different feature groups

Group(s) Acc Precision Recall F1

Content 0.5272 0.6097 0.4821 0.5384
Structural 0.5809 0.6871 0.5434 0.6068
Sentiment 0.3306 0.4087 0.3222 0.3603
Con+Str 0.6081 0.7393 0.5640 0.6399
Con+Sen 0.5577 0.6523 0.5179 0.5774
Str+Sent 0.6110 0.7569 0.5672 0.6485
All 0.6268 0.7657 0.5903 0.6667

For combinations of two feature groups, content+structural features and struc-

tural+sentiment features achieve comparable results. However, structural+sentiment

features achieve slightly higher results on all metrics. The performance of using two

groups of features is higher than using one of these two feature groups individually.

Thus, combining structural features with another feature group boosts the perfor-

mance of using structural features alone. Interestingly, content+sentiment features is

unable to outperform the structural features alone. The results of using all features

is the highest among all settings, confirming that all feature groups contribute to the

performance of user intent prediction.

3.5.4.2 Feature Importance Scores

In the previous section, we evaluated the feature importance on a group level. In

this section we focus on individual features to provide a more fine-grained analysis.

We use random forest to output individual feature importance scores.11 As described

in Section 3.5.2, we used classifier chains to transform this multi-label classification

problem. This method expands the feature space by including previous label predic-

tions as new features for the current label prediction. This makes it not appropriate

11https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_
importances.html
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to evaluate original features. Thus, we use the Label Powerset method as the data

transformation strategy for this section. The relative feature importance scores are

presented in Table 3.9. This analysis can identify key factors in user intent prediction.

Table 3.9: Individual feature importance from a random forest classifier with relative
importance scores. “Str”, “Con”, “Sen” refer to “Structural”, “Content”, “Sentiment”
respectively.

Rank Feature Group Impt Rank Feature Group Impt

1 AbsPos Str 1.0 13 Lex(Pos) Sen 0.2814
2 InitSim Con 0.9745 14 Lex(Neg) Sen 0.2337
3 NormPos Str 0.8684 15 Thank Sen 0.1607
4 Starter Str 0.8677 16 How Con 0.08074
5 DlgSim Con 0.6778 17 Dup Con 0.06908
6 SenScr(Neu) Sen 0.6465 18 What Con 0.06576
7 SenScr(Pos) Sen 0.5601 19 ExMark Sen 0.06424
8 Len Str 0.5335 20 When Con 0.05989
9 LenUni Str 0.4381 21 Feedback Sen 0.02859
10 LenStem Str 0.4354 22 Where Con 0.02356
11 SenScr(Neg) Sen 0.3495 23 Why Con 0.0232
12 QuestMark Con 0.3003 24 Who Con 0.01423

We summarize our observations as follows: (1) Structural features including “Ab-

solute Position”, “Normalized Position”, “Is Starter” are ranked in the top-5 in terms

of feature importance. Moreover, other structural features, such as various forms of

utterance length are observed to be relatively informative in general. This confirms

the results in Section 3.5.4.1 that the structural feature group is the most important

one. (2) “Initial Utterance Similarity” and “Dialog Similarity” are content features

that can be highly informative for identifying user intent. Both features are indi-

cators of how closely the utterance connects with the information-seeking process.

Other content features, such as “5W1H”, however, contribute little to predicting user

intent. (3) Some sentiment features are relatively important in identifying user in-

tent, such as positive and neutral sentiment scores. However, some other sentiment

features contribute little to the task, such as the existence of exclamation marks and
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“thank”. (4) We observe that features ranked from the 15th to the last one in Table 3.9

are all “keyword features”. These features are based on a simple rule that whether

the given utterance contains pre-defined keywords. For example, the “5W1H” feature

looks for “what/where/when/why/who/how” in the given utterance and the “Feed-

back” feature looks for “did not/does not”. The major drawback of manual feature

engineering is amplified in this task due to the complexity and diversity of human

information-seeking conversations.

3.6 User Intent Prediction with Enhanced Neural Classifiers

We expected the content of an utterance to be a good indicator of user intent

types compared to other features. However, as shown in Section 3.5.4, the hand-

crafted content features are unable to capture the complex characteristics of human

information-seeking conversations. Thus, in this section we adopt neural architectures

to automatically learn representations of utterances without feature engineering.

3.6.1 Our Approach

3.6.1.1 Base Models

Given the previous success in modeling text sequences using CNN and bidirec-

tional LSTM (BiLSTM) (Graves and Schmidhuber, 2005), we choose these two ar-

chitectures as our base models. Although utterances are grouped as dialogs, the base

models consider utterances independently.

Given an utterance uki = {w1, w2, . . . , wm} (the k-th utterance in the i-th dialog)

that contains m tokens, we first transform the sequence of tokens into a sequence of

token indices S = {s1, s2, . . . , sm}. Then we pad the sequence S to a fixed length n

(the max sequence length). Both CNN and BiLSTM start with an embedding layer

initiated with pretrained word embeddings. Preliminary experiments indicated that

using MSDialog (complete set) to train word embeddings is more effective than using
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GloVe (Pennington et al., 2014) in terms of final model performance. The embedding

layer maps each token in the utterances to a word embedding vector with a dimension

of d.

We focus on the CNN model following previous work (Kim, 2014) here, because

it achieves better performance in our experiments. After the embedding layer, filters

with the shape (f, d) are applied to a window of f words. f is also referred to as the

filter size. Concretely, a convolution operation is denoted as

ci = σ(w · ei:i+f−1 + b) (3.1)

Where ci is the feature generated by the i-th filter with weights w and bias b. This

filter is applied to an embedding matrix, which is the concatenation from the i-th

to the (i + f − 1)-th embedding vectors. An non-linearity function (ReLU) is also

applied. This operation is applied to every possible window of words and generates

a feature map c = {c1, c2, . . . , cn−f+1}. More filters are applied to extract features of

the utterance content. Max pooling are applied to select the most salient feature of a

window of f ′ features by taking the maximum value ĉi = max{ci:i+f ′−1}. f ′ denotes

the max pooling kernel size. A dropout layer is applied after the pooling layer for

regularization.

After the last convolutional layer, we perform global max pooling by taking the

maximum value ĉ = max{c} for the feature map c at this step. This operation

reduces the dimension of the tensor to one. This tensor is further transformed to

an output tensor of shape (1, l), where l is the number of user intent labels (12 for

our task). Sigmoid activation is applied to each value of the output tensor to squash

the value to a confidence level between 0 and 1. A threshold is chosen to determine

whether the given label present in the final prediction. If the model is not confident

of predicting any label, the label of the highest confidence level is the prediction. We

tuned the threshold with the validation data.
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3.6.1.2 Incorporate Context Information

As shown in Section 3.3, user intent follows clear flow patterns in information-

seeking conversations. The user intent of a given utterance is closely related to the

utterances around it, which compose the context for the given utterance. Incorpo-

rating context information into traditional ML methods requires additional feature

engineering to develop context-specific features (e.g., the term overlap between the

previous utterance and the current utterance). In contrast, it is easier and more

natural for neural models to incorporate context information since they can consume

the raw context utterances as input and require no feature engineering. Therefore,

we only focus on context incorporation for neural models in this dissertation. We

consider two ways as follows.

Direct Expansion. The most straightforward way to incorporate context infor-

mation is to expand the given utterance with its context. Concretely, the expanded

utterance for uki is ûki = uk−1i ⊕ uki ⊕ uk+1
i , where ⊕ is the concatenate operator. ûki is

considered as the given utterance in base models.

Context Representation. Given an expanded utterance ûki as input, the neural

architecture first segments it into three original utterances of uk−1i , uki , and u
k+1
i . We

apply convolution operations and max pooling to the utterances separately as shown

in Figure 3.5a. After global pooling following the last convolutional layer, the three

one-dimensional tensors are concatenated for final predictions. This approach extracts

features from the given utterance and its context separately. Thus, we are able to

learn the importance of the given utterance and its context by tuning context-specific

hyper-parameters, such as the number of filters for context utterances.

3.6.1.3 Incorporate Extra Features

We found many useful features for user intent prediction such as structural fea-

tures in the feature importance analysis in Section 3.5.4. However, nearly half of the
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Figure 3.5: Architectures for enhanced neural classifiers. Components marked orange
are extra information incorporated into the base CNN model (black). The utterance
in bold is the current utterance. Predicted labels are marked blue.

features cannot be exploited by only looking at a single utterance. For example, nor-

malized/absolute utterance position and utterance similarity with the dialog/initial

utterance cannot be captured without a holistic view over the entire dialog. Some

of the uncaptured features are highly informative. This motivates us to incorporate

hand-crafted features into the neural architectures. As shown in Figure 3.5b, all

hand-crafted features described in Section 3.5.1 are incorporated into neural archi-

tectures at the last dense layer. The feature vector is concatenated with the neural

representation of the utterance before making final predictions.

Finally, we combine two base models with various extra components to produce

several systems for comparison as follows:

• CNN. The base CNN model that consists of three convolutional layers with

the same filter size.

• CNN-Feature. The CNN model that incorporates extra hand-crafted features

at the last layer.
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• CNN-Context. The CNN model that incorporates context information with

direct expansion.

• CNN-Context-Rep. The CNN model that incorporates context information

with context representation.

• BiLSTM. The BiLSTM model that represents the given utterance both in the

ordinary order and the reverse order.

• BiLSTM-Context. The BiLSTM model that incorporates context informa-

tion with direct expansion.

3.6.2 Experiments and Evaluation

3.6.2.1 Neural Baselines

In addition to the base model of BiLSTM and CNN, we further introduce two

commonly used neural models for text classification as baselines. For both new base-

lines, we modify the models to generate multi-label predictions.

CNN-MFS. The CNN model with multiple filter sizes as described by Kim (2014)

is a pioneer model to apply neural networks to text classification. This model uses

different filter sizes of 3, 4, and 5 to generate feature maps of different window sizes.

Char-CNN. Zhang et al. (2015) introduced a character-level CNN for text classi-

fication. There are two variants of the model, a large one and a small one, depending

on the numbers of convolutional filters and dense layer units. We report the perfor-

mance on the small model as it achieves better results in our task.
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3.6.2.2 Experimental Setup

We use the same data and metrics as in baseline experiments in Section 3.5. All

models are implemented with TensorFlow12 and Keras.13 Hyper-parameters are tuned

with the validation data in a grid-search style. We found that setting (convolutional

filters, dropout rate, dense layer units, max sequence length, convolutional filters

for context, and dense layer units for context) to (1024, 0.6, 256, 800, 128, 128)

respectively turned out to be the best setting for our best performing model CNN-

Conext-Rep. The convolutional filter size and pooling size are set to (3, 3). All models

are trained with a NVIDIA Titan X GPU using Adam (Kingma and Ba, 2015). The

initial learning rate is 0.001. The parameters of Adam, β1 and β2 are 0.9 and 0.999

respectively. The batch size is 128. For the word embedding layer, we trained word

embeddings with Gensim14 with CBOW model using MSDialog (complete set). The

dimension of word embedding is 100. Word vectors are set to trainable.

3.6.2.3 Evaluation Results

We select the two strongest feature based classifiers from Section 3.5 as feature

based baselines in addition to neural baselines. They are random forest with the

best F1 score and AdaBoost with the best accuracy. The performance comparison of

models is presented in Table 3.10.

The base CNN model without feature engineering achieves similar results with the

strongest feature based baselines. The performance of the base CNN model is better

than the base BiLSTM model. CNN-MFS takes advantage of different filter sizes and

also achieves comparable results. Char-CNN, however, performs poorly in this task.

12https://www.tensorflow.org/

13https://keras.io/

14https://radimrehurek.com/gensim/
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Table 3.10: Results comparison. The significance test can only be performed on accu-
racy. In a multi-label classification setting, accuracy gives a score for each individual
sample, while other metrics evaluate the performance over all samples. ‡ means sta-
tistically significant difference over the best baseline with p < 0.01 measured by the
Student’s paired t-test.

Method Types Methods Accuracy Precision Recall F1

Feature based
Baselines

Random Forest 0.6268 0.7657 0.5903 0.6667
AdaBoost 0.6399 0.7247 0.6030 0.6583

Neural
Baselines

BiLSTM 0.5515 0.6284 0.5274 0.5735
CNN 0.6364 0.7152 0.6054 0.6558
CNN-MFS 0.6342 0.7308 0.5919 0.6541
Char-CNN 0.5419 0.6350 0.4940 0.5557

Neural
Classifiers

BiLSTM-Context 0.6006 0.6951 0.5640 0.6227
CNN-Feature 0.6509 0.7619 0.6110 0.6781
CNN-Context 0.6555 0.7577 0.6070 0.6740
CNN-Context-Rep 0.6885‡ 0.7883 0.6516 0.7134

Char-CNN does not use pretrained word embeddings because it learns features from

a character-level which would require much more training data.

BiLSTM performs poorly in this task. Even though BiLSTM-Context has a major

improvement over BiLSTM, it has inferior results compared to the base CNN model.

Compared to non-factoid question answering or chatting, utterances in information-

seeking conversations tend to be longer. BiLSTM(-Context) tries to model a holistic

sequence dependency and thus performs poorly on handling these long utterances.

The best result of the feature based baselines is slightly higher than neural base-

lines. This can be accounted for by the lack of information in neural models. Even

though we assume that most of the content and sentiment features can be learned

by neural models, the neural models have no access to most of the structural fea-

tures. Thus, we incorporate all the features to neural models to produce CNN-Feature

model. This model gives higher results than baseline classifiers, indicating that in-

corporating dialog-level information could be beneficial to predicting user intent.
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Both CNN-Context and CNN-Context-Rep outperform baseline models and CNN-

Feature without explicit feature engineering. These results demonstrate the effective-

ness of the implicit feature learning of neural architectures. CNN-Context-Rep per-

forms better than CNN-Context. This indicates that incorporating high-level features

of context information learned by neural architectures is better than directly capturing

the raw context information. Based on how we compute the metrics (Section 3.5.2.2),

accuracy produces a score for each individual sample, while precision/recall/F1 eval-

uate the performance over all samples. Thus, accuracy is the only metric that is

suitable for significance tests. Our best model, CNN-Context-Rep achieves statisti-

cally significant improvement over the best baseline with p < 0.01 measured by the

Student’s paired t-test.

3.6.3 Generalization on Ubuntu Dialogs

In this section, we would like to evaluate the generalization performances of dif-

ferent methods on other data in addition to MSDialog. We train different models on

MSDialog and test them on the Ubuntu Dialog Corpus (UDC). We select the two

best performing feature based classifiers (random forest and AdaBoost) and the best

neural model (CNN-Context-Rep) to test the generalization performance. Although

the number of annotated Ubuntu dialogs is limited, it is sufficient to demonstrate the

predicting performance. We split the annotated UDC data into validation and test

sets with an equal size. We train the model on MSDialog data only and tune the

hyper-parameters on the UDC validation set. The performance on the UDC test set

is presented in Table 3.11.

The generalization results on UDC are not as good as that on MSDialog. Although

MSDialog and UDC both consist of multi-turn information-seeking dialogs from the

technical support domain, the drastically different language style adds difficulty for

model generalization and transferring. In this challenging setting, CNN-Context-
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Table 3.11: Testing performance on UDC of different models trained with MSDialog.
The significance test can only be performed on accuracy. ‡ means statistically signif-
icant difference over both strongest feature based baselines with p < 0.01 measured
by the Student’s paired t-test.

Methods Accuracy Precision Recall F1

Random Forest 0.4405 0.6781 0.4077 0.5092
AdaBoost 0.4430 0.5913 0.4187 0.4902
CNN-Context-Rep 0.4708‡ 0.5647 0.5129 0.5375

Rep still achieves statistically significant improvement over both baselines in terms

of accuracy with p < 0.01 measured by the Student’s paired t-test.

3.6.4 Hyper-parameter Sensitivity Analysis

We further analyze the impact of two hyper-parameters on CNN-Context-Rep: the

number of convolutional filters for the given utterance and the max sequence length.

The choices for number of convolutional filters are (64, 128, 256, 512, 1024). We tune

the max sequence length in (50, 100, 200, . . . , 1000). As presented in Figure 3.6,

the performance gradually increases as the number of filters increases. The best

performance is at 1,024 filters. This confirms our expectation that more convolutional

filters can extract richer features and thus produce better results. In addition, the

performance fluctuates as the max sequence length increases. Performance with larger

(> 800) max sequence length are better in general.

3.6.5 Case Study

Table 3.12 gives examples of the predictions that different systems fail to make.

In the first utterance, the agent asks for the user’s iOS version before providing a

potential answer, which is a very common pattern of agents’ responses. Our CNN-

Context-Rep is able to identify the Information Request in the utterance while Ad-

aBoost cannot. In the second utterance, both models fail to predict the Negative

Feedback. This might be due to the fact that the feedback is not explicitly expressed.
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Figure 3.6: Performance of CNN-Context-Rep with different number of convolutional
filters and max sequence length.

Table 3.12: Two utterances with their ground-truth and predicted user intent labels.
Bold font indicates mispredicted content or labels. “Ours” refers to CNN-Context-
Rep.

Hello. Welcome to Skype Community! Please provide us the iOS version of
your iPad. The required iOS version for iPad is iOS 8 or higher and for the new
Skype on iOS requires iOS 9 or higher. For more information, click here. Hope
this helps. Let me know if you need further assistance. Thank you!
Ground truth: IR, PA Ours: IR, PA AdaBoost: PA Actor: agent
After modified the Windows entry, value of regedit, the error also happened.
When I use C++ for creating another new Microsoft::Office::Interop::PowerPoint::
Application instance, the COMException is throwed.
Ground truth: FD, NF Ours: FD AdaBoost: FD Actor: user

In addition, it could be relevant that the number of feedback utterances in the train-

ing data is relatively limited compared to questions and answers, which makes it more

difficult to predict positive/negative feedback.

3.7 Summary

In this chapter, we first create and annotate a large multi-turn question answering

data for research in conversational search. We perform an in-depth characterization

and analysis of this data to gain insights on the distribution, co-occurrence and flow

pattern of user intent in information-seeking conversations. We then study two ap-
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proaches to predict user intent in information-seeking conversations. First we use

different ML methods with a rich feature set, including the content, structural, and

sentiment features. We perform thorough feature importance analysis on both group

level and individual level, which shows that structural features contribute most in

this prediction task. Given findings from feature analysis, we construct enhanced

neural classifiers to incorporate context information for user intent prediction. The

enhanced neural model without feature engineering outperforms the baseline models

by a large margin. Our findings can provide insights in the important factors of user

intent prediction in information-seeking conversations.
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CHAPTER 4

HISTORY MODELING FOR CONVERSATIONAL
QUESTION ANSWERING

4.1 Introduction

In two recent ConvQA datasets, QuAC (Choi et al., 2019) and CoQA (Reddy

et al., 2019), ConvQA is formalized as an answer span prediction problem similar

in SQuAD (Rajpurkar et al., 2016, 2018). Specifically, given a question, a passage,

and the conversation history preceding the question, the task is to predict a span in

the passage that answers the question. In contrast to typical machine comprehension

(MC) models, it is essential to make use of conversation history in this task. In this

chapter, we introduce a general framework to deal with conversation history in Con-

vQA, where a history selection module first selects helpful history turns and a history

modeling module then incorporates the selected turns. We then propose different

implementations of the history selection and modeling modules in this framework.

