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Abstract. In this work we leverage recent advances in context-sensitive
language models to improve the task of query expansion. Contextual-
ized word representation models, such as ELMo and BERT, are rapidly
replacing static embedding models. We propose a new model, Contextu-
alized Embeddings for Query Expansion (CEQE), that utilizes query-
focused contextualized embedding vectors. We study the behavior of
contextual representations generated for query expansion in ad-hoc doc-
ument retrieval. We conduct our experiments on probabilistic retrieval
models as well as in combination with neural ranking models. We evalu-
ate CEQE on two standard TREC collections: Robust and Deep Learn-
ing. We find that CEQE outperforms static embedding-based expansion
methods on multiple collections (by up to 18% on Robust and 31% on
Deep Learning on average precision) and also improves over proven prob-
abilistic pseudo-relevance feedback (PRF) models. We further find that
multiple passes of expansion and reranking result in continued gains
in effectiveness with CEQE-based approaches outperforming other ap-
proaches. The final model incorporating neural and CEQE-based expan-
sion score achieves gains of up to 5% in P@20 and 2% in AP on Robust
over the state-of-the-art transformer-based re-ranking model, Birch.

1 Introduction

Recently there is a significant shift in text processing from high-dimensional
word-based representations to ones based on continuous low-dimensional vectors.
However, fundamentally both are static – each word has a context-independent
or static representation. The fundamental challenge of polysemy remains. Recent
approaches aim to address this, namely ELMo [27] and BERT [6], by creating
context-dependent representations that depend on the surrounding context in
which they occur. The power of contextualized models comes from this ability
to disambiguate and generate distinctive representations for terms with the same
lexical form. Contextualized representation models provide significant improve-
ments across a range of diverse tasks. To our knowledge this is the first work to
develop an unsupervised contextualized query expansion model based on pseudo-
relevance feedback. This represents an advancement over previous context-free



2 S. Naseri et al.

expansion models based on lexical matching. Our proposed approach leverages
contextual word similarity with an unsupervised expansion model.

Contextualized representations from BERT and similar models are rapidly
being adopted for retrieval and NLP, because they transfer well to new domains
with limited training data. Supervised ranking models derived from them, such
as CEDR [18] and T5 [22], are the top-ranked learning-to-rank methods for a
wide range of retrieval and QA benchmarks. In this work we leverage these
contextualized word representations not for supervised re-ranking, but instead
to improve core document matching. We address the fundamental problem that
for many queries the core matching algorithms fails to identify many (or even all)
relevant results in the candidate pool. Advancements in retrieval require more
effective core matching algorithms to improve recall for neural ranking methods.
No amount of reranking irrelevant results will provide relevance gains.

We propose a new contextualized expansion method to address the task of
core matching building on proven pseudo-relevance feedback (PRF) techniques
from probabilistic Language Modeling and extending them to effectively leverage
contextual word representations. Further, we investigate the effect of applying
CEQE in combination with state-of-the-art neural re-ranking models. Our work
addresses core research questions (RQ) in contextualized query expansion:

– RQ1 How can contextualized representations be effectively leveraged to im-
prove state-of-the-art unsupervised query expansion methods?

– RQ2 How effective are neural reranking methods when performed after
query expansion?

– RQ3 How effective are query expansion methods after a first pass of high-
precision neural re-ranking?

We study these questions with empirical experiments on standard TREC test
collections: Robust and Deep Learning 2019. The results on these test collec-
tions demonstrate that variations of CEQE significantly outperform previous
static embedding models (based on GLoVe) in extrinsic retrieval effectiveness
by approximately 18% MAP on Robust04 and 31% on TREC Deep Learning
2019 and 6-9% for recall@1000 across all datasets.

This work makes several new contributions to methods and understanding
of contextualized representations for query expansion and relevance feedback:

– We develop a new contextualized query expansion method, CEQE, that
shifts from word-count approaches to contextualized query similarity.

