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ABSTRACT

RESPONSE RETRIEVAL IN INFORMATION-SEEKING

CONVERSATIONS

SEPTEMBER 2019

LIU YANG

B.Eng., NORTHEASTERN UNIVERSITY

M.Sc., PEKING UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

The increasing popularity of mobile Internet has led to several crucial changes

in the way that people use search engines compared with traditional Web search on

desktops. On one hand, there is limited output bandwidth with the small screen sizes

of most mobile devices. Mobile Internet users prefer direct answers on the search

engine result page (SERP)(Li et al., 2009). On the other hand, voice-based / text-

based conversational interfaces are becoming increasing popular as shown in the wide

adoption of intelligent assistant services and devices such as Amazon Echo, Microsoft

Cortana and Google Assistant around the world. These important changes have

triggered several new challenges that search engines have had to adapt to in order to

better satisfy the information needs of mobile Internet users. In this dissertation, we
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investigate several aspects of single-turn answer retrieval and multi-turn information-

seeking conversations to handle the new challenges of search on the mobile Internet.

We start from the research on single-turn answer retrieval and analyze the weak-

nesses of existing deep learning architectures for answer ranking. Then we propose

an attention based neural matching model with a value-shared weighting scheme and

attention mechanism to improve existing deep neural answer ranking models. Our

proposed model achieves state-of-the-art performance for answer sentence retrieval

compared with both feature engineering based methods and other neural models.

Then we move on to study response retrieval in multi-turn information-seeking

conversations beyond single-turn interactions. Much research on response selection in

conversation systems is modeling the matching patterns between user input message

(either with context or not) and response candidates, which ignores external knowl-

edge beyond the dialog utterances. We propose a learning framework on top of deep

neural matching networks that leverages external knowledge with pseudo-relevance

feedback and QA correspondence knowledge distillation for response retrieval. We

also study how to integrate user intent modeling into neural ranking models to im-

prove response retrieval performance. Finally, hybrid models of response retrieval

and generation are investigated in order to combine the merits of these two different

paradigms of conversation models.

Our goal is to develop effective learning models for answer retrieval and information-

seeking conversations, in order to improve the effectiveness and user experience when

accessing information with a touch screen interface or a conversational interface, as

commonly adopted by millions of mobile Internet devices.
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CHAPTER 1

INTRODUCTION

The increasing popularity of intelligent mobile devices has seen a rapid growth

in mobile Internet users. In 2019, the global unique mobile Internet users is 3.9 bil-

lion1. The average time spent per adult per day on mobile devices is 3.3 hours in

2017 compared to less than 1 hour as in 2011 (Meeker, 2018). As for Web search,

more than 50% of search queries globally now come from mobile devices2. This trend

has led to important changes in the way that people use search engines compared

with traditional Web search on desktops. For instance, there is only limited output

bandwidth such as small screen sizes of most mobile devices. Mobile Internet users

prefer direct answers on the search engine result page (SERP)(Li et al., 2009). An-

other change is that voice-based / text-based conversational interfaces are becoming

increasing popular as shown in the wide adoption of intelligent assistant services and

devices such as Amazon Echo, Microsoft Cortana and Google Now3. These important

changes have triggered several new challenges that search engines have had to adapt

to in order to better satisfy the information needs of mobile Internet users.

1Global digital population as of January 2019, https://www.statista.com/statistics/
617136/digital-population-worldwide/ (as of March 29th, 2019)

2Building for the next moment, https://adwords.googleblog.com/2015/05/

building-for-next-moment.html (as of March 29th, 2019)

3For example, over 100M installations of Google Now (Google, http://bit.ly/1wTckVs);
100M sales of Amazon Alexa devices (TheVerge, https://bit.ly/2FbnzTN); more than 141M
monthly users of Microsoft Cortana (Windowscentral, http://bit.ly/2Dv6TVT). All urls are as
of March 29th, 2019.
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In this dissertation, we explore several aspects of single-turn answer retrieval and

multi-turn information-seeking conversations to handle the new challenges of search

on mobile Internet. We present the motivations and our work in each aspect as

follows.

1.1 Single-Turn Answer Retrieval

With smaller screens, users want more direct answers instead of 10 blue links in the

search results. Search engines need to show more direct answers for various queries,

especially for natural language questions, in order to save user effort in fulfilling their

information needs and improve user search experiences. Figure 1.1 shows an example

of presenting direct answers in search results. Such results are more likely to directly

satisfy users in the SERP without making them click and browse items in the rank

list as in traditional Web search on desktops.

Figure 1.1: An example of showing direct answers in search results.

Question Answering (QA), which returns exact answers as either short facts or

longer passages to natural language questions issued by users, plays a central role in

showing direct answers in search results (Etzioni, 2011; Sun et al., 2015). Many of the
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current QA systems use a learning to rank approach that encodes question/answer

pairs with complex linguistic features including lexical, syntactic and semantic fea-

tures (Severyn and Moschitti, 2015; Surdeanu et al., 2008; Yang et al., 2016b). For

instance, Surdeanu et al. (2008, 2011) investigated a wide range of feature types in-

cluding similarity features, translation features, density/frequency features and web

correlation features for learning to rank answers and showed improvements in ac-

curacy. However, such methods rely on manual feature engineering, which is often

time-consuming and requires domain dependent expertise and experience. Moreover,

they may need additional NLP parsers or external knowledge sources that may not

be available for some languages.

In recent years, researchers have been studying deep learning (LeCun et al., 2015)

approaches to automatically learn text representations and semantic matches between

questions and answers. Such methods are built on top of neural network models such

as convolutional neural networks (CNNs) (Yu et al., 2014; Severyn and Moschitti,

2015; Qiu and Huang, 2015) and Long Short-Term Memory Models (LSTMs) (Wang

and Nyberg, 2015). The proposed models have the benefit of not requiring hand-

crafted linguistic features and external resources. Some of them (Severyn and Mos-

chitti, 2015) achieved state-of-the art performance for the answer sentence selection

task benchmarked by the TREC QA track. However, the weakness of the existing

studies is that the proposed deep models, either based on CNNs or LSTMs, need

to be combined with additional features such as word overlap features and BM25

to perform well. Without combining these additional features, their performance is

significantly worse than the results obtained by the best methods based on linguistic

feature engineering (Yih et al., 2013).

In our recent work (Yang et al., 2016a), we analyzed the existing deep learning

architectures for answer ranking and observed two key issues: (1) Many deep learn-

ing architectures are not specifically designed for question/answer matching. For
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instance, CNNs are originally designed for computer vision (CV), which uses position-

shared weights with local perceptive filters, to learn spatial regularities in many CV

tasks. However, such spatial regularities may not exist in semantic matching between

questions and answers, since important similarity signals between question and an-

swer terms could appear in any position due to the complex linguistic properties of

natural languages. Meanwhile, models based on LSTMs view the question/answer

matching problem in a sequential way. Without direct interactions between question

and answer terms, the model may not be able to capture sufficiently detailed matching

signals between them. (2) There is a lack of modeling question focus in the existing

deep learning architectures. Understanding the focus of questions, e.g., important

terms in a question, is helpful for ranking the answers correctly . For example, given

a question like “Where was the first burger king restaurant opened? ”, it is critical for

the answer to talk about “burger”, “king”, “open”, etc. Most existing text matching

models do not explicitly model question focus. For example, models based on CNNs

treat all the question terms as equally important when matching to answer terms.

Models based on LSTMs usually model question terms closer to the end to be more

important. Chapter 3 describes in details the architecture and effectiveness of our

proposed attention based neural match model, which is specifically designed for the

answer retrieval task to address these issues.

1.2 Multi-Turn Information-seeking Conversations

1.2.1 Classification of Different Types of Conversations

Personal assistant systems, such as Apple Siri, Google Now, Amazon Alexa, and

Microsoft Cortana, are becoming ever more widely used. These systems, with either

text-based or voice-based conversational interfaces, are capable of voice interaction,

information search, question answering and voice control of smart devices. This

trend has led to an interest in developing information-seeking conversation systems,
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where users would be able to ask questions to seek information with conversation

interactions. Research on speech and text-based information-seeking conversation

systems has recently attracted significant attention in the information retrieval (IR)

community.

A personal assistant system should have the capabilities to perform several differ-

ent types of conversations. These conversations can be classified into the following

different categories (Gao et al., 2018):

• Question Answering: the agent needs to provide direct and correct answers to

user questions based on either structured data sources like knowledge bases or

unstructured data sources such as Web documents.

• Task Completion: the agent needs to accomplish tasks specified by users ranging

from ordering a flight ticket to scheduling a business meeting.

• Social Chit-chat: the agent needs to interact with users seamlessly and appro-

priately with conversations, just like a human, in order to provide emotional

support or useful recommendations to the user.

Different types of conversations requires different criteria to evaluate the perfor-

mances of conversation agents. For example, answer correctness plays a key role in

the evaluation of QA agents whereas user engagement optimization is more critical

for a social chit-chat agent. A social chit-chat agent would like to maximize the us-

age time of users, which is an indicator of user engagement. On the contrary, a QA

agent should satisfy the user query in the shortest time and fewest utterance turns.

A task completion agent would like to maximize the task completion success rate and

minimize the time and user efforts for task completion.

Information-seeking conversations are closer to question answering oriented con-

versations, since the goal is also answering the user’s informational queries. But there
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are several key differences. First the system outputs of an information-seeking con-

versation agent can be not only answers, but also greetings/ gratitude, clarification

questions and feedback. There can be various different types of responses beyond an-

swers. We argue that a functional conversation agent should have multiple capabilities

including both question answering and social chat in real deployed systems. Second,

the evaluation of an information-seeking conversation agent is more challenging as a

result of the diversity of response types. For the same conversation context, there

can be multiple correct responses. It is difficult to collect comprehensive reference

responses given a set of conversation contexts.

1.2.2 Incorporating External Knowledge into Response Retrieval

Existing approaches to building conversational systems include generation-based

methods (Ritter et al., 2011; Shang et al., 2015) and retrieval-based methods (Ji et al.,

2014; Yan et al., 2016a,b, 2017). Compared with generation-based methods, retrieval-

based methods have the advantages of returning fluent and informative responses.

Most work on retrieval-based conversational systems studies response ranking for

single-turn conversation (Wang et al., 2013), which only considers a current utterance

for selecting responses. Recently, several researchers have been studying multi-turn

conversation (Yan et al., 2016a; Zhou et al., 2016; Wu et al., 2017; Yan et al., 2017),

which considers the previous utterances of the current message as the conversation

context to select responses by jointly modeling context information, current input

utterance and response candidates. However, existing studies are still suffering from

the following weaknesses:

(1) Most existing studies are on open domain chit-chat conversations or task /

transaction oriented conversations. Most current work (Ritter et al., 2011; Shang

et al., 2015; Ji et al., 2014; Yan et al., 2016a,b, 2017) is looking at open domain

chit-chat conversations as in microblog data like Twitter and Weibo. There is some
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research on task oriented conversations (Young et al., 2010; Wen et al., 2017; Bordes

et al., 2017), where there is a clear goal to be achieved through conversations between

the human and the agent. However, the typical applications and data are related to

completing transactions like ordering a restaurant or booking a flight ticket. Much

less attention has been paid to information oriented conversations, which is referred

to as information-seeking conversations in this thesis. Information-seeking conversa-

tions, where the agent is trying to satisfy the information needs of the user through

conversation interactions, are closely related to conversational search systems. More

research is needed on response selection in information-seeking conversation systems.

(2) Lack of modeling of external knowledge beyond the dialog utterances. Most

research on response selection in conversation systems is purely modeling the match-

ing patterns between user input message (either with context or not) and response

candidates, which ignores external knowledge beyond the dialog utterances. Similar

to Web search, information-seeking conversations could be associated with massive

external data collections that contain rich knowledge that could be useful for response

selection. This is especially critical for information-seeking conversations, since there

may be not enough signals in the current dialog context and candidate responses to

discriminate a good response from a bad one due to the wide range of topics for user

information needs. An obvious research question is how to utilize external knowledge

effectively for response ranking. This question has not been well studied, despite the

potential benefits for the development of information-seeking conversation systems.

Chapter 4 presents our research on deep matching networks with external knowl-

edge for response ranking in information-seeking conversations. We proposed two

effective methods based on pseudo-relevance feedback and QA correspondence knowl-

edge distillation.
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1.2.3 Modeling User Intent for Response Retrieval

User intent modeling plays a key role in understanding user information needs

in information-seeking conversations. In our recent work (Qu et al., 2018, 2019), we

created information-seeking conversation data crawled from the Microsoft Answers

Community, which is a customer support QA forum where users could ask questions

relevant to Microsoft products. Agents like Microsoft employees or other experienced

expert users will reply to these questions. There can be multi-turn conversation inter-

actions between users and agents. We define a taxonomy of user intent and perform

data analysis to characterize user intent in information-seeking conversations. (Qu

et al., 2018, 2019). We observed that there are diverse user intents like “original

question”, “information request”, “potential answers”, “follow-up questions”, “further

details”, etc. in an information-seeking conversation. Moreover, several transition

patterns can happen between different user intents. For example, given a question

from the user, an agent can provide a potential answer directly or ask some infor-

mation as clarification questions before providing answers. Users will provide further

details regarding the information requests from agents. At the start of a conversation,

the agent would like to greet customers or express gratitude to users before they move

on to next steps. Near the end of a conversation, the user may provide a positive

or negative feedback towards answers and services from agents, or ask a follow-up

question to continue the conversation interactions.

Such user intent transition patterns can be useful for conversation models to select

good responses given conversation contexts. More research needs to be done to un-

derstand the role of user intent in response retrieval and to develop effective methods

for intent-aware response ranking in information-seeking conversations. In Chapter

5, we analyze user intent in information-seeking conversations and propose neural

ranking models with the integration of user intent modeling.
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1.2.4 Fusing Conversation Response Retrieval with Generation

All the previous presented research only considered retrieval-based methods to find

relevant existing response candidates to satisfy users’ information needs. However,

there are two different paradigms to produce responses given conversation inputs from

users: generation-based methods (Ritter et al., 2011; Shang et al., 2015; Sordoni et al.,

2015; Vinyals and Le, 2015; Li et al., 2016b; Bordes et al., 2017) and retrieval-based

methods (Ji et al., 2014; Yan et al., 2016a,b, 2017; Yang et al., 2018).

Given some conversation context, retrieval-based methods try to find the most rel-

evant context-response pairs in a pre-constructed conversational history repository.