On the aspect of history selection, existing models (Choi et al., 2019; Reddy

et al., 2019) select conversation history with a simple heuristic that assumes imme-

diate previous turns are more helpful than others. This assumption, however, is not

necessarily true. Yatskar (2018) conducted a qualitative analysis on QuAC by ob-

serving 50 randomly sampled passages and their corresponding 302 questions. He

showed that 35.4% and 5.6% of questions have the dialog behaviors of topic shift and

topic return respectively. A topic shift suggests that the current question shifts to a

new topic, such as the Q3 in Table 1.1. While topic return means that the current

question is about a topic that has previously been shifted away from. For example,
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Q7 returns to the same topic in Q1 in Table 1.1. In both cases, the current question

is not directly relevant to immediate previous turns. It could be unhelpful or even

harmful to always incorporate immediate previous turns. Although we expect this

heuristic to work well in many cases where the current question is drilling down on

the topic being discussed, it might not work for topic shift or topic return. There is

no published work that focuses on learning to select or re-weight conversation history

turns. To address this issue, we propose a history attention mechanism (HAM) that

learns to attend to all available history turns with different weights. This method

increases the scope of candidate histories to include remote yet potentially helpful his-

tory turns. Meanwhile, it promotes useful history turns with large attention weights

and demotes unhelpful ones with small weights. More importantly, the history atten-

tion weights provide explainable interpretations to understand the model results and

thus can provide new insights in this task.

In addition, on the aspect of history modeling, some existing methods either sim-

ply prepend the selected history turns to the current question (Reddy et al., 2019; Zhu

et al., 2018) or use complicated recurrent structures to model the conversation his-

tory (Huang et al., 2019), generating relatively large system overhead. We introduce

a history answer embedding (HAE) method to incorporate the conversation history

to BERT in a natural way. Moreover, since the utility of a history utterance could

be related to its position, we propose to consider the position information in HAE,

resulting in a positional history answer embedding (PosHAE) method. We show that

position information plays an important role in conversation history modeling.

Furthermore, we introduce a new angle to tackle the problem of ConvQA. We

take advantage of multi-task learning (MTL) to do answer span prediction along with

another essential conversation task (dialog act prediction) using a uniform model

architecture. Dialog act prediction is necessary in ConvQA systems because dialog

acts can reveal crucial information about user intents and thus help the system pro-
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vide better answers. More importantly, by applying this multi-task learning scheme,

the model learns to produce more generic and expressive representations (Liu et al.,

2019a), due to additional supervising signals and the regularization effect when op-

timizing for multiple tasks. We show that these benefits have contributions to the

model performance for the dialog act prediction task.

In this work, we propose a novel solution to tackle ConvQA. We boost the per-

formance from three different angles, i.e., history selection, history modeling, and

multi-task learning. Our contributions can be summarized as follows:

1. To better conduct history selection, we introduce a history attention mechanism

to conduct a “soft selection” for conversation histories. This method attends to

history turns with different weights based on how helpful they are on answering

the current question. This method enjoys good explainability and can provide

new insights to the ConvQA task.

2. To enhance history modeling, we first propose a history answer embedding

method and then incorporate the history position information into history an-

swer embedding, resulting in a positional history answer embedding method.

Inspired by the latest breakthrough in language modeling, we leverage BERT

to jointly model the given question, passage and conversation history, where

BERT is adapted to a conversation setting.

3. To further improve the performance of ConvQA, we jointly learn answer span

prediction and dialog act prediction in a multi-task learning setting. We take

advantage of MTL to learn more generalizable representations.
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4. We conduct extensive experimental evaluations to demonstrate the effectiveness

of our model and to provide new insights for the ConvQA task. The implemen-

tation of our model has been open-sourced to the research community.1,2

4.2 Conversational Question Answering

4.2.1 Task Definition

The ConvQA task is defined as follows (Choi et al., 2019; Reddy et al., 2019).

Given a passage p, the k-th question qk in a conversation, and the conversation history

Hk preceding qk, the task is to answer qk by predicting an answer span ak within the

passage p. The conversation history Hk contains k− 1 turns, where the i-th turn Hi
k

contains a question qi and its groundtruth answer ai. Formally, Hk = {(qi, ai)}k−1i=1 .

One of the unique challenges of ConvQA is to leverage the conversation history to

understand and answer the current question.

Additionally, an important task relevant to conversation modeling is dialog act

prediction. QuAC (Choi et al., 2019) provides two dialog acts, namely, affirma-

tion (Yes/No) and continuation (Follow up). The affirmation dialog act va consists

of three possible labels: {yes, no, neither}. The continuation dialog act vc

also consists of three possible labels: {follow up, maybe follow up, don’t

follow up}. Each question is labeled with both dialog acts. The labels for each

dialog act are mutually exclusive. This dialog act prediction task is essentially two

sentence classification tasks. Therefore, a complete training instance is composed of

the model input (qk, p,Hk) and its ground truth labels (ak, vak , vck), where ak and vak , vck

are labels for answer span prediction and dialog act prediction respectively.

1https://github.com/prdwb/attentive_history_selection

2https://github.com/prdwb/bert_hae
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Figure 4.1: A general framework for ConvQA. Orange denotes model input and blue
denotes model components.

4.2.2 A ConvQA Framework

We present an abstract framework for ConvQA with modularized design in Fig-

ure 4.1. It consists of three major components, a ConvQA model, a history selection

module, and a history modeling module. In practice, the history modeling module can

be a mechanism inside the ConvQA model. Given a training instance (p, qk,Hk), the

history selection module chooses a subset of the history turns H′k that are expected to

be more helpful than others. The history modeling module then incorporates H′k into

the ConvQA model. If the history selection module is a learned policy, the ConvQA

model can generate a signal to guide its update. A variation of this framework is to

first model all available conversation history and then make selections.

4.2.3 Model Overview

In the following sections, we present our model that tackles the two tasks described

in Section 4.2.1 together.

Our proposed model consists of four components: an encoder, a history attention

module, an answer span predictor, and a dialog act predictor. The encoder is a BERT

model that encodes the question qk, the passage p, and conversation histories Hk into

contextualized representations. Then the history attention module learns to attend

to history turns with different weights and computes aggregated representations for

(qk, p,Hk) on a token level and a sequence level. Finally, the two prediction modules
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Figure 4.2: Our model consists of an encoder, a history attention module, an an-
swer span predictor, and a dialog act predictor. Given a training instance, we first
generate variations of this instance, where each variation contains the same question
and passage, with only one turn of conversation history. We use a sliding window
approach to split a long passage into “sub-passages” (p0 and p1) and use p0 for illus-
tration. The BERT encoder encodes the variations to contextualized representations
on both token level and sequence level. The sequence-level representations are used to
compute history attention weights. Alternatively, we propose a fine-grained history
attention approach as marked in red-dotted lines. Finally, answer span prediction
and dialog act predictions are conducted on the aggregated representations generated
by the history attention module.

make predictions based on the aggregated representations with a multi-task learning

setting.

In our architecture, history modeling is enabled in the BERT encoder, where

we model one history turn at a time. History selection is performed in the history

attention module in the form of “soft selection”. Figure 4.2 gives an overview of our

model. We illustrate each component in detail in the following sections.

4.2.4 Encoder

4.2.4.1 BERT Encoder

The encoder is a BERT model that encodes the question qk, the passage p, and

conversation histories Hk into contextualized representations. BERT is a pre-trained

language model that is designed to learn deep bidirectional representations using

transformers (Vaswani et al., 2017). Figure 4.3 gives an illustration of the encoder.

It zooms in to the encoder component in Figure 4.2. It reveals the encoding process

from an input sequence (the yellow-green row to the left of the encoder in Figure 4.2)
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to a contextualized representation (the pink-purple row to the right of the encoder in

Figure 4.2).

Given a training instance (qk, p,Hk), we first generate k − 1 variations of this

instance, where each variation contains the same question and passage, with only one

turn of conversation history. Formally, the i-th variation is denoted as (qk, p,H
i
k),

where Hi
k = (qi, ai). We follow the previous work (Devlin et al., 2019) and use a

sliding window approach to split long passages, and thus construct multiple input

sequences for a given instance variation. Suppose the passage is split into n pieces,3

the training instance (qk, p,Hk) would generate n(k−1) input sequences. We take the

k−1 input sequences corresponding to the first piece of the passage (still denoted as p

here for simplicity) for illustration here. As shown in Figure 4.3, we pack the question

qk and the passage p into one sequence. The input sequences are fed into BERT and

BERT generates contextualized token-level representations for each sequence based

on the embeddings for tokens, segments, positions, and a special (positional) history

answer embedding ((Pos)HAE). (Pos)HAE embeds the history answer ai into the

passage p since ai is essentially a span of p. We describe this method in the next

section.

The encoder can be formulated as a transformation function F (·) that takes in

a training instance variation and produces a hidden representation for it on a token

level, i.e., Ti
k = F (qk, p,H

i
k), where Ti

k ∈ RM×h is the token-level representation for

this instance variation. M is the sequence length, and h is the hidden size of the token

representation. Ti
k can also be represented as {tik(m)}Mm=1, where tik(m) ∈ Rh refers

to the representation of the m-th token in Ti
k. Instead of using separate encoders for

questions, passages, and histories in previous work (Zhu et al., 2018; Huang et al.,

3n = 2 in Figure 4.2
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Figure 4.3: The encoder with PosHAE. It zooms in to the encoder in Fig. 4.2. It re-
veals the encoding process (marked by the blue-dotted lines) from an input sequence
(the yellow-green row to the left of the encoder in Fig. 4.2) to contextualized rep-
resentations (the pink-purple row to the right of the encoder in Fig. 4.2). QTi/PTi

denote question/passage tokens. Suppose we are encoding (q6, p,H
2
6), E4 and E0 are

the history embeddings for tokens that are in and not in H2
6).

2019), we take advantage of BERT and PosHAE to model these different input types

jointly.

In addition, we also obtain a sequence-level representation sik ∈ Rh for each se-

quence. We take the representation of the [CLS] token, which is the first token of the

sequence, and pass it through a fully-connected layer that has h hidden units (Devlin

et al., 2019). That is, sik = tanh(tik(1) ·WCLS), where WCLS ∈ Rh×h is the weight

matrix for this dense layer. The bias term in this equation and following equations

are omitted for simplicity. This is a standard technique to obtain a sequence-level

representation in BERT. It is essentially a pooling method to remove the dimension of

sequence length. We also conduct experiments with average pooling and max pooling

on this dimension to achieve the same purpose.

4.2.4.2 History Answer Embedding

One important difference of MC and ConvQA lies in handling conversation his-

tory. Suppose we are given a subset of the conversation history chosen by the history

selection module for the current question. There are various ways to model the se-

lected history turns. The most intuitive way is to prepend the conversation history to

the current question (Reddy et al., 2019; Zhu et al., 2018). In this work, we propose
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a different approach to model the conversation history by giving tokens extra embed-

ding information. Specifically, a history answer embedding (HAE) layer is included in

addition to other embeddings. We learn two unique history answer embeddings that

denote whether a token is part of history answers or not. This introduces the conver-

sation history to BERT in a natural way. HAE modifies the embedding information

for a token and thus has influence on the token representation generated by BERT,

not only for this token but also for other tokens since BERT considers contextual

information. This process also improves the prediction of the answer span as shown

in the experiments. By representing conversation history with HAE, we turn an MC

model into a ConvQA model.

4.2.4.3 Positional History Answer Embedding

A commonly used history selection method is to select immediate previous turns.

The intuition is that the utility of a history utterance could be related to its position.

Therefore, we further propose to consider the position information in HAE, resulting

in a positional history answer embedding (PosHAE) method. The “position” refers to

the relative position of a history turn in terms of the current question.

Specifically, we first define a vocabulary of size I + 1 for PosHAE, denoted as

VPosHAE = {0, 1, . . . , I}, where I is the max number of history turns.4 Given the

current question qk and a history turn H i
k, we compute the relative position of H i

k

in terms of qk as k − i. This relative position corresponds to a vocabulary ID in

VPosHAE . We use the vocabulary ID 0 for the tokens that are not in the given history.

We then use a truncated normal distribution to initialize an embedding look up table

ET ∈ R|I+1|×h. We use VPosHAE to map each token to a history answer embedding

in ET. The history answer embeddings are learned. An example is illustrated in

Figure 4.3. In addition to introducing conversation history, PosHAE enhances HAE

4In QuAC, I = 11, which means a dialog has at most 11 history turns.

59



by incorporating position information of history turns. This enables the ConvQA

model to capture the spatial patterns of history answers in context.

4.2.5 History Attention Module

The core of the history attention module is a history attention mechanism (HAM).

The inputs of this module are the token-level and sequence-level representations for

all variations that are generated by the same training instance. The token-level

representation is denoted as Tk = {Ti
k}Ii=1, where Tk ∈ RI×M×h. Similarly, the

sequence-level representation is denoted as Sk = {sik}Ii=1, where Sk ∈ RI×h. The

first dimension of Tk and Sk are both I because they are always padded to the max

number of history turns. The padded parts are masked out. Tk and Sk are illustrated

in Figure 4.2 as the “Token-level” and “Seq-level Contextualized Rep” respectively.

The history attention network is a single-layer feed-forward network. We learn an

attention vector D ∈ Rh to map a sentence representation sik to a logit and use the

softmax function to compute probabilities across all sequences generated by the same

instance. Formally, the history attention weights are computed as follows.

wi =
eD·s

i
k∑I

i′=1 e
D·si′k

(4.1)

where wi is the history attention weight for sik. Let w = {wi}Ii=1. We compute

aggregated representations for Tk and Sk with w:

T̂k =
I∑

i=1

Ti
k · wi , ŝk =

I∑
i=1

sik · wi (4.2)

where T̂k ∈ RM×h and ŝk ∈ Rh are aggregated token-level and sequence-level represen-

tations respectively. The attention weights {wi}Ii=1 are computed on a sequence-level

and thus the tokens in the same sequence share the same weight. Intuitively, the his-

tory attention network attends to the variation representations with different weights
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and then each variation representation contributes to the aggregated representation

according to the utility of the history turn in this variation.

Alternatively, we develop a fine-grained history attention approach to compute

the attention weights. Instead of using sequence-level representations Sk as the input

for the attention network, we use the token-level ones. The token-level attention

input for the m-th token in the sequence is denoted as tk(m) = {tik(m)}Ii=1, where

tk(m) ∈ RI×h. This is marked as a column with red-dotted lines in Figure 4.2. Then

these attention weights are applied to tk(m) itself:

wi =
eD·t

i
k(m)∑I

i′=1 e
D·ti′k (m)

t̂k(m) =
I∑

i=1

tik(m) · wi

(4.3)

where t̂k(m) ∈ Rh is the aggregated token representation for the m-th token in this

sequence. Therefore, the aggregated token-level representation T̂k for this sequence is

{t̂k(m)}Mm=1. We show the process of computing the aggregated token representation

for one token, but the actual process is vectorized and paralleled for all tokens in this

sequence. Intuitively, this approach computes the attention weights given different

token representations for the same token but embedded with different history infor-

mation. These attention weights are on a token level and thus are more fine-grained

than those from the sequence-level representations.

In both granularity levels of history attention, we show the process of computing

attention weights for a single instance, but the actual process is vectorized for multiple

instances. Also, if the given question does not have history turns (i.e., the first

question of a conversation), it should bypass the history attention module. In practice,

this is equivalent to passing it though the history attention network since all the

attention weights will be applied to itself.
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4.2.6 Answer Span Prediction

Given the aggregated token-level representation T̂k produced by the history at-

tention network, we predict answer span by computing the probability of each token

being the begin token and the end token. Specifically, we learn two sets of parameters,

a begin vector and an end vector, to map a token representation to a logit. Then we

use the softmax function to compute probabilities across all tokens in this sequence.

Formally, let B ∈ Rh and E ∈ Rh be the begin vector and the end vector respectively.

The probabilities of this token being the begin token pBm and end token pEm are:

pBm =
eB·t̂k(m)∑M

m′=1 e
B·t̂k(m′)

, pEm =
eE·t̂k(m)∑M

m′=1 e
E·t̂k(m′)

(4.4)

We then compute the cross-entropy loss for answer span prediction:

LB = −
∑
M

1{m = mB} log pBm , LE = −
∑
M

1{m = mE} log pEm

Lans =
1

2
(LB + LE)

(4.5)

where tokens at positions of mB and mE are the ground truth begin token and end

token respectively, and 1{·} is an indicator function. LB and LE are the losses for

the begin token and end token respectively and Lans is the loss for answer span

prediction. For unanswerable questions, a “CANNOTANSWER” token is appended

to each passage in QuAC. The model learns to predict an answer span of this exact

token if it believes the question is unanswerable.

Invalid predictions, including the cases where the predicted span overlaps with

the question part of the sequence, or the end token comes before the begin token, are

discarded at testing time.

4.2.7 Dialog Act Prediction

Given the aggregated sequence-level representation ŝk for a training instance, we

learn two sets of parameters A ∈ R|Va|×h and C ∈ R|Vc|×h to predict the dialog act of
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affirmation and continuation respectively, where |Va| and |Vc| denote the number of

classes.5 Formally, the loss for dialog act prediction for affirmation is:

p(v|ŝk) =
eAv ·ŝk∑|Va|

v′=1 e
Av′ ·ŝk

LA = −
∑
v

1{v = vak} log p(v|ŝk)
(4.6)

where 1{·} is an indicator function to show whether the predicted label v is the

ground truth label vak , and Av ∈ Rh is the vector in A corresponding to v. The loss

LC for predicting the continuation dialog act vck is computed in the same way. We

make dialog act predictions independently based on the information of each single

training instance (qk, p,Hk). We do not model history dialog acts in the encoder for

this task.

4.2.8 Model Training

4.2.8.1 Batching

We implement an instance-aware batching approach to construct the batches for

BERT. This method guarantees that the variations generated by the same training

instance are always included in the same batch, so that the history attention module

operates on all available histories. In practice, a passage in a training instance can

produce multiple “sub-passages” (e.g., p0 and p1 in Figure 4.2) after applying the

sliding window approach (Devlin et al., 2019). This results in multiple “sub-instances”

(e.g. (qk, p0,H
i
k) and (qk, p1,H

i
k)), which are modeled separately and potentially in

different batches. This is because the “sub-passages” have overlaps to make sure that

every passage token has sufficient context so that they can be considered as different

passages.

5|Va| = 3 and |Vc| = 3 in QuAC.
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4.2.8.2 Training Loss and Multi-task Learning

We adopt the multi-task learning idea to jointly learn the answer span prediction

task and the dialog act prediction task. Both tasks make predictions based on the

aggregated representations produced by the history attention module. In other words,

the history attention is supervised partially by the answer span and partially by the

dialog act. All parameters are learned in an end-to-end manner. We use hyper-

parameters λ and µ to combine the losses for different tasks. That is,

L = µLans + λLA + λLC (4.7)

where L is the total training loss.

Multi-task learning has been shown to be effective for representation learning (Liu

et al., 2019a, 2015; Xu et al., 2018). There are two reasons behind this. 1) Our two

tasks provide more supervising signals to fine-tune the encoder. 2) Representation

learning benefits from a regularization effect by optimizing for multiple tasks. Al-

though BERT serves as a universal encoder by pre-training with a large amount of

unlabeled data, MTL is a complementing technology (Liu et al., 2019a) that makes

such representations more generic and transferable. More importantly, we can handle

two essential tasks in ConvQA, answer span prediction and dialog act prediction,

with a uniform model architecture.

4.3 Experiments

4.3.1 Data Description

We experiment with the QuAC (Question Answering in Context) dataset (Choi

et al., 2019). It is a large-scale dataset designed for modeling and understand-

ing information-seeking conversations. It contains interactive dialogs between an

information-seeker and an information-provider. The information-seeker tries to learn
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Table 4.1: Data statistics. We can only access the training and validation data.