– We demonstrate through experimental evaluation that the proposed ap-
proach outperforms static embedding methods and performs at least as well
as state-of-the-art word-based feedback models on multiple collections.

– We demonstrate that neural reranking combined with CEQE results in state-
of-the-art effectiveness that outperforms previous approaches.

2 Background and Related Work

Query Expansion A widely used approach to improve recall uses query expan-
sion from relevance feedback that takes a user judgment of a result’s relevance
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and uses it to build an updated query model [30]. Pseudo-relevance feedback
(PRF) [13, 16, 38] approaches perform this task automatically, assuming the top
documents are relevant. We build on these proven approaches based on static
representations and extend them to contextualized representations. Padaki et
al. [24] investigate BERT’s performance when using expanded queries and find
that expansion that preserves some linguistic structure is preferrable to expand-
ing with keywords.

Embedding-based Expansion Another approach for query expansion in-
corporates static embeddings [26, 19] to find the relevant terms to the query,
because embeddings promise to capture the semantic similarity between terms
and are used in different ways to expand queries [7, 12, 36, 37, 5, 31, 20]. These
word embeddings, such as Word2Vec, GloVe, and others, learn a static word
embedding for each term regardless of the context. Most basic models fail to
address polysemy and the contextual characteristics of terms. All of the pre-
vious approaches use static representations that have fundamental limitations
addressed by the use of contextualized representations.

Supervised Expansion There is a vein of work using supervised learning
to perform pseudo-relevance feedback. Cao et al. [2] and Imani et al. [10] use
feature-based models to try to predict what terms should be used for expan-
sion. A common practice is to classify terms as positive, negative, or neutral
and use classification methods to maximize the number of predicted positive
terms. We use this labeling method to intrinsically evaluate the utility of our
unsupervised approach. An end-to-end neural PRF model (NPRF) proposed by
Li et al. [14] uses a combination of models to compare document summaries and
compute document relevance scores for feedback and achieves limited improve-
ment while only using bag-of-words neural models. Later work combining BERT
with a NPRF framework [41] illustrated the importance of an effective first-stage
ranking method. A complementary vein of work [23] uses generative approaches
to perform document expansion by predicting questions to add to document. In
contrast, we focus on query expansion approaches.

Neural ranking Contextualized Transformer-based models are now widely
used for ranking tasks [1, 4, 15, 18, 21, 22, 25, 29, 40]. MacAvaney et al. [18] pro-
pose incorporating contextualized language models into existing neural ranking
architectures by considering each layer of contextualized language models as one
channel and integrating the similarity matrices of each layer in the neural rank-
ing architecture. Recent research [8, 11, 17, 39, 33] uses Transformer models to
produce query and document representations that can be used for (relatively)
efficient first-stage retrieval. In this context, Gao et al. [8] find that combining
a representation-based model with a lexical matching component improves ef-
fectiveness. In contrast, we focus on representations solely as a contextualized
word representation model for the task of unsupervised query expansion.
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3 Methodology

In this section we introduce our proposed Contextualized Embedding for Query
Expansion (CEQE) method that utilizes contextualized representations for the
task of query expansion. The method below applies to many widely used con-
textualized embedding representation models, including BERT and its variants.

3.1 Word and WordPiece representations

In contextualized models, to address the problem of out-of-the-vocabulary terms,
subword representation such as WordPieces [32] are used. For backwards com-
patibility with existing word-based retrieval systems (as well as comparison with
previous methods) we use words as the matching unit. We first aggregate Word-
Piece tokens into a contextualized vector for words. We compute the average
embedding vector of word w by −→w , 1

|w|
∑

pi∈w
−→pi , where pi is a WordPiece of

word w and |w| is the number of WordPieces in the word w.