Some of these methods achieve this in two steps: 1) retrieve a candidate response

set with basic retrieval models such as BM25 (Robertson and Walker, 1994) or QL

(Ponte and Croft, 1998); and 2) re-rank the candidate response set with neural rank-

ing models to find the best matching response (Yan et al., 2016a,b, 2017; Wu et al.,

2017; Yang et al., 2018). These methods can return natural human utterances in the

conversational history repository, which is controllable and explainable. Retrieved

responses often come with better diversity and richer information compared to gen-

erated responses (Song et al., 2018). However, the performance of retrieval-based

methods is limited by the size of the conversational history repository, especially for

long tail contexts that are not covered in the history. Retrieval-based methods lack

the flexibility of generation-based models, since the set of responses of a retrieval

system is fixed once the historical context/response repository is constructed.

On the other hand, generation-based methods could generate highly coherent new

responses given the conversation context. Much previous research along this line was

based on the Seq2Seq model (Shang et al., 2015; Sordoni et al., 2015; Vinyals and Le,

2015), where there is an encoder to learn the representation of conversation context

as a contextual vector, and a decoder to generate a response sequence conditioning

on the contextual vector as well as the generated part of the sequence. The encoder/
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decoder could be implemented by an RNN with long short term memory (LSTM)

(Hochreiter and Schmidhuber, 1997) or gated recurrent units (GRU) (Chung et al.,

2014) hidden units. Although generation-based models can generate new responses

for a conversation context, a common problem with generation-based methods is that

they are likely to generate very general or universal responses with insufficient infor-

mation such as “I don’t know”, “I have no idea”, “Me too”, “Yes please”. The generated

responses may also contain grammar errors. Ghazvininejad et al. (2018) proposed a

knowledge-grounded neural conversation model in order to infuse the generated re-

sponses with more factual information relevant to the conversation context without

slot filling. Although they show that the generated responses from the knowledge-

grounded neural conversation model are more informative compared with responses

from the vanilla Seq2Seq model, their model is still generation-based, and it is not

clear how well this model will perform compared to retrieval-based methods. Clearly

these two types of methods have their own advantages and disadvantages, it is thus

necessary to study how to integrate the merits of these two methods.

In Chapter 6, we study the integration of retrieval-based and generation-based

conversation models in an unified framework. We propose a hybrid neural conver-

sational model with a generation module, a retrieval module and a hybrid ranking

module to fuse both response retrieval and response generation.

1.3 Contributions

In this thesis, we study several aspects about single-turn answer retrieval and

multi-turn information-seeking conversations in order to better satisfy the information

needs of mobile Internet users. In the following, we highlight the major contributions

of this thesis.

• Presenting an attention based neural matching model (aNMM) for answer re-

trieval. We introduce a novel value-shared weighting scheme in deep neural net-
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works as a counterpart of the position-shared weighting scheme in CNNs, based

on the idea that semantic matching between a question and answer is mainly

about the (semantic similarity) value regularities rather than spatial regulari-

ties. Furthermore, we incorporate the attention mechanism over the question

terms using a gating function, so that we can explicitly discriminate the ques-

tion term importance. Experimental results with TREC QA data (Wang et al.,

2007) show that our model can achieve better performance than a state-of-art

method using linguistic feature engineering and comparable performance with

previous deep learning models with combined additional features. If we com-

bine our model with a simple additional feature like QL, our method can achieve

state-of-the-art performance, with much less feature engineering costs.

• Presenting a learning framework on top of deep neural matching networks with

external knowledge for response ranking in information-seeking conversations.

We study two different methods of integrating external knowledge into deep

neural matching networks with pseudo-relevance feedback and QA correspon-

dence knowledge distillation. Inspired by the key idea of PRF (Lavrenko and

Croft, 2001; Lv and Zhai, 2009; Zamani et al., 2016; Zhai and Lafferty, 2001;

Rocchio, 1971; Cao et al., 2008; Diaz and Metzler, 2006), we propose using

the candidate response as a query to run a retrieval round on a large exter-

nal collection. Then we extract useful information from the (pseudo) relevant

feedback documents to enrich the original candidate response representation.

We also propose to extract the “correspondence” regularities between question

and answer terms from retrieved external QA pairs and incorporate them into

deep matching networks as external knowledge to help response selection. Ex-

perimental results on MSDialog data (Qu et al., 2018), Ubuntu Dialog Corpus

(UDC) (Lowe et al., 2015), and another commercial customer service data from
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Alibaba show that our proposed methods outperform all baseline methods using

a variety of metrics for response ranking in information-seeking conversations.

• Incorporating user intent modeling for response retrieval in information-seeking

conversations. We analyze and characterize different user intent in information-

seeking conversations. We propose an intent-aware response ranking model

with Transformers (Vaswani et al., 2017): IART. IART derives the importance

weighting scheme of utterances in conversation context with user intent sig-

nals towards better conversation history modeling. Experimental results with

three different information-seeking conversation data sets show that our meth-

ods outperform various baselines including the state-of-the-art method. We also

perform visualization on learned user intent and ranking examples to provide

insights.

• Presenting a hybrid neural conversational model to combine conversation re-

sponse retrieval with generation. In order to let retrieval-based conversation

models and generation-based conversation models complement each other, we

propose a hybrid neural conversational model with a generation module, a re-

trieval module and a hybrid ranking module. The generation module generates a

response candidate given a conversation context, using a Seq2Seq model consist-

ing of a conversation context encoder, a facts encoder and a response decoder.

The retrieval module adopts a “context-context match” approach to recall a set

of response candidates from the historical context/ response repository. The

hybrid ranking module is built on the top of neural ranking models to select the

best response candidate among retrieved/ generated response candidates. To

construct the training data of the neural ranker for response selection, we pro-

pose a distant supervision approach to automatically infer labels for retrieved/

generated response candidates. Experimental results show that the proposed
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model can outperform both retrieval-based models and generation-based models

for both automatic evaluation and human evaluation. We also perform quali-

tative analysis on top responses selected by the neural re-ranker and response

generation examples to provide insights.

1.4 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we provide

background information and literature survey related to this thesis. In Chapter 3, we

present an attention based neural matching model for answer retrieval. In Chapter

4, we present our work on a learning framework on top of deep neural matching

networks that leverage external knowledge for response ranking in information-seeking

conversation systems. In Chapter 5 we present intent-aware neural ranking models for

response retrieval in order to integrate user intent modeling into conversation response

ranking. In Chapter 6 we present a hybrid neural conversational model to combine

conversation response retrieval with generation. Finally, in Chapter 7, we summarize

the contributions made in this thesis and discuss potential future directions for more

research in this area.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This dissertation is related to several research areas, including answer passage

retrieval, factoid question answering, non-factoid question answering, answer ranking

in CQA, neural ranking models, conversational search, neural conversation models

and utterance intent modeling.

2.1 Answer Passage Retrieval

Our work is related to previous research on answer passage retrieval. Tymoshenko

and Moschitti (2015) studied the use of syntactic and semantic structures obtained

with shallow and deeper syntactic parsers in the answer passage re-ranking task.

Corrada-Emmanuel and Croft (2004) extended the techniques of language modeling

to create answer models for answer passage retrieval and demonstrate their effec-

tiveness on the TREC 2002 QA Corpus. Tellex et al. (2003) conducted a thorough

quantitative component evaluation for passage retrieval algorithms employed by state-

of-the-art QA systems. Cui et al. (2005) proposed a novel fuzzy relation matching

method which examines grammatical dependency relations between question terms

to improve passage retrieval techniques for question answering. Ageev et al. (2013)

studied how to incorporate searcher examination data, such as mouse cursor move-

ments and scrolling, to infer the parts of the document the searcher found interesting,

and then incorporate this signal into passage retrieval for QA. Keikha et al. (2014a,b)

developed an annotated data set for non-factoid answer finding using TREC GOV2

collections and topics. They annotated passage-level answers, revisited several pas-
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sage retrieval models with this data, and came to the conclusion that the current

methods are not effective for this task. We explored representation learning with

deep neural networks for answer retrieval. Unlike learning to rank approaches with

feature engineering, representation learning methods can achieve good performance

for ranking answers without preprocessing of NLP parsers and external resources like

knowledge bases.

Some previous research on answer passage retrieval has been based on statistical

translation models for answer finding in FAQ data (Riezler et al., 2007; Berger et al.,

2000). Riezler et al. (2007) presented an approach to query expansion in answer

retrieval that uses machine translation techniques to bridge the lexical gap between

questions and answers. Berger et al. (2000) studied multiple statistical methods such

as query expansion, statistical translation, and latent variable models for answer

finding in FAQ data.

2.2 Factoid Question Answering

There have been many previous studies on factoid question answering, most of

which use the benchmark data from TREC QA track (Yih et al., 2013; Wang and

Nyberg, 2015; Yao et al., 2013; Yu et al., 2014; Severyn and Moschitti, 2015) or

knowledge bases (Yin et al., 2016). Collins-Thompson et al. (2004) examined the

relationship between the quality of document retrieval and the overall accuracy of

QA systems. Lin (2007) examined the underlying assumptions and principles behind

redundancy-based techniques for mining answers to factoid questions. Bilotti et al.

(2010) proposed a general rank-learning framework for passage ranking within QA

systems using linguistic and semantic features. The framework enables query-time

checking of complex linguistic and semantic constraints over keywords. Yih et al.

(2013) formulated answer sentence selection as a semantic matching problem with a

latent word-alignment structure and conducted a series of experimental studies on
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leveraging proposed lexical semantic models. Iyyer et al. (2014) introduced a recur-

sive neural network (RNN) model that can reason over text that contains very few

individual words by modeling textual compositionality. Yu et al. (2014) proposed an

approach for answer sentence selection via distributed representations, and learned

to match questions with answers by considering their semantic encoding. They com-

bined the learning results of their model with word overlap features by training a

logistic regression classifier. Wang and Nyberg (2015) proposed a method which uses

a stacked bidirectional Long-Short Term Memory (BLSTM) network to sequentially

read words from question and answer sentences, and then output their relevance

scores. Their system needs to combine the stacked BLSTM relevance model with a

BM25 score to achieve good performance. Severyn and Moschitti (2015) presented a

convolutional neural network architecture for re-ranking pairs of short texts, where

they learned the optimal representation of text pairs and a similarity function to re-

late them in a supervised way from the available training data. They also need to

combine additional features into their model to outperform previous methods. Unlike

the previous research, the proposed attention based neural matching model (aNMM)

can outperform previous methods using feature engineering without combining any

additional features.

2.3 Non-factoid Question Answering

Our research is also relevant to previous works on non-factoid question answering

(Surdeanu et al., 2008, 2011; Chaturvedi et al., 2014; Tymoshenko et al., 2016). Non-

factoid question answering, unlike many previous research on factoid QA, aims to

find longer answers which could be sentences or passages for questions with complex

information needs including definition, manner, reason, description, etc. Surdeanu

et al. (2008, 2011) investigated a wide range of feature types including similarity fea-

tures, translation features, density/frequency features and web correlation features
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for ranking answers to non-factoid questions. Soricut and Brill (2006) built a QA

system around a noisy-channel architecture which exploits both a language model for

answers and a transformation model for answer/question terms, trained on a corpus

of 1 million question/answer pairs collected from the Web to find answers for a large

variety of complex, non-factoid questions. Recent years, there are some research on

building deep neural models for non-factoid question answering (Tan et al., 2015;

Cohen and Croft, 2016; Rücklé and Gurevych, 2017). Tan et al. (2015) built the

embeddings of questions and answers based on bidirectional long short-term mem-

ory models, and measure their closeness by cosine similarity for non-factoid answer

selection. Cohen and Croft (2016) showed that end to end training with a Bidirec-

tional Long Short Term Memory network with a rank sensitive loss function results

in significant performance improvements for non-factoid QA. Since answers towards

non-factoid questions could be very long or come from multiple documents, some re-

searchers studied answer summarization for non-factoid questions (Song et al., 2017;

Chen et al., 2015; Yulianti et al., 2016). Song et al. (2017) proposed a sparse coding-

based summarization strategy that includes short document expansion, sentence vec-

torization, and a sparse-coding optimization framework for answer summarization of

non-factoid questions. Yulianti et al. (2016) investigated the effectiveness of using

semantic and context features for extracting document summaries that are designed

to contain answers for non-factoid queries.

2.4 Answer Ranking in CQA

There is also previous research on ranking answers from community question an-

swering (CQA) sites. Bian et al. (2008) proposed a ranking framework to take ad-

vantage of user interaction information to retrieve answers that are relevant, factual,

and of high quality in CQA sites. Jansen et al. (2014) presented an answer re-ranking

model for non-factoid questions that integrate lexical semantics with discourse in-
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formation driven by two representations of discourse. Xue et al. (2008) proposed a

retrieval model that combines a translation-based language model for the question

part with a query likelihood approach for the answer part. Yang et al. (2013) proposed

Topic Expertise Model (TEM), a probabilistic generative model with GMM hybrid,

to jointly model topics and expertise by integrating textual content model and link

structure analysis. The learning results of TEM model is used to measure user in-

terests and expertise score under different topics to rank answers given questions in

CQA.

2.5 Neural Ranking Models

Recently a number of deep neural models have been proposed for text matching

and ranking. Such neural models include DSSM (Huang et al., 2013; Gao et al., 2014;

Shen et al., 2014), ARC-I/ARC-II(Hu et al., 2014), DCNN (Kalchbrenner et al., 2014),

DeepMatch (Lu and Li, 2013), MultiGranCNN (Yin and Schütze, 2015), MatchPyra-

mid (Pang et al., 2016), DRMM (Guo et al., 2016), Match-Tensor (Jaech et al., 2017)

etc. These approaches can be generally divided into two groups: representation-

focused and interaction-focused models (Guo et al., 2016). Representation-focused

models independently learn the representations of queries and documents separately

and then calculate the similarity score of the learned representations with functions

such as cosine, dot, bilinear or tensor layers. A typical example is the DSSM (Huang

et al., 2013) model, which is a feed forward neural network with a word hashing phase

as the first layer to predict the click probability given a query string and a document

title. ARC-I (Hu et al., 2014) firstly finds the representation of each sentence and

then compares the representations of the two sentences with a multi-layer perceptron

(MLP). The drawback of ARC-I is that it defers the interaction between two sentences

until their individual representation matures in the convolution model, and therefore

has the risk of losing details, which could be important for the text matching task.