Items Train Validation

# Dialogs 11,567 1,000
# Questions 83,568 7,354
# Average Tokens Per Passage 396.8 440.0
# Average Tokens Per Question 6.5 6.5
# Average Tokens Per Answer 15.1 12.3
# Average Questions Per Dialog 7.2 7.4
# Min/Avg/Med/Max History Turns Per Question 0/3.4/3/11 0/3.5/3/11

about a hidden Wikipedia passage by asking a sequence of freeform questions. She/he

only has access to the heading of the passage, simulating an information need. The

information-provider answers each question by providing a short span of the given

passage. One of the unique properties that distinguish QuAC from other dialog data

is that it comes with dialog acts. The information-provider uses dialog acts to provide

the seeker with feedback (e.g., “ask a follow up question”), which makes the dialogs

more productive (Choi et al., 2019). This dataset poses unique challenges because its

questions are more open-ended, sometimes unanswerable, or only meaningful within

the dialog context. More importantly, many questions have coreferences and interac-

tions with conversation history, making this dataset suitable for our task. We present

some statistics of the dataset in Table 4.1.

4.3.2 Experimental Setup

4.3.2.1 Competing Methods

We consider all methods with published papers on the QuAC leaderboard at the

time as baselines.6 To be specific, the competing methods are:

6The methods without published papers or descriptions are essentially done in parallel with ours
and may not be suitable for comparison since their model details are unknown. Besides, these works
could be using generic performance boosters, such as BERT-large, data augmentation, transfer
learning, or better training infrastructures.
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• BiDAF++ (Peters et al., 2018; Choi et al., 2019): BiDAF (Seo et al., 2016) is a

top-performing SQuAD model. It uses bi-directional attention flow mechanism

to obtain a query-aware context representation. BiDAF++ makes further aug-

mentations with self-attention (Gardner and Clark, 2018) and contextualized

embeddings.

• BiDAF++ w/ 2-Context (Choi et al., 2019): This model incorporates con-

versation history by modifying the passage and question embedding processes.

Specifically, it encodes the dialog turn number with the question embedding

and concatenates answer marker embeddings to the word embedding.

• FlowQA (Huang et al., 2019): This model incorporates conversation history by

integrating intermediate representation generated when answering the previous

question. Thus it is able to grasp the latent semantics of the conversation

history compared to shallow approaches that concatenate history turns.

• BERT: This is a BERT based machine comprehension model following Devlin

et al. (2019).

• BERT + Prepend History Turns: On top of BERT, we consider conver-

sation history by prepending history turn(s) to the current question. BERT

+ PHQA prepends both history questions and answers; BERT + PHA

prepends history answers only.

• BERT + HAE: On top of BERT, we use HAE to enable a seamless integration

of conversation history. This is designed to test the performance of HAE. We

set the max number of history turns to 6 since it gives the best performance

under this setting.

• BERT + PosHAE: We enhance the BERT + HAE model with the PosHAE

that we proposed. This method considers the position information of history
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turns and serves as a stronger baseline. We also set the max number of history

turns to 6.

• HAM (History Attention Mechanism): This is the solution we proposed in

Section 4.2. It employs PosHAE for history modeling, the history attention

mechanism for history selection, and the MTL scheme to optimize for both

answer span prediction and dialog act prediction tasks. We use the fine-grained

history attention in Equation 4.3. We use “HAM” as the model name since the

attentive history selection is the most important and effective component that

essentially defines the model architecture.

• HAM (BERT-Large): Due to the competing nature of the QuAC challenge,

we apply BERT-Large to HAM for a more informative evaluation. This is

more resource intensive. Other HAM models in this chapter are constructed

with BERT-Base for two reasons: 1) To alleviate the memory and training

efficiency issues caused by BERT-Large and thus speed up the experiments for

the research purpose. 2) To keep the settings consistent with other baselines

for fair and easy comparison.

4.3.2.2 Evaluation Metrics

The QuAC challenge provides two evaluation metrics, the word-level F1, and the

human equivalence score (HEQ) (Choi et al., 2019). The word-level F1 evaluates the

overlap of the prediction and the ground truth answer span. It is a classic metric

used in MC and ConvQA tasks (Rajpurkar et al., 2016; Reddy et al., 2019; Choi

et al., 2019). HEQ measures the percentage of examples for which system F1 exceeds

or matches human F1. Intuitively, this metric judges whether a system can provide

answers as good as an average human. This metric is computed on the question level

(HEQ-Q) and the dialog level (HEQ-D). In addition, the dialog act prediction task

is evaluated by accuracy.
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4.3.2.3 Implementation Details

Models are implemented in TensorFlow7 based on the SQuAD model on BERT.8

The version of the QuAC data we use is v0.2. We use the BERT-Base Uncased model

with the max sequence length set to 384. We train the ConvQA model with a Adam

weight decay optimizer with an initial learning rate of 3e-5. The warming up portion

for learning rate is 10%. We set the stride in the sliding window for passages to 128

and the max question length to 64. For BERT + PHQA/PHA/HAE/PosHAE, the

batch size is set to 12. For HAM, The batch size is 24. The total training step is set

to 30,000. Experiments are conducted on a single NVIDIA TESLA M40 GPU. λ and

µ for multi-task learning is set to 0.1 and 0.8 respectively for HAM.

4.3.3 Main Evaluation Results

We report the results on the validation and test sets in Table 4.2. Our best model

was evaluated officially by the QuAC challenge and the result is displayed on the

leaderboard.9 Since dialog act prediction is not the main task of this dataset, most

of the baseline methods do not perform this task.

We summarize our observations of the results as follows.

1. Incorporating conversation history significantly boosts the performance in Con-

vQA. This is true for both BiDAF++ and BERT-based models. This suggests

the importance of conversation history in the ConvQA task.

2. Our BERT-based ConvQA model outperforms BiDAF++. Furthermore, BERT

with any of the history modeling methods outperform BiDAF++ w/ 2-Context.

This shows the advantage of using BERT for ConvQA.

7https://www.tensorflow.org/

8https://github.com/google-research/bert/blob/master/run_squad.py

9http://quac.ai/
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Table 4.2: Evaluation results on QuAC. Models in a bold font are our implementa-
tions. Each cell displays val/test scores. Val result of BiDAF++, FlowQA are from
Choi et al. (2019) and Huang et al. (2019). Test results are from the QuAC leader-
board. ‡ means statistically significant improvement over the strongest baseline with
p < 0.05 tested by the Student’s paired t-test. We can only do significance test on F1
on the validation set. “–” means a result is not available and “N/A” means a result
is not applicable for this model. We set the max answer length to 30 wordpieces for
the second group and 40 for the third group.

Models F1 HEQ-Q HEQ-D Yes/No Follow up

BiDAF++ 51.8 / 50.2 45.3 / 43.3 2.0 / 2.2 86.4 / 85.4 59.7 / 59.0
BiDAF++ w/ 2-C 60.6 / 60.1 55.7 / 54.8 5.3 / 4.0 86.6 / 85.7 61.6 / 61.3
FlowQA 64.6 / 64.1 – / 59.6 – / 5.8 N/A N/A
BERT 54.4 / – 48.9 / – 2.9 / – N/A N/A
BERT + PHQA 62.0 / – 57.5 / – 5.4 / – N/A N/A
BERT + PHA 61.8 / – 57.5 / – 4.7 / – N/A N/A
BERT + HAE 63.1 / 62.4 58.6 / 57.8 6.0 / 5.1 N/A N/A
BERT + HAE 63.9 / – 59.7 / – 5.9 / – N/A N/A
BERT + PosHAE 64.7 / – 60.7 / – 6.0 / – N/A N/A
HAM 65.7‡ / 64.4 62.1 / 60.2 7.3 / 6.1 88.3 / 88.4 62.3 / 61.7
HAM (Large) 66.7‡ / 65.4 63.3 / 61.8 9.5 / 6.7 88.2 / 88.2 62.4 / 61.0

3. Prepending history turns with PHQA and PHA are both effective. The fact

that they achieve similar performance suggests that history questions contribute

little to the performance. This verifies our observation of the data that most

follow-up questions are relevant to history answers.

4. Our HAE approach achieves better performance than simply prepending his-

tory turns. This indicates that HAE is more effective in modeling conversation

history when the length of the input sequence is limited.

5. BERT + PosHAE brings a significant improvement compared with BERT +

HAE, achieving the best results among baselines. This suggests that the posi-

tion information plays an important role in conversation history modeling with

history answer embedding. This shows the effectiveness of this conceptually

simple idea of modeling conversation history in BERT with PosHAE.
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6. Our model HAM obtains statistically significant improvements over BERT +

PosHAE, the strongest baseline, with p < 0.05 tested by the Student’s paired

t-test. These results demonstrate the effectiveness of our method.

7. Our model HAM also achieves a substantially higher performance on dialog act

prediction compared to baseline methods, showing the strength of our model

on both tasks. We can only do significance test on F1. We are unable to do

a significance test on dialog act prediction because the prediction results of

BiDAF++ is not available. In addition, the sequence-level representations of

HAM are obtained with max pooling. We see no major differences when using

different pooling methods.

8. Applying BERT-Large to HAM brings a substantial improvement to answer

span prediction, suggesting that a more powerful encoder can boost the perfor-

mance.

4.3.4 Ablation Analysis

Section 4.3.3 shows the effectiveness of our model. This performance is closely

related to several design choices. So we conduct an ablation analysis to investigate

the contributions of each design choice by removing or replacing the corresponding

component in the complete HAM model. Specifically, we have four settings as follows.

• HAM w/o Fine-grained (F-g) History attention. We use the sequence-level

history attention (Equation 4.1 and 4.2) instead of the fine-grained history attention

(Equation 4.3).

• HAM w/o History Attention. We do not learn any form of history attention.

Instead, we override the history attention module to always produce equal weights.

Note that this is not equivalent to “BERT + PosHAE”. “BERT + PosHAE” in-

corporates the selected history turns in a single input sequence and relies on the
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encoder to work out the importance of these history turns. The architecture we

illustrated in Figure 4.2 models each history turn separately and capture their im-

portance by the history attention mechanism explicitly, which is a more direct and

explainable way. Therefore, even when we disable the history attention module, it

is not equivalent to “BERT + PosHAE”.

• HAM w/o PosHAE. We use HAE instead of the PosHAE we proposed in Sec-

tion 4.2.4.3.

• HAM w/o MTL. Our multi-task learning scheme consists of two tasks, an answer

span prediction task and a dialog act prediction task. Therefore, to evaluate the

contribution of MTL, we further design two settings: (1) In HAM w/o Dialog

Act Prediction, we set µ = 1 and λ = 0 in Equation 4.7 to block the parameter

updates from dialog act prediction. (2) In HAM w/o Answer Span Prediction,

we set µ = 0 in Equation 4.7 and thus block the updates caused by answer span

prediction. We tune λ in (0.2, 0.4, 0.6, 0.8) in Equation 4.7 and try different

pooling methods to obtain the sequence-level representations. We finally adopt

λ = 0.2 and average pooling since they give the best performance. We consider

these two ablation settings to fully control the factors in our experiments and thus

precisely capture the differences in the representation learning caused by different

tasks.

The ablation results on the validation set are presented in Table 4.3. The following

are our observations.

1. By replacing the fine-grained history attention with sequence-level history atten-

tion, we observe a performance drop. This shows the effectiveness of computing

history attention weights on a token level. This is intuitive because these weights

are specifically tailored for the given token and thus can better capture the history

information embedded in the token representations.
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Table 4.3: Results for ablation analysis. These results are obtained on the validation
set since the test set is hidden for official evaluation only. “w/o” means to remove or
replace the corresponding component. † means statistically significant performance
decrease compared to the complete HAM model with p < 0.05 tested by the Student’s
paired t-test. We can only do significance test on F1 and dialog act accuracy.

Models F1 HEQ-Q HEQ-D Yes/No Follow up

HAM 65.7 62.1 7.3 88.3 62.3
w/o F-g History Attention 64.9† 61.0 7.1 88.4 62.1
w/o History Attention 61.1† 57.2 6.4 87.9 60.5†
w/o PosHAE 64.2† 60.0 7.3 88.6 62.1
w/o Dialog Act Prediction 65.9 62.2 8.2 N/A N/A
w/o Answer Span Prediction N/A N/A N/A 86.2† 59.7†

2. When we disable the history attention module, we notice the performance drops

dramatically by 4.6% and 3.8% compared with HAM and “HAM w/o F-g His-

tory Attention” respectively. This indicates that the history attention mechanism,

regardless of granularity, can attend to conversation histories according to their

importance. Disabling history attention also hurts the performance for dialog act

prediction.

3. Replacing PosHAE with HAE also witnesses a major drop in model performance.

This again shows the importance of history position information in modeling con-

versation history.

4. When we remove the dialog act prediction task, we observe that the performance

for answer span prediction has a slight and insignificant increase. This suggests that

dialog act prediction does not contribute to the representation learning for answer

span prediction. Since dialog act prediction is a secondary task in our setting, its

loss is scaled down and thus could have a limited impact on the optimization for the

encoder. Although the performance for our main model is slightly lower on answer

span prediction, it can handle both answer span prediction and dialog prediction

tasks in a uniform way.
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5. On the contrary, when we remove the answer span prediction task, we observe a

relatively large performance drop for dialog act prediction. This indicates that

the additional supervising signals from answer span prediction can indeed help

the encoder to produce a more generic representation that benefits the dialog act

prediction task. In addition, the encoder could also benefit from a regularization

effect because it is optimized for two different tasks, and thus, alleviates overfit-

ting. Although the multi-task learning scheme does not contribute to answer span

prediction, we show that it is beneficial to dialog act prediction.

4.3.5 Case Study and Attention Visualization

One of the major advantages of our model is its explainability of history attention.

In this section, we present a case study that visualizes the history attention weights

predicted by our model.

In Chapter 3, we observe that follow up questions is one of the most important user

intents in information-seeking conversations. Yatskar (2018) further described three

history-related dialog behaviors that can be considered as a fine-grained taxonomy

of follow up questions. We use these definitions to interpret the attention weights.

These dialog behaviors are as follow.

• Drill down: the current question is a request for more information about a

topic being discussed.

• Topic shift: the current question is not immediately relevant to something

previously discussed.

• Topic return: the current question is asking about a topic again after it had

previously been shifted away from.

We keep records of the attention weights generated at testing time on the vali-

dation data. We use a sliding window approach to split long passages as mentioned
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in Section 4.2.4.1. However, we specifically choose short passages that can be put

in a single input sequence for easier visualization. The attention weights obtained

from our fine-grained history attention model are visualized in Figure 4.4 and the

corresponding dialogs are presented in Table 4.4.

Our history attention weights are computed on the token level. We observe that

salient tokens are typically in the corresponding history answer in the passage. This

suggests that our model learns to attend to tokens that carry history information.

These tokens also bring some attention weights to other tokens that are not in the

history answer since the token representations are contextualized. Although each

history turn has an answer, the weights vary to reflect the importance of the history

information.

We further interpret the attention weights with examples for different dialog be-

haviors. First, Table 4.4a shows that the current question is drilling down on more

relevant information on the topic being discussed. In this case, the current question

is closely related to its immediate previous turns. We observe in Figure 4.4a that our

model can attend to these turns properly with greater weights assigned to the most

immediate previous turn. Second, in the topic shift scenario presented in Table 4.4b

and Figure 4.4b, the current question is not immediately relevant to its preceding his-

tory turns. Therefore, the attention weights are distributed relatively evenly across

history turns. Third, as shown in Table 4.4c and Figure 4.4c, the first turn talks about

the topic of musical career while the following turns shift away from this topic. The

information-seeker returns to musical career in the current turn. In this case, the most

important history turn to consider is the most remote one from the current question.

Our model learns to attend to certain tokens in the first turn with larger weights,

suggesting that the model could capture the topic return phenomenon. Moreover, we

observe that the model does not attend to the passage token of “CANNOTANSWER”,

further indicating that it can identify useful history answers.
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(c) Topic return

Figure 4.4: Attention visualization for different dialog behaviors. Brighter spots mean
higher attention weights. Token ID refers to the token position in an input sequence.
A sequence contains 384 tokens. Relative history position refers to the difference of
the current turn # with a history turn #. The selected examples are all in the 7th
turn. These figures are best viewed in color.

4.4 Summary

In this chapter, we propose a novel model for ConvQA. We introduce a history at-

tention mechanism to conduct a “soft selection” for conversation histories. We show

that our model can capture the utility of history turns. In addition, we propose

the history answer embedding method and enhance it by incorporating the position

information for history turns. We show that history position information plays an

important role in conversation history modeling. Finally, we propose to jointly learn

answer span prediction and dialog act prediction with a uniform model architecture

in a multi-task learning setting. Our extensive experimental evaluations have demon-

strated the effectiveness of our model.
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Table 4.4: QuAC dialogs that correspond to the dialog behaviors in Fig. 4.4. The
examples are all in the 7th turn. “#” refers to the relative history position, which
means “0” is the current turn and “6” is the most remote turn from the current turn.
Each turn has a question and an answer, with the answer in italic. Co-references and
related terms are marked in the same color.

(a) Drill down

# Utterance

6 When did Ride leave NASA?
In 1987, Ride left ... to work at ...

5 What did she do at ...?
International Security ...

4 How long was she there?
In 1989, she became a professor ...

3 Was she successful as a professor?
CANNOTANSWER

2 Did she have any other professions?
Ride led two ... programs for ...

1 What was involved in the programs?
The programs allowed ...

0 What did she do after this?
To be predicted ...

(b) Topic shift

# Utterance

6 When did the Greatest Hits come out
beginning of 2004

5 What songs were on the album
... “I Promised Myself” ...

4 Was the album popular
... became another top-two hit ...

3 Did it win any awards
CANNOTANSWER

2 Why did they release this
... released in selected European ...

1 Did they tour with this album?
the band finished their tour

0
... interesting aspects about this article?
To be predicted ...

(c) Topic return

# Utterance

6 What is ... about Lorrie’s musical career?
... she signed with ... her first album ...

5 What songs are included in the album?
CANNOTANSWER

4 ... interesting aspects about this article?
made her first appearance ... at age 13,

3 What did she do after her first appearance?
... she ... began leading the group ...

2 What important work did she do ...?
leading the group through ...

1 What songs did she played with the group?
CANNOTANSWER

0 ... interesting aspects of her musical career?
To be predicted ...
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CHAPTER 5

HISTORY MODELING FOR OPEN-RETRIEVAL
CONVERSATIONAL QUESTION ANSWERING

5.1 Introduction

We illustrate the importance of ORConvQA by characterizing the task and dis-

cussing the considerations of an ORConvQA dataset as follows. A comparison be-

tween ORConvQA and related tasks is presented in Table 5.1.

1. Open-retrieval. This is a defining property of ORConvQA. In recent ConvQA

datasets (Choi et al., 2019; Reddy et al., 2019), the ConvQA task is formulated as a

conversational machine comprehension (MC) problem with the goal being to extract

or generate an answer from a given gold passage. This setting can be impractical in

real-world applications since the gold passage is not always available, or there could

be no ground truth answer in the given passage. Instead of being given the passage,

a ConvQA system should be able to retrieve candidate passages from a collection.

In particular, it is desirable if this retriever is learnable and can be fine-tuned on

the downstream ConvQA task, instead of adopting fixed heuristic retrieval functions

like TF-IDF or BM25. Moreover, the retrieval process should be open in terms of

retrieving from a large collection instead of reranking a small number of passages in

a closed set.

2. Conversational. Being conversational reflects the interactive nature of a

search activity. The important problem of user interaction modeling in IR can be

formulated as conversation history modeling in this scenario.