3.2 Contextualized Embeddings for Query Expansion (CEQE)

In this section we describe the core of the CEQE model. It follows in the vein
of principled probabilistic language modeling approaches, such as the Relevance
Model formulation of pseudo-relevance feedback [13]. In contrast to these ap-
proaches that are based on static lexical matching, we formulate relevance based
on contextualized vector representations. We build the contextualized feedback
model based upon the core Relevance Model (RM) formulation:

p(w|θR) ∝
∑
D∈R

p(w,Q,D) (1)

where θR and R respectively denote the feedback language model and the set
of pseudo-relevant documents, i.e., the top retrieved documents. In the original
RM formulation, the joint probability of p(Q,w,D) is broken down as follows:∑

D∈R

p(w,Q,D) =
∑
D∈R

p(w,Q|D)p(D) (2)

=
∑
D∈R

p(w|D)p(Q|D)p(D) (3)

where Equation 3 is derived from the simplifying independence assumption be-
tween the query Q and term w. This assumption results in a static representation
based on simple word counts and ignores the query explicitly. It only incor-
porates evidence indirectly through P (Q|D). In contrast, the proposed CEQE
parameterization doesn’t assume term w is independent of query Q and explic-
itly incorporates the query focus based on similarity with contextualized vector
representations. More formally:∑

D∈R

p(w,Q,D) =
∑
D∈R

p(w|Q,D)p(Q|D)p(D) (4)
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With a contextualized model it is no longer possible to simply count doc-
ument terms – they must be grouped, simplified, or compared against a query
representation. We explicitly incorporate contextualized query similarity for each
word occurrence. We now break down each of the elements in Equation 4 in more
detail. Following common practice we assume a uniform probability for p(D).
p(Q|D) is the posterior probability of the query given a document from the
retrieval model. We propose several methods to calculate p(w|Q,D) below.

Centroid Representation In this approach we create a model of the whole
query and then compare it to the contextualized representation of each word
mention (occurrence), mw. In the centroid representation we define σ(Q), the
aggregation of all WordPieces of the query. Note that a representation of a query
also includes special delimiter tokens. For example, in BERT this would include
[CLS] and [SEP] tokens that we find carry contextual importance. We include
the [CLS] token in particular because it is often used as a representation of the
input with respect to the target task. For the query centroid representation we
define σ as the mean of its individual component contextual vectors: we represent

query σ(Q) by
−→
Q , 1

|Q|
∑

qi∈Q
−→q , where qi is a WordPiece token and |Q| is the

length of the query in WordPiece tokens.
We then define p(w|Q,D) by comparing the similarity of individual word

mentions to the query centroid representation based on a similarity function δ
(e.g., cosine). If mD

w is a mention of word w in a document D and MD
w is the

complete set of mentions of w:

p(w|Q,D) ,

∑
mD

w∈MD
w
δ(
−→
Q,
−−→
mD

w )∑
mD∈MD

∗
δ(
−→
Q,
−−→
mD)

(5)

The denominator is a normalization constant that considers all word mentions
across the entire document to form a probability. This approach is novel because
the contextualized vector mD

w will be different for every occurrence in D because
the context surrounding each mention of word w varies.

Term-based Representation In this section we propose an alternative
parameterization for p(w|Q,D). Instead of using the centroid of the query to
compute a term’s similarity to the entire query, we compute the similarity for
each query term separately. If q is a query term and −→q is its corresponding
contextualized embedding vector, this can be formulated as:

p(w|q,D) ,

∑
mD

w∈MD
w
δ(−→q ,

−−→
mD

w )∑
mD∈MD

∗
δ(−→q ,

−−→
mD)

(6)

To select a term for expansion for the query overall we perform an extra
step of pooling across the similarities of individual words. This step combines
the contextualized word vectors. Function f calculate the semantic similar-
ity of word w with the whole query by combining the semantic similarity of
it with each query term q. We define fmax(w,Q,D) = maxq∈Q p(w|q,D) and
fprod(w,Q,D) =

∏
q∈Q p(w|q,D) as MaxPool and MulPool, respectively. If Z ′ is

a normalization factor that is the sum over the terms in document D, which is
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less computationally expensive than summing over all vocabulary terms, these
can be defined as:

p(w|Q,D) ,
fmax/prod(w,Q,D)

Z ′ (7)

The final result of all of these methods is a relevance distribution over terms
derived from the contextualized representations in top retrieved documents. The
result is an updated query language model that can be used on its own or
combined with other representations.