18



The second category is the interaction-focused models, which build a query-

document interaction matrix to capture the exact matching and semantic matching

information between the query-document pairs. The interaction matrix is further fed

into deep neural networks which could be a CNN (Hu et al., 2014; Pang et al., 2016;

Yu et al., 2018), term gating network with histogram mechanism (Guo et al., 2016) to

generate the final ranking score. These models have an opportunity to capture the in-

teractions between query and document, while representation-focused models look at

the inputs in isolation. For instance, DeepMatch (Lu and Li, 2013) is an interaction-

focused model that construct the interactions between two texts with topic models,

and then makes different levels of abstractions with a deep architecture to model

the relationships between topics. ARC-II (Hu et al., 2014) is built directly on the

interaction space between two sentences. Thus ARC-II makes two sentences interact

before their own high-level representations mature, while still retaining the space for

individual development of abstraction of each sentence. Our proposed aNMM archi-

tecture adopts a similar design with ARC-II in the QA matching matrix where we

built neural networks directly on the interaction of QA sentence term pairs. How-

ever, we adopted value-shared weights instead of position-shared weights as in the

CNN used by ARC-II. We also added an attention scheme to learn question term

importance.

In the end, neural ranking models in the third category combine the ideas of the

representation-focused models and interaction-focused models to joint learn the lexical

matching and semantic matching between queries and documents (Mitra et al., 2017;

Yu et al., 2018). For example, Mitra et al. (2017) proposed the Duet model in order

to simultaneously learn local and distributional representations to capture both exact

term matching and semantic term matching information for document ranking, which

is a combination of representation-focused models and interaction-focused models.
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All the aforementioned models are trained based on either explicit relevance judg-

ments or clickthrough data. More recently, Dehghani et al. (2017) proposed to train

neural ranking models when no supervision signal is available. They used an existing

retrieval model, e.g., BM25 or query likelihood, to generate large amount of training

data automatically and proposed to use these generated data to train neural ranking

models with weak supervision.

Neural ranking models used in our research in this thesis belong to the interaction-

focused models due to their better performance on a variety of text matching and

ranking tasks compared with representation-focused models (Hu et al., 2014; Pang

et al., 2016; Guo et al., 2016; Yang et al., 2016a; Wu et al., 2017; Xiong et al., 2017).

2.6 Conversational Search

Conversational search has received significant attention with the emerging of con-

versational devices in the recent years. Radlinski and Craswell described a theoretic

framework of conversational search systems (Radlinski and Craswell, 2017). Based

on state-of-the-art advances on machine reading, Kenter and de Rijke (2017) adopted

a conversational search approach to question answering, and Vakulenko et al. (2017)

adopted interactive storytelling as a tool to enable exploratory search within a con-

versational interface. Except for conversational search models, researchers have also

studied the medium of conversational search. Arguello et al. (2018) studied how the

medium (e.g., voice interaction) affects user requests in conversational search. Spina

et al. (2017) studied the ways of presenting search results over speech-only channels

to support conversational search.

To facilitate research on conversational search, we need open accessible benchmark

datasets to develop and evaluate different methods. However, currently there is a lack

of large scale conversational search data sets with high quality. Current related data

sets are either built with chit-chat microblogs (Shang et al., 2015; Sordoni et al., 2015)
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or simulation data from user studies (Thomas et al., 2017). Thomas et al. (2017)

introduced the Microsoft Information-Seeking Conversation data (MISC), which is a

set of recordings of information-seeking conversations between human “seekers” and

“intermediaries”. Although this data records real multi-turn QA interactions between

users and search assistants, it is only generated by 44 people working together on

solving 5 information-seeking tasks, which is not a sufficiently large scale dataset that

could be used to train machine learning models like neural models. Many companies

own large scale multi-turn QA chat logs between users and customer service staffs over

phones or online chatting. But these data sets are usually private and not accessible

for the broad research community. To address this problem, we crawled technical

support conversation data MSDialog from the Microsoft Answer community1, which

is a QA forum on topics about a variety of Microsoft products. With MSDialog

data, we performed a variety of research including user intent characterization and

prediction (Qu et al., 2018, 2019), response ranking with external knowledge (Yang

et al., 2018) and response ranking with intent modeling (see Chapter 5).

2.7 Neural Conversation Models

Recent years there are growing interests on research about conversation response

generation and ranking with deep learning and reinforcement learning (Shang et al.,

2015; Yan et al., 2016a; Li et al., 2016a,b; Sordoni et al., 2015; Bordes et al., 2017).

Existing work includes retrieval-based methods (Wu et al., 2017; Zhou et al., 2016;

Yan et al., 2016a, 2017, 2016b; Ji et al., 2014; Lowe et al., 2015) and generation-based

methods (Shang et al., 2015; Tian et al., 2017; Ritter et al., 2011; Sordoni et al., 2015;

Vinyals and Le, 2015; Li et al., 2016b; Bordes et al., 2017). We briefly review them

as follows.

1answers.microsoft.com
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2.7.1 Retrieval-based Conversation Models

There have been several recent studies on retrieval based-conversation models (Wu

et al., 2017; Zhou et al., 2016; Yan et al., 2016a,b, 2017; Ji et al., 2014; Lowe et al.,

2015; Yang et al., 2017). Yan et al. (2016a) proposed a retrieval-based conversation

system with the deep learning-to-respond schema by concatenating context utterances

with the input message as reformulated queries. Zhou et al. (2016) proposed a multi-

view response selection model that integrates information from two different views

including word sequence view and utterance sequence view with deep neural networks.

Wu et al. (2017) proposed a sequential matching network that matches a response

with each utterance in the context on multiple levels of granularity to distill impor-

tant matching information. Our proposed models in Chapter 4 are retrieval-based

models. The difference between our work with previous research is that we consid-

ered external knowledge beyond dialog context for multi-turn response selection. We

showed that incorporating external knowledge with pseudo-relevance feedback and

QA correspondence knowledge distillation are important and effective for response

selection in information-seeking conversations.

Although retrieval-based methods can return fluent responses with great diversity,

these approaches lack the flexibility of generation based methods since the set of

responses of a retrieval system is fixed once the historical context/ response repository

is constructed in advance. Thus retrieval systems may fail to return any appropriate

responses for those unseen conversation context inputs (Gao et al., 2018). In Chapter

6, we also studied the integration of retrieval-based methods and generation-based

methods for conversation response generation to combine the merits of these two

types of methods.

22



2.7.2 Generation-based Conversation Models

There has also been a number of recent studies on conversation response gen-

eration with deep learning and reinforcement learning (Ritter et al., 2011; Shang

et al., 2015; Sordoni et al., 2015; Vinyals and Le, 2015; Li et al., 2016b,a; Tian et al.,

2017; Bordes et al., 2017; Dhingra et al., 2017; Qiu et al., 2017; Zhang et al., 2018b;

Pandey et al., 2018; Wu et al., 2018; Zhang et al., 2018a). Early generation-based

conversation models were inspired by statistical machine translation (SMT) (Ritter

et al., 2011), which applied a phrase-based translation approach (Koehn et al., 2003)

to conversation response generation. In order to utilize longer conversation context,

Sordoni et al. (2015) proposed a neural network architecture for response generation

that is both context-sensitive and data-driven utilizing the Recurrent Neural Network

Language Model architecture. Shang et al. (2015) proposed the Neural Responding

Machine (NRM), which is an RNN encoder-decoder framework for short text con-

versations and showed that it outperformed retrieved-based methods and SMT-based

methods for a single round conversation. Bordes et al. (2017) proposed a testbed

to break down the strengths and shortcomings of end-to-end dialog systems in goal-

oriented applications based on Memory Networks (Weston et al., 2014; Sukhbaatar

et al., 2015). Li et al. (2016b) applied deep reinforcement learning to model future

reward in chatbot dialogs towards building a neural conversational model based on

the long-term success of dialogs. In order to mitigate the blandness problem of univer-

sal responses generated by Seq2Seq models, Li et al. (2015) proposed the Maximum

Mutual Information (MMI) objective function for conversation response generation.

The approach first generates N-best lists and rescores them with MMI during decod-

ing process. Zhang et al. (2018a) proposed a model which introduces an additional

variable modeled using a Gaussian kernel layer to control the level of specificity of

the response.
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Some previous work augmented the context encoder to not only represent the con-

versation history, but also some additional input from external knowledge. Ghazvinine-

jad et al. (2018) proposed a knowledge-grounded neural conversation model which

infuses factual content that is relevant to the conversation context. Our research in

Chapter 6 shared a similar motivation with this work, but we did not adopt a pure

generation-based approach. Instead, we looked at a hybrid approach of retrieval-based

models and generation-based models. Similar hybrid approaches were also used in

some popular personal intelligent assistant systems including the “Core Chat” compo-

nent of Microsoft XiaoIce (Zhou et al., 2018a). Our proposed model is distinguished

from prior work using the boosted tree ranker (Zhou et al., 2018a; Song et al., 2018)

by using a neural ranking model which holds the advantage of reducing feature en-

gineering efforts for the conversation context/ response candidates pairs during the

hybrid re-ranking process.

2.8 Utterance Intent Modeling

Some previous research studied utterance intent modeling in conversation systems.

Stolcke et al. (2000) performed dialog acts classification with a statistical approach

on the SwitchBoard corpus (Godfrey and Holliman, 1997), which consists of human-

human chit chats conversations. Olney et al. (2003) classified students’ utterances in

an intelligent tutoring system with cascaded finite state transducers. Surendran and

Levow (2006) conducted dialog acts tagging on the HCRC MapTask corpus (Thomp-

son et al., 1993) with a combined method with SVM and Hidden Markov Model.

Madan and Joshi (2017) proposed an approach to find frequent user utterances which

serve as examples for intents, and corresponding agent responses by extending stan-

dard K-means algorithm to simultaneously cluster user utterances and agent utter-

ances. Shiga et al. (2017) studied how people express a broad range of information

needs in conversations and analyzed a range of features such as semantic features,
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dialogue features and temporal features that are useful for detecting utterances that

contain conversational information needs. Bhatia et al. (2012, 2014) focused on fo-

rum post classification for applications in information extraction and summarizing.

Recent advances in deep learning have made it possible to use neural networks for

text classification, which can also be applied for utterance intent classification. Re-

lated research is conducted on both word level (Kingma and Ba, 2014; Lai et al.,

2015) and character-level (Zhang et al., 2015; Schwenk et al., 2017). Specifically, such

methods are applied to intent modeling in medical dialog systems (Datta et al., 2016).

Chapter 5 is related to utterance intent modeling. We explored how to combine utter-

ance intent modeling with response ranking in conversations, so that the learned user

intent of context utterances can help select better responses in information-seeking

conversations.
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CHAPTER 3

SINGLE-TURN ANSWER RETRIEVAL

3.1 Introduction

Question answering (QA), which returns exact answers as either short facts or

long passages to natural language questions issued by users, is a challenging task and

plays a central role in the next generation of advanced web search (Etzioni, 2011; Sun

et al., 2015). Many current QA systems use a learning to rank approach that encodes

question/answer pairs with complex linguistic features including lexical, syntactic and

semantic features (Severyn and Moschitti, 2015; Surdeanu et al., 2008; Yang et al.,

2016b). For instance, Surdeanu et al. (2008, 2011) investigated a wide range of feature

types including similarity features, translation features, density/frequency features

and web correlation features for learning to rank answers and show improvements in

accuracy. However, such methods rely on manual feature engineering, which is often

time-consuming and requires domain dependent expertise and experience. Moreover,

they may need additional NLP parsers or external knowledge sources that may not

be available for some languages.

Recently, researchers have been studying deep learning approaches to automati-

cally learn semantic match between questions and answers. Such methods are built on

the top of neural network models such as convolutional neural networks (CNNs) (Yu

et al., 2014; Severyn and Moschitti, 2015; Qiu and Huang, 2015) and Long Short-Term

Memory Models (LSTMs) (Wang and Nyberg, 2015). The proposed models have the

benefit of not requiring hand-crafted linguistic features and external resources. Some

of them (Severyn and Moschitti, 2015) achieve state-of-the art performance for the
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answer sentence selection task benchmarked by the TREC QA track. However, the

weakness of the existing studies is that the proposed deep models, either based on

CNNs or LSTMs, need to be combined with additional features such as word overlap

features and BM25 to perform well. Without combining these additional features,

their performance is significantly worse than the results obtained by the state-of-the-

art methods based on linguistic feature engineering (Yih et al., 2013). This led us to

propose the following research questions:

RQ1 Without combining additional features, could we build deep learning models

that can achieve comparable or even better performance than methods using feature

engineering?

RQ2 By combining additional features, could our model outperform state-of-the-

art models for question answering?

To address these research questions, we analyze the existing deep learning archi-

tectures for answer ranking and make the following two key observations:

1. Architectures not specifically designed for question/answer matching: Some

methods employ CNNs for question/answer matching. However, CNNs are orig-

inally designed for computer vision (CV), which uses position-shared weights

with local perceptive filters, to learn spatial regularities in many CV tasks.

However, such spatial regularities may not exist in semantic matching between

questions and answers, since important similarity signals between question and

answer terms could appear in any position due to the complex linguistic prop-

erty of natural languages. Meanwhile, models based on LSTMs view the ques-

tion/answer matching problem in a sequential way. Without direct interactions

between question and answer terms, the model may not be able to capture

sufficiently detailed matching signals between them.

2. Lack of modeling question focus: Understanding the focus of questions, e.g.,

important terms in a question, is helpful for ranking the answers correctly.
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For example, given a question like “Where was the first burger king restaurant

opened? ”, it is critical for the answer to talk about “burger”, “king”, “open”, etc.

Most existing text matching models do not explicitly model question focus.

For example, models based on CNNs treat all the question terms as equally

important when matching to answer terms. Models based on LSTMs usually

model question terms closer to the end to be more important.

To handle these issues in the existing deep learning architectures for ranking an-

swers, we propose an attention based neural matching model (aNMM). The novel

properties of the proposed model and our contributions can be summarized as follows:

1. Deep neural network with value-shared weights: We introduce a novel value-

shared weighting scheme in deep neural networks as a counterpart of the position-

shared weighting scheme in CNNs, based on the idea that semantic matching

between a question and answer is mainly about the (semantic similarity) value

regularities rather than spatial regularities.

2. Incorporate attention scheme over question terms: We incorporate the attention

scheme over the question terms using a gating function, so that we can explicitly

discriminate the question term importance.

3. Extensive experimental evaluation and promising results. We perform a thor-

ough experimental study based on the TREC QA dataset from TREC QA tracks

8-13, which appears to be one of the most widely used benchmarks for answer

re-ranking. Unlike previous methods using CNNs (Yu et al., 2014; Severyn and

Moschitti, 2015) and LSTMs (Wang and Nyberg, 2015), which showed inferior

results without combining additional features, our model can achieve better

performance than a state-of-art method using linguistic feature engineering and

comparable performance with previous deep learning models with combined ad-

ditional features. If we combine our model with a simple additional feature like
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QL, our method can achieve the state-of-the-art performance among current

existing methods for ranking answers under multiple metrics.