3. Information-seeking. An information-seeking conversation typically requires

multiple turns of information exchange to allow the seeker to clarify an information
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Table 5.1: Comparison of selected QA tasks on the dimensions of open-retrieval (OR),
conversational (Conv), information-seeking (IS), and whether motivated by genuine
information needs (GIN). The symbol “-” suggests a mixed situation.

Task & Example Data OR Conv IS GIN

Open-Retrieval QA (Lee et al., 2019b; Das et al., 2019) 3 7 - -
Response Ranking w/ UDC (Lowe et al., 2015; Yang et al., 2018) 7 3 3 3
Conversational MC w/ CoQA (Zhu et al., 2018; Chen et al., 2019a) 7 3 - 7
Conversational MC w/ QuAC (Huang et al., 2019) 7 3 3 3
ORConvQA w/ OR-QuAC (this chapter) 3 3 3 3

need, provide feedback, and ask follow up questions. In this process, answers are

revealed to the seeker through a sequence of interactions between the seeker and the

provider. These answers are generally longer than the entity-based answers in factoid

QA.

4. Genuine information needs. An information-seeking conversation is closer

to real-world scenarios if the seeker is genuinely seeking an answer. In SQuAD (Ra-

jpurkar et al., 2016), the seekers’ information needs are not genuine because they

have access to the passage and thus have the target answer in mind when asking the

question. These questions are referred to as “back-written questions” (Ahmad et al.,

2019a) and have been reported to have more lexical overlap with their answers in

SQuAD (Ahmad et al., 2019a). This undesirable property makes the models learned

from such datasets less practical.

To the best of our knowledge, there has not been a publicly available dataset

that satisfies all the properties we discussed as shown in Table 5.1. We address this

issue by aggregating existing data to create the OR-QuAC dataset. The QuAC (Choi

et al., 2019) dataset offers information-seeking conversations that are collected with

no seekers’ prior knowledge of the passages. We extend QuAC to an open-retrieval

setting by creating a collection of over 11 million passages using the whole Wikipedia

corpus. Another important resource used in our aggregation process is the CANARD

dataset (Elgohary et al., 2019) that offers context-independent rewrites of QuAC
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questions. Some initial questions in QuAC conversations are underspecified. This

makes conversation difficult to interpret in an open-retrieval setting. We make these

dialogs self-contained by replacing the initial question in a conversation with its

rewrite from CANARD. Our data has 5,644 dialogs with 40,527 questions. We have

released OR-QuAC to the community to facilitate research on ORConvQA.1

In addition to proposing ORConvQA and creating the OR-QuAC dataset, we

develop a system for ORConvQA following previous work on open-retrieval QA (Lee

et al., 2019b). Our end-to-end system features a retriever, a reranker, and a reader

that are all based on Transformers (Vaswani et al., 2017). We enable history modeling

in all components by concatenating history questions to the current question. The

passage retriever first retrieves the top K passages from the collection given a question

and its history. The reranker and reader then rerank and read the top passages to

produce an answer. The training process contains two phases, a pretraining phase for

the retriever and a concurrent learning phase for all system components.

Specifically, our retriever adopts a dual-encoder architecture (Ahmad et al., 2019a;

Lee et al., 2019b; Das et al., 2019; Karpukhin et al., 2020; Xiong et al., 2020; Luan

et al., 2020; Guu et al., 2020) that uses separate ALBERT (Lan et al., 2019) encoders

for questions and passages. The question encoder also encodes conversation history.

After being pretrained, the passage encoder is frozen and encodes all passages in the

collection offline. The reranker and the reader share the same BERT (Devlin et al.,

2019) encoder. It encodes the input sequence of a concatenation of the question,

history, and each retrieved passage to contextualized representations for reranking

and answer extraction. We incorporate shared-normalization (Gardner and Clark,

2018) in our system to enable comparison among the candidate passages. In the

concurrent learning phase, we encode the question and the history to dense vectors

1https://ciir.cs.umass.edu/downloads/ORConvQA/
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with the question encoder for an efficient retrieval with maximum inner product search

(MIPS) (Shrivastava and Li, 2014; Johnson et al., 2019). The top retrieved passages

are fed to the reranker and reader for a concurrent learning of all model components.

The open-retrieval setting presents challenges to training the ConvQA system.

We study both full supervision and weak supervision approaches for training. In the

fully-supervised setting, we encourage the model to find the gold passage that comes

with the dataset and extract an answer from it by manually including the gold pas-

sage in the retrieval results during training. We conduct extensive experiments on

our OR-QuAC dataset. First, we show that our system without any history informa-

tion has comparable performance with a conversational version of BERTserini (Yang

et al., 2019b) that considers history. This improvement demonstrates the importance

of a learnable retriever in ORConvQA. We further show that our system can make

a substantial improvement when we enable history modeling in all system compo-

nents. Moreover, we conduct in-depth analyses on model ablation and configuration

to provide insights for the ORConvQA task. We show that our reranker compo-

nent contributes to the model performance by providing a regularization effect. We

also demonstrate that the initial question of each dialog is crucial for our system to

understand the user’s information need.

This full supervision approach discussed above may not be sufficient for some

real-world applications since gold passages are not always be available. Therefore,

we further conduct study on weak supervision approaches for training a ORConvQA

system. Within the scope of weak supervision, previous work (Chen et al., 2017;

Lee et al., 2019b; Das et al., 2019) identify weak answers in the retrieval results by

finding a span that is an exact match to the known answer. We argue that the

effectiveness of this span-match weak supervision approach is contingent on having

only span answers that are either short, or extractive spans of a retrieved passage.

In information-seeking conversations, however, answers can be relatively long and are
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not necessarily strict spans of any passage. These freeform answers can be challenging

to handle for span-match weak supervision.

Therefore we introduce a learned weak supervision approach that can identify a

paraphrased span of the known answer in a retrieved passage as the weak answer.

Our method is more flexible than span-match weak supervision since it can handle

both span answers and freeform answers. Moreover, our method is less demanding

on the retriever because it can discover weak answers even when the retriever fails

to retrieve any passage that contains an exact match of the known answer. By using

a weakly-supervised training approach, our ConvQA system can discover answers in

passages beyond the gold ones and thus can potentially leverage various knowledge

sources. In other words, our learned weak supervision approach makes it possible

for an ORConvQA system to be trained on natural conversations that can have long

and freeform answers. The choice of the passage collection is no longer a part of the

task definition. We can potentially combine different knowledge sources with these

conversations since the weak answers can be discovered automatically.

Our learned weak supervisor is based on Transformers (Vaswani et al., 2017). Due

to the lack of training data to learn this module, we propose a novel training method

for the learned weak supervisor by leveraging a diverse paraphraser (Krishna et al.,

2020) to generate the training data. Once the learned weak supervisor is trained, it

is frozen and used to facilitate the training of the ORConvQA model.

In addition to continuing using OR-QuAC as an example for span answers, we

further extend CoQA (Reddy et al., 2019) to an open-retrieval setting to evaluate our

approach on freeform answers. We show that although a span-match weak supervisor

can handle conversations with span answers, it is not sufficient for those with freeform

answers. For more natural conversations with freeform answers, we demonstrate that

our learned weak supervisor can outperform span match, proving the capability of our

method in dealing with freeform answers. Moreover, by combining our learned weak
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Figure 5.1: Architecture of our end-to-end ORConvQA model. The input is the
current question qk, all history questions {qi}k−1i=1 , and a history window size w. The
retriever first retrieves top-K passages from the collection and generates retriever
scores Srt. The reranker and reader then rerank and read the top passages to produce
an answer span for each passage and generate reranker and reader scores, Srr and Srd.
The system outputs the answer span with the highest overall score S.

supervisor with span match, the system has a significant improvement over using

any one of the methods alone, indicating these two methods complement each other.

Finally, we perform in-depth quantitative and qualitative analyses to provide more

insight into weakly-supervised ORConvQA. Our data and model implementations are

available for research purposes.2,3

5.2 Fully-supervised Open-retrieval Conversational QA

5.2.1 Our Approach

In this section, we first formally define the task of open-retrieval conversational

QA. We then describe our end-to-end system that deals with this task and explain

the intuitions behind it.

2https://github.com/prdwb/orconvqa-release

3https://github.com/prdwb/ws-orconvqa
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5.2.1.1 Task Definition

The ORConvQA task is defined as follows. Given the k-th question qk in a con-

versation, and all history questions {qi}k−1i=1 preceding qk, the task is to predict an

answer ak for qk using a passage collection C. In an extractive setting, ak is a text

span of a passage in C.

Extractive models are trained on the supervision signals of the position of a span

in the gold passage. In this section, we adopt a fully-supervised setting as the first

step: we assume we have access to gold passages so that we can include them if they

are not present in the retrieval results and use the ground-truth answer spans. This is

done at training time only. Although this is a limitation, it does not conflict with the

learnable retriever we promote. We will further present our work on weak supervision

methods in Section 5.3.

5.2.1.2 Model Overview

We now present an end-to-end system that deals with the ORConvQA task de-

scribed in Section 5.2.1.1. Our system consists of three major components, a passage

retriever, a passage reranker, and a passage reader. The reranker and reader are based

on the same encoder. All components are learnable. As described in Figure 5.1, the

passage retriever first retrieves top-K passages from the collection given a question

and its history. The passage reranker and reader then rerank and read the top pas-

sages to produce an answer. History modeling is enabled in all components. We will

describe each component in detail in the following sections.

5.2.1.3 Passage Retriever

We present the retriever module in the upper-left part of Figure 5.1. We follow

previous research (Ahmad et al., 2019a; Lee et al., 2019b; Das et al., 2019) by using a

dual-encoder architecture to construct a learnable retriever. This architecture features

separated encoders for questions and passages. The retriever score is then defined
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as the dot product of the hidden representations of a question and a passage. We

use two ALBERT (Lan et al., 2019) models for both encoders. ALBERT is a lite

BERT (Devlin et al., 2019) model for learning bidirectional language representations

from Transformers (Vaswani et al., 2017). It reduces the parameters of BERT by

cross-layer parameter sharing and embedding parameters factorization (Lan et al.,

2019).

Given all available history questions {qi}k−1i=1 , we first identify those that are in a

history window with the size w. These questions are denoted as {qi}k−1i=k−w. We then

construct a concatenation of {qi}k−1i=k−w and qk. We prepend the initial question q1 of

the conversation to the concatenation if q1 is not already included. The initial question

q1 typically contains an information need that is pertinent to the entire conversation as

explained in Section 5.2.2.1. The reformatted question for the retriever is denoted as

qrtk . For an ALBERT based question encoder, the input sequence would be “[CLS] q1

[SEP] qk−w [SEP] · · · [SEP] qk−1[SEP] qk [SEP]”. All questions are in the same

segment. [CLS] and [SEP] are special tokens introduced in BERT (Devlin et al.,

2019). We then take the [CLS] representation and project it to a 128-dimensional

vector as the question representation following Lee et al. (2019b). Formally,

vq = Wq ALBERTq(q
rt
k )[CLS] (5.1)

where ALBERTq is the question encoder, Wq is the projection matrix for the question

[CLS] representation, and vq ∈ R1×128 is the final question representation enhanced

with history information. We then follow the same scheme to obtain the passage

representation for a passage pj:

vp = Wp ALBERTp(pj)[CLS] (5.2)
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where pj is a passage in the collection, ALBERTp is the passage encoder, Wp is the

projection matrix for the passage [CLS] representation, and vp ∈ R1×128 is the final

passage representation. Finally, the retrieval score is computed as

Srt(q
rt
k , pj) = vqv

>
p

(5.3)

5.2.1.4 Passage Reader/Reranker

Given the current question qk, history questions {qi}k−1i=1 , the history window size

w, and one of the retrieved passages pj, the passage reader predicts an answer span

within the passage. In contrast to Lee et al. (2019b) and Yang et al. (2019b), we

introduce reranking into this process with little additional cost. Our reader mostly

follows the standard architecture of a BERT based MC model (Devlin et al., 2019).

We enhance this model by applying the shared-normalization mechanism proposed

by Gardner and Clark (2018) to enable comparison across all retrieved passages for

a question. Similar mechanisms are also adopted by Lee et al. (2019b).

Encoder. The reader and reranker share the same BERT encoder. Similar to the

retriever, we first construct a reformatted question by concatenating history questions

within a history window and the current question. We do not additionally prepend

the initial question because the conversation is considered to be grounded to pj.

The reformatted question for the reader is denoted as qrdk . We then concatenate a

retrieved passage to form the input sequence for the BERT model. Specifically, the

input sequence (qrdk , pj) is “[CLS] qk−w [SEP] · · · [SEP] qk−1[SEP] qk [SEP]

pj [SEP]”, with qrdk and pj in different segments. The BERT model then generates

contextualized representations for all tokens in the input sequence:

v[m] = BERT((qrdk , pj))[m] (5.4)
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where v[m] is the representation for the m-th token in the input sequence. We also

need the sequence representation obtained by

v[CLS] = W[CLS] BERT((qrdk , pj))[CLS] (5.5)

where W[CLS] is a projection for the [CLS] representation to obtain the sequence

representation v[CLS] following Devlin et al. (2019).

Reranker. As shown in Figure 5.1. The reranker components conduct a listwise

reranking of the top retrieved passages. The reranking task provides more supervision

signals to fine-tune the BERT encoder. The representation learning of the encoder

also benefits from a regularization effect for optimizing for multiple tasks. Moreover,

the reranking task adds little additional cost to the training process because represen-

tations for all tokens, including the [CLS] token, are generated with vectorization in

a Transformer architecture. Specifically, we learn a reranking vector Wrr to project

the sequence representation v[CLS] to a reranking score Srr:

Srr(q
rd
k , pj) = Wrrv[CLS] (5.6)

Reader. The reader predicts an answer span by computing scores of each token

being the start token and the end token. We learn two sets of parameters, a start

vector Ws and an end vector We, to project token representations to start and end

scores:

Ss(q
rd
k , pj,[m]) = Wsv[m] , Se(q

rd
k , pj,[m]) = Wev[m] (5.7)

where Ss(q
rd
k , pj,[m]) and Se(q

rd
k , pj,[m]) are the scores for the m-th token being the

start and end tokens of the answer span. The reader score and overall score will be

computed at inference time in Section 5.2.1.6.
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Figure 5.2: Retriever pretraining.

5.2.1.5 Training

Our training procedure contains two phases. The first is the retriever pretraining

phase, followed by the concurrent learning phase of the retriever (question encoder),

reranker, and reader.

Retriever Pretraining. We follow previous work (Lee et al., 2019b) to pretrain

the retriever so that it gives a reasonable performance in the concurrent learning

phase.

In Section 5.2.1.3, we mentioned that history modeling is enabled in the retriever

by prepending history questions. The history window size w is a hyper-parameter

and is tunable. In the pretraining phase, however, we would like to train a uniform

retriever for every single history window size. Therefore, we use the rewrite in CA-

NARD qrwi as the reformatted question for a question qi in the pretraining phase. We

will mitigate the question mismatch issue by fine-tuning the question encoder in the

concurrent learning phase.

The pretraining process of the retriever is described in Figure 5.2. Given a batch

of N question representations Vq ∈ RN×128 and their gold passage representations

Vp ∈ RN×128, we obtain the retrieval scores for the batch by

Srt(Vq, Vp) = VqV
>
p (5.8)

where Srt(Vq, Vp) ∈ RN×N . The element Si,j in the i-th row and j-th column of

Srt(Vq, Vp) represents Srt(q
rw
i , pj). The objective is to maximize the probability of the

gold passage for each question:
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Prt(pj|qrwi ) =
exp (Srt(q

rw
i , pj))∑N

j′=1 exp (Srt(qrwi , pj′))
(5.9)

In other words, the passage set {pj}Nj=1 − {pi} is considered as randomly sampled

negative passages for qi. The pretraining loss for this batch is then defined as follows.

Lpretrain = − 1

N

N∑
i=1

N∑
j=1

1{j = i} logPrt(pj|qrwi ) (5.10)

Lee et al. (2019b) suggest that it is crucial to set the batch size N to a large number

because it makes the pretraining task more difficult and closer to what the retriever

observes at test time. Therefore, we use two ALBERT models as the question encoder

and the passage encoder. This doubles the batch size compared to that of using BERT

models. The ALBERT models are fine-tuned.

We then encode all passages in the collection C offline with the passage encoder

and obtain a set of passage vectors. Finally, we use Faiss4, a library for efficient sim-

ilarity search of dense vectors, to create an index for maximum inner product search.

Retrieval is performed on a GPU during concurrent learning for faster training.

Concurrent Learning of the Retriever, Reranker, and Reader. As indi-

cated in Figure 5.1, given the current question qk, the history questions {qi}k−1i=1 , and

the history window size w, we obtain the reformatted question for the retriever qrtk and

the reader qrdk . We first obtain the question representation of qrtk using the question

encoder in Equation 5.1. We then retrieve the top Krd passages for the reader from

the passage collection using the index we created offline. This set of top passages

is denoted as TKrd. The number of negative samples for retriever is limited by the

CUDA memory in the retriever pretraining phase. In the concurrent learning phase,

we can use a relatively large amount of negative samples to fine-tune the retriever at

a low cost since all passages have been encoded offline. Therefore, we also retrieve

4https://github.com/facebookresearch/faiss
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the top Krt passages, where Krt > Krd, for an aggressive update of the retriever

following Lee et al. (2019b). This set of passages is denoted as TKrt. If the gold

passage of qk is not present in TKrt or TKrd, we manually include it in the retrieval

results. Formally, the retriever loss to fine-tune the question encoder in the retriever

is defined as follows.

Lrt = −
∑

pj∈TKrt

1{j = jrt} logPrt(pj|qrtk ) (5.11)

where jrt is the position of the gold passage in TKrt.

Passages in TKrd are then fed into the reader/reranker module. This module

conducts reading and reranking simultaneously. For every passage pj ∈ TKrd, we

obtain a reranking score Srr(q
rd
k , pj) following Equation 5.6. We then compute the

reranking probability and the reranking loss as follows.

Prr(pj|qrdk ) =
exp (Srr(q

rd
k , pj))∑

pj′∈TKrd
exp (Srr(qrdk , pj′))

(5.12)

Lrr = −
∑

pj∈TKrd

1{j = jrd} logPrr(pj|qrdk ) (5.13)

where jrd is the position of the gold passage in TKrd.

For the reader component, a standard BERT based machine comprehension model

uses the cross entropy loss to maximize the probability of the true start and end

tokens among all tokens in the given passage. Different from that, we apply the

shared-normalization mechanism (Gardner and Clark, 2018) to this step to maximize

the probabilities of the true start and end tokens among all tokens from TKrd. This

makes the model produce start and end scores that are comparable across passages.

The passages are encoded independently, and the shared-normalization is applied

to all passages at the last step. For a passage pj ∈ TKrd, we obtain a start score
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Ss(q
rd
k , pj,[m]) for every token [m] in the input sequence. The training loss for the

start token is then defined as follows.

Ps(q
rd
k , pj,[m]) =

exp (Ss(q
rd
k , pj,[m]))∑

pj′∈TKrd

∑
[m’]∈(qrdk , pj′ )

exp (Ss(qrdk , pj′ ,[m’]))
(5.14)

Ls = −
∑

pj∈TKrd

∑
[m]∈(qrdk , pj)

1{j = jrd,[m] = [S]} logPs(q
rd
k , pj,[m]) (5.15)

where [S] is the true start token in the gold passage. For unanswerable questions,

we set the start and end tokens to [CLS]. The BERT encoder is fine-tuned. The loss

function of the end token Le is defined in the same way. The reader loss is computed

as follows.