4 Experimental Setup

4.1 Datasets

We evaluate our model on two standard TREC datasets: Robust and Deep Learn-
ing.

Robust The corpus consists of Tipster disks 4 and 5 containing approxi-
mately 528K newswire articles. The evaluation topics are the 250 Robust topics
(301-450, 601-700). We use the titles as queries.

TREC Deep Learning The 2019 TREC Deep Learning (DL) Track created
large labeled datasets for ad-hoc search. We perform the full document ranking
task with the goal of testing new expansion methods to improve effectiveness.
The evaluation has 43 test queries from Bing, and the corpus consists of 3.2
million web documents. Documents are rated on a four point graded relevance
scale. The primary measure is NDCG@10.

Evaluation Metrics Since we focus on introducing relevant documents to a
candidate pool for downstream ranking, we consider both recall-focused metrics
(Recall@100, Recall@1000, MAP) as well as precision-based measures (P@10/20,
NDCG@10/20). For Robust, in order to compare with previous works we report
precision and NDCG at cut-off 20. We report the official primary measure for
DL, NDCG@10. For significance testing, we use a paired t-test with significance
at the 95% confidence interval.

4.2 Baselines

We study the behavior of the CEQE model in comparison with standard models
from probabilistic language modeling. For the baseline retrieval we use BM25
because it is the most widely used first-pass unsupervised ranker used to generate
candidate pools. We compare to two static expansion models [12] and a proven
pseudo-relevance feedback model, the Relevance Model [13]. We use the standard
relevance model (RM3 variant) that performs linear interpolation of the RM
expansion terms with the original query using the Query Likelihood score.

Static Embeddings For static word embeddings we use GloVe [26] embed-
dings. The pre-trained 300 dimensional Glove word embeddings are extracted
from a 6 billion token collection (Wikipedia dump 2014 plus Gigawords 5). These
embeddings are the most effective static embeddings for a variety of tasks, in-
cluding previous work [7] on query expansion. We use the static embeddings
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with two variations. The Static-Embed model [12] is a global expansion model
using GloVe expansion on the target collection vocabulary. For a fair comparison
with CEQE, we additionally consider a Static-Embed-PRF variant that has its
vocabulary limited to terms appearing in the PRF documents.

4.3 Intrinsic expansion judgments

Beyond direct retrieval, we also assess term selection quality intrinsically. We
directly measure the utility of individual expansion terms. Following previous
work from Imani et al., we generate this term utility by performing expansion
one word at a time [10]. Retrieval effectiveness assesses whether a term is good
(helps retrieval), bad (hurts retrieval), or neutral (has no effect). We pool the
top thousand candidate expansion terms from all candidate expansion methods.
These are issued to the retrieval system with the original query (each with a
default weight of 0.5, the default relevance model expansion weight). This ap-
proach follows standard relevance model interpolation practice and removes the
dependence on the original query length (instead of simply appending a word).
We measure improvement based on recall@1000 with a threshold of 0.001. For
Robust this results in approximately 500k candidate terms. For the intrinsic
evaluation only queries with at least one positive expansion term are used. This
is 181 queries for Robust with 10,068 positive terms.

4.4 System Details

All collections are indexed with the Galago1 open-source retrieval system for
research. The query models and feedback expansion models are all implemented
using the Galago query language. We perform stopword removal and stemming
using Galago’s stopword list and Krovetz stemmer, respectively.

