
Listwise Neural Ranking Models

Razieh Rahimi, Ali Montazeralghaem, and James Allan
Center for Intelligent Information Retrieval

College of Information and Computer Sciences

University of Massachusetts Amherst

{rahimi,montazer,allan}@cs.umass.edu

ABSTRACT

Several neural networks have been developed for end-to-end train-

ing of information retrieval models. These networks differ in many

aspects including architecture, training data, data representations,

and loss functions. However, only pointwise and pairwise loss func-

tions are employed in training of end-to-end neural ranking models

without human-engineered features. These loss functions do not

consider the ranks of documents in the estimation of loss over train-

ing data. Because of this limitation, conventional learning-to-rank

models using pointwise or pairwise loss functions have generally

shown lower performance compared to those using listwise loss

functions. Following this observation, we propose to employ list-

wise loss functions for the training of neural ranking models. We

empirically demonstrate that a listwise neural ranker outperforms

a pairwise neural ranking model. In addition, we achieve further

improvements in the performance of the listwise neural ranking

models by query-based sampling of training data.

KEYWORDS

Neural network, document ranking, listwise loss, query-based sam-

pling

ACM Reference Format:

Razieh Rahimi, AliMontazeralghaem, and JamesAllan. 2019. Listwise Neural

Ranking Models. In The 2019 ACM SIGIR International Conference on the

Theory of Information Retrieval (ICTIR ’19), October 2–5, 2019, Santa Clara,

CA, USA.ACM,NewYork, NY, USA, 4 pages. https://doi.org/10.1145/3341981.

3344245

1 INTRODUCTION

Neural network models have been developed and successfully ap-

plied to many tasks including information retrieval. The key advan-

tage of (deep) neural networks relies in automatic learning of fea-

tures or representations at multiple levels of abstraction. Therefore,

human-engineered features used in conventional learning-to-rank

models are not required in neural networks. Herein, we refer to

feature-based representation of queries and documents and learn-

ing algorithms on this type of representations, such as RankNet [4]

and ListNet [5], as conventional representations and conventional

learning algorithms, respectively. This is to differentiate them from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICTIR ’19, October 2–5, 2019, Santa Clara, CA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6881-0/19/10. . . $15.00
https://doi.org/10.1145/3341981.3344245

learning-to-rank models that also learn representations from raw

input data, such as the duet model [15], which we refer to as neural

ranking models. More specifically, the division between conventional

versus neural ranking models is based on the input of models. For

example, although the ListNet algorithm uses a neural network

for learning a ranking function, it is considered as a conventional

ranking algorithm since its inputs are human-engineered feature

representations of queries and documents.

The parameters of learning-to-rank models are optimized accord-

ing to the employed loss function. Learning-to-rank models are

then generally categorized into pointwise, pairwise, and listwise

approaches, according to their loss functions [12]. While pointwise

and pairwise learning-to-rank models cast the ranking problem as

classification, the listwise learning-to-rank approach learns a rank-

ing model in a more natural way. As a result, conventional learning-

to-rank algorithms using listwise loss functions have shown bet-

ter performance than pointwise and pairwise algorithms on most

datasets, especially on top-ranked documents [17]. This is mainly

because loss functions of pointwise and pairwise algorithms are not

dependent on the position of documents in the final ranked lists,

and thus are not in accordance with typical IR evaluation metrics.

Although conventional learning-to-rank models using listwise

loss functions have shown promising results [17], to the best of our

knowledge, no existing neural ranking model that learns entirely

from input data without using human-engineered features, employs

a listwise loss function for training. We thus explore the potential

of using listwise loss functions for training of discriminative neural

ranking models. More specifically, we examine the deep relevance

matching model [8] which uses a pairwise hinge loss, with a listwise

loss function, to investigate how the learned ranking models may

differ.

Conventional learning-to-rank models using pointwise or pair-

wise loss functions cannot distinguish if two training instances are

associated with the same query. Therefore, the trained models can

be biased towards queries with more judged or retrieved documents.

Using pointwise or pairwise loss functions for training of neural

ranking models, the research question is then if these models may

also be biased although they are trained on a large amount of data.