Lrd =
1

2
(Ls + Le) (5.16)

Finally, the concurrent learning loss is computed as:

L = Lrt + Lrr + Lrd (5.17)

Although the gradients of the reader/reranker do not back propagate to the retriever,

we train these modules concurrently so that the reader/reranker can benefit from

seeing more negative passages due to a dynamically changing set of retrieved passages

TKrd.

5.2.1.6 Inference

Given the current question qk, the history questions {qi}k−1i=1 , and the history win-

dow size w, we follow the same process in the concurrent learning phase to retrieve

a set of passages TKrd. Note we do not manually include the gold passage in TKrd

at inference time. For a passage pj ∈ TKrd, we obtain the retriever score Srt(q
rt
k , pj)

and the reranker score Srr(q
rd
k , pj) following Equations 5.3 and 5.6. We then follow
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Devlin et al. (2019) to obtain the reader score using the start score Ss(q
rd
k , pj,[m])

and the end score Ss(q
rd
k , pj,[m]) in Equation 5.7 as follows.

Srd(q
rd
k , pj, s) = max

[ms],[me]∈(qrdk , pj)
Ss(q

rd
k , pj, [ms]) + Se(q

rd
k , pj, [me]) (5.18)

where s is the answer span with the start token [ms] and end token [me]. To ensure

tractability, we only consider the top 20 spans following convention (Devlin et al.,

2019). Invalid predictions, including the cases where the start token comes after the

end token, or the predicted span overlaps with the question part of the input sequence,

are discarded. Finally, the overall score is defined as a function of the current question

qk, its history questions {qi}k−1i=1 , a history window size w, a retrieved passage pj, and

a answer span s as in Figure 5.1:

S(qk, {qi}k−1i=1 , w, pj, s) = Srt(q
rt
k , pj) + Srr(q

rd
k , pj) + Srd(q

rd
k , pj, s) (5.19)

The system outputs the answer span that has the largest overall score for each question

in a conversation.

5.2.2 The OR-QuAC Dataset

The OR-QuAC dataset enhances QuAC by adapting it to an open-retrieval setting.

It is an aggregation of three existing datasets: (1) the QuAC dataset (Choi et al., 2019)

that offers information-seeking conversations, (2) the CANARD dataset (Elgohary

et al., 2019) that consists of context-independent rewrites of QuAC questions, and

(3) the Wikipedia corpus that serves as the knowledge source of answering questions.

An example of OR-QuAC is presented in Figure 5.3. We will describe the data

construction process in the following sections.
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Q: What did Zhang Heng have to
do with science and technology?

A: Zhang Heng's ... influenced
later Chinese inventors

Q: what did it influence them to
do?

A: ... as the inspiration for his
11th-century clock tower.

Q: what was his biggest
accomplishment?

Conversation Example Relevant Passages

... attempting to flee, he boards
Zhang Heng's boat in desperation ...

Zhang Heng is a fictional character
in Water Margin ...

... systematically developed the
celestial sphere theory. ...

Retrieve

Figure 5.3: A partial OR-QuAC dialog and example passages retrieved from the
collection by TF-IDF.

5.2.2.1 Self-contained Information-seeking Dialogs

We provided a description of QuAC in Section 4.3.1. A drawback of QuAC is that

many dialogs are not self-contained. This is typically caused by incomplete initial

questions. A QuAC dialog is motivated by a general and underlying information need.

During the data collection process, this information need is provided to both the seeker

and provider before initiating the dialog. Therefore, the seeker might not necessarily

reiterate this information need when asking the first question. For example, a seeker

in QuAC is instructed to learn about Zhang Heng, a Chinese polymathic scientist.

The very first question the seeker asked was “what did he have to do with science and

technology? ”. Such underspecified and ambiguous initial questions become an issue

in the open-retrieval setting because they make the conversation difficult to interpret.

We tackle this issue by replacing initial questions in QuAC with their context-

independent rewrites provided by the CANARD dataset. For example, the rewrite

for the previously mentioned question is "What did Zhang Heng have to do with

science and technology?". We do the replacement for the first questions only. This

makes a dialog self-contained while keeping the history dependencies within the dialog

untouched.
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Table 5.2: Data statistics of the OR-QuAC dataset.

Items Train Dev Test

# Dialogs 4,383 490 771
# Questions 31,526 3,430 5,571
# Avg. Question Tokens 6.7 6.6 6.7
# Avg. Answer Tokens 12.5 12.6 12.2
# Avg. Questions / Dialog 7.2 7.0 7.2
# Min/Avg/Med/Max
History Turns / Question 0/3.4/3/11 0/3.3/3/11 0/3.4/3/11

CANARD covers about half of the released QuAC questions. Since the QuAC

test set is not publicly available, they use QuAC’s development set as their test set

and 10% of QuAC’s training set as their development set (Elgohary et al., 2019).

We follow the data split of CANARD. QuAC questions that not in CANARD are

discarded. The data statistics of our derived dataset, OR-QuAC, are presented in

Table 5.2.

5.2.2.2 Collection

We use the whole Wikipedia corpus to construct a collection since passages in

QuAC are from Wikipedia. We use the English Wikipedia dump from 10/20/2019.5

The Wikipedia passages in QuAC were downloaded via PetScan6 (Choi et al., 2019),

and thus, the exact date for the data dump is unavailable. Therefore, we use the

latest data dump instead of trying to match the date of QuAC. We then use the

WikiExtractor7 to extract and clean text from the data dump, resulting in over 5.9

million Wikipedia articles. After this, we split the articles into chunks with at most

384 wordpieces using the tokenizer of BERT, following Lee et al. (2019b). The split

5https://dumps.wikimedia.org/enwiki/20191020/

6http://petscan.wmflabs.org/

7https://github.com/attardi/wikiextractor
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is done greedily while preserving sentence boundaries. These chunks are referred

to as passages. Less than 0.5% of known answers are split into different passages.

Their corresponding questions are considered to be unanswerable during training.

We do the split to make the passages fit for Transformer based retrievers and readers.

Moreover, Yang et al. (2019b) reported that the paragraph level is the best granularity

for an end-to-end retrieve-and-read framework compared to the article and sentence

levels. They believe the reason is that an article may contain non-relevant content

that distracts the reader while a sentence may lack context information. For an open-

retrieval setting, we prefer passage-level retrieval over article-level since a full article

would be harder to represent with a fixed-length dense vector.

Since the paragraphs in QuAC may not be exactly the same as those in the

Wikipedia dump given the difference in the dates of the dumps, we conduct the same

split process for QuAC paragraphs and replace the Wikipedia passages with QuAC

passages that have the same article titles. The positions of the ground truth answer

spans are mapped to the new passages. The resulting collection has over 11 million

passages for retrieval.

Due to the synthetic nature of this dataset, the answers of the questions in the

same dialog are distributed in the same section of text. However, in real-world sce-

narios, questions and answers in a dialog may be distributed at different locations of

the corpus. This is a limitation of our dataset.

5.2.3 Experimental Setups

We now describe our experimental setups, including competing methods, evalua-

tion metrics, and implementation details.

5.2.3.1 Competing Methods

To the best of our knowledge, there is no published work tackling the ORConvQA

problem that we describe in Section 5.2.1.1. There is, however, a rich body of work
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on single-turn open-domain QA, led by DrQA (Chen et al., 2017). We can adapt such

methods to a conversational setting by using the same history modeling method in

our system. Given the effort to adapt such models to ORConvQA, we only compare

to the original DrQA and the best model that we are aware of, BERTserini (Yang

et al., 2019b). To be specific, the competing methods are:

• DrQA (Chen et al., 2017). This model uses a TF-IDF retriever and an RNN

based reader. We train this model on OR-QuAC dialogs with gold passages.

At test time, the passages are retrieved with the retriever. This setting is

consistent with DrQA’s original setting. We do not use its distantly-supervised

setting since we would like to adopt full supervision for all competing methods

in this work. We start from their open-sourced implementation on GitHub.8

• BERTserini (Yang et al., 2019b). This model uses a BM25 retriever from

Anserini9 and a BERT reader. Their BERT reader is similar to ours, except

that it does not support reranking and thus cannot benefit from multi-tasking

learning. They study the granularity of retrieval, including article, paragraph,

and sentence. They conclude that retrieval on a paragraph level gives the best

overall performance. We only compare to the paragraph retrieval setting since

it is the best and is consistent with our passage retrieval setting. We use the

top 5 passages for the reader to be consistent with our setup. This baseline

is our implementation since BERTserini’s source code was not available at the

time of our work.

• ORConvQA without history (Ours w/o hist.). This is our model described

in Section 5.2.1 with the history window size w = 0. Note that the first question

of a dialog is still included in the reformatted question for the retriever, as

8https://github.com/facebookresearch/DrQA

9http://anserini.io/
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described in Section 5.2.1.3. This model is our adaptation of the open-retrieval

QA framework (Lee et al., 2019b) to a conversational setting. We use a more

direct and resource-efficient retriever pretraining method that is suitable for

ConvQA. We also enable reranking in the reader component.

• ORConvQA (Ours). This is our full model described in Section 5.2.1.

We adapt DrQA and BERTserini to a conversational setting using the same his-

tory modeling method in our model. It involves prepending history questions for

reformatted questions for the retriever and the reader. For these models and our

ORConvQA model, the history window size w is tuned on the development set. We

report their performance under the best history settings.

5.2.3.2 Evaluation Metrics

In addition to the F1 and HEQ metrics described in Section 4.3.2.2, we also use

Mean Reciprocal Rank (MRR) and Recall to evaluate the retrieval performance for

the retriever and reranker. The reciprocal rank of a query is the inverse of the rank of

the first positive passage in the retrieved passages. MRR is the mean of the reciprocal

ranks of all queries. This metric is computed for both the retriever and the reranker.

MRR is a reflection of how well these two components contribute to the overall score

in Equation 5.19. Recall is the fraction of the total amount of relevant passages that

are retrieved. There is only one positive passage for each question in the training and

development sets. In comparison, there could be more than one positive passage for

a testing question since there are multiple reference answers per question provided by

QuAC. Recall is computed for the retriever only since reranking does not impact this

measure. This metric reflects whether the retriever can provide reasonable retrieval

performance for the rest of the system. All retrieval metrics are computed for the top

5 passages that are retrieved for the reader/reranker.
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5.2.3.3 Implementation Details

Our models are implemented with PyTorch10 and the open-source implementation

of ALBERT and BERT by HuggingFace.11

Retriever and Pretraining. We use two ALBERT Base (V1) models for the

question and passage encoders. We set the max sequence length of the question

encoder to 128, that of the passage encoder to 384, the training batch size to 16 per

GPU, the number of training epochs to 12, and the learning rate to 5e-5. Models are

trained with 4 NVIDIA TITAN X GPUs. We create a smaller collection to evaluate

the retrieval performance by collecting the top 50 documents retrieved by TF-IDF

for development questions. This allows us to do model selection in a scenario that is

closer to how the retriever operates during concurrent learning. We save checkpoints

every 5,000 steps and evaluate on the development questions to select the best model

for concurrent learning. The pretraining time for the retriever is 2.5 hours.

Reranker, Reader, and Concurrent Learning. We use the BERT Base (Un-

cased) model. We set the max sequence length to 512, the max question length to

125 (so that the passage length is at least 384 after accounting for a [CLS] and two

[SEP] tokens), the training batch size to 2, the number of training epochs to 3, and

the learning rate to 5e-5. We retrieve top 5 passages for the reader. We tune the

number of passages to update retriever Krt and the history window size w in Sec-

tion 5.2.4.3. Models are trained with a NVIDIA TITAN X GPU. We take advantage

of another TITAN X card for faster MIPS. All passage representations in our collec-

tion occupy 7.2 GB of CUDA memory. We save checkpoints every 5,000 steps and

evaluate on the development set to select the best model for the test set. The time

for concurrent learning is 20.0 hours.

10https://pytorch.org/

11https://github.com/huggingface/transformers

97

https://pytorch.org/
https://github.com/huggingface/transformers


Table 5.3: Main evaluation results. “Rt” and “Rr” refers to “Retriever” and “Reranker”.
‡ means statistically significant improvement over the strongest baseline with p <
0.05.

Settings DrQA BERTserini Ours w/o hist. Ours

Dev

F1 4.5 19.3 24.0 26.9‡

HEQ-Q 0.0 14.1 15.2 17.5
HEQ-D 0.0 0.2 0.2 0.2
Rt MRR 0.1151 0.1767 0.4012 0.4286‡

Rr MRR N/A N/A 0.4472 0.5209‡

Rt Recall 0.2000 0.2656 0.5271 0.5714‡

Test

F1 6.3 26.0 26.3 29.4‡

HEQ-Q 0.1 20.4 20.7 24.1
HEQ-D 0.0 0.1 0.4 0.6
Rt MRR 0.1574 0.1784 0.1979 0.2246‡

Rr MRR N/A N/A 0.2702 0.3127‡

Rt Recall 0.2253 0.2507 0.2859 0.3141‡

For all model components, we use half precision for training as suggested in the

HuggingFace repository to alleviate CUDA memory consumption. The warm up

portion of the learning rate is 10% of the total steps.

5.2.4 Evaluation Results

In this section, we present our evaluation results, ablation studies on system com-

ponents, and more analyses on history window size and the number of passages to

fine-tune the retriever.

5.2.4.1 Main Evaluation Results

We report the main evaluation results in Table 5.3. We tune the history window

size w for all models that consider history and report their performances under the

best history setting. The best history settings for DrQA, BERTserini, and Ours are

w =5, 2, and 6 respectively. We summarize our observations as follows:
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1. We observe that DrQA has poor performance. The main reason for this lies

in the reader component. The RNN based reader in DrQA cannot produce

representations that are as good as the readers based on a pretrained BERT in

the rest of the competing models. More importantly, the DrQA reader cannot

handle unanswerable questions natively.

2. BERTserini has a significant improvement over DrQA and serves as a much

stronger baseline. It addresses the issues in DrQA by using a BERT reader

that can handle unanswerable questions. BM25 in Anserini also gives better

retrieval performance.

3. Our model without any history manages to perform on par with BERTserini that

considers history on the test set. In particular, our learned retriever achieves

higher performance on retrieval metrics. Since our reader is similar to that

of BERTserini, the overall performance gain mostly comes from our learned

retriever. This verifies the observation in Lee et al. (2019b) in a conversational

setting that a learned retriever is crucial if the information-seeker is genuinely

seeking an answer. The margins are substantially larger on the development

set, presumably because the best pretrained retriever model is selected based

on the development performance.

4. Our model with history obtains statistically significant improvement over the

strongest baseline with p < 0.05 tested by the Student’s paired t-test. This

demonstrates the effectiveness of our model. This also indicates that incor-

porating conversation history is essential for ORConvQA, as expected. More

analyses on the history window size are presented in Section 5.2.4.3. In addi-

tion, we observe that the reranker consistently outperforms the retriever. This

suggests that although reranking is more expensive as it jointly models the
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Table 5.4: Results of ablation studies. “Rt” and “Rr” refers to “Retriever” and
“Reranker” respectively. ‡ and † means statistically significant performance decrease
compared to the full system with p < 0.05 and p < 0.1 respectively.

Settings Full
system

w/o
rerank

w/o learned
retriever

w/o first q
for retriever

Dev

F1 26.9 25.9† 17.1‡ 24.6‡
HEQ-Q 17.5 16.8 11.1 15.5
HEQ-D 0.2 0.2 0.0 0.4
Rt MRR 0.4286 0.4031‡ 0.1162‡ 0.3937‡
Rr MRR 0.5209 N/A 0.1895‡ 0.4674‡
Rt Recall 0.5714 0.5411‡ 0.2032‡ 0.5122‡

Test

F1 29.4 27.7‡ 24.7‡ 27.1‡
HEQ-Q 24.1 22.2 18.1 21.3
HEQ-D 0.6 0.9 0.5 1.0
Rt MRR 0.2246 0.2166‡ 0.1603‡ 0.2092‡
Rr MRR 0.3127 N/A 0.2130‡ 0.2870‡
Rt Recall 0.3141 0.3059† 0.2270‡ 0.2918‡

question and the passage, it enjoys better performance than the retriever that

models the question and the passage separately.

5.2.4.2 Ablation Studies

Section 5.2.4.1 has shown the effectiveness of our model. This model performance

is closely related to several design choices we made. In this section, we conduct

ablation studies on our best model in Table 5.3 to investigate the contributions of

each design choice. Specifically, we have three ablation settings as follows.

• ORConvQA w/o reranker. We introduce reranking to the system as one

of the differences from previous works (Lee et al., 2019b; Das et al., 2019). In

this ablation setting, we remove the reranking loss in Equation 5.17 so that the

encoder in the reader is not fine-tuned by the reranking objective. Naturally,

we also do not use the reranking score in the overall score in Equation 5.19.
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• ORConvQA w/o learned retriever. We replace our learned retriever with

DrQA’s TF-IDF retriever.

• ORConvQA w/o first question (q) for retriever. We do not manually

include the first question of a dialog in the reformatted question for the retriever.

The ablation results are presented in Table 5.4. The following are our observations.

1. By removing the reranker from the full system, we observe a degradation in the

overall performance. Although the reranking loss does not influence the retriever,

the retriever performance also decreases. This is because that the ablated system

gives the best development performance earlier than the full system during train-

ing. The reason behind this is that the reader overfits before the retriever has

enough fine-tuning to produce reasonable retrieval performance. This verifies our

assumption that the encoder in the reader/reranker benefits from a regularization

effect by optimizing for the additional reranking task.

2. Replacing the learned retriever with TF-IDF causes a dramatic performance drop.

This further verifies our observation in Section 5.2.4.1 that a learned retriever is

crucial for ORConvQA.

3. When we do not additionally include the first question of the dialog in the refor-

matted question for the retriever, we observe a statistically significant performance

decrease on most of the metrics. This validates our observation during data con-

struction that the initial question of a dialog often contains a general information

need that is pertinent to the entire dialog. By including the initial questions, the

retriever can retrieve passages that are more relevant to the information need. The

performance drop is less substantial than we anticipated. This is probably because

the history window size of 6 has already covered the initial question for more than

half of the questions, given that the number of history turns per question has a

median of 3.
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Figure 5.4: Impact of history window size w.

5.2.4.3 Additional Analyses

Impact of history window size. Leveraging conversation history is an integral

part of a ConvQA system and has not been well studied in an open-retrieval setting.

In this section, we study the impact of the history window size w on the system

performance. The results are presented in Figure 5.4.

In Figure 5.4a, we observe that incorporating any number of history turns outper-

forms no history at all. Although fluctuating, the overall performance first increases

then decreases, with the peak value at w = 6. In Figure 5.4b, we observe that all

retrieval metrics generally grow as we incorporate more conversation history. This

suggests that the additional history turns we prepend are useful for matching and re-

trieval in most cases. Since we have reserved 125 tokens for the reformatted question

in the BERT input sequence as reported in Section 5.2.3.3, we show less degradation

in the performance than previous work (Qu et al., 2019c) when we prepend more

history.

It is intriguing that the retriever recall, the most important retrieval metric, shows

a trimodal distribution. This could be due to the “topic return” phenomenon men-

tioned in Yatskar (2018). Given the current question in a dialog, an adjacent turn is

typically more useful than a distant turn to reveal the information need of the current
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Figure 5.5: Impact of # samples to update retriever Krt.

turn. In other words, the utility of a history turn decreases as the distance between

itself and the current turn increases. This utility trend shifts when the current turn is

returning to the topic that has been discussed in a distant history turn. The trimodal

distribution could imply that a topic return phenomenon typically happens five turns

or nine turns away from the current turn. Moreover, the valley values of the trimodal

distribution of retriever recall are consistent with those of the F1 curve in Figure 5.4a,

suggesting that the fluctuation in the overall performance can be explained by the

variation in retriever performance.