Contextualized Embedding Model We use BERT because it is the most
widely used contextual representation model. We use the pre-trained BERT
(BERT-Base, Uncased) model with maximum sequence length of 128 for cal-
culating the contextualized embedding vectors. Since the documents in Robust
are longer than 128 tokens we split the documents into chunks with maximum
size of 128 tokens. For the primary CEQE results in this section we use a sin-
gle layer of the contextualized representation, the second to last layer (11) of
BERT. This layer was shown to be the most effective single layer on NER [6]
and it was shown that later layers (before the last) were the most effective word
representations for multiple language tasks [28] that use contextual embeddings
as features. Initial preliminary experiments confirmed this finding.

Neural ranking models For our neural models we adopt CEDR [18]. In
particular, to align with the use of the contextualized models we use the BERT
variant. For Robust, we use the CEDR-KNRM model trained by the authors [18].
Throughout the paper we refer to the CEDR-KNRM as CEDR. For DL we use
a CEDR variant trained on a random sample of 1000 MS MARCO train queries

1 http://www.lemurproject.org/galago.php
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with early stopping to terminate when there is no validation improvement for
20 iterations.

Parameter settings The unsupervised retrieval and feedback hyperparam-
eters are tuned using grid search. The b and k1 are tuned for BM25 as well as
mu for the QL model in the RM3 score. For all PRF query expansion methods
we tune the number of documents ({5, 10, ..., 100} by 5), terms ({10, 20, ..., 100}
by 10) , and interpolation coefficient ({0.1, 0.2, ..., 0.9} by 0.05). For Robust, we
use five-fold cross-validation with the splits introduced by Huston and Croft [9].
For DL the original 2019 track only used MS MARCO for training. We set
hyper-parameters using five cross-validation with random splits on the topics.

5 Experimental Results

First, in Section 5.1 we study how to incorporate contextualized embeddings for
the task of unsupervised query expansion (RQ1). Then, in Section 5.2 we explore
the effect of CEQE variants in combination with neural ranking methods (RQ2).
Finally, in Section 5.3 section we study how a reranked neural result can be used
as a basis for further expansion and reranking (RQ3).

5.1 Unsupervised Expansion Comparison

We first evaluate our expansion model on retrieval effectiveness in extrinsic eval-
uation. We study this setup because these are the most widely used algorithms
for first pass retrieval. In this pass it is critical to focus on recall at a cutoff, par-
ticularly with a low cutoff due to the computational requirements of second pass
reranking (e.g., the top 100 documents as in [18] and the Deep Learning Track
[3]). We present the results of the methods as well as baselines for Robust04 in
Table 1 and 2019 Deep Learning Track in Table 2.

Robust (Table 1) The results on Robust show that all expansion meth-
ods outperform the baseline BM25 retrieval method across all measures. The
static embedding models outperform BM25, but do not perform as well as the
Relevance Model (RM3). The effectiveness of the Static-Embed-PRF method
that only uses terms in the PRF documents’ vocabulary is more effective across
all measures over the Static-Embed approach with a global vocabulary. We hy-
pothesize that this may be due to the fact that the query results provide a
topically focused vocabulary and filters out generally similar noise. RM3 signifi-
cantly outperforms the Static-Embed method for MAP, but not other measures.
To give an indicator of the BM25 + RM3 parameters, the average parameter
settings across the folds is: 22 feedback docs, 71 expansion terms, and inter-
polation weight of 0.3. We observe that the contextualized expansion methods
outperform the static embedding models. The results show the best method is
CEQE-MaxPool. The Centroid method is slightly lower than MaxPool, and both
outperform multiplicative pooling. The CEQE-MaxPool result outperforms the
BM25+RM3 across all measures and in Recall@1000 is significant over both
static embedding methods and BM25+RM3, which demonstrates the utility of
context-dependent embeddings.
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Table 1. Ranking effectiveness on the Robust collection. The superscript † and ‡
denotes statistical significance over BM25 + RM3 and Static-Embed-PRF, respectively.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