3.2 Attention-based Neural Matching Model

In this section we present the proposed model referred as aNMM (attention-

based Neural Matching Model), which is shown in Figure 3.1. Before we introduce

our model, we firstly define some terminologies.
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Figure 3.1: The proposed architecture of attention-based neural matching model
(aNMM-2) for ranking answers.

3.2.1 Terminology

• Short Answer Text: we use Short Answer Text to refer to a short fact, answer

sentences or answer passages that can address users’ information needs in the

issued questions. This is the ranking object in this paper and includes answers

in various lengths. In the experiments of this paper, we mainly focus on ranking

answer sentences that contain correct answer facts as in TREC QA data.

• QA Matching Matrix: we use QA Matching Matrix to refer to a matrix which

represents the semantic matching information of term pairs from a question and
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answer pair. Given a question q with length M and an answer a with length N ,

a QA matching matrix is an M by N matrix P, where Pj,i denotes the semantic

similarity between term qj and term ai measured by the cosine similarity of the

corresponding word embeddings of terms. If qj and ai are the same term, we

assign Pj,i as 1.

• QA Matching Vector: we use QA Matching Vector to refer to a row in the QA

matching matrix. As presented before, the j-th row of the QA matching matrix

P contains the semantic similarity between qj and all terms in answer a . We

can make a similar observation to find the association between the j-th column

in P with the j-th term in answer a.

3.2.2 Model Overview

Our method contains three steps as follows:

1. We construct QA matching matrix for each question and answer pair with pre-

trained word embeddings.

2. We then employ a deep neural network with value-shared weighting scheme

in the first layer, and fully connected layers in the rest to learn hierarchical

abstraction of the semantic matching between question and answer terms.

3. Finally, we employ a question attention network to learn question term impor-

tance and produce the final ranking score.

We propose two neural matching model architectures and compare the effective-

nesses of them. We firstly describe a basic version of the architecture, which is referred

to as aNMM-1.

In the following sections, we will explain in detail the two major designs of aNMM-

1, i.e., value-shared weights and question attention network.
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the weight associated with a node only depends on its position or relative location as

specified by the filters in CNN. However in our model, the weight associated with a

node depends on its value. The value of a node denotes the strength of the matching

signal between term pairs of questions and answers from the QA matching matrix,

as explained in Section 3.2.1. Such a setting enables us to use the learned weights to

encode how to combine different levels of matching signals. After this step, the size

of the hidden representation becomes fixed and we can use normal fully connected

layers to learn higher level representations. We use the term bin to denote a specific

range of matching signals. since Pj,i ∈ [−1, 1], if we set the size of bins as 0.1, then

we have 21 bins where there is a separate bin for Pj,i = 1 to denote exact match of

terms.

Specifically, value-shared weights are adopted in the forward propagation predic-

tion process from the input layer to the hidden layer over each question term in

aNMM-1 as follows: let w denote a K + 1 dimensional model parameter from input

layer to hidden layer. xjk denotes the sum of all matching signals within the k-th

value range or bin. For each QA matching vector of a given query q, the combined

score after the activation function of the j-th node in hidden layer is defined as

hj = δ(
K∑

k=0

wk · xjk) (3.1)

where j is the index of question words in q. We use the sigmoid function as the

activation function, which is commonly adopted in many neural network architectures.

3.2.4 Question Attention Network

In addition to value-shared weighting, another model component of aNMM-1 is

the question attention network. In a committee of neural networks which consists

of multiple networks, we need to combine the output of these networks to output a

32



final decision vector. The question attention network uses the gating function (Su

and Basu, 2001) to control the output of each network in this process. Specifically,

in aNMM-1 we use the softmax gate function to combine the output of multiple

networks where each network corresponds to a question term as shown in Figure

3.1. We feed the dot product of query word embedding and model parameter to the

softmax function to represent the query term importance. In this setting, we can

directly compare the relative term importance of query words within the same query

with softmax function. We also tried sigmoid gate function, but this did not perform

as well as softmax gate function.

Softmax gate function is used in the forward propagation process from the hidden

layer to the output layer as follows: from the hidden layer to the output layer, we add

a softmax gate function to learn question attention. Let v denote a P dimensional

vector which is a model parameter. We feed the dot product of query word embedding

qj and v to the softmax function to represent the query term importance as shown in

Equation 3.2. Note that we normalize the query word embedding before computing

the dot product.

y =
M∑

j=1

gj · hj =
M∑

j=1

exp(v · qj)∑L

l=1 exp(v · ql)
· δ(

K∑

k=0

wk · xjk) (3.2)

Unlike previous models like CNNs (Severyn and Moschitti, 2015) and BLSTM

(Wang and Nyberg, 2015), which learn the semantic match score between questions

and answers through representation learning from matching matrix or question /

answer pair sequences, aNMM achieves this by combining semantic matching signals

of term pairs in questions and answers weighted by the output of question attention

network, where softmax gate functions help discriminate the term importance or

attention on different question terms.
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3.2.5 Model Training

For aNMM-1, the model parameters contain two sets: 1) The value-shared weights

wk for combining matching signals from the input layer to the hidden layer. 2) The

parameters vp in the gating function from the hidden layer to the output layer.

To learn the model parameters from the training data, we adopt a pair-wise learn-

ing strategy with a large margin objective. Firstly we construct triples (q, a+, a−)

from the training data, with q matched with a+ better than with a−. We have the

ranking-based loss as the objective function as following:

e(q, a+, a−;w,v) = max(0, 1− S(q, a+) + S(q, a−)) (3.3)

where S(q, a) denote the predicted matching score for QA pair (q, a). During

training stage, we will scan all the triples in training data. Given a triple (q, a+, a−),

we will compute ∆S = 1 − S(q, a+) + S(q, a−). If ∆S ≤ 0, we will skip this triple.

Otherwise, we need to update model parameters with back propagation algorithm to

minimize the objective function.

Under softmax gate function setting, the gradients of e w.r.t. v from hidden layer

to the output layer is shown in Equation 3.4

∂e

∂vp
=

M∑

j=1

∂gj
∂vp

· (−δ(u+) + δ(u−)) (3.4)

where

u+ =
K∑

k=0

wk · x+
jk, u

− =
K∑

k=0

wk · x−
jk

∂gj
∂vp

can be derived as
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exp(v · qj) · qjp
∑M

l=1 exp(v · ql)− exp(v · qj)
∑M

l=1 exp(v · ql) · qlp
(
∑M

l=1 exp(v · ql))2

The gradient of e w.r.t. w from input layer to hidden layer is shown in Equation

3.5.

∂e

wk

=
M∑

j=1

exp(v · qj)∑L

l=1 exp(v · ql)
· (−δ(u+)(1− δ(u+))x+

jk

+δ(u−)(1− δ(u−))x−
jk) (3.5)

With the formulas of gradients, we can perform stochastic gradient descent to

learn model parameters. We use mini-batch gradient descent to achieve more robust

performance on the ranking task. For the learning rate, we adopt adaptive learning

rate: η = η0(1− ǫ), where ǫ will approach 1 with more iterations. Such a setting has

better guarantee for convergence.

3.2.6 Extension to Deep Neural Networks with Multiple Sets of Value-

shared Weights

In aNMM-1, we can only use one set of value-shared weights for each QA matching

vector. We further propose a more flexible neural network architecture which could

enable us to use multiple sets of value-shared weights for each QA matching vector,

leading to multiple intermediate nodes in the first hidden layer, as shown in Figure

3.1 by the yellow color. We refer to this extended model as aNMM-2. The model

architecture shown in Figure 3.1 is corresponding to aNMM-2.

3.2.6.1 Forward Propagation Prediction

For aNMM-2, we add a hidden layer in the neural network where we learn multiple

combined scores from the input layer. With this hidden layer, we define multiple
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weight vectors as w. Thus w becomes a two dimensional matrix. The formula for

the forward propagation prediction is as follows:

y =
M∑

j=1

τ(v · qj) · δ(
T∑

t=0

rt · δ(
K∑

k=0

wktxjk)) (3.6)

where τ(v · qj) =
exp(v·qj)

∑L
l=1

exp(v·ql)
and τ denote the softmax gate function. T is the

number of nodes in hidden layer 1. rt is the model parameter from hidden layer

1 to hidden layer 2, where we feed the linear combination of outputs of nodes in

hidden layer 1 to an extra activation function comparing with Equation 3.2. Then

from hidden layer 2 to output layer, we sum over all outputs of nodes in hidden layer

2 weighted by the outputs of softmax gate functions, which also form the question

attention network.

3.2.6.2 Back Propagation for Model Training

For aNMM-2, we have three sets of model parameters: 1) wkt from input layer to

hidden layer 1; 2) rt from hidden layer 1 to hidden layer 2; 3) vp from hidden layer 2 to

output layer. All three sets of parameters are updated through back propagation. The

definition of the objective function is the same as Equation 3.3. The back propagation

process for model parameter learning is described as follows:

From hidden layer 2 to output layer: the gradients of the objective function w.r.t.

v is as following:

∂e

∂vp
=

M∑

j=1

∂gj
∂vp

· (−h+
j + h−

j ) (3.7)

Where

h+
j = δ(

∑T

t=0 rt · δ(
∑K

k=0 wktx
+
jk))

h−
j = δ(

∑T

t=0 rt · δ(
∑K

k=0 wktx
−
jk))
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From hidden layer 1 to hidden layer 2: the gradients of the objective function

w.r.t. r is as following:

∂e

∂rt
=

M∑

j=1

τ(v · qj)(−h+
j )(1− h+

j )s
+
t + h−

j (1− h−
j )s

−
t )

Where

s+t = δ(
∑K

k=0 wktx
+
jk)

s−t = δ(
∑K

k=0 wktx
−
jk).

From input layer to hidden layer 1: the gradients of the objective function w.r.t.

w is as following:

∂e

∂wkt

=
M∑

j=1

τ(v · qj)(−
∂y+

u
′+
j

· rt · δ(u+
t )(1− δ(u+

t )) · x+
jk

+
∂y−

u
′−
j

· rt · δ(u−
t )(1− δ(u−

t )) · x−
jk) (3.8)

Where

u
′+
j =

∑T

t=0 rt · δ(
∑K

k=0 wktx
+
jk)

u
′−
j =

∑T

t=0 rt · δ(
∑K

k=0 wktx
−
jk)

Initially we will randomly give the values of model parameters. Then we will

use back propagation to update the model parameters. When the learning process

converge, we use the learned model parameters for prediction to rank short answer

texts.
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Table 3.1: The statistics of the TREC QA data set.

Data #Questions #QA pairs %Correct #Answers/Q
TRAIN-ALL 1,229 53,417 12.00% 43.46
TRAIN 94 4,718 7.40% 50.19
DEV 82 1,148 19.30% 14.00
TEST 100 1,517 18.70% 15.17

3.3 Experiments

3.3.1 Data Set and Experiment Settings

We use the TREC QA data set 1 created by Wang et al. (2007) from TREC QA

track 8-13 data, with candidate answers automatically selected from each question’s

document pool using a combination of overlapping non-stop word counts and pattern

matching. This data set is one of the most widely used benchmarks for answer re-

ranking. Table 3.1 shows the statistics of this data set. The dataset contains a set

of factoid questions with candidate answers which are limited to a single sentence.

There are two training data sets: TRAIN and TRAIN-ALL. Answers in TRAIN have

manual judgments for the answer correctness. The manual judgment of candidate

answer sentences is provided for the entire TREC 13 set and for a part of questions

from TREC 8-12. TRAIN-ALL is another training set with much larger number of

questions. The correctness of candidate answer sentences in TRAIN-ALL is identified

by matching answer sentences with answer pattern regular expressions provided by

TREC. This data set is more noisy, however it provides many more QA pairs for

model training. There is a DEV set for hyper-parameter optimization and TEST set

for model testing. We use the same train/dev/test partition in our experiments to

directly compare our results with previous works. For data preprocess, we perform

tokenization without stemming. We maintain stop words during the model training

stage.

1https://github.com/aseveryn/deep-qa
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Word Embeddings: we obtain pre-trained word embeddings with the Word2Vec

tool by Mikolov et al. (2013) with the English Wikipedia dump. We use the skip-gram

model with window size 5 and filter words with frequency less than 5 following the

common practice in many neural embedding models. For the word vector dimension,

we tune it as a hyper-parameter on the validation data starting from 200 to 1000.

Embeddings for words not present are randomly initialized with sampled numbers

from uniform distribution U[-0.25,0.25], which follows the same setting as (Severyn

and Moschitti, 2015).

Model Hyper-parameters: for the setting of hyper-parameters, we set the number

of bins as 600, word embedding dimension as 700 for aNNM-1, the number of bins as

200, word embedding dimension as 700 for aNNM-2 after we tune hyper-parameters

on the provided DEV set of TREC QA data.

3.3.2 Evaluation and Metrics

For evaluation, we rank answer sentences with the predicted score of each method

and compare the rank list with the ground truth to compute metrics. We choose Mean

Average Precision (MAP) and Mean Reciprocal Rank (MRR), which are commonly

used in information retrieval and question answering, as the metric to evaluate our

model.

The definition of MRR is as follows:

MRR = 1
|Q|
∑

q∈Q
1

rank(fa)

where rank(fa) is the position of the first correct answer in the rank list for the

question q. Thus MRR is only based on the rank of the first correct answer. It is

more suitable for the cases where the rank of the first correct answer is emphasized

or each question only have one correct answer. On the other hand, MAP looks at the

ranks of all correct answers. It is computed as following:

MAP = 1
|Q|
∑

q∈Q AP (q)
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where AP (q) is the average precision for each query q ∈ Q. Thus MAP is the

average performance on all correct answers. We use the official trec_eval2 scripts for

computing these metrics.

3.3.3 Model Learning Results

In this section, we give some qualitative analysis and visualization of our model

learning results. Specifically, we analyze the learned value-shard weights and question

term importance by aNMM.

3.3.3.1 Value-shared Weight

We take the learned value-shared weights of aNMM-1 as the example. Figure

3.3 shows the learned value-shared weights by aNMM-1. In aNMM-1, for each QA

matching vector, there is only one bin node. Thus the learned value-shared weights

for aNMM-1 is a one dimension vector. For aNMM-1, we set the number of bins

to 600 as presented in Section 3.3.1. Note that the x-axis is the index of bin range

and the y-axis is the value-shared weights corresponding to each bin range. The

range of match signals is [-1,1] from the left to the right. We make the following

observations: (1) The exact match signal which is corresponding to 1 in the last

bin is tied with a very large weight, which shows that exact match information is

very important. (2) For positive matching score from (0, 1), which is corresponding

to bin index (300, 600), the learned value-shared weights are different for matching

score range (0.5, 1) (bin index (450, 600)) and matching score range (0, 0.5) (bin index

(300, 450)) . We can observe many positive value-shared weights for matching score

range(0.5, 1) and negative value-shared weights for matching score range(0, 0.5). This

makes sense since high semantic matching scores are positive indicators on answer

correctness, whereas low semantic matching scores indicate that the candidate answer

2http://trec.nist.gov/trec_eval/
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especially on TRAIN data. Thus, we can see that with the optimization process in the

back propagation training process, aNMM can learn better question term weighting

score than heuristic term weighting functions like IDF.