Our evaluation shows that some neural ranking models that op-

erate on query-document interaction signals also suffer from this

limitation. These neural ranking models are referred to as early

interaction models for document ranking [7].

Although listwise loss functions comply with the nature of rank-

ing problems, training neural ranking models using listwise loss

functions is more challenging. Given a set of labeled data, pointwise

or pairwise learning algorithms have more training instances than

listwise algorithms, while neural networks need to be trained on

adequately large data. To compensate for this problem, we pro-

pose random sampling of documents associated with each query

before each epoch of training. Our evaluation demonstrates that

reshuffling and sampling improves the performance of the listwise

neural ranker for two reasons: (1) generating a slightly different

set of training instances for each epoch of training which helps the

network not to memorize training data [3], and (2) getting a flat

minimizer of the loss function which helps the trained model to

better generalize to test data [11].

2 RELATED WORK

Neural networks have been used in different ways to improve rank-

ing tasks including ad-hoc information retrieval. We focus here on

discriminative training models using (deep) neural networks for

ad-hoc information retrieval, and do not discuss the models that im-

prove document rankings by using the output of generally trained

neural networks, such as distributed representations of words, to

weight or expand queries [10, 20].

Following the convention of learning-to-rank models, we catego-

rize end-to-end neural ranking models into pointwise, pairwise, or

listwise models based on their loss functions. In addition, these net-

works can be categorized into early or late combination models [7]

based on the input space of the network. Input of late interaction

models are such that the network can independently learn repre-

sentations for queries and documents. The representations are then

compared against each other for document scoring. On the other

hand, input of early interaction models consists of matching signals

between a query and document.

Deep structured semantic model (DSSM) is a late-interaction

model that learns semantic representations for query and docu-

ments, given their raw text features such as term frequency, using

a feed forward neural network [9]. Shen et al. [18] improved the

DSSM model by adding a convolutional layer to derive contextual

feature vectors for words. These networks are trained using click-

through data, where each training instance includes one clicked and

four randomly selected non-clicked documents. The log-likelihood

loss function is used to learn the model parameters, which is not a

listwise loss [13]. Mitra et al. [15] proposed the duet model which

is a combination of two neural models jointly trained for document

ranking based on lexical matching and distributional similarity of a

query and document. Therefore, their network combines early and

late interaction models. The duet model is trained on data sampled

from real query logs and judged by human. The model parameters

are learned by maximizing the likelihood of relevant documents

where negative documents are selected from documents with lower

relevance degrees than the positive document, instead of random

selection.

Guo et al. [8] proposed the Deep Relevance Matching Model

(DRMM) for document ranking. First, local interactions between

each query term and document terms are mapped to a fixed-length

matching histogram, encoding exact matching and distributional

similarity of terms. Therefore, their model belongs to early interac-

tion category of models. Then, a feed forward neural network is

employed to learn hierarchical matching patterns between queries

and documents, and score documents. They used hinge loss de-

fined on a pair of documents to optimize the model parameters in

training. McDonald et al. [14] proposed a ranking model on top

of DRMM model also using a pairwise loss function. Dehghani et

al. [7] proposed weakly supervised training of neural ranking mod-

els. They trained different network architectures and accordingly

different loss functions using weak data. Employed loss functions

are mean squared error which is a pointwise loss, and two pairwise

loss functions, hinge loss and cross-entropy.

While most of the existing neural ranking models are pointwise

scoring, Ai et al. [2] recently proposed a neural network that scores

a list of documents and the model parameters are updated based on

a listwise loss function. The loss for a list of documents is calculated

by summing pairwise logistic loss for all document pairs where

the first document has a higher relevance degree than the second

one. However, they tried the network on conventional feature-

based representations of queries and documents. There are other

neural ranking models considering additional ranking constraints

or additional information than document texts [1, 19] that are not

within the scope of this study.

3 NEURAL RANKING MODEL

3.1 Network Architecture

We use the neural network proposed by Guo et al. [8] to estimate

retrieval scores of documents. This model, known as deep relevance

matching model (DRMM), exploits exact and semantic matching

of query and document terms by deriving fixed-size matching his-

tograms as input of the network. A feed-forward is then used for

non-linear matching between a query term and document terms.