BM25 0.3657 0.4193 0.2574 0.4165 0.6933

BM25 + RM3 0.3998 0.4517 0.3069 0.4610‡ 0.7588‡

Static-Embed 0.3675 0.4285 0.2615 0.4217 0.7125
Static-Embed-PRF 0.3781 0.4400 0.2703 0.4324 0.7231

CEQE-Centroid 0.3922 0.4462 0.3019‡ 0.4593‡ 0.7653†‡

CEQE-MulPool 0.3847 0.4360 0.2845‡ 0.4517‡ 0.7435‡

CEQE-MaxPool 0.4040‡ 0.4587 0.3086‡ 0.4651‡ 0.7689†‡

CEQE-MaxPool(fine-tuned) 0.3986‡ 0.4528 0.3071‡ 0.4647‡ 0.7626‡

The last line of the table shows the result of using MaxPool with ‘fine-tuned’
contextual embeddings from a BERT model trained for ranking on Robust. The
results show small and insignificant differences across all measures. It is almost
identical to vanilla embedding effectiveness after being combined with RM3.
This indicates that, when used for CEQE-based expansion, pre-trained models
are comparable in effectiveness to ones fine-tuned for ranking. To our knowledge
these are the best unsupervised query expansion results for Robust that do not
use external collections.

Deep Learning 19 (Table 2) We report the official evaluation measures for
the TREC 2019 Deep Learning Track [3] as well as Recall@1000. For NDCG@10,
the baseline BM25 retrieval is more effective than all expansion methods. To give
an indicator of the BM25 + RM3 parameters, the average parameter settings
across the folds is: 15 feedback docs, 85 expansion terms, and interpolation
weight of 0.4. Similar to Robust, we observe that a tuned RM3 outperforms
the static embedding methods across all measures. CEQE-MulPool and CEQE-
MaxPool also outperform the static embedding model across all measures. The
best performing expansion method is CEQE-MaxPool, outperforming RM3. We
note that given the small sample size (43 topics), none of the unsupervised
methods show statistically significant differences between them. As shown later,
that requires performing expansion on top of neural rankings.

Although our experimental setup is based on cross-fold validation (rather
than tuning on MARCO), we include the reported values from the Deep Learn-
ing track overview [3] for reference. Importantly, we observe that the CEQE-
MaxPool outperforms all submitted TREC systems on recall@1000 and is in
the top five for recall@100. It’s noteworthy that the unsupervised CEQE-
MaxPool ‘traditional’ model is only slightly lower than the median for P@10
and NDCG@10 with runs that include many state-of-the-art neural models.

Intrinsic Evaluation In this section we examine the effectiveness of the ex-
pansion approaches to rank positive expansion terms that improve Mean Aver-
age Precision (at 1000) when added to the query. This experiment evaluates a
method’s ability to identify good expansion terms in isolation. The results are
shown in Table 3 for the key expansion models to compare for Robust collec-
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Table 2. Ranking effectiveness of CEQE on unsupervised baseline retrieval for Deep
Learning 2019 Track for the task of full document ranking. The superscript † and ‡
denotes statistical significance over BM25 + RM3 and Static-Embed, respectively.

Model P@10 nDCG@10 mAP@1000 Recall@100 Recall@1000

BM25 0.6535 0.5730 0.3513 0.4053 0.6950

BM25 + RM3 0.6256 0.5343 0.3975‡ 0.4434‡ 0.7750‡

Static-Embed 0.6186 0.5427 0.3373 0.3973 0.7179
Static-Embed-PRF 0.5605 0.4925 0.3166 0.3715 0.6737

CEQE-Centroid 0.5580 0.5580 0.4144‡ 0.4464‡ 0.7804‡

CEQE-MulPool 0.6442 0.5563 0.3724‡ 0.4295‡ 0.7560‡

CEQE-MaxPool 0.6581 0.5614 0.4161†‡ 0.4506‡ 0.7832‡

TREC 2019 Median 0.6597 0.5834 0.2984 0.3748 0.5484
TREC 2019 Best 0.8093 0.7260 0.4280 0.4670 0.7553

Table 3. Intrinsic ranking evaluation of expansion terms on Robust. Significance over
Relevance Model is indicated by † and Static-Embed-PRF by ‡.