3.3.4 Experimental Results for Ranking Answers

3.3.4.1 Learning without Combining Additional Features

Our first experimental setting is ranking answer sentences directly by the predicted

score from aNMM without combining any additional features. This will enable us to

answer RQ1 proposed in Section 3.1. Table 3.4 shows the results of TREC QA on

TRAIN and TRAIN-ALL without combining additional features. In this table, we

compare the results of aNMM with other previous deep learning methods including

CNN (Yu et al., 2014; Severyn and Moschitti, 2015) and LSTM (Wang and Nyberg,

2015). We summarize our observations as follows: (1) Both aNMM-1 and aNMM-2

show significant improvements for MAP and MRR on TRAIN and TRAIN-ALL data

sets comparing with previous deep learning methods. Specifically, if we compare the

results of aNMM-1 with the strongest deep learning baseline method by Severyn et al.

(Severyn and Moschitti, 2015) based on CNN, we can see aNMM-1 outperform CNN

for 14.67% in MAP on TRAIN, 9.15% in MAP on TRAIN-ALL. For MRR, we can also

observe similar significant improvements of aNMM-1. These results show that with

the value-shared weight scheme instead of the position-shared weight scheme in CNN

and term importance learning with question attention network, aNMM can predict

ranking scores with much higher accuracy comparing with previous deep learning

models for ranking answers. (2) If we compare the results of aNMM-1 and aNMM-2,

we can see their results are very close. aNMM-1 has slightly better performance than

aNMM-2. This result indicates that adding one more hidden layer to incorporate

multiple bin nodes does not necessarily increase the performance for answer ranking

in TREC QA data. From the perspective of model efficiency, aNMM-1 could be
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Table 3.4: Results of TREC QA on TRAIN and TRAIN-ALL without combining
additional features (Compare with deep learning methods).

Training Data TRAIN TRAIN-ALL
Method MAP MRR MAP MRR
Yu et al. (2014) (Yu et al., 2014) 0.5476 0.6437 0.5693 0.6613
BLSTM(2015) (Wang and Nyberg, 2015) / / 0.5928 0.6721
CDNN (2015) (Severyn and Moschitti, 2015) 0.6258 0.6591 0.6709 0.7280
aNMM-2 0.7191 0.7974 0.7407 0.7969
aNMM-1 0.7334 0.8020 0.7385 0.7995

Table 3.5: Results of TREC QA on TRAIN-ALL without combining additional fea-
tures (Compare with methods using feature engineering).

Method MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
Yao et al. (2013) 0.6307 0.7477
Severyn and Moschitti (2013) 0.6781 0.7358
Yih et al. (2013) 0.7092 0.7700
aNMM-2 0.7407 0.7969
aNMM-1 0.7385 0.7995

a better choice since it can be trained much faster with good prediction accuracy.

However, for larger training data sets than TREC QA data, aNMM-2 could have

better performance since it has more model parameters and is suitable for fitting

larger training data set. We leave the study of impact of the number of hidden layers

in aNMM to future work.

Table 3.5 shows the comparison between aNMM with previous methods using

feature engineering on TRAIN-ALL without combining additional features. We find

that both aNMM-1 and aNMM-2 achieve better performance comparing with other

methods using feature engineering. Specifically, comparing the results of aNMM-1

with the strongest baseline by Yih et al. (Yih et al., 2013) based on enhanced lexical

semantic models, aNMM-1 achieves 4.13% gain for MAP and 3.83% gain for MRR.

These results show that it is possible to build a uniform deep learning model such

that it can achieve better performance than methods using feature engineering. To
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the best of our knowledge, aNMM is the first deep learning model that can achieve

good performance comparing with previous methods either based on deep learning

models or feature engineering for ranking answers without any additional features,

syntactic parsers and external resources except for pre-trained word embeddings.

3.3.4.2 Learning with Combining Additional Features

Our second experimental setting is to address RQ2 proposed in Section 3.1, where

we ask whether our model can outperform the state-of-the-art performance achieved

by CNN (Yu et al., 2014; Severyn and Moschitti, 2015) and LSTM (Wang and Nyberg,

2015) for answer ranking when combining additional features. We combine the pre-

dicted score from aNMM-1 and aNMM-2 with the Query Likelihood (QL) (Croft et al.,

2009) score using LambdaMART (Wu et al., 2010) following a similar approach to

(Wang and Nyberg, 2015). We use the implementation of LambdaMART in jforests.3

We compare the results with previous deep learning models with additional features.

Table 3.6 shows the results on TRAIN and TRAIN-ALL when combining additional

features. We can see that with combined features, both aNMM-1 and aNMM-2 have

better performance. aNMM-1 also outperforms CNN by Severyn et al. (Severyn and

Moschitti, 2015) which is the current state-of-the-art method for ranking answers in

terms of both MAP and MRR on TRAIN and TRAIN-ALL.

We also tried to combine aNMM score with other additional features such as

word overlap features, IDF weighted word overlap features and BM25 as in previous

research (Yu et al., 2014; Severyn and Moschitti, 2015; Wang and Nyberg, 2015).

The results were either similar or worse than combining aNMM score with QL. For

aNMM, the gains after combining additional features are not as large as neural net-

work models like CNN in (Severyn and Moschitti, 2015) and LSTM in (Wang and

Nyberg, 2015). We think the reasons for this are two-fold: (1) The QA matching ma-

3https://github.com/yasserg/jforests (Ganjisaffar et al., 2011).
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Table 3.6: Results of TREC QA on TRAIN and TRAIN-ALL with combining addi-
tional features.

Training Data TRAIN TRAIN-ALL
Method MAP MRR MAP MRR
Yu et al. (2014) (Yu et al., 2014) 0.7058 0.7800 0.7113 0.7846
BLSTM (2015) (Wang and Nyberg, 2015) / / 0.7134 0.7913
CDNN (2015) (Severyn and Moschitti, 2015) 0.7329 0.7962 0.7459 0.8078
aNMM-2 0.7306 0.7968 0.7484 0.8013
aNMM-1 0.7417 0.8102 0.7495 0.8109

trix in aNMM model can capture exact match information by assigning 1 to matrix

elements if the corresponding answer term and question term are the same. This ex-

act match information includes match between numbers and proper nouns, which are

highlighted in previous research work (Severyn and Moschitti, 2015) as especially im-

portant for factoid questions answering, where most of the questions are of type what,

when , who that are looking for answers containing numbers or proper nouns. Within

aNMM architecture, this problem has already been handled with QA matching ma-

trix. Thus incorporating word overlap features will not help much for improving the

performance of aNMM. (2) In addition to exact match information, aNMM could

also learn question term importance like IDF information through question attention

network. Instead of empirically designing heuristic functions like IDF, aNMM can get

learning based question term importance score. As analyzed in Section 3.3.3.2, with

the optimization process in the back propagation training process, aNMM can learn

similar or even better term weighting score than IDF. Thus combining aNMM score

with features like IDF weighted word overlap features and BM25 may not increase

the performance of aNMM by a large margin as the case in related research works

(Yu et al., 2014; Severyn and Moschitti, 2015; Wang and Nyberg, 2015).

3.3.4.3 Results Summary

Finally we summarize the results of previously published systems on the QA an-

swer ranking task in Table 3.7. We can see aNMM trained with TRAIN-ALL set
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Table 3.7: Overview of previously published systems on the QA answer ranking task.
All reported results are from the best setting of each model trained on TRAIN-ALL
data.

Method MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
Yao et al. (2013) 0.6307 0.7477
Severyn and Moschitti (2013) 0.6781 0.7358
Yih et al. (2013) 0.7092 0.7700
Yu et al. (2014) 0.7113 0.7846
Wang and Nyberg (2015) 0.7134 0.7913
Severyn and Moschitti (2015) 0.7459 0.8078
aNMM 0.7495 0.8109

beats all the previous state-of-the art systems including both methods using fea-

ture engineering and deep learning models. These results are very promising since

aNMM requires no manual feature engineering, no expensive processing by various

NLP parsers and no external results like large scale knowledge base except for pre-

trained word embeddings. Furthermore, even without combining additional features,

aNMM still performs well for answer ranking, showing significant improvements over

previous deep learning model with no additional features and linguistic feature engi-

neering methods.

3.3.5 Parameter Sensitivity Analysis

We perform parameter sensitivity analysis of our proposed model aNMM. We

focus on aNMM-1 as the example due to the space limitation. For aNMM-1, we fix

the number of bins as 600 and change the dimension of word vectors. Similarly, we fix

the dimension of word vectors as 700 and vary the number of bins. Figure 3.5 shows

the change of MAP and MRR on the validation data as we vary the hyper-parameters.

We summarize our observations as follows: (1) For word vector dimension, the range

(300, 700) is a good choice as much lower or higher word vector dimensions will hurt

the performance. The choice of word vector dimension also depends on the size of
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Table 3.8: The statistics of the WikiQA data set. Note that “CandidateAS”, “Correc-
tAS”, “AvgLenOfQ”, “AvgLenOfCanAS”, “’QWithNoCAS’ denote “candidate answer
sentence”, “correct answer sentence”, “average length of question”, “average length of
candidate answer sentence”, “question with no correct answer sentence” respectively.

Data Train Dev Test Total
#Questions 2,118 296 633 3,047
#CandidateAS 20,360 2,733 6,165 29,258
#CorrectAS 1,040 140 293 1,473
AvgLenOfQ 7.16 7.23 7.26 7.18
AvgLenOfCanAS 25.29 24.59 24.95 25.15
#QWithNoCAS 1,245 170 390 1,805

Table 3.9: The experimental results on WikiQA data set. Note that although the
performances of our method aNMM are close to the baseline CNN-Count, our method
does not need to be combined with additional features like overlapped word count
features.

Method MAP MRR
WordCount 0.4891 0.4924
WeightedWordCount 0.5099 0.5132
LCLR 0.5993 0.6086
PV 0.5110 0.5160
CNN 0.6190 0.6281
PV-Count 0.5976 0.6058
CNN-Count 0.6520 0.6652
aNMM-2 0.6455 0.6527
aNMM-1 0.6562 0.6687

and 29, 258 sentences in the dataset, where 1, 473 sentences were labeled as answer

sentences to their corresponding questions. The statistics of this data set is shown in

Table 3.8.

Note that the advantage of this data set is that all the questions are from the real

search logs. Thus those questions are more likely search queries issued by users in real

web search engines. However, one weakness with this data is that nearly two-thirds

of questions contain no correct answers in in the candidate answer sentences. These

questions could be useful in training data since they provide some negative training

instances. But we need to filter such questions in the Dev/Test data to evaluate the

performance of the answer sentence ranking task.
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3.3.6.2 Results on WikiQA Data

The experimental results on WikiQA data set are shown in table 3.9. The results

of the baselines shown in this table are cited from the paper by Yang et. al.(Yang

et al., 2015). These baselines include the following methods:

• Word matching methods. Word Count counts the number of non-stop words

in the question that also occur in the answer sentence. Weighted Word Count

weights these counts by the IDF values of question terms.

• LCLR. This is a method based on rich lexical semantic features including

word/lemma matching, WordNet and vector-space lexical semantic models pro-

posed by Yih et al. (Yih et al., 2013).

• Paragraph Vector (PV). This method uses the cosine similarity score between

the question vector and the candidate answer sentence vector learned by the

Paragraph Vector model (Le and Mikolov, 2014).

• Convolutional Neural Networks (CNN). This is the bigram CNN model proposed

by Yu et al. (Yu et al., 2014).

• Methods combining deep learning methods with word count features. PV-Count

and CNN-Count are two methods which combine the score from deep learning

models with the two word matching features by training a logistics regression

model. CNN-Count is also proposed by Yu et al. (Yu et al., 2014).

Comparing the results of our proposed aNMM-1 and aNMM-2 model with these

previous proposed methods, we make the following observations: 1) Both the per-

formances of aNMM-1 and aNMM-2 are significantly better than word matching

methods including Word Count, Weighted Word Count and previous deep learning

methods like PV and CNN. Note that we don’t combine any additional hand crafted

features into the learning score of aNMM-1 and aNMM-2 for the experiments on
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WikiQA. This double confirms the advantages of the attention based neural matching

models for ranking answer sentences. 2) We can see that the performance of aNMM-1

is slightly better than PV-Count and CNN-Count. Thus aNMM-1 can achieve better

results than previous methods combining deep learning score with word count fea-

tures. 3) If we compare the results of aNMM-1 and aNMM-2, they are pretty close to

each other. However, aNMM-1 is still trained with much higher efficiency on WikiQA

data. Thus aNMM-1 is a better model in terms of both effectiveness and efficiency.

Overall, the experimental results on WikiQA data is quite consistent with the results

on TREC QA data, which double confirms the effectiveness of our proposed model.

3.4 Summary

In this chapter, we propose an attention based neural matching model as a rep-

resentation learning method for ranking short answer text. We adopt value-shared

weighting scheme instead of position-shared weighting scheme for combining different

matching signals and incorporate question term importance learning using a ques-

tion attention network. We perform a thorough experimental study with the TREC

QA dataset from TREC QA tracks 8-13 and show promising results. Unlike pre-

vious methods including CNN as in (Yu et al., 2014; Severyn and Moschitti, 2015)

and LSTM as in (Wang and Nyberg, 2015), which only show inferior results without

combining additional features, our model can achieve better performance than the

state-of-art method using linguistic feature engineering without additional features.

With a simple additional feature, our method can achieve the new state-of-the-art

performance among current existing methods.
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CHAPTER 4

MULTI-TURN INFORMATION-SEEKING

CONVERSATIONS

4.1 Introduction

Personal assistant systems, such as Apple Siri, Google Now, Amazon Alexa, and

Microsoft Cortana, are becoming ever more widely used. These systems, with either

text-based or voice-based conversational interfaces, are capable of voice interaction,

information search, question answering and voice control of smart devices. This trend

has led to an interest in developing conversational search systems, where users would

be able to ask questions to seek information with conversation interactions. Research

on speech and text-based conversational search has also recently attracted significant

attention in the information retrieval (IR) community.