Finally, a gating network indicating the importance of each query

term is applied to compute the score of each document. The network

is trained using a pairwise hinge loss function as follows:

L(q,d+,d−;θ) = max(0, 1 − s(q,d+) + s(q,d−)), (1)

where d+ and d− are documents relevant and non-relevant to the

query q, respectively, and θ indicates model parameters.

3.2 Listwise Loss Function

We use the loss function of the ListNet algorithm [5] to train a

neural ranking model. This loss function is based on estimating a

probability distribution for a list of scored documents, indicating the

probability of different rankings of documents. The probability dis-

tribution can be estimated using permutation or top-1 probabilities.

Because of the computational complexity of permutation probabili-

ties, we use top-1 probabilities following the original model and its

subsequent use, as follows:

p(dj) =
exp(s(q,dj))∑n

k=1
exp(s(q,dk))

. (2)

The true probability distribution, y(i), is estimated using human

relevance judgments. Cross-entropy is then utilized to measure the

distance between the two probability distributions, estimated based

on predicted scores for documents (z(i)) and estimated based on

relevance judgments as:

L(y(i), z(i);θ) = −

n∑

j=1

py (i) (dj) logpz(i) (dj). (3)

Table 1: Precision andMAP performance of the neural rankers on different datasets. Better performance betweenDRMMpl and

DRMMll models is indicated in bold format. Symbol • indicates that improvements of DRMMll over DRMMpl are statistically

significant. Method
Robust04 ClueWeb

P@1 P@3 P@5 P@10 MAP P@1 P@3 P@5 P@10 MAP

DRMMpl 0.52 0.4844 0.4613 0.424 0.2923 0.3833 0.3278 0.3367 0.3267 0.2634

DRMMll 0.56• 0.5244• 0.4773 0.424 0.2989 0.4167 0.3722• 0.37 0.355• 0.2725•

DRMMll−ws 0.4667 0.5289 0.4747 0.4227 0.2962 0.4 0.3722 0.3667 0.36 0.2634

Table 2: nDCG performance of the neural rankers on different datasets. Better performance between DRMMpl and DRMMll

models is indicated in bold format. Symbol • indicates that improvements of DRMMll over DRMMpl are statistically significant.

Method
Robust04 ClueWeb

nDCG@1 nDCG@3 nDCG@5 nDCG@10 nDCG@1 nDCG@3 nDCG@5 nDCG@10

DRMMpl 0.4666 0.4422 0.4385 0.4252 0.3484 0.3118 0.32 0.3277

DRMMll 0.4711 0.4742• 0.4528 0.4355 0.3732 0.359• 0.3595• 0.3666•

DRMMll−ws 0.4133 0.4589 0.442 0.4283 0.3565 0.3539 0.3519 0.3638

Figure 1 shows learning curves of the DRMMmodel trained with

pairwise and listwise loss functions. As the diagram indicates, opti-

mization of listwise loss converges with less fluctuation compared

to that of pairwise loss. This observation demonstrates that more

reliable estimates of the gradient of the listwise loss function are

obtained compared to those of the pairwise loss function. Figure 2

shows MAP performance on test data after each step of training. In

the final steps shown in the diagram, all networks using pairwise

or listwise loss functions are sufficiently trained according to the

loss of validation set. However, performance of the pairwise trained

model still shows large fluctuations, which is not the case for the

listwise trained model. This observation shows that the learned

ranking model using a listwise loss function is more robust than

that using a pairwise loss function.
4.2 Impacts of Data Sampling

Tables 1 and 2 also include the performance of DRMM model when

it is trained using the listwise loss function but without random

sampling of documents. Although training on the entire set of doc-

uments associated with each query has lower performance than

that with random sampling of documents, it improves the perfor-

mance of the pairwise model for all metrics except P@1, P@10,

and nDCG@1 over Robust04. We believe the lower performance

is because of fewer training samples in the listwise setting com-

pared to the pairwise setting given the same amount of labeled

data. The learning curves for the cases of training with and without

random sampling of documents before each epoch of training are

also depicted in Figure 1. The learning curves demonstrate that

without sampling, we get a sharper decrease in training loss. Keskar

et al. [11] have shown that a flat minimizer of loss better general-

izes to test data. This fact justifies the performance improvements

obtained by random sampling of documents. Figure 2 shows that

with sampling, not only does the performance of the trained model

increase on test data, but the performance also has less fluctuations

in the final steps of training, which is desirable.