Impact of the number of passages to update retriever. Lee et al. (2019b)

suggest that it is crucial to set the batch size N in the retriever pretraining phase

as large as possible because it makes the pretraining task more difficult and closer

to what the retriever observes at test time. During pretraining, we set N to 16 as

reported in Section 5.2.3.3, meaning that we have 16 passages per question to train

the retriever. At the concurrent learning phase, we can increase this number to fine-

tune the question encoder in the retriever at a low cost since all passages have been

encoded offline. Therefore, we investigate how helpful it is to increase the number of

passages Krt to fine-tune the retriever during concurrent learning. The choices of Krt

are [16, 50, 100, 500, 1000]. We sample the choices of Krt unevenly and with large

gaps so that the trends are clear. The results are presented in Figure 5.5.
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We observe that Krt = 100 gives the best overall performance and retriever recall.

Using a smaller and larger number both give a sub-optimal performance. Although a

smaller value is closer to what we use for pretraining, the retriever cannot aggressively

learn from enough negative passages. On the contrary, if we use a Krt value that is

progressively larger than that of the pretraining time, the mismatch of supervision

signals also leads to inferior performance.

5.2.5 Discussions on Other Efforts

In this section, we describe two other efforts we made in attempt to further improve

the performance of an ORConvQA system. Although these attempts do not yield

better performance than our approach described in Section 5.2.1, they can inform

future explorations in this direction.

5.2.5.1 End-to-End Joint Learning

As described in Section 5.2.1.5, our ORConvQA model employs a two-phase train-

ing approach: a retriever pretraining phase and a concurrent learning phase for the

retriever and the reader. In the concurrent learning phase, although the retriever and

the reader are updated simultaneously, the gradients from the reader loss does not

back-propagate to the retriever. We investigate whether it is helpful to incorporate

the supervision signals from the reader objective into the retriever training process

in the concurrent learning phase.

For this purpose, we modify the reader loss to involve the retriever logit, i.e., v[m]

in Equation 5.7 now becomes v[m]⊕Srt, where ⊕ is the concatenation operation and

Srt is the retriever score computed with Equation 5.3. In this case, the reader will

consider the relevance of a passage when predicting whether a token in this specific

passage is the start/end token of the answer span. This aligns to our task better since

the retriever can now be influenced by the overall QA performance. In other words,
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the retriever and the reader are learned jointly in an end-to-end manner, rather than

only learned concurrently.

Our experiments show the F1 scores to be 27.1 and 28.5 on the development set

and the test set respectively, which are on par with our original results reported

in Section 4.3.3. This suggests that it does not bring additional gains when we

incorporate the supervision signals from the reader objective to the retriever training

process. There are two potential reasons. First, it could be already sufficient to

train the retriever with retriever pretraining and concurrent learning. The retriever

does not benefit from the additional supervision signals from the reader objective.

Second, simply concatenating the retriever score to the token representation can be

less effective for the reader to consider the passage relevance. We will leave more

effective approaches for end-to-end joint learning in our future work.

5.2.5.2 Post-domain Pretrained BERT

Post-domain pretraining, or domain-adaptive pretraining, refers to the approach

to continue pretraining a language model on domain-specific data after it has been

pretrained on the original LM pretraining domain (Gururangan et al., 2020). We

investigate whether it is helpful to conduct post-domain pretraining for BERT on

dialog data for our ORConvQA system.

We construct the post-domain pretraining data by combining dialogs from the

QuAC (Choi et al., 2019) training set, the CoQA (Reddy et al., 2019) training set,

and MSDialog-Complete (Section 3.2). This results in 54,302 dialogs with 721,830

utterances. We load the original BERT checkpoint (bert-base-uncased) and conduct

further pretraining with our dialog data for 2 epochs using the masked language model

loss (Devlin et al., 2019). We set the maximum sequence length to 512, the learning

rate to 1e-5, the batch size to 4, and the number of warm up steps to 4,000. The

other hyper-parameter settings follow the original BERT paper (Devlin et al., 2019).
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Finally, we plug the post-domain pretrained BERT into the reader component of

our ORConvQA system described in Section 5.2.1. The F1 scores are 26.1 and 27.3

on the development set and test set respectively, which are lower than our original

results reported in Section 5.2.4. We speculate that the inferior results of the post-

domain pretrained BERT can be explained by the deficiency of dialog data. Moreover,

it also requires more investigation into the best approach to conduct post-domain

pretraining when we want to use the model to jointly encode heterogeneous content

(e.g., a conversation and a passage). We will leave this to future work.

5.3 Weakly-supervised Open-retrieval Conversational QA

5.3.1 Our Approach

In this section, we first formally define the task of open-retrieval ConvQA under

a weak supervision setting. We then explain how we train the ORConvQA system

described in Section 5.2 with our learned weak supervision approach.

5.3.1.1 Task Definition

Given the k-th question qk in a conversation, and all history questions {qi}k−1i=1

preceding qk, the task is to predict an answer ak for qk using a passage collection

C. Different from the task definition in full weak supervision in Section 5.2, we now

assume no access to gold passages when training the reader. The gold passage for qk

is the passage in C that is known to contain or support ak.

5.3.1.2 Weakly-Supervised Training

Overview. We follow the same architecture of the ORConvQA model in Sec-

tion 5.2.12 This section differs from Section 5.2 in how we train the model. Section 5.2

12We disable the reranker in Section 5.2 since our preliminary experiments indicated the weak
supervision signals seem to lead to degradation for the reranker and the retriever.
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Figure 5.6: Overview of weak supervision for ORConvQA. Given a question and its
conversation history, the retriever first retrieves top-K passages from the collection.
The reader then reads the top passages and produces an answer. We adopt a weakly-
supervised training approach. Given the known answer and one of the retrieved
passages, the weak supervisor predicts a span in this passage as the weak answer to
provide weak supervision signals for training the reader.

uses full supervision while this section adopts weak supervision. As described in Sec-

tion 5.2, the training contains two phases, a pretraining phase for the retriever, and

a concurrent learning phase for the reader and fine-tuning the question encoder in

the retriever. Our weakly-supervised training approach is applied to the concurrent

learning phase.

Figure 5.6 illustrates the role the weak supervisor plays in the system. Given a

known answer ak and one of the retrieved passages pj, the weak supervisor predicts

a span in pj as the weak answer aweak
k . This weak answer is the weak supervision

signal for training the reader. The weak supervisor can also indicate there is no weak

answer contained in pj. A question is skipped if there are no weak answers in any of

the retrieved passages.

Inspirations. Our learned weak supervision method is inspired by the classic

span-match weak supervision. This method has been the default and only weak

supervision method in previous open-domain QA research (Lee et al., 2019b; Chen

et al., 2017; Das et al., 2019). These works mainly focus on factoid QA, where answers

are short. A span-match weak supervisor can provide accurate supervision signals
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Figure 5.7: Learned weak supervisor. During the concurrent learning phase of OR-
ConvQA, the weak supervisor conducts inference on a retrieved passage pj (the left
figure) to predict a passage span that is a paraphrase of the known answer ak. When
training of the weak supervisor (the right figure), the model is trained to predict the
known answer ak in the passage given a paraphrase of the known answer aparak and
the passage.

since the weak answers are exactly the same as the known answers. In addition,

the short answers can find matches easily in passages other than the gold ones. In

information-seeking conversations, however, the answers can be long and freeform,

and thus are more difficult to get an exact match in retrieved passages. Although

the span-match weak supervisor can still provide accurate supervision signals in this

scenario, it renders many training examples useless due to the failure to find exact

matches. A straightforward solution is to find a span in a retrieved passage that has

the maximum overlap with the known answer. Such overlap can be measured by

word-level F1. This overlap method, however, can be intractable and inefficient since

it has to enumerate all spans in the passage. This method also requires careful tuning

for the threshold to output “no answer”. Therefore, we introduce a learned weak

supervisor based on Transformers (Vaswani et al., 2017) to predict a weak answer

span directly in a retrieved passage given the known answer. This supervisor also has

the ability to indicate whether a retrieved passage has a good weak answer or not.
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Learned Weak Supervisor. Given the known answer ak and one of the retrieved

passages pj, the weak supervisor predicts a span in pj as the weak answer aweak
k .

Intuitively, aweak
k is a paraphrase of ak. We use a standard BERT-based extractive

MC model (Devlin et al., 2019) here as shown in Figure 5.7, except that we use ak

for the question segment. The best weak answer for all top passages is the one with

the largest sum of start and end token scores.

Although theoretically simple, this model presents challenges in training because

position labels of aweak
k are not available. Therefore, we consider the known answer ak

as the weak answer we are seeking since we know the exact position of ak in its gold

passage pgoldj . We then use a diverse paraphrase generation model (described in the

next section) to generate a paraphrase aparak for the known answer ak. The paraphrase

aparak simulates the known answer during the training of the weak supervisor, as shown

in Figure 5.7. The weak supervisor is trained before concurrent learning and kept

frozen during concurrent learning. We train the weak supervisor to tell if the passage

does not contain a weak answer by pairing a randomly sampled negative passage with

the known answer.

We are aware of a dataset, CoQA (Reddy et al., 2019), that provides both span

answer and freeform answer for a given question qk. In this case, we can take the

freeform answer as a natural paraphrase aparak for the span answer (known answer) ak

when training the weak supervisor. For datasets that do not offer both answer types,

our diverse paraphraser assumes the role of the oracle to generate the paraphrase

answer. In other words, the use of the diverse paraphraser ensures that our weak

supervision approach can be applied to a wide variety of conversation data that are

beyond datasets like CoQA.

Diverse Paraphrase Model. We now briefly describe the diverse paraphraser (Kr-

ishna et al., 2020) used in the training process of the learned weak supervisor. This

model is built by fine-tuning GPT2-large (Radford et al., 2019) using encoder-free
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seq2seq modeling (Wolf et al., 2018). As training data we use paraNMT-50M (Wi-

eting and Gimpel, 2018), a massive corpus of back translated data (Wieting and

Gimpel, 2018). The training corpus is aggressively filtered to leave sentence pairs

with high lexical and syntactic diversity so that the model can generate diverse para-

phrases. We refer our readers to Krishna et al. (Krishna et al., 2020) for further

details.

5.3.2 Experiments

We now describe the experimental setup and report the results of our evaluations.

5.3.2.1 Experimental Setup

Dataset. We select two ConvQA datasets, QuAC (Choi et al., 2019) and CoQA

(Reddy et al., 2019), with different answer types (span/freeform) to conduct a com-

prehensive evaluation of our weak supervision approach and to provide insights for

weakly-supervised ORConvQA. We present the data statistics of both datasets in

Table 5.5. We remove unanswerable questions in both datasets since there is no

basis to find weak answers.13 Specifically, the two datasets are: (1) OR-QuAC

(span answers). We use the OR-QuAC dataset introduced in Section 5.2.2. This

dataset adapts QuAC to an open-retrieval setting. It contains information-seeking

conversations from QuAC, and a collection of 11 million Wikipedia passages (doc-

ument chunks). (2) OR-CoQA (freeform answers). We process the CoQA

dataset (Reddy et al., 2019) in the Wikipedia domain for the open-retrieval setting in

a similar manner with OR-QuAC, resulting in the OR-CoQA dataset. CoQA offers

freeform answers generated by people in addition to span answers, resulting in more

natural conversations. OR-CoQA and OR-QuAC share the same passage collection.

Similar to QuAC, many initial questions in CoQA are also ambiguous and hard to in-

13This difference in the data accounts for the discrepancies of the full-supervision results presented
in Table 5.6.
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Table 5.5: Data statistics of OR-CoQA and OR-QuAC (weak supervision).

Items OR-CoQA OR-QuAC

Train Dev Test Train Dev Test

# Dialogs 1,521 100 100 4,383 490 771
# Questions 23,027 1,494 1,611 25,824 2,808 4,406
# Avg. Question Tokens 5.8 5.7 5.8 6.8 6.6 6.8
# Avg. Answer Tokens 2.8 2.6 2.6 15.0 15.0 14.7
# Avg. Dialog Questions 15.1 14.9 16.1 5.9 5.7 5.7
# Avg. Max History
Turns per Question 7.9/22 7.6/21 7.9/19 2.8/11 2.8/11 2.8/11

terpret without the given gold passage (e.g., “When was the University established?”).

In Section 5.2.2, we deal with this by replacing the first question of a conversation with

its context-independent rewrite offered by the CANARD dataset (Elgohary et al.,

2019) (e.g., “When was the University of Chicago established?”). This makes the con-

versations self-contained. Since we are not aware of any CANARD-like resources for

CoQA, we prepend the document title to the first question for the same purpose (e.g.,

“University of Chicago When was the University established?”). Since the CoQA test

set is not publicly available, we take the original development set as our test set and

100 dialogs from the original training set as our development set.

Competing Methods. Since this work focuses on weak supervision, we use

the same ORConvQA model and vary the supervision methods. To be specific, the

competing methods are:

• Full supervision (Full S): Manually add the gold passage to the retrieval

results and use the ground-truth answer span (Section 5.2). This only applies

to QuAC since we have no passage relevance for CoQA. This method is not

comparable with other weak supervision methods that do not have access to

the groundtruth answers in concurrent learning.

111



• Span-match weak supervision (Span-match WS): This method finds a weak

answer span that is identical to the known answer in the retrieved passages.

When there are multiple matched spans, we take the first one.

• Learned weak supervision (LearnedWS): This is our method in Section 5.3.1.2

that finds a paraphrased span of the known answer as the weak answer.

• Combined weak supervision (Combined WS): This is the combination of

the above two methods. We first use the span-match weak supervisor to try to

find a weak answer. If it fails, we take the weak answer found by the learned

weak supervisor.

Evaluation Metrics. We use the same ConvQA metrics (F1 and HEQ) described

in Section 4.3.2.2. In addition, we define another set of metrics to reveal the impact

of the weak supervisor in the training process as follows. % Has Answer is the

percentage of training examples that have a weak answer (in the last epoch). % Hit

Gold is the percentage of training examples that have a weak answer identified in

gold passages (in the last epoch). Recall is the percentage of training examples that

have the gold passage retrieved (in the last epoch). % From Gold is the percentage

of predicted answers that are extracted from the gold passages.

Implementation Details. Our models are based on the open-source imple-

mentation of the Diverse Paraphrase Model14, and the HuggingFace Transformers

repository.15 We use the same pretrained retriever in Section 5.2 for both datasets.

For concurrent learning of ORConvQA, we set the number of training epochs to 5

(larger than Section 5.2) to account for the skipped steps where no weak answers are

found. We set the number of passages to update the retriever to 100, and the history

window size to 6 since these are the best settings reported in Section 5.2. The max

14https://github.com/martiansideofthemoon/style-transfer-paraphrase

15https://github.com/huggingface/transformers
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Table 5.6: Evaluation results on OR-QuAC (span answers) with weak supervision.
The learned weak supervisor causes no statistical significant performance decrease
compared span match.

Methods Full S Span-match WS Learned WS Combined WS

Train % Has Answer 100.00% 72.96% 75.98% 75.52%

Dev
F1 22.8 20.8 20.2 20.1

HEQ-Q 8.1 6.8 6.0 6.4
HEQ-D 0.6 0.6 0.2 0.6

Test
F1 23.9 23.6 23.1 23.2

HEQ-Q 14.0 12.3 11.8 12.5
HEQ-D 2.2 1.7 1.9 1.9

answer length is set to 40 for QuAC and 8 for CoQA. The rest of the hyper-parameters

and implementation details for the ORConvQA model are the same as in Section 5.2.

For the weak supervisor, we use BERT-Mini (Turc et al., 2019) for better efficiency.

We set the number of training epochs to 4, the learning rate to 1e-4, and the batch

size to 16. As discussed in Section 5.3.1.2, the diverse paraphraser is used for OR-

QuAC only. For OR-CoQA, we use the freeform answer provided by the dataset as a

natural paraphrase to the span answer.

5.3.2.2 Evaluation Results on Span Answers

Given the different properties of span answers and freeform answers, we study

the performance of our weak supervision approach on these answers separately. We

report the evaluation results on the span answers in Table 5.6. Our observations can

be summarized as follows.

The full supervision setting yields the best performance, as expected. This verifies

the supervision signals provided by the gold passages and the ground-truth answer

spans are more accurate than the weak ones. All supervision approaches have similar

performance on span answers. This suggests that span-match weak supervision is

sufficient to handle conversations with span answers. Ideally, if the known answer
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is part of the given passage, the learned weak supervisor should be able to predict

the weak answer as exactly the same with the known answer. In other words, the

learned weak supervisor should fall back to the span-match weak supervisor when

handling span answers. In practice, this is not guaranteed due to the variance of

neural models. However, our learned weak supervisor causes no statistical significant

performance decrease compared with the span-match supervisor. This demonstrates

that the learned weak supervision approach can cover span answers as well. Although

we observe that the learned supervisor can identify more weak answers than span

match, these weak answers could be false positives that do not contribute to the

model performance. Finally, for the combined weak supervisor, our analysis shows

that 96% of the weak answers are identified by span match, further explaining the

fact that all weak supervision approaches have almost identical performance.

5.3.2.3 Evaluation Results on Freeform Answers

We then look at the evaluation results on freeform answers in Table 5.7. These

are the cases where a span-match weak supervisor could fail. We observe that com-

bining the learned weak supervisor with span match brings a statistically significant

improvement over the span-match baseline on the test set, indicating these two meth-

ods complement each other. The test set has multiple reference answers per question,

making the evaluation more practical. In addition, the learned supervisor can iden-

tify more weak answers than span match, these weak answers contribute to the better

performance of our model. Further, for the combined weak supervisor, our analysis

shows that 77% of the weak answers are identified by span match. This means that

nearly a quarter of the weak answers are provided by the learned supervisor and used

to improve the performance upon span match. This further validates the source of

effectiveness of our model.
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Table 5.7: Evaluation results on OR-CoQA (freeform answers) with weak supervision.
‡ means statistically significant improvement over the span-match baseline with p <
0.05.

Methods Span-match WS Learned WS Combined WS

Train % Has answer 51.81% 65.75% 70.35%

Dev
F1 18.3 18.9 19.7

HEQ-Q 11.6 9.0 12.7
HEQ-D 0.0 0.0 0.0

Test
F1 24.3 26.0 28.8‡

HEQ-Q 19.9 15.9 22.5
HEQ-D 0.0 0.0 0.0

Table 5.8: A closer look at the weakly-supervised training process for OR-QuAC.

Methods Train Dev Test

% Has Ans % Hit Gold Recall % From Gold % From Gold

Full S 100.00% 100.00% 1.0000 45.23% 27.46%
Span-match WS 72.96% 68.97% 0.7190 40.88% 28.80%
Learned WS 75.98% 67.24% 0.7187 39.89% 28.73%
Combined WS 75.52% 68.37% 0.7129 40.28% 28.39%

5.3.2.4 A Closer Look at the Training Process

We take a closer look at the training process, as shown in Table 5.8. We conduct

this analysis on OR-QuAC only since we do not have the ground-truth passage rel-

evance for CoQA. We observe that, “% Has Ans” are higher than “% Hit Gold” for

all weak supervision methods, indicating all of them can identify weak answers in

passages beyond the gold passages. In particular, our method can identify more weak

answers than span match. We also notice that “% Hit Gold” is only slightly lower

than “Recall”, suggesting that most of the retrieved gold passages can yield a weak

answer. This verifies the capability of the weak supervisors. Finally, “% From Gold”

are relatively low for all methods, indicating great potential for improvements.
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Table 5.9: Case study for learned weak supervision. Boldface denotes discrepancies
and italic denotes paraphrasing.