Existing approaches to building conversational systems include generation-based

methods (Ritter et al., 2011; Shang et al., 2015) and retrieval-based methods (Ji et al.,

2014; Yan et al., 2016a,b, 2017). Compared with generation-based methods, retrieval-

based methods have the advantages of returning fluent and informative responses.

Most work on retrieval-based conversational systems studies response ranking for

single-turn conversation (Wang et al., 2013), which only considers a current utterance

for selecting responses. Recently, several researchers have been studying multi-turn

conversation (Yan et al., 2016a; Zhou et al., 2016; Wu et al., 2017; Yan et al., 2017),

which considers the previous utterances of the current message as the conversation

context to select responses by jointly modeling context information, current input

utterance and response candidates. However, existing studies are still suffering from

the following weaknesses:

52



(1) Most existing studies are on open domain chit-chat conversations or task /

transaction oriented conversations. Most current work (Ritter et al., 2011; Shang

et al., 2015; Ji et al., 2014; Yan et al., 2016a,b, 2017) is looking at open domain

chit-chat conversations as in microblog data like Twitter and Weibo. There is some

research on task oriented conversations (Young et al., 2010; Wen et al., 2017; Bordes

et al., 2017), where there is a clear goal to be achieved through conversations between

the human and the agent. However, the typical applications and data are related to

completing transactions like ordering a restaurant or booking a flight ticket. Much

less attention has been paid to information oriented conversations, which is referred

to as information-seeking conversations in this chapter. Information-seeking conver-

sations, where the agent is trying to satisfy the information needs of the user through

conversation interactions, are closely related to conversational search systems. More

research is needed on response selection in information-seeking conversation systems.

(2) Lack of modeling external knowledge beyond the dialog utterances. Most re-

search on response selection in conversation systems are purely modeling the matching

patterns between user input message (either with context or not) and response can-

didates, which ignores external knowledge beyond the dialog utterances. Similar to

Web search, information-seeking conversations could be associated with massive ex-

ternal data collections that contain rich knowledge that could be useful for response

selection. This is especially critical for information-seeking conversations, since there

may be not enough signals in the current dialog context and candidate responses to

discriminate a good response from a bad one due to the wide range of topics for user

information needs. An obvious research question is how to utilize external knowledge

effectively for response ranking. This question has not been well studied, despite the

potential benefits for the development of information-seeking conversation systems.

To address these research issues, we propose a learning framework on top of deep

neural matching networks that leverages external knowledge for response ranking
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in information-seeking conversation systems. We study two different methods on

integrating external knowledge into deep neural matching networks as follows:

(1) Incorporating external knowledge via pseudo-relevance feedback. Pseudo-

relevance feedback (PRF) has been proven effective in improving the performance

of many retrieval models (Lavrenko and Croft, 2001; Lv and Zhai, 2009; Zamani

et al., 2016; Zhai and Lafferty, 2001; Rocchio, 1971; Cao et al., 2008; Diaz and Met-

zler, 2006). The motivation of PRF is to assume a certain number of top-ranked

documents from the initial retrieval run to be relevant and use these feedback docu-

ments to improve the original query representation. For conversation response rank-

ing, many candidate responses are much shorter compared with conversation context,

which could have negative impacts on deep neural matching models. Inspired by the

key idea of PRF, we propose using the candidate response as a query to run a re-

trieval round on a large external collection. Then we extract useful information from

the (pseudo) relevant feedback documents to enrich the original candidate response

representation.

(2) Incorporating external knowledge via QA correspondence knowledge distilla-

tion. Previous neural ranking models enhanced the performance of retrieval models

such as BM25 and QL, which mainly rely on lexical match information, via mod-

eling semantic match patterns in text (Guo et al., 2016; Huang et al., 2013; Mitra

et al., 2017). For response ranking in information-seeking conversations, the match

patterns between candidate responses and conversation context can be quite different

from the well studied lexical and semantic matching. Consider the following sample

utterance and response from the conversations in the Microsoft Answers community 1

shown in Table 4.1. A Windows user proposed a question about the windows update

failure on “restart install”. An expert replied with a response pointing to a potential

1answers.microsoft.com
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Table 4.1: Sample utterance and response from the conversations in the Microsoft
Answers community. This figure could be more readable with color print. Note that
the purpose of this figure is to illustrate examples and differences among these three
types of matches instead of exhaustively labeling all three types of matches between
the two texts.

QA Dialog Title: : Windows Update Failure
Dialog Tags: Windows, Windows 10, Windows update, recovery, backup, PC
USER: I have Windows10, version 1511, OS Build 10586.1106. For the past year I have tried to upgrade from this
without success. Upgrade download OK but on installing only get to 85 - 93% and then on restart install previous
version of windows (the 1511 version), I have Windows update assistant installed. Any help or advice on this would
be most welcome.
David
Responses
AGENT: James (Microsoft MVP - Windows Client) :
Response:There’s not a doubt in my mind that those Norton “leftovers” is your troublemaker here - but now that
the Norton Removal Tool has been deprecated and especially since the new-fangled Norton Remove and Reinstall
tool doesn’t get rid of the leftovers, a manual upgrade or a clean install of Microsoft Win10 appears to be your only
possible resolution here. Feel free to give Norton/Symantec a piece of your mind!
Term Match: Magenta Semantic Match: Blue Correspondence Match: Red

cause “Norton leftovers”. The match signals between the problem “restart install”

and the cause “Norton leftovers” may not be captured by simple lexical and semantic

matching. To derive such match patterns, we need to rely on external knowledge to

distill QA correspondence information. We propose to extract the “correspondence”

regularities between question and answer terms from retrieved external QA pairs. We

define this type of match patterns as a “correspondence match”, which will be incor-

porated into deep matching networks as external knowledge to help response selection

in information-seeking conversations.

We conduct extensive experiments with three information-seeking conversation

data sets: the MSDialog data which contains crawled customer service dialogs from

Microsoft Answers community , a popular benchmark data Ubuntu Dialog Corpus

(UDC) (Lowe et al., 2015), and another commercial customer service data from a large

E-commerce company. We compare our methods with various deep text matching

models and the state-of-the-art baseline on response selection in multi-turn conversa-

tions. Our methods outperform all baseline methods regrading a variety of metrics.

To sum up, our contributions can be summarized as follows:
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(1) Focusing on information-seeking conversations and building a new benchmark

data set. We target information-seeking conversations to push the boundaries of

conversational search models. To this end, we create a new information-seeking con-

versation data set MSDialog on technical support dialogs of Microsoft products and

released it to the research community 2.

(2) Integrating external knowledge into deep neural matching networks for re-

sponse ranking. We propose a new response ranking paradigm for multi-turn con-

versations by incorporating external knowledge into the matching process of dialog

context and candidate responses. Under this paradigm, we design two different meth-

ods with pseudo relevance feedback and QA correspondence knowledge distillation to

integrate external knowledge into deep neural matching networks for response rank-

ing.

(3) Extensive experimental evaluation on benchmark / commercial data sets and

promising results. Experimental results with three different information-seeking con-

versation data sets show that our methods outperform various baseline methods in-

cluding the state-of-the-art method on response selection in multi-turn conversations.

We also perform analysis over different response types, model variations and ranking

examples to provide insights.

4.2 Deep Matching Networks with External Knowledge

4.2.1 Problem Formulation

The research problem of response ranking in information-seeking conversations

is defined as follows. We are given an information-seeking conversation data set

D = {(Ui,Ri,Yi)}Ni=1, where Ui = {u1
i , u

2
i , . . . , u

t−1
i , ut

i} in which {u1
i , u

2
i , . . . , u

t−1
i }

2The MSDialog dataset can be downloaded from https://ciir.cs.umass.edu/

downloads/msdialog. We also released our source code at https://github.com/

yangliuy/NeuralResponseRanking .
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is the dialog context and ut
i is the input utterance in the t-th turn. Ri and Yi are

a set of response candidates {r1i , r2i , . . . , rki }Mk=1 and the corresponding binary labels

{y1i , y2i , . . . , yki }, where yki = 1 denotes rki is a true response for Ui. Otherwise yki = 0.

In order to integrate external knowledge, we are also given an external collection E ,

which is related to the topics discussed in conversation U . Our task is to learn a

ranking model f(·) with D and E . For any given Ui, the model should be able to

generate a ranking list for the candidate responses Ri with f(·). The external collec-

tion E could be any massive text corpus. In this chapter, E are historical QA posts

in Stack Overflow data dump3 for MSDialog, AskUbuntu data dump4 for Ubuntu

Dialog Corpus and product QA pairs for AliMe data.

4.2.2 Method Overview

In the following sections, we describe the proposed learning framework built on

the top of deep matching networks and external knowledge for response ranking in

information-seeking conversations. A summary of key notations in this work is pre-

sented in Table 4.2. In general, there are three modules in our learning framework:

(1) Information retrieval (IR) module: Given the information seeking conversation

data D and external QA text collection E , this module is to retrieve a small relevant

set of QA pairs P from E with the response candidate R as the queries. These

retrieved QA pairs P become the source of external knowledge.

(2) External knowledge extraction (KE) module: Given the retrieved QA pairs P

from the IR module, this module will extract useful information as term distributions,

term co-occurrence matrices or other forms as external knowledge.

(3) Deep matching network (DMN) module: This is the module to model the

extracted external knowledge from P , dialog utterances Ui and the response candidate

3https://stackoverflow.com/

4https://askubuntu.com/
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Table 4.2: A summary of key notations in this work. Note that all vectors are denoted
with bold cases.

D The conversation data set used for training/validation/testing
E The collection for the retrieval and distillation of external knowledge
ut
i,Ui,U The t-th utterance of the i-th dialog, all utterances of the i-th dialog and the

set of all dialog utterances
rki ,Ri,R The k-th response candidate for the i-th dialog, all response candidates of the

i-th dialog and the set of all candidate responses

rk
′

i The k-th expanded response candidate for the i-th dialog
yki ,Y The label for the k-th response candidate for the i-th dialog and the set of all

labels
f(·) The ranking model learnt with D and E
f(Ui, r

k
i ) The predicted matching score between Ui and rki

N The total number of dialogs in D
M The total number of response candidates for Ui

W The number of expanded words in response candidates
θ The language model constructed from the pseudo relevance feedback document

set for response candidate expansion
P,P The number of top ranked QA posts retrieved from E and the top ranked QA

post set
lr, lu The length of a response candidate and the length of an utterance
d The number of dimensions of word embedding vectors
M1,M2,M3 Interaction matrices between dialog utterance ut

i and candidate response rki or

rk
′

i for word embedding similarity, sequence hidden representation similarity and
QA correspondence matching similarity

m1,i,j The (i, j)-th element in the interaction matrix M1

c The window size for the utterances in dialog context, which is the maximal
number of previous utterances modeled

rki to learn the matching pattern, over which it will accumulate and predict a matching

score f(Ui, r
k
i ) for Ui and rki .

We explore two different implementations under this learning framework as fol-

lows: 1) Incorporating external knowledge into deep matching networks via pseudo-

relevance feedback (DMN-PRF). The architecture of DMN-PRF model is presented

in Figure 4.1. 2) Incorporating external knowledge via QA correspondence knowledge

distillation (DMN-KD). The architecture of DMN-KD model is presented in Figure

4.2. We will present the details of these two models in Section 4.2.3 and Section 4.2.4.
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Figure 4.1: The architecture of DMN-PRF model for conversation response ranking.

4.2.3 Deep Matching Networks with Pseudo-Relevance Feedback

4.2.3.1 Relevant QA Posts Retrieval

We adopt different QA text collections for different conversation data (e.g. Stack

Overflow data for MSDialog, AskUbuntu for UDC). The statistics of these external

collections are shown in Table 4.3. We download the data dumps for Stack Overflow

and AskUbuntu from archive.org5. We index the QA posts in Stack Overflow in most

recent two years and all the QA posts in AskUbuntu. Then we use the response

candidate rki as the query to retrieve top P 6 QA posts with BM25 as the source for

external knowledge.

4.2.3.2 Candidate Response Expansion

The motivation of Pseudo-Relevance Feedback (PRF) is to extract terms from

the top-ranked documents in the first retrieval results to help discriminate relevant

documents from irrelevant ones (Cao et al., 2008). The expansion terms are extracted

either according to the term distributions (e.g. extract the most frequent terms)

or extracted from the most specific terms (e.g. extract terms with the maximal

IDF weights) in feedback documents. Given the retrieved top QA posts P from the

previous step, we compute a language model θ = P (w|P) using P . Then we extract

5https://archive.org/download/stackexchange

6In our experiments, we set P = 10.
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Table 4.3: Statistics of external collections for QA pairs retrieval and knowledge
extraction. Note that “#QWithAcceptedA” means “number of questions with an
accepted answer”. The other names use similar abbreviations.

Collection Name SOTwoYears AskUbuntu

StartDate 12/4/2015 7/28/2010
EndDate 9/1/2017 9/1/2017
#QAPosts 9,563,530 629,198
#Time 2 Years 7 years
XMLFileDiskSize 17GB 799MB
#Question 4,188,937 271,233
#QWithAcceptedA 1,751,787 92,259
#QWithAtLeastOneA 3,178,814 213,830
%QWithAcceptedA 41.82% 34.01%
%QWithAtLeastOneA 75.89% 78.84%

the most frequent W terms from θ as expansion terms for response candidate rki . In

our experiments, we set W = 10. For the query rki , we perform several preprocessing

steps including tokenization, punctuation removal and stop words removal. QA posts

in both Stack Overflow and AskUbuntu have two fields: “Body” and “Title”. We

choose to search the “Body” field since we found it more effective in experiments.

4.2.3.3 Interaction Matching Matrix

The expanded response candidates and dialog contexts will be modeled by a deep

neural matching network. Given an expanded response rk
′

i and an utterance ut
i in

the context Ui, the model first looks up a global embedding dictionary to represent

rk
′

i and ut
i as two sequences of embedding vectors E(rk

′

i ) = [er,1, er,2, · · · , er,lr ] and

E(ut
i) = [eu,1, eu,2, · · · , eu,lu ], where er,i ∈ R

d, eu,i ∈ R
d are the embedding vectors of

the i-th word in rk
′

i and ut
i respectively. Given these two word embedding sequences,

there are two different methods to learn matching patterns: representation focused

methods and interaction focused methods (Guo et al., 2016). Here we adopt the

interaction focused methods due to their better performances over a number of text

matching tasks (Hu et al., 2014; Pang et al., 2016; Wan et al., 2016; Yang et al.,

2016a). Specifically, the model builds two interaction matrices with E(rk
′

i ) ∈ R
d×lr
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and E(ut
i) ∈ R

d×lu : a word pairwise similarity matrix M1 and a sequence hidden

representation similarity matrix M2. M1 and M2 will be two input channels of a

convolutional neural network (CNN) to learn important matching features, which

will be aggregated by the final BiGRU layer and a multi-layer perceptron (MLP) to

generate a matching score.