Model P@10 P@20 P@100

Relevance Model 0.1693‡ 0.1419‡ 0.0871‡

Static-Embed 0.1008 0.0780 0.0511
Static-Embed-PRF 0.1357 0.1083 0.0655
CEQE-MulPool 0.1349 0.1174 0.0737

CEQE-Centroid 0.1751‡ 0.1481‡ 0.0826‡

CEQE-MaxPool 0.1830†‡ 0.1500†‡ 0.0841‡

tion. Because a fixed top-k expansion terms are usually selected for expansion we
evaluate the intrinsic evaluation with set-based precision numbers at common
thresholds for the number of expansion terms. The results show that a well-
tuned Relevance Model outperforms query expansion models based on static
embeddings. In contrast, we find that our proposed contextualized embedding
model, CEQE, provide improvements in early ranks for P@10 and P@20. All
the CEQE models significantly improve over static embedding models across all
metrics. And further, we find that CEQE-MaxPool significantly outperforms the
Relevance Model expansion effectiveness for P@10 and P@20. It is insignificantly
different from the Relevance Model at rank 100. This indicates that strength of
CEQE is selecting a higher number of “good” terms earlier, allowing improved
effectiveness with fewer expansion terms.

We explore the intrinsic results in more depth with an example for one topic
on Robust in Table 4. The first column has the terms (unstemmed) with the
greatest improvement for the query. The ranking of expansion terms for the Rel-
evance Model and CEQE-MaxPool are shown for comparison. We observe that
CEQE model identifies all of the terms from RM as well as three additional
relevant terms. More generally, we see that the CEQE terms appear to have
a stronger semantic relationship with the query terms. The RM terms appear
most loosely related and have additional noise terms, including single digit num-
bers. This is because RM focuses on terms that co-occur across multiple PRF
documents, but it does not explicitly model the relationship to the query. In
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Table 4. Example top expansion terms for Topic 685, [oscar winner selection]. This
includes a sample of the most important intrinsic positive labels, Relevance Model
terms, and CEQE Expansion terms. Terms with positive intrinsic labels are highlighted.

Positive terms: academy, academys, nominations, nomination, critics, members,
branch, ignored, true, films, film, directors, director, filmmaker

RM: best, film, picture, million, academy, years, award, home,
edition, films, man, four, 1, 5

CEQE-Maxpool: film, academy, picture, winners, award, films, million, oscars,
box, presented, awards, director, years, nominations

Table 5. Ranking effectiveness of neural ranking on top of query expansion methods
for Robust. The superscript † and ‡ indicates significance over BM25 + CEDR and
(BM25 + RM3) + CEDR with re-ranking top 1000, respectively.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

BM25 + RM3 0.3998 0.4517 0.3069 0.4610 0.7588
BM25 + CEDR [18] 0.4713 0.5458 0.3312 0.4983 0.6933

(BM25 + RM3) + CEDR 0.4719 0.5435 0.3500† 0.5192† 0.7570†

(BM25 + CEQE-MaxPool) + CEDR 0.4735 0.5462 0.3532† 0.5258†‡ 0.7719†‡

contrast our proposed model explicitly focuses on the query. As a result, the
CEQE model produces fewer terms that co-occur by chance.