# Questions and Answers
G
oo

d

1
Question Where was the album released?
Known answer on online forums and music sites.
Weak answer on online forums and music sites.

2
Question ... mention anything else he starred in?
Known answer After starring ... the film adaptation of The Music Man
Weak answer After starring ... film adaptation of The Music Man (1962).

3
Question Where did he distribute the Cocaine?

Known answer flying out planes several times, mainly between Colombia and
Panama, along smuggling routes into the United States.

Weak answer He flew a plane himself several times, mainly between Colombia
and Panama, in order to smuggle a load into the United States.

B
ad

4
Question how long have people had clothes?
Known answer as long ago as 650 thousand years ago
Weak answer around 170,000 years ago.

5
Question What is data compression called?
Known answer reducing the size of a data file
Weak answer By using wavelets, a compression ratio

5.3.2.5 Case Study and Error Analysis

We then conduct a qualitative analysis by presenting weak answers identified by

the learned weak supervisor in Table 5.9 to better understand the weak supervision

process. Example 1 and 2 show that our learned weak supervisor can find weak

answers that are exactly the same or almost identical to the known answers when an

exact match of the known answer exits, further validating our method can potentially

cover span-match weak supervision. Example 3 shows that if an exact match does

not exist, our method can find a weak answer that expresses the same meaning with

the known answer. This is a case that a span-match weak supervisor would fail.

Example 4 shows that our method tends to focus on the lexical similarity only but

gets the fact wrong. Example 5 indicates our method sometimes finds a weak answer

that is relevant to the known answer but cannot be considered as a good answer.

These are the limitations of our method.
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5.4 Summary

In this chapter, we introduce an open-retrieval conversational QA setting as a

further step towards conversational search. We create a dataset, OR-QuAC, by ag-

gregating existing data to facilitate research on ORConvQA. We build an end-to-end

system for ORConvQA, featuring a retriever, a reranker, and a reader that are all

based on Transformers. We study both full supervision and weak supervision ap-

proaches for training.

In the fully-supervised setting, our extensive experiments on OR-QuAC demon-

strate that a learnable retriever is crucial in the ORConvQA setting. We further

show that our system can make a substantial improvement when we enable history

modeling in all system components. Moreover, we show that the additional reranker

component contributes to the model performance by providing a regularization effect.

Finally, we demonstrate that the initial question of each dialog is essential for our

system to understand the user’s information need.

In the weakly-supervised setting, we propose a learned weak supervision ap-

proach for open-retrieval conversational question answering. Our experiments on two

datasets show that, although span-match weak supervision can handle span answers,

it is not sufficient for freeform answers. Our learned weak supervisor is more flexible

since it can handle both span answers and freeform answers. It is more powerful when

combined with the span-match supervisor.

5.5 Towards Real-world ORConvQA

Finally, we briefly discuss a basket of engineering enhancements we would like to

make if we want to adapt our ORConvQA system to real-world scenarios.

• Encoder. We build our model on top of BERT, one of the most widely-used

pretrained language models, to test our hypothesis. For practical applications,

one might want to compare the performance of different pretrained language
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models that emphasize robustness (Liu et al., 2019b), efficiency, and the ability

to model long documents (Yang et al., 2020b) (the latter two are often tack-

led together with efficient transformer architectures (Wang et al., 2020; Kitaev

et al., 2020; Zaheer et al., 2020; Beltagy et al., 2020)). Efficiency, especially

that at inference/serving time, is vital to the productization of an ORConvQA

system since the customers prefer responses in real time. The ability to model

long documents, which may also employ techniques for efficiency, is also desired

for QA tasks because longer context (richer knowledge) is beneficial to the QA

performance.

• Hybrid retrieval. Sparse retrieval emphasizes term match, which could be ben-

eficial when the user is trying to refind (Dumais et al., 2003) a passage or an

answer. Dense retrieval, on the other hand, focuses on semantic match, which

is especially suitable for information-seeking tasks, where the information need

can be highly under-defined and exploratory. Combining the power of sparse

retrieval and dense retrieval for a hybrid retrieval approach (Luan et al., 2020)

can potentially lead to performance improvement. Within the scope of dense

retrieval, one might want to investigate the performance of more advanced late

interaction approaches (Khattab and Zaharia, 2020; Chen et al., 2020) beyond

dot product.

• Training. Models trained with diverse and large-scale training data often have

better generalization abilities. Since the gold training labels can be expensive

to acquire, one might want to first train with large-scale data in a unsuper-

vised or weakly-supervised manner, followed by training with a small amount

of human-annotated data. In our circumstances, we can train the weak super-

visor introduced in Section 5.3.1 by firstly using the training data generated

with a high-quality diverse paraphraser, followed by training with a handful of
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human-generated data. Similarly, the concurrent learning phase described in

Section 5.2.1 can also first employ weak supervision (Section 5.3) and then full

supervision (Section 5.2).

• Answer generation. The ability to generate natural and fluent answers is also

desirable in an ORConvQA system. This ability is indispensable when we want

to aggregate multiple answer spans (potentially from different passages and

documents) (Liu and Lapata, 2019) or to summarize tabular data (Zhang et al.,

2020).

• Wider applicability. To make the ORConvQA system apply to a larger audience

and wider applications, the system should have the ability to take in information

needs that are multilingual (Khanuja et al., 2020; Sorg and Cimiano, 2012),

cross-lingual (Jiang et al., 2020; Lignos et al., 2019; Sorg and Cimiano, 2012),

and even beyond the text form (Marino et al., 2019; Lien et al., 2020) (e.g., an

input may contain both texts and images). These can be done by swapping the

encoders in an ORConvQA system with multilingual (Devlin et al., 2019) or

multi-modal encoders (Tan and Bansal, 2019).
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CHAPTER 6

HISTORY MODELING FOR CONVERSATIONAL
RE-RANKING

6.1 Introduction

Previous chapters approach conversational IR via the proxy of human conversa-

tions. Although they all model conversation history, the previous chapters do not

address the issue of how to incorporate user behavior. In this chapter, we investigate

the interactive and iterative property of conversational search via the session search

task, where we focus on incorporating history user behavior into a document ranking

system.

To fulfill a complicated information need with a search engine, users typically need

to conduct searches for multiple turns. Temporally connected turns are referred to

as a session or task (Jones and Klinkner, 2008; Wang et al., 2013). In each turn, the

user issues or reformulates a query, browses search engine result pages (SERPs), and

clicks on one or more documents for further investigation. This iterative information

seeking process bears a strong resemblance to conversational search. The rich user

behavior and interaction data for document ranking is readily available from search

logs in commercial search engines on a large scale. Moreover, evaluation methods

for document ranking are much more mature than that of conversational search.

Therefore, we argue that the conversational document ranking task should be one of

the core steps towards building functional conversational search systems.

The idea of modeling history or context for document ranking has been studied

in many works (White et al., 2013, 2010; Xiang et al., 2010; Hagen et al., 2013; Cui
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and Cheng, 2014; Technology et al., 2013; Bennett et al., 2012) and was particu-

larly featured in the Session Track (Carterette et al., 2016) in TREC (Text REtrieval

Conference). Due to the lack of large-scale session datasets, most approaches are

mainly limited to non-parametric or feature-based models (Hagen et al., 2013; Cui

and Cheng, 2014; Technology et al., 2013; Shen et al., 2005; White et al., 2013, 2010;

Xiang et al., 2010). These models may not be able to capture the complex user intent

dynamics in a real search session. Recently, many large-scale datasets (Lowe et al.,

2015; Zheng et al., 2018) have greatly boosted the research progress for neural IR,

resulting in a wide range of model architectures (Guo et al., 2016; Hu et al., 2014;

Huang et al., 2013; Shen et al., 2014; Yang et al., 2016; Mitra et al., 2017; Xiong

et al., 2017; Dai et al., 2018; Yang et al., 2018; Qu et al., 2019a) for matching and re-

trieval. Consequently, IR researchers have begun to revisit the issue of conversational

document ranking with neural models (Ahmad et al., 2018, 2019b). In this chap-

ter, we introduce behavior awareness to a neural ranker. In a real search scenario,

a user’s past behaviors may contribute differently when determining the relevance

of the current document. For example, behaviors in the immediate previous turn

could be more informative than those in a distant turn. Moreover, a previous clicked

document and a previous skipped document could provide different clues of the in-

formation need. It is essential for a neural ranker to be aware of and distinguish

different user behaviors in the session. For this purpose, we design the Hierarchical

Behavior Aware Transformers (HBA-Transformers) that feature a hierarchical behav-

ior attention mechanism to enable flexible incorporation of the session history. Our

system is built on top of the state-of-the-art BERT model to leverage its power in

document ranking. Given a history of relevance feedback behaviors, we first use

BERT to generate contextualized representations for the input sequence on a token

level. Then an intra-behavior attention layer aggregates tokens from same behaviors

to generate behavior-level representations. These representations are then enhanced
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by the behavior aware embeddings, which identify the type and position properties of

a user behavior for effective characterization and modeling. We then apply the inter-

behavior attention layer to enable bidirectional session modeling. This layer attends

to all behavior representations in the session along with the current document and

produces a query-document representation augmented by session information. This

is followed by a document ranker to predict a relevance score.

We conduct extensive experiments on the AOL session search dataset constructed

in previous research (Ahmad et al., 2019b). We first show that a BERT based ranker

without any context information is able to outperform a recent context aware recur-

rent model (Ahmad et al., 2019b). This improvement demonstrates the capability of

BERT in single-turn ranking. We further show that BERT is capable of modeling

session history by simply prepending history user behaviors to the current query. This

method is conceptually simple yet highly effective.

Moreover, we further demonstrate that our hierarchical behavior attention mecha-

nism is significantly more powerful in this scenario than a simple concatenation. This

indicates that behavior awareness plays an important role in conversational document

ranking. Finally, we conduct an in-depth analysis on the conversational property of

queries with the publicly available Microsoft Generic Intent Encoder API (Zhang

et al., 2019).1 We show that coherent sessions tend to be more conversational as they

are more demanding in considering the user behaviors in the session history. Our

HBA-Transformers can be potentially triggered at runtime upon identifying coherent

sessions.

1https://msturing.org/
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6.2 Behavior Aware Transformers

In this section, we first set up the task of conversational re-ranking following

conventions. We then describe our Hierarchical Behavior Aware Transformers and

explain the intuitions behind our model.

6.2.1 Task Definition

The conversational re-ranking task is defined as follows. We are given search logs

that are organized in sessions. A search session is denoted as {T i}Ni=1, where T i is

the i-th turn in the session and N is the total number of turns. T i is further denoted

as a triple {qi, Di, Y i}, where qi is the search query in this session, and Di = {dij} is

the retrieved top-k documents for qi(1 ≤ j ≤ k). Di is typically ranked by an initial

retrieval method and j denotes the rank. Y i = {yij} is a set of binary relevance labels

(i.e. yij ∈ {0, 1}) for Di. The click label yij = 1 means the user makes a “satisfied

click” on dij after issuing qi. Given the current query qn, the candidate documents

Dn, and the search history Hn = {T i}n−1i=1 up to the current turn, the task is to rerank

Dn so that the clicked documents are ranked as high as possible.

In a history turn T i = {qi, Di, Y i}, the candidate documents Di and its corre-

sponding click labels Y i reveal the clicked document di+ and the skipped document

di− for turn i. The skipped document di− is identified by a commonly used strategy

known as Skip Above and Skip Next (Agichtein et al., 2006). For example, if the sec-

ond document is clicked, then the first and third documents are considered skipped.

When there are multiple skipped documents, we take the first one. The skipped doc-

ument di− is less relevant to the information need. Therefore, we use a history turn

T i as three user behaviors: {qi, di+, di−}.

Given all available history turns Hn = {T i}n−1i=1 , we extract a sequence of history

user behaviors denoted as Hn
∗ = {q1, d1+, d1−, q2, d2+, d2−, . . . , qn−1, dn−1+ , dn−1− }. We fur-
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Figure 6.1: Model architecture. Suppose the current query is q3, and the given doc-
ument is d. The input sequence is the concatenation of session user behaviors and
the given document. tq, td denote query/document tokens. The intra-behavior at-
tention layer generates behavior representations from token representations produced
by BERT. Then the inter-behavior attention layer attends to all behaviors with a
holistic view of the session. Finally, the ranking module predicts the relevance score.

ther define a set of session user behaviors as Hn
∗ ∪ {qn}, to include the current query

qn. The task is to rerank Dn given Hn
∗ ∪ {qn}.

6.2.2 Model

We present the Hierarchical Behavior Aware Transformers (HBA-Transformers)

in this section. As shown in Figure 6.1, our model consists of a BERT encoder, a

hierarchical behavior attention module, and a document ranker. The BERT encoder

encodes input tokens into contextualized representations. Then the hierarchical be-

havior attention module first generates behavior representations and then attends

to these representations with a holistic view of the session. Finally, the document

ranking module predicts a relevance score of the candidate document. This hierar-

chical architecture enables flexible integration of the session history and thus can be

more effective in conversational re-ranking. We illustrate each module in detail in the

following sections.
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6.2.2.1 BERT Encoder

As shown in the lower part of Figure 6.1, the encoder is a BERT model that

encodes contextual information for session user behaviors and the current candidate

document. BERT is a pre-trained language model that is designed to learn deep

contextual representations using Transformers (Vaswani et al., 2017). It has shown

state-of-the-art performance in document ranking (Dai and Callan, 2019; Nogueira

and Cho, 2019).

Previous works (Dai and Callan, 2019; Nogueira and Cho, 2019; MacAvaney et al.,

2019) apply BERT for ranking in a manner of sequence pair classification, where the

input sequence is “[CLS] q [SEP] d [SEP]”. [CLS] and [SEP] are special tokens

introduced in BERT. We extend this scheme by prepending history user behaviors

in a window size of w to the query segment, i.e., “[CLS] qn−w [SEP] dn−w+ [SEP]

dn−w− [SEP] · · · [SEP] qn [SEP] d [SEP]”. Each segment can have multiple to-

kens. Let tm ∈ Rh denotes the embedding representation of the m-th token in the

input sequence and h denotes the hidden dimension size. The input sequence is de-

noted as {tm}Mm=1, where M denotes the sequence length. BERT outputs a hidden

representation for every token:

{t̂m}Mm=1 = BERT({tm}Mm=1) (6.1)

The contextualized token representation t̂m is obtained by attending to every single

token in the input sequence and thus is contextualized in terms of the entire avail-

able session and the candidate document. This is the advantage of modeling the

concatenation of the session over modeling each behavior individually.

6.2.2.2 Hierarchical Behavior Attention Module

We design a behavior attention module to learn to attend to user behaviors and

the current document to produce a history-enhanced query-document representation
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for ranking. The hierarchy in the behavior attention module is composed of an intra-

behavior attention layer and an inter-behavior attention layer.

Intra-behavior Attention. As shown in the middle part of Figure 6.1, the

input of the intra-behavior attention layer is the token-level representations produced

by BERT, and the output is behavior-level representations for all behaviors. In our

architecture, the BERT encoder computes attention on a token level while the inter-

behavior attention layer computes attention on a behavior level. The intra-behavior

attention layer serves as a connecting component of these two modules.

Given a specific session user behavior (or the current document), we isolate the

representations of tokens within this behavior as {t̂m}em=s, where s and e are the

start and end of this behavior. The [CLS] of the input sequence and the trailing

[SEP] of this behavior are also considered as within-behavior tokens. We then apply

an intra-behavior attention layer that has the same structure with a BERT layer.

Specifically, this has three sub-layers: an attention layer (Eq. 6.2), an intermediate

layer (Eq. 6.3), and an output layer (Eq. 6.4):

{t̃1m} = LayerNorm ({t̂m}em=s + FFN (MHAtt ({t̂m}em=s))) (6.2)

{t̃2m} = GELU (FFN ({t̃1m})) (6.3)

{t̃m} = LayerNorm ({t̃2m}+ FFN ({t̃2m})) (6.4)

where LayerNorm is the layer normalization (Ba et al., 2016), MHAtt is the multi-

head attention mechanism (Vaswani et al., 2017), GELU is the Gaussian error linear

units (Hendrycks and Gimpel, 2016), and FFN is a feed forward layer. {t̃m} denotes

intermediate representations for tokens in this behavior.

Finally, we aggregate the token representations using an average pooling on the

dimension of sequence length:

r = AvgPooling ({t̃m}) (6.5)
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where r ∈ Rh denotes the representation for this session user behavior (or the current

candidate document). The encoding of different behaviors are vectorized to produce a

set of behavior representations R = {rqn−w , rdn−w
+

, rdn−w
−

, · · · , rqn , rd} for all behaviors

in this session and the given candidate document.

Inter-behavior Attention. As shown in the upper part of Figure 6.1, given

the behavior representations R produced by the intra-behavior attention layer, the

inter-behavior attention layer considers each individual behavior as a whole and com-

pute their attention to each other. We further introduce behavior awareness to the

inter-behavior attention layer by proposing the behavior aware embeddings. Since

the behavior position and type are two properties that can uniquely identify a user

behavior in a session, we design two sets of behavior aware embeddings, namely, the

behavior position embeddings and the behavior type embeddings, to let the model be

aware of these properties.

For the behavior position embeddings, the position of a user behavior refers to

its relative position in terms of the current query. We use different embeddings for

behaviors at different positions. The behavior type embeddings work in a similar

manner. The vocabulary of behavior types is defined as {q, d+, d−, d∗}, where d∗

denotes the current document, whose relevance has not been judged. The behav-

ior aware embeddings are randomly initialized and learned. For each behavior, the

behavior aware embeddings are added to the behavior representations followed by a

layer normalization. For example, an enhanced behavior representation for rdn−w
+

is

computed as follows:

r̂dn−w
+

= LayerNorm (rdn−w
+

+ en−w + ed+) (6.6)

where en−w ∈ Rh is the behavior position embedding for turn n − w and ed+ ∈ Rh

is the behavior type embedding for d+. The [CLS] representation is prepended to

the session user behaviors and the current document so that we can follow the same
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pooling strategy of Devlin et al. (2019). The behavior aware embeddings for [CLS]

are set to the same ones as the current document.

We then apply the same transformations as in Eq. 6.2, 6.3, and 6.4 to obtain

R̃ = {r̃[CLS], r̃qn−w , r̃dn−w
+

, r̃dn−w
−

, · · · , r̃qn , r̃d} . Different from the intra-behavior at-

tention layer that computes attention on a token level, these transformations are now

performed on a behavior level for bidirectional session modeling. Lastly we obtain

a final representation r∗[CLS] for ranking by taking a linear projection of the hidden

states corresponding to the [CLS] token as follows:

r∗[CLS] = FFN (r̃[CLS]) (6.7)

This representation is considered a history-enhanced query-document representation

for ranking.

6.2.2.3 Document Ranker

The document ranking module is the last module in Figure 6.1. Following previous

work (Nogueira and Cho, 2019), we use a linear layer to obtain the probability of d

being relevant as follows:

Pr (y | r∗[CLS]) = softmax (FFN (r∗[CLS])) (6.8)

where y ∈ {0, 1} is the relevance label. At training time, we use binary classification

with cross-entropy loss. At testing time, we obtain the final list of documents for each

query by ranking the documents with respect to the probability of relevance.