Specifically, in the input channel one, ∀i, j, the element m1,i,j in the M1 is defined

by m1,i,j = eTr,i · eu,j. M1 models the word pairwise similarity between rk
′

i and ut
i via

the dot product similarity between the embedding representations.

For input channel two, we firstly employ bidirectional gated recurrent units (Bi-

GRU) (Chung et al., 2014) to encode rk
′

i and ut
i into two hidden representations.

A BiGRU consists two GRUs that run in opposite directions on sequence E(rk
′

i ): a

forward GRUs processing the sequence as it is ordered, and another backward GRUs

processing the sequence in its reverse order. These two GRUs will generate two se-

quences of hidden states ( ~h1, · · · , ~hlr) and (
�

h1, · · · ,
�

hlr). BiGRU then concatenates

the forward and the backward hidden states to form the final hidden vectors for rk
′

i

as hi = [~hi,
�

hi]
lr

i=1. More specifically, ∀i, the hidden state vector ~hi ∈ R
O is calculated

by the following formulas:

zi = σ(Wzer,i +Uz
~hi−1 + bz)

ri = σ(Wrer,i +Ur
~hi−1 + br)

h̃i = tanh(Wher,i +Uh(ri ◦ ~hi−1) + bh)

~hi = (1− zi) ◦ ~hi−1 + zi ◦ h̃i

(4.1)

where zi and ri are an update gate and a reset gate respectively. er,i, ~hi are the

input and hidden state output of the network at time step i. Wz,Wr,Wh,Uz,Ur,Uh

and bz,br,bh are parameter matrices and bias vectors to be learned. The backward

hidden state
�

hi ∈ R
O is computed in a similar way according to Equation 4.1. The

hidden vectors for the dialog utterance ut
i can be obtained in the same procedure.

Given the hidden vectors of rk
′

i and ut
i, we calculate element m2,i,j in the sequence

hidden representation similarity matrix M2 by m2,i,j = hT
r,i · hu,j. BiGRU models
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the neighbor context information around words from two directions and encode the

text sequences into hidden vectors. Thus M2 matches rk
′

i and ut
i with local sequence

structures such as phrases or text segments.

4.2.3.4 Convolution and Pooling Layers

The interaction matrices M1 and M2 are then fed into a CNN to learn high

level matching patterns as features. CNN alternates convolution and max-pooling

operations over these input channels. Let z(l,k) denote the output feature map of the

l-th layer and k-th kernel, the model will do convolution operations and max-pooling

operations according to the following equations.

Convolution: let r
(l,k)
w × r

(l,k)
h denote the shape of the k-th convolution kernel in

the l-th layer, the convolution operation can be defined as:

z
(l+1,k)
i,j = σ(

Kl−1∑

k′=0

r(l,k)
w −1∑

s=0

r
(l,k)
h

−1∑

t=0

w
(l+1,k)
s,t · z(l,k

′)
i+s,j+t + b(l+1,k))

∀l = 0, 2, 4, 6, · · · ,

(4.2)

where σ is the activation function ReLU, and w
(l+1,k)
s,t and b(l+1,k) are the param-

eters of the k-th kernel on the (l + 1)-th layer to be learned. Kl is the number of

kernels on the l-th layer.

Max Pooling: let p
(l,k)
w × p

(l,k)
h denote the shape of the k-th pooling kernel in the

l-th layer, the max pooling operation can be defined as:

z
(l+1,k)
i,j = max

0≤s<p
l+1,k
w

max
0≤t<p

l+1,k
h

z
(l,k)
i+s,j+t ∀l = 1, 3, 5, 7, · · · , (4.3)

4.2.3.5 BiGRU Layer and MLP

Given the output feature representation vectors learned by CNN for utterance-

response pairs (rk
′

i , u
t
i), we add another BiGRU layer to model the dependency and

temporal relationship of utterances in the conversation according to Equation 4.1

following the previous work (Wu et al., 2017). The output hidden states Hc =
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[h′
1, · · · ,h′

c] will be concatenated as a vector and fed into a multi-layer perceptron

(MLP) to calculate the final matching score f(Ui, r
k′

i ) as

f(Ui, r
k′

i ) = σ2(w
T
2 · σ1(w

T
1 Hc + b1) + b2) (4.4)

where w1,w2,b1,b2 are model parameters. σ1 and σ2 are tanh and softmax

functions respectively.
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Figure 4.2: The left figure shows the architecture of DMN-KD model for conversa-
tion response ranking. The input channel M3 denoted as blue matrices capture the
correspondence matching patterns of utterance terms and response terms in relevant
external QA pairs retrieved from E . Note that we omit the details for CNN layers
here to save spaces as they have been visualized in Figure 4.1. The right figure shows
the detailed pipeline of external relevant QA pairs retrieval and QA correspondence
matching knowledge distillation in DMN-KD model.

4.2.3.6 Model Training

For model training, we consider a pairwise ranking learning setting. The training

data consists of triples (Ui, r
k+
i , rk−i ) where rk+i and rk−i denote the positive and the

negative response candidate for dialog utterances Ui. Let Θ denote all the parameters

of our model. The pairwise ranking-based hinge loss function is defined as:

L(D, E ; Θ) =

I∑

i=1

max(0, ǫ− f(Ui, r
k+
i ) + f(Ui, r

k−
i )) + λ||Θ||22 (4.5)

where I is the total number of triples in the training data D. λ||Θ||22 is the

regularization term where λ denotes the regularization coefficient. ǫ denotes the
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margin in the hinge loss. The parameters of the deep matching network are optimized

using back-propagation with Adam algorithm (Kingma and Ba, 2014). For neural

network regularization, we employ Dropout(Srivastava et al., 2014) in the model

training process.

4.2.4 Deep Matching Networks with QA Correspondence Knowledge Dis-

tillation

In addition to the DMN-PRF model presented in Section 4.2.3, we also propose

another model for incorporating external knowledge into conversation response rank-

ing via QA correspondence knowledge distillation, which is referred to as DMN-KD

model in this chapter. The architecture of DMN-KD model is presented in Figure

4.2. Compared with DMN-PRF, the main difference is that the CNN of DMN-KD

will run on an additional input channel M3 denoted as blue matrices in Figure 4.2,

which captures the correspondence matching patterns of utterance terms and response

terms in relevant external QA pairs retrieved from E . Specifically, we firstly use the

response candidate rki as the query to retrieve a set of relevant QA pairs7 P . Suppose

P = {Q,A} = {(Q1,A1), (Q2,A2), · · · , (QP ,AP )}, where (Qp,Ap) denotes the p-th

QA pair. Given a response candidate rki and a dialog utterance ut
i in dialog Ui, the

model will compute the term co-occurrence information as the Positive Pointwise

Mutual Information (PPMI) of words of rki and ut
i in retrieved QA pair set {Q,A}.

Let [wr,1, wr,2, · · · , wr,lr ] and [wu,1, wu,2, · · · , wu,lu ] denote the word sequence in rki and

ut
i. We construct a QA term correspondence matching matrix M3 as the third input

channel of CNN for rki and ut
i with the PPMI statistics from {Q,A}. More specifically,

∀i, j, the element m3,i,j in M3 is computed as

7Note that we want QA pairs here instead of question posts or answer posts, since we would like
to extract QA term co-occurrence information with these QA pairs.
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m3,i,j = PPMI(wr,i, wu,j |{Q,A}) (4.6)

= max(0, log

∑P

p′=1 p(wr,i ∈ Ap′ , wu,j ∈ Qp′ |Qp′ ,Ap′)

p(wr,i|A) · p(wu,j |Q)
)

where wr,i and wu,j denote the i-th word in the response candidate and j-th

word in the dialog utterance. The intuition is that the PPMI between wr,i and wu,j

in the top retrieved relevant QA pair set {Q,A} could encode the correspondence

matching patterns between wr,i and wu,j in external relevant QA pairs . Thus M3

is the extracted QA correspondence knowledge from the external collection E for

rki and ut
i. These correspondence matching knowledge capture relationships such as

“(Problem Descriptions, Solutions)”, “(Symptoms, Causes)”, “(Information Request,

Answers)”, etc. in the top ranked relevant QA pair set {Q,A}. They will help the

model better discriminate a good response candidate from a bad response candidate

given the dialog context utterances. To compute the co-occurrence count between wr,i

and wu,j, we count all word co-occurrences considering Ap and Qp as bag-of-words as

we found this setting is more effective in experiments.

4.3 Experiments

4.3.1 Data Set Description

We evaluated our method with three data sets: Ubuntu Dialog Corpus (UDC),

MSDialog, and AliMe data consisting of a set of customer service conversations in

Chinese from Alibaba.

4.3.1.1 Ubuntu Dialog Corpus

The Ubuntu Dialog Corpus (UDC) (Lowe et al., 2015) contains multi-turn tech-

nical support conversation data collected from the chat logs of the Freenode Internet

Relay Chat (IRC) network. We used the data copy shared by Xu et al. (2016), in

which numbers, urls and paths are replaced by special placeholders. It is also used
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in several previous related works (Wu et al., 2017)8. It consists of 1 million context-

response pairs for training, 0.5 million pairs for validation and 0.5 million pairs for

testing. The statistics of this data are shown in Table 4.4. The positive response can-

didates in this data come from the true responses by human and negative response

candidates are randomly sampled.

4.3.1.2 MSDialog

In addition to UDC, we also crawled another technical support conversation data

from the Microsoft Answer community, which is a QA forum on topics about a va-

riety of Microsoft products. We firstly crawled 35, 536 dialogs about 76 different

categories of Microsoft products including “Windows”, “IE”, “Office”, “Skype”, “Sur-

face”, “Xbox”, etc. 9 Then we filtered dialogs whose number of turns are out of the

range [3, 99]. After that we split the data into training/validation/testing partitions

by time. Specifically, the training data contains 25, 019 dialogs from “2005-11-12” to

“2017-08-20”. The validation data contains 4, 654 dialogs from “2017-08-21” to “2017-

09-20”. The testing data contains 5, 064 dialogs from “2017-09-21” to “2017-10-04”.

The next step is to generate the dialog context and response candidates. For

each dialog, we assigned “User” label to the first participant who proposed the ques-

tion leading to this information-seeking conversation, and “Agent” label to the other

participants who provided responses. The “Agent” in our data could be Microsoft

customer service staff, a Microsoft MVP (Most Valuable Professional) or a user from

the Microsoft Answer community. Then for each utterance by the “User” ut
i

10, we

8The data can be downloaded from https://www.dropbox.com/s/2fdn26rj6h9bpvl/

ubuntu%20data.zip?dl=0

9Note that some categories are more fine-grained, such as“Outlook_Calendar”, “Out-
look_Contacts”, “Outlook_Email”, “Outlook_Messaging”, etc.

10We consider the utterances by the user except the first utterance, since there is no associated
dialog context with it.
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collected the previous c utterances as the dialog context, where c = min(t−1, 10) and

t − 1 is the total number of utterances before ut
i. The true response by the “Agent”

becomes the positive response candidate. For the negative response candidates, we

adopted negative sampling to construct them following previous work (Wan et al.,

2016; Lowe et al., 2015; Wu et al., 2017). For each dialog context, we firstly used

the true response as the query to retrieve the top 1, 000 results from the whole re-

sponse set of agents with BM25. Then we randomly sampled 9 responses from them

to construct the negative response candidates. For data preprocessing, we performed

tokenization and punctuation removal. Then we removed stop words and performed

word stemming. For neural models, we also removed words that appear less than 5

times in the whole corpus.

4.3.1.3 AliMe Data

We collected the chat logs between customers and a chatbot AliMe from “2017-10-

01” to “2017-10-20” in Alibaba. The chatbot is built based on a question-to-question

matching system 11 (Li et al., 2017), where for each query, it finds the most similar

candidate question in a QA database and return its answer as the reply. It indexes all

the questions in our QA database using Lucence12. For each given query, it uses TF-

IDF ranking algorithm to call back candidates. To form our data set, we concatenated

utterances within three turns 13 to form a query, and used the chatbot system to call

back top-K 14 most similar candidate questions as candidate “responses”. 15 We then

asked a business analyst to annotate the candidate responses, where a “response”

11 Interested readers can access AliMe Assist through the Taobao App, or the web version via
https://consumerservice.taobao.com/online-help

12https://lucene.apache.org/core/

13The majority (around 85%) of conversations in the data set are within 3 turns.

14We set K=15.

15A “response” here is a question in our system.
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Table 4.4: The statistics of data sets used in experiments.

Data UDC MSDialog AliMe
Items Train Valid Test Train Valid Test Train Valid Test
# Context-response pairs 1000K 500K 500K 173K 37K 35K 51K 6K 6K
# Candidates per context 2 10 10 10 10 10 15 15 15
# Positive candidates per context 1 1 1 1 1 1 2.9 2.8 2.9
Min # turns per context 1 2 1 2 2 2 2 2 2
Max # turns per context 19 19 19 11 11 11 3 3 3
Avg # turns per context 10.1 10.1 10.1 5.0 4.9 4.4 2.4 2.1 2.2
Avg # words per context 116.0 115.6 115.9 271 263 227 38.3 35.3 34.2
Avg # words per utterance 22.1 22.1 22.1 66.7 67.6 66.8 4.9 4.7 4.6

is labeled as positive if it matches the query, otherwise negative. In all, we have

annotated 63,000 context-response pairs, where we use 51,000 as training, 6,000 for

testing, and 6,000 for validation shown in Table 4.4. Note that we have included

human evaluation in AliMe data. Furthermore, if the confidence score of answering a

given user query is low, the system will prompt three top related questions for users

to choose. We collected such user click logs as our external data, where we treat the

clicked question as positive and the others as negative. We collected 510,000 clicked

questions with answers from the click logs in total as the source of external knowledge.

4.3.2 Experimental Setup

4.3.2.1 Baselines

We consider different types of baselines for comparison, including traditional re-

trieval models, deep text matching models and the state-of-the-art multi-turn con-

versation response ranking method as the following:

• BM25: this method uses the dialog context as the query to retrieve response

candidates for response selection. We consider BM25 model (Robertson and

Walker, 1994) as the retrieval model.

• ARC-II: ARC-II is an interaction focused deep text matching architectures pro-

posed by Hu et al. (2014), which is built directly on the interaction matrix

between the dialog context and response candidates. A CNN is running on the

interaction matrix to learn the matching representation score.
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• MV-LSTM: MV-LSTM (Wan et al., 2016) is a neural text matching model that

matches two sequences with multiple positional representations learned by a

Bi-LSTM layer.