5.2 PRF effect on Neural Reranking

We now study how PRF methods impact the effectiveness of neural reranking
models (RQ2). It is important to have effective expansion in the first pass to re-
trieve sufficient numbers of documents to rerank. The results of our experiments
on Robust are shown in Table 5. Applying neural reranked models baselines
designed for document ranking, CEDR [18], on expanded query runs results
in significant gains to average precision, recall@100, and recall@1000 for both
RM3 and CEQE. Replacing RM3 with CEQE for expansion results in signifi-
cant improvement over Recall@100 and Recall@1000. The PRF parameters are
20 documents, 90 terms, and interpolation weight of 0.3.

5.3 Expansion after Reranking

In this section we study how a reranked neural result can be used as a basis
for further expansion and reranking (RQ3). This is a critical step because there
must be a sufficient number of relevant documents in the top ranks for PRF to
be effective. We evaluate multi-round supervised reranking based on expansion
runs for Robust in Table 6. The top of the table shows results from the leading
neural ranking and PRF approaches, including Neural PRF [14], CEDR, and
Birch [35]. The results in this section all perform re-ranking on 1000 results
from the baseline. We experimented with reranking 100 results and found it
consistently performed worse. The baseline model run is BM25+CEDR followed
by RM3 expansion with CEDR reranking, which we denote as (BM25 + CEDR)
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Table 6. Ranking effectiveness of multi-round neural re-ranking and expansion for
Robust. The superscript † and ‡ indicates significance over BM25 + CEDR and (BM25
+ CEDR) + RM3 baselines, respectively.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

Neural PRF-DRMM [14] 0.4064 0.4576 0.2904 - -
BM25 + CEDR [18] 0.4713 0.5458 0.3312 0.4983 0.6933
Birch [35] 0.4657 0.5325 0.3697 - -

(BM25 + CEDR) + RM3 0.4458 0.5211 0.3321 0.4881 0.7751†

(BM25 + CEDR) + RM3 + CEDR 0.4783 0.5499 0.3574† 0.5291† 0.7751†

(BM25 + CEDR) + RM3 + CEDR Interp 0.4837† 0.5565 0.3739† 0.5440† 0.7751†

(BM25 + CEDR) + CEQE-MaxPool 0.4504 0.5250 0.3366 0.4931 0.7874†‡

(BM25 + CEDR) + CEQE-MaxPool + CEDR 0.4799 0.5516 0.3601† 0.5332† 0.7874†‡

(BM25 + CEDR) + CEQE-MaxPool + CEDR Interp 0.4904† 0.5621† 0.3773† 0.5486† 0.7874†‡

+ RM3 + CEDR. The results show it outperforms Birch in NDCG@20 and
P@20, as well as its own previous result for P@20 on just BM25. Replacing RM3
with CEQE for the expansion consistently outperforms the previous best CEDR
results across all measures and significantly over Recall@1000. The runs compare
performing RM3 and CEQE-MaxPool on the CEDR baseline (which reranks an
initial BM25 first run). The second pass results are then reranked again using
CEDR. The result is further improve over previous approaches. The same trend
continues, with the CEQE-MaxPool outperforming the reranked RM3 run.

A common approach when applying BERT-based neural ranking is to per-
form learning-to-rank to combine the BERT and retrieval score. A simple proven
approach is the linear interpolation of the underlying retrieval score with neural
ranking model [35, 34]. We apply this to the two best runs, learning the interpo-
lation using the previously described cross-validation setup. The results demon-
strate that linear interpolation with these expansion runs continues to show
gains. The interpolation with CEQE-MaxPool is the best performing, and com-
pared with the previous Birch shows over 5% relative gain P@20 and nDCG@20
as well as improving MAP. These results show that multiple rounds of expansion
and reranking can continue to result in significant improvements.

6 Conclusion

We introduce a new method, CEQE, for query expansion that extends rele-
vance feedback approaches to recent advances in contextualized language mod-
els. CEQE address fundamental challenges using context-dependent term repre-
sentations for unsupervised pseudo-relevance feedback. We study its empirical
effectiveness on multiple standard test collections and the results demonstrate
that they are superior to previous static embedding approaches.
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