6.3 Experimental Settings

We now describe the dataset and experimental setups, including competing meth-

ods, evaluation metrics and implementation details.
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Table 6.1: Data Statistics. We follow previous works (Ahmad et al., 2019b; Gao
et al., 2010; Huang et al., 2018b, 2013; Dai et al., 2018; Zheng et al., 2018) to use the
document title as its content.

Data Split Train Valid Test

# Sessions 219,748 34,090 29,369
# Queries 566,967 88,021 76,159
# Avg. Queries per Session 2.58 2.58 2.59
Avg. Query Length 2.86 2.85 2.9
Avg. Doc Length 7.27 7.29 7.08
# Avg. Doc per Query 5 5 50
# Avg. Click per Query 1.08 1.08 1.11
# Min/Med/Max Queries per Session 2/2/10 2/2/10 2/2/10

6.3.1 Dataset Description

We experiment with the AOL search log data created and used in Ahmad et al.

(2019b) for easy and fair comparisons with their methods. This dataset is 200 times

larger than the Session Track data and is thus much more suitable for training deep

models. We present statistics of the dataset in Table 6.1.

The AOL query log (Pass et al., 2006) only contains queries and their clicked doc-

uments. It does not record other candidate documents returned to the users. Ahmad

et al. (2019b) construct candidate documents for each query by sampling from the top

documents retrieved by BM25 (Robertson and Zaragoza, 2009). Then they group user

query logs into sessions by computing the cosine similarity of query representations.

The query representations are obtained by averaging the query token embeddings

from GloVe (Pennington et al., 2014). They use a cosine similarity threshold of 0.5

to segment the sessions and discard the search sessions with less than two queries.

They use the document title as its content following previous studies (Gao et al.,

2010; Huang et al., 2018b, 2013; Dai et al., 2018; Zheng et al., 2018). Although this is

a limitation, previous work (Zamani et al., 2017) indicates that the title field is very

informative in re-ranking.
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6.3.2 Experimental Setup

6.3.2.1 Competing Methods

Ahmad et al. (2019b) have shown that their method significantly outperform both

classical and neural ad-hoc retrieval models. Therefore, we first compare with their

method, the best performing approach in this task. We then build another context

aware neural model based on BERT as an even stronger baseline. To be specific, the

competing methods are:

• CARS (Ahmad et al., 2019b): This model uses RNN (Recurrent Neural Net-

work) based encoders to encode the queries and clicks in a session into hidden

representations. It then uses two recurrent structures to summarize these rep-

resentations. It is trained with a multi-task learning setting for both conversa-

tional document ranking and query suggestion. It is by far the strongest pub-

lished baseline in this task and significantly outperforms traditional IR methods

and previous neural models.

• BERT (Nogueira and Cho, 2019): Nogueira and Cho (2019) applies BERT to

document ranking. This model only considers the current query and the candi-

date document. Specifically, they use BERT to model (qn, d) with the standard

setting of using “[CLS] qn [SEP] d [SEP]” as the input sequence. This mod-

ule is then followed by the same document ranker described in Section 6.2.2.3.

• BERT-Concat: This is the HBA-Transformers without the hierarchical be-

havior attention module. Given the token level representation produced by

the BERT encoder, we take a linear projection of the [CLS] representation

and apply the document ranker directly. In order to investigate the utilities

of different behavior types, we design several variations of BERT-Concat that

only consider specific user behaviors, namely, -Q, -QC, and -QCS. “Q”, “C”,
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“S” denote previous queries, previous clicked documents, and previous skipped

documents respectively.

• HBA-Transformers: This refers to the model with the hierarchical behavior

attention mechanism enhanced by the behavior aware embeddings introduced

in Section 6.2. This also has variations of -QC and -QCS.

6.3.2.2 Evaluation Metrics

We follow Ahmad et al. (2019b) and use mean reciprocal rank (MRR@all) and

normalized discounted cumulative gain (nDCG@1, 3, 10) for evaluation. Normalized

session discounted cumulative gain (nsDCG) (Järvelin et al., 2008) and session average

precision (sAP) (Kanoulas et al., 2011), metrics for session search, assume that a

session is a series of query reformulations. In AOL data, queries in a session are not

necessarily related. So we mainly focus on MRR and nDCG.

6.3.2.3 Implementation Details

Our models are implemented with PyTorch2 and based on the open-source imple-

mentation of BERT by Hugging Face.3 We use the BERT-Base (uncased) model. We

use the same training scheme for all our models, including BERT/BERT-Concat and

HBA-Transformers. We set the max sequence length to 128, the training batch size

to 512, the number of training epochs to 10, and the learning rate to 1e-4. The warm

up portion of the learning rate is 10% of the total steps. We set the gradient accumu-

lation steps for BERT/BERT-Concat and HBA-Transformers to 1 and 4 respectively.

The history window size is set to 3. We use half precision for training as suggested

in the Hugging Face repository to alleviate CUDA memory consumption. Models are

trained with 8 NVIDIA GeForce RTX 2080 Ti GPUs. We save checkpoints every

2https://pytorch.org/

3https://github.com/huggingface/pytorch-transformers
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Table 6.2: Main evaluation results. ‡ means statistically significant improvement over
the strongest baseline with p < 0.05 tested by the Student’s paired t-test. Methods
in boldface are our models. “Q”, “C”, “S” denote previous queries, previous clicked
and skipped documents respectively.

Models MRR nDCG
@1 @3 @10

CARS4 (Ahmad et al., 2019b) 0.4538 0.2940 0.4249 0.5109
BERT (Nogueira and Cho, 2019) 0.5198 0.3592 0.4984 0.5813
BERT-Concat-Q 0.5196 0.3596 0.4977 0.5806
BERT-Concat-QC 0.5340 0.3759 0.5149 0.5934
BERT-Concat-QCS 0.5366 0.3787 0.5174 0.5954
HBA-Transformers-QC 0.5450‡ 0.3866‡ 0.5291‡ 0.6021‡

HBA-Transformers-QCS 0.5446‡ 0.3850‡ 0.5268‡ 0.6012‡

5,000 steps and evaluate on 5,000 validation sessions (about 15% of the validation

data) to select the best model for the test set. The training time for BERT-Concat

and HBA-Transformers are 5.5 hours and 19.5 hours respectively.

6.4 Evaluation Results

In this section, we present our evaluation results, additional analyses on model

ablation, and the conversation properties of queries.

6.4.1 Main Evaluation Results

We report the main evaluation results in Table 6.2. Note that the AOL data does

not have ranking information and the skipped documents are synthetic as described

in Section 6.3.1. We summarize our observations of the results as follows:

4We reproduce and re-evaluate the result of CARS with its open source code at https:
//github.com/wasiahmad/context_attentive_ir. The discrepancies in numbers come
from different tie-breaking strategies in different evaluation methods. We use the official trec_eval
while all models in the CARS paper are evaluated by an author-implemented function. With their
evaluation, HBA-Transformers-QC gives the MRR of 0.6932 while CARS gives 0.542.
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1. Even though CARS leverages the context information and is trained with multi-

task learning, the BERT ranker without any context outperforms CARS. This

improvement demonstrates the extraordinary capability of BERT in single-turn

ranking.

2. BERT-Concat-QC(S) boosts the performance for BERT substantially. This

suggests that history user behaviors can contribute to the ranking performance.

In addition, it also shows that concatenating history turns in a BERT based

model is effective despite its simplicity.

3. HBA-Transformers outperforms CARS by a large margin. Moreover, even

though BERT-Concat is a very strong baseline, our method demonstrates sta-

tistically significant improvement over it with p < 0.05 tested by the Student’s

paired t-test. This shows the strength of our approach in modeling user be-

haviors. We present a detailed ablation analysis to investigate the sources of

effectiveness in Section 6.4.2.

6.4.2 Ablation Analysis

Section 6.4.1 has shown the effectiveness of our model. This model performance

is closely related to several design choices we made. In this section, we conduct an

ablation analysis to investigate the contributions of each design choice, including the

impact of the skipped documents, the history window size, the hierarchical behavior

attention mechanism, and the behavior aware embeddings.

6.4.2.1 Impact of Skipped Documents and History Window Size

We investigate the impact of skipped documents and history window size in this

section. The results are presented in Table 6.3.

Although we show that history user behaviors are informative in Section 6.4.1,

we observe that providing different amount of history to the models does not show
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Table 6.3: Impact of the skipped documents and history window size. We report
MRR on the test set. Boldface denotes the best performance for each model.

Models history=1 history=2 history=3

BERT-Concat-QC 0.5376 0.5345 0.5340
BERT-Concat-QCS 0.5343 0.5346 0.5366
HBA-Transformers-QC 0.5593 0.5429 0.5450
HBA-Transformers-QCS 0.5399 0.5496 0.5446

Table 6.4: Model ablation. ‡ and † means statistically significant performance de-
crease compared to the previous line with p < 0.05 and p < 0.1 tested by the Student’s
paired t-test.

Models -QC -QCS

Full Model 0.5450 0.5446
Without Behavior Aware Embeddings 0.5399‡ 0.5432†
Without Hierarchical Behavior Attention 0.5340‡ 0.5366‡

major differences. This could be explained by a property of the AOL data that many

sessions are not made of a sequence of strictly evolving queries. More analysis on this

property is presented in Section 6.4.3. In terms of the skipped documents, we see

no consistent impacts. This could be due to the fact that the skipped document in

the AOL data is synthetic instead of being recorded from real SERPs (Ahmad et al.,

2019b). This is a limitation of our experiments and public available search logs.

6.4.2.2 Impact of Hierarchical Behavior Attention and Behavior Aware

Embeddings

In this part, we further ablate our model to study the sources of effectiveness.

Since the behavior aware embeddings is an integral part of the hierarchical behavior

attention mechanism, our method without hierarchical behavior attention essentially

is the same as the BERT-Concat model.

In Table 6.4, we observe that our models with behavior aware embeddings has

better performance than those without, although the statistical significance is not

134



strong in the case of “-QCS”. The hierarchical behavior attention, on the other hand,

contribute statistically significant improvement to the model performance with and

without the skipped documents. These results show that although behavior aware

embeddings produce performance gains, the hierarchical architecture of the behavior

attention mechanism is the primary source of effectiveness in our model.

6.4.3 Analysis of Conversation Properties

One of the motivations of our work is to lay the ground work for conversational

search. Therefore, we analyze and characterize the conversational properties of queries

to demonstrate the implications of our research in conversational search.

We use the MS GEN Encoder API5 (Zhang et al., 2019) to encode the queries

into hidden representations. Authors of GEN Encoder (Zhang et al., 2019) build a

taxonomy for information-seeking behaviors, defined by the cosine similarity of the

representations of query pairs as follows (Zhang et al., 2019):

• Topic Change (≤ 0.4): the two queries talk about different issues. E.g.

“orlando theme parks” and “floral tattoo”.

• Explore (0, 4, 0.7]: the second query explores around the intent of the first

query. E.g. “river road camp” and “forest river rv”.

• Specify (0.7, 0.85]: the second query drills down the intent of the first query.

E.g. “basketball summer camps” and “rice university girls basketball summer

camp”.

• Paraphrase (0.85, 1]: the two queries share the exact same intent.

With these representations and the taxonomy, we conduct two parts of studies.

In the first part, we follow the same setting as Zhang et al. (2019) to analyze the

5https://msturing.org/
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distribution of cosine similarities between query pairs in search sessions. Queries

within each pair can be adjacent, separated by one or two other queries in the session,

or paired randomly. This result is presented in Figure 6.2a. We observe that random

query pairs often talk about different topics as expected, while queries in the same

session are much more related. Besides, for queries in the same session, many of them

are similar to each other, despite having different distances. In comparison, Zhang

et al. (2019) show that adjacent Bing queries follow a strong bimodal distribution,

with less query pairs in extreme Paraphrase. Compared with Bing queries, AOL

data has more paraphrasing queries and less queries that can form a long information

seeking chain. This property of the data supports our finding in Section 6.4.2.1

that introducing different amount of session history has similar contribution to the

performance. Our model performance on their Bing data could potentially benefit

from a longer session history.

In the second part, we inspect the effect of our method on queries with different

conversational properties. Given the current query, we compute the cosine similarity

between the representations of this query and each previous query within the history

window. These cosine similarity scores are averaged to provide a characterization

of how conversational a query is. We adopt the same guideline to interpret the

conversational property. From a session point of view, a session appears more coherent

when it has more conversational queries that have similar intent. A session is not

coherent if the intent of adjacent queries are constantly changing.

We analyze the correlation between the conversational property and the improve-

ment of MRR. The MRR improvement is computed as the gain of our method in terms

of the BERT baseline that is without session history. This improvement comes from

the history user behaviors that are considered by our model (HBA-Transformers-QC

in Table 6.2). The average encoding similarity scores are grouped by quantiles. We
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Figure 6.2: Figure 6.2a shows the distributions of cosine similarities between queries
in search sessions. The distance is the number of queries between the two queries.
Query pairs were randomly sampled in the AOL data. Figure 6.2b shows the effect
of our method on queries with different conversational properties. Taxonomy legends
are shared.

merge the last four quantiles since their similarity scores are very similar. The results

are shown in Figure 6.2b.

We observe that the MRR improvement gets progressively larger as the query

become more conversational. For paraphrasing queries, the clicked/skipped docu-

ments could be different and thus can contribute to the performance. This result

suggests that coherent sessions are more demanding in considering the history user

behaviors in the session, and should be targeted by behavior aware models. Our

HBA-Transformers can be potentially triggered at runtime upon identifying coherent

sessions.

6.5 Summary

In this chapter, we introduce behavior awareness to a neural ranker for conversa-

tional document ranking. We propose a hierarchical behavior attention mechanism

with behavior aware embeddings to let the system effectively distinguish and model

different user behaviors. We show that a simple concatenation of history user behav-

iors is effective for a BERT based ranker. We further demonstrate that a behavior
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aware hierarchical architecture is more powerful in this scenario than a simple con-

catenation. Moreover, we show that coherent sessions tends to be more conversational

and thus are more demanding in considering history user behaviors.
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CHAPTER 7

CLOSING REMARKS AND FUTURE WORK

7.1 Closing Remarks

Motivated by the iterative and interactive nature of conversational search, we

study modeling conversation history in a conversational search process so that a con-

versational search system can better understand and fulfill the users’ information

needs. Many approaches we proposed take advantage of the recent advancement in

pretrained language models. We start from history modeling for user intent predic-

tion. We analyze the user intent patterns in information seeking conversations and

investigate both feature-based methods and deep learning methods for user intent

prediction. We then move to history modeling for conversational question answering,

where we work from both history incorporation and history selection perspectives.

After this, we continue this line of research in open-retrieval conversational question

answering, where we emphasize the fundamental role of retrieval in conversational

search. Finally, we study history modeling for conversational re-ranking and in-

troduce behavior awareness to a neural ranker with a Hierarchical Behavior Aware

Transformers model.

In Chapter 3, we analyze how people interact in information-seeking conversa-

tions as a crucial part in developing conversational search systems. We introduce the

MSDialog dataset designed for this purpose and use it to analyze information-seeking

conversations by user intent distribution, co-occurrence, and flow patterns. With MS-

Dialog, we find some highly recurring patterns in user intent during an information-

seeking process. They could be useful for designing conversational search systems.
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Furthermore, we study how to predict user intent in information-seeking conversations

from two aspects. First, we extract features based on the content, structural, and sen-

timent characteristics of a given utterance, and use classic machine learning methods

to perform user intent prediction. We then conduct an in-depth feature importance

analysis to identify key features in this prediction task. We find that structural fea-

tures contribute most to the prediction performance. Given this finding, we construct

neural classifiers to incorporate context information and achieve better performance

without feature engineering. Our findings can provide insights into the important

factors and effective methods of user intent prediction in information-seeking conver-

sations.

In Chapter 4, we study the modeling of conversation history for conversational

question answering. We propose a novel solution for ConvQA that involves three

aspects. First, we propose a history answer embedding method to encode the conver-

sation history using BERT (Devlin et al., 2019) in a natural way. We further introduce

the position information of a question into history answer embedding. Second, we

design a history attention mechanism to conduct a “soft selection” for conversation

history turns. This method attends to history turns with different weights based on

how helpful they are on answering the current question. Third, in addition to handling

conversation history, we take advantage of multi-task learning to do answer prediction

along with dialog act prediction using a uniform model architecture. We demonstrate

the effectiveness of our model with extensive experimental evaluations on QuAC, a

large-scale ConvQA dataset. We show that our positional history answer embedding

approach is highly effective, especially for BERT-like models whose maximum input

sequence length is limited. We further discover that position information plays an im-

portant role in conversation history modeling. We also visualize the history attention

and provide new insights into conversation history understanding.
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In Chapter 5, we address the limitations of Chapter 4 by introducing an open-

retrieval conversational question answering setting, where we learn to retrieve evi-

dence from a large collection before extracting answers, as a further step towards

building functional conversational search systems. We build an end-to-end system

for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on

Transformers. We first conduct experiments in a fully-supervised setting. Our exten-

sive experiments demonstrate that a learnable retriever is crucial for ORConvQA. We

further show that our system can make a substantial improvement when we enable

history modeling in all system components. We then dig into a weakly-supervised

setting to tackle the freeform answers in information-seeking conversations. Different

from span answers, freeform answers are not necessarily strict spans of any passage.

We introduce a learned weak supervision approach that can identify a paraphrased

span of the known answer in a passage. Our experiments show that a span-match

weak supervisor can only handle conversations with span answers, and has less satis-

factory results for freeform answers generated by people. Our method is more flexible

as it can handle both span answers and freeform answers. Moreover, our method can

be more powerful when combined with the span-match method, which shows it is

complementary to the span-match method.

Finally, in Chapter 6, we focus on the contextual document ranking task, which

deals with the challenge of user interaction history modeling for conversational search.

Given a history of user feedback behaviors, such as issuing a query, clicking a doc-

ument, and skipping a document, we propose to introduce behavior awareness to a

neural ranker, resulting in a Hierarchical Behavior Aware Transformers model. The

hierarchy is composed of an intra-behavior attention layer and an inter-behavior at-

tention layer to let the system effectively distinguish and model different user behav-

iors. Our experiments demonstrate that the hierarchical behavior aware architecture

is more powerful than a simple combination of history behaviors. In addition, we an-
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alyze the conversational property of queries. We show that coherent sessions tend to

be more conversational and thus are more demanding in terms of considering history

user behaviors.

7.2 Future Work

This dissertation presents our initial effort on modeling conversation history for

conversational IR. There are still many challenges in this area that we would like to

study in the future.

• User Intent Prediction. Instead of predicting user intent on an utterance

level, a more fine-grained intent detection approach might be desired to reveal

users’ information needs more accurately. Furthermore, we would like to study

how to leverage the predicted user intent to retrieve, rank, or generate con-

versational responses, including both answers and clarifying questions, in an

information-seeking setting.

• Conversational Question Answering. Related to the previous direction, we

would like to further analyze the relationship between history attention patterns

and different user intents or dialog acts. This could lead to a history selection

or weighting scheme guided by user intent in a more explicit manner. Another

direction we would like to pursue is generating natural answers based on the

predicted answer span.

• Open-Retrieval Conversational Question Answering. Following our other

efforts described in Section 5.2.5, we would like to continue working on a re-

triever that is not only learnable but also tunable by the downstream ConvQA

task. In addition, we will also investigate other effective approaches to conduct

post-domain pretraining for the language models used in conversational search

systems. Finally, combining the power of sparse retrieval and dense retrieval
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for a hybrid approach should also be a promising direction in open-retrieval

ConvQA.

• Conversational Re-Ranking. A diverse set of user behaviors could better

inform the history modeling process. Therefore, in future work, we will consider

using more diverse user behaviors that are beyond queries, clicks, and skips.
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