5 CONCLUSION AND FUTURE WORK

We demonstrate how listwise loss functions can improve the re-

trieval performance of neural ranking models. More specifically,

we examine how training the deep relevance matching model, which

is a pairwise model, with a listwise loss function impacts the per-

formance of retrieval. We also show that reshuffling and random

sampling of documents associated with each query before each

epoch of training improves the performance of retrieval. There are

several possible directions for future work. A promising line is to

examine more smart sampling approaches as we demonstrated that

sampling can improve the retrieval performance. We also would

like to investigate how other listwise loss functions impact the

performance of neural ranking models.

Acknowledgements. This work was supported in part by the

Center for Intelligent Information Retrieval. Any opinions, findings

and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect those of the

sponsor.

REFERENCES
[1] Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. 2018. Learning a Deep

Listwise Context Model for Ranking Refinement. In SIGIR ’18. 135ś144.
[2] Qingyao Ai, Xuanhui Wang, Nadav Golbandi, Michael Bendersky, and Marc Na-

jork. 2019. Learning Groupwise Scoring Functions Using Deep Neural Networks.
In DAPA: The WSDM 2019 Workshop on Deep Matching in Practical Applications.

[3] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel
Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, and Simon Lacoste-Julien. 2017. A Closer Look at Memorization
in Deep Networks. In ICML’17. 233ś242.

[4] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to Rank Using Gradient Descent. In ICML.

[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
Rank: From Pairwise Approach to Listwise Approach. In ICML ’07. 129ś136.

[6] Gordon V. Cormack, Mark D. Smucker, and Charles L. Clarke. 2011. Efficient and
Effective Spam Filtering and Re-ranking for Large Web Datasets. Inf. Retr. (2011).

[7] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In SIGIR ’17. 65ś74.

[8] Jiafeng Guo, Yixing Fan, Qingyao Ai, andW. Bruce Croft. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In CIKM’16. 55ś64.

[9] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In CIKM ’13. 2333ś2338.

[10] Ayyoob Imani, Amir Vakili, Ali Montazer, and Azadeh Shakery. 2019. Deep neural
networks for query expansion using word embeddings. In European Conference
on Information Retrieval. Springer, 203ś210.

[11] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2016. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. CoRR abs/1609.04836 (2016).

[12] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf.
Retr. 3, 3 (March 2009), 225ś331.

[13] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.
2015. Representation Learning Using Multi-Task Deep Neural Networks for
Semantic Classification and Information Retrieval. In HLT | NAACL. 912ś921.

[14] RyanMcDonald, George Brokos, and Ion Androutsopoulos. 2018. Deep Relevance
Ranking Using Enhanced Document-Query Interactions. In EMNLP. 1849ś1860.

[15] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match Using
Local and Distributed Representations of Text for Web Search. In WWW ’17.

[16] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In EMNLP’14. 1532ś1543.

[17] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A Benchmark Collection
for Research on Learning to Rank for Information Retrieval. Inf. Retr. 13, 4 (2010).

[18] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. InWWW ’14 Companion. 373ś374.

[19] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary.
2018. Neural Ranking Models with Multiple Document Fields. In WSDM ’18.

[20] Guoqing Zheng and Jamie Callan. 2015. Learning to Reweight Terms with
Distributed Representations. In SIGIR ’15. 575ś584.

	Abstract
	1 Introduction
	2 Related Work
	3 Neural Ranking Model
	3.1 Network Architecture
	3.2 Listwise Loss Function
	3.3 Training samples

	4 Experiments
	4.1 Results and discussion.
	4.2 Impacts of Data Sampling

	5 Conclusion and Future Work
	References