• DRMM: DRMM (Guo et al., 2016) is a deep relevance matching model for ad-

hoc retrieval. We implemented a variant of DRMM for short text matching.

Specifically, the matching histogram is replaced by a top-k max pooling layer

and the remaining part is the same with the original model.

• Duet: Duet (Mitra et al., 2017) is the state-of-the-art deep text matching model

that jointly learns local lexical matching and global semantic matching between

the two text sequences.

• SMN: Sequential Matching Network (SMN) (Wu et al., 2017) is the state-of-

the-art deep neural architecture for multi-turn conversation response selection.

It matches a response candidate with each utterance in the context on multiple

levels of granularity and then adopts a CNN network to distill matching features.

We used the TensorFlow 16 implementation of SMN shared by authors (Wu

et al., 2017) 17.

We also consider a degenerated version of our model, denoted as DMN, where we

do not incorporate external knowledge via pseudo-relevance feedback or QA corre-

spondence knowledge distillation. Finally, we consider a baseline BM25-PRF, where

we incorporate external knowledge into BM25 by matching conversation context with

the expanded responses as in Section 4.2.3.2 using BM25 model.

16https://www.tensorflow.org/

17The reported SMN results with the code from authors are on the raw data sets of UDC and
MSDialog without any over sampling of negative training data.
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4.3.2.2 Evaluation Methodology

For the evaluation metrics, we adopted mean average precision (MAP), Recall@1,

Recall@2, and Recall@5 following previous related work (Wu et al., 2017; Lowe et al.,

2015). For UDC and MSDialog, MAP is equivalent to the mean reciprocal rank

(MRR) since there is only one positive response candidate per dialog context. For

AliMe data, each dialog context could have more than one positive response candi-

dates.

4.3.2.3 Parameter Settings

All models were implemented with TensorFlow and MatchZoo18 toolkit. Hyper-

parameters are tuned with the validation data. For the hyper-parameter settings of

DMN-KD and DMN-PRF models, we set the window size of the convolution and

pooling kernels as (3, 3). The number of convolution kernels is 8 for UDC and 2

for MSDialog. The dimension of the hidden states of BiGRU layer is set as 200 for

UDC and 100 for MSDialog . The dropout rate is set as 0.3 for UDC and 0.6 for

MSDialog . All models are trained on a single Nvidia Titan X GPU by stochastic

gradient descent with Adam(Kingma and Ba, 2014) algorithm. The initial learning

rate is 0.001. The parameters of Adam, β1 and β2 are 0.9 and 0.999 respectively. The

batch size is 200 for UDC and 50 for MSDialog. The maximum utterance length is

50 for UDC and 90 for MSDialog. The maximum conversation context length is set

as 10 following previous work (Wu et al., 2017). We padded zeros if the number of

utterances in a context is less than 10. Otherwise the most recent 10 utterances will

be kept. For DMN-PRF, we retrieved top 10 QA posts and extracted 10 terms as

response expansion terms. For DMN-KD, we retrieved top 10 question posts with

accepted answers. For the word embeddings used in our experiments, we trained word

embeddings with the Word2Vec tool with the Skip-gram model using our training

18https://github.com/faneshion/MatchZoo
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Table 4.5: Comparison of different models over Ubuntu Dialog Corpus (UDC) and
MSDialog data sets. Numbers in bold font mean the result is better compared with
the best baseline. ‡ means statistically significant difference over the best baseline
with p < 0.05 measured by the Student’s paired t-test.

Data UDC MSDialog

Methods MAP Recall@5 Recall@1 Recall@2 MAP Recall@5 Recall@1 Recall@2

BM25 0.6504 0.8206 0.5138 0.6439 0.4387 0.6329 0.2626 0.3933

BM25-PRF 0.6620 0.8292 0.5289 0.6554 0.4419 0.6423 0.2652 0.3970

ARC-II 0.6855 0.8978 0.5350 0.6959 0.5398 0.8662 0.3189 0.5413

MV-LSTM 0.6611 0.8936 0.4973 0.6733 0.5059 0.8516 0.2768 0.5000

DRMM 0.6749 0.8776 0.5287 0.6773 0.5704 0.9003 0.3507 0.5854

Duet 0.5692 0.8272 0.4756 0.5592 0.5158 0.8481 0.2934 0.5046

SMN 0.7327 0.9273 0.5948 0.7523 0.6188 0.8374 0.4529 0.6195

DMN 0.7363 0.9196 0.6056 0.7509 0.6415 0.9155 0.4521 0.6673

DMN-KD 0.7655
‡

0.9351
‡

0.6443
‡

0.7841
‡

0.6728
‡

0.9304
‡

0.4908
‡

0.7089
‡

DMN-PRF 0.7719
‡

0.9343
‡

0.6552
‡

0.7893
‡

0.6792
‡

0.9356
‡

0.5021
‡

0.7122
‡

data. The max skip length between words and the number of negative examples is

set as 5 and 10 respectively. The dimension of word vectors is 200. Word embeddings

will be initialized by these pre-trained word vectors and updated during the training

process.

4.3.3 Evaluation Results

4.3.3.1 Performance Comparison on UDC and MSDialog

We present evaluation results over different methods on UDC and MSDialog in

Table 4.5. We summarize our observations as follows: (1) DMN-PRF model out-

performs all the baseline methods including traditional retrieval models, deep text

matching models and the state-of-the-art SMN model for response ranking on both

conversation datasets. The results demonstrate that candidate response expansion

with pseudo-relevance feedback could improve the ranking performance of responses

in conversations. The main difference between DMN-PRF model and SMN model is

the information extracted from retrieved feedback QA posts as external knowledge.

This indicates the importance of modeling external knowledge with pseudo-relevant

feedback beyond the dialog context for response selection. (2) DMN-KD model also

outperforms all the baseline methods on MSDialog and UDC. These results show
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Table 4.6: Comparison of different models over the AliMe data. Numbers in bold
font mean the result is better compared with the best baseline. ‡ means statistically
significant difference over the best baseline with p < 0.01 measured by the Student’s
paired t-test.

Data AliMe
Methods MAP Recall@5 Recall@2 Recall@1

BM25 0.6392 0.6407 0.4204 0.2371
BM25-PRF 0.6412 0.6510 0.4209 0.2545
ARC-II 0.7306 0.6595 0.3671 0.2236
MV-LSTM 0.7734 0.7017 0.4105 0.2480
DRMM 0.7165 0.6575 0.3616 0.2212
Duet 0.7651 0.6870 0.4088 0.2433
SMN 0.8145 0.7271 0.4680 0.2881
DMN 0.7833 0.7629 0.5012 0.3568

DMN-KD 0.8323 0.7631 0.5122
‡

0.3596
‡

DMN-PRF 0.8435
‡

0.7701
‡

0.5323
‡

0.3601
‡

that the extracted QA correspondence matching knowledge could help the model se-

lect better responses. Comparing DMN-KD and DMN-PRF, their performances are

very close. (3) If we compare the performances of DMN-PRF, DMN-KD with the

degenerated model DMN, we can see that incorporating external knowledge via both

pseudo-relevance feedback and QA correspondence knowledge distillation could im-

prove the performance of the deep neural networks for response ranking with large

margins. For example, the improvement of DMN-PRF against DMN on UDC is 4.83%

for MAP, 1.60% for Recall@5, 8.19% for Recall@1, 5.11% for Recall@2 respectively.

The differences are statistically significant with p < 0.05 measured by the Student’s

paired t-test.

4.3.3.2 Performance Comparison on AliMe Data

We further compare our models with the competing methods on the AliMe data in

Table 4.6. We find that: (1) our DMN model has comparable results in terms of MAP

when compared with SMN, but has better Recall; (2) DMN-KD shows comparable or

better results than all the baseline methods; (3) DMN-PRF significantly outperforms

other competing baselines which shows the effectiveness of adding external pseudo-
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improve the performances of SMN for responses with type “questions”, “answers” and

“gratitude”. This indicates that incorporating external knowledge with PRF or QA

correspondence knowledge distillation can help the model select better responses, es-

pecially for QA related responses. For responses with type “Feedback”, DMN-KD and

DMN-PRF achieved similar performances comparing with SMN.

4.3.4 Model Ablation Analysis

We investigate the effectiveness of different components of DMN-PRF and DMN-

KD by removing them one by one from the original model with UDC and MSDialog

data. We also study the effectiveness of different interaction types for M1/M2/M3.

Table 4.7 shows the results. We summarize our observations as follows: 1) For the

interaction matrices, we find that the performance will drop if we remove any one

of M1/M2 for DMN-PRF or M1/M2/M3 for DMN-KD. This indicates that all of

word level interaction matching, sequence level interaction matching and external QA

correspondence interaction matching are useful for response selection in information-

seeking conversation. 2) For interaction types, we can find that dot product is the

best setting on both UDC and MSDialog except the results of DMN-KD on MSDialog.

The next best one is cosine similarity. Bilinear product is the worst, especially on

MSDialog data. This is because bilinear product will introduce a transformation

matrix A as an additional model parameter, leading to higher model complexity.

Thus the model is more likely to overfit the training data, especially for the relatively

small MSDialog data. 3) If we only leave one channel in the interaction matrices, we

can find that M1 is more powerful than M2 for DMN-PRF. For DMN-KD, M1 is

also the best one, followed by M2. M3 is the last one, but it stills adds additional

matching signals when it is combined with M1 and M2. The matching signals M3

from external collection could be supplementary features to the word embedding

based matching matrix M1 and BiGRU representation based matching matrix M2.
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Table 4.7: Evaluation results of model ablation. “TB4.5” means the setting is the
same with the results in Table 4.5. For DMN-KD, the model is the same with DMN
if we remove M3. Numbers in bold font mean the result is better compared with
other settings.

Data UDC MSDialog
Model Change MAP Recall@5 Recall@1 Recall@2 MAP Recall@5 Recall@1 Recall@2

DMN-PRF

Only M1 0.7599 0.9294 0.6385 0.7761 0.5632 0.8509 0.3654 0.5579
Only M2 0.7253 0.9271 0.5836 0.7440 0.4996 0.8584 0.2595 0.5021
Inter-Dot (TB4.5) 0.7719 0.9343 0.6552 0.7893 0.6792 0.9356 0.5021 0.7122

Inter-Cosine 0.7507 0.9260 0.6248 0.7675 0.6729 0.9356 0.4944 0.7027
Inter-Bilinear 0.7228 0.9199 0.5829 0.7401 0.4923 0.8421 0.2647 0.4744

DMN-KD

Only M1 0.7449 0.9247 0.6167 0.7612 0.5776 0.8673 0.3805 0.5779
Only M2 0.7052 0.9203 0.5538 0.7260 0.5100 0.8613 0.2794 0.5011
Only M3 0.3887 0.6017 0.2015 0.3268 0.3699 0.6650 0.1585 0.2957
M1+M2 (DMN) 0.7363 0.9196 0.6056 0.7509 0.6415 0.9155 0.4521 0.6673
M1+M3 0.7442 0.9251 0.6149 0.7612 0.6134 0.8860 0.4224 0.6266
M2+M3 0.7077 0.9198 0.5586 0.7263 0.5141 0.8659 0.2885 0.5069
Inter-Dot (TB4.5) 0.7655 0.9351 0.6443 0.7841 0.6728 0.9304 0.4908 0.7089
Inter-Cosine 0.7156 0.9121 0.5770 0.7268 0.6916 0.9249 0.5241 0.7249

Inter-Bilinear 0.7061 0.9135 0.5590 0.7225 0.4936 0.8224 0.2679 0.4814

4.3.5 Impact of Conversation Context Length

We further analyze the impact of the conversation context length on the perfor-

mance of our proposed DMN-KD and DMN-PRF models. As presented in Figure

4.4, we find the performance first increases and then decreases, with the increase of

conversation context length. The reason for these trends is that the context length

controls the available previous utterances in the dialog context modeled by DMN-

KD and DMN-PRF. If the context length is too small, there would be not enough

information for the model to learn the matching patterns between the context and

response candidates. However, setting the context length too large will also bring

noise into the model results, since the words in utterances a few turns ago could be

very different due to the topic changes during conversations.

4.3.6 Case Study

We perform a case study in Table 4.8 on the top ranked responses by different

methods including SMN, DMN-KD and DMN-PRF. In this example, both DMN-KD

and DMN-PRF produced correct top ranked responses. We checked the retrieved QA

posts by the correct response candidate and found that “settings, regional, change,

windows, separator, format, excel, panel, application” are the most frequent terms.
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Among them “excel ” is especially useful for promoting the rank of the correct response

candidate, since this term which is included multiple times by the dialog context does

not actually appear in the raw text of the correct response candidate. This gives an

example of the effectiveness of incorporating external knowledge from the retrieved

QA posts into response candidates.

4.4 Summary

In this chapter, we propose a learning framework on top of deep matching net-

works that leverages external knowledge for response ranking in information-seeking

conversation systems. We incorporate external knowledge into deep neural models

with pseudo-relevance feedback and QA correspondence knowledge distillation. Ex-

tensive experiments with information-seeking conversation data sets including both

open benchmarks and commercial data show that our methods outperform various

baselines including the state-of-the-art method on response selection in multi-turn

conversations. We also perform analysis over different response types and model

variations to provide insights on model applications.
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CHAPTER 5

USER INTENT IN INFORMATION-SEEKING

CONVERSATIONS

5.1 Introduction

In this Chapter, we study response retrieval in information-seeking conversations

from a different perspective compared with Chapter 4. Significant progress has been

made on the integration of conversation context by generating reformulated queries

with contexts (Yan et al., 2016a), learning with both word sequence view and utter-

ance sequence view (Zhou et al., 2016), enhancing context-response matching with

sequential interactions between context utterances and response candidates (Wu et al.,

2017), learning with external knowledge (Yang et al., 2018). However, much less at-

tention is paid on the user intent in conversations and how to leverage user intent for

response ranking in information-seeking conversations.

To illustrate user intent in information-seeking conversations, we show an example

dialog from the Microsoft Answers Community1 in Table 5.1. Microsoft Answers

Community is a customer support QA forum where users can ask questions relevant

to Microsoft products. Agents like Microsoft employees or other experienced users

will reply to these questions. There could be multi-turn conversation interactions

between users and agents. We define a taxonomy of user intent following previous

research (Qu et al., 2018, 2019). We can observe that there are diverse user intent

like “Original Question (OQ)”, “Information Request (IR)”, “Potential Answers (PA)”,

“Follow-up Questions (FQ)”, “Further Details (FD)”, etc. in an information-seeking

1https://answers.microsoft.com

78



conversation. Moreover, several transition patterns can happen between different user

intent. For example, given a question from the user, an agent could provide a potential

answer directly or ask for some information as clarification questions before providing

answers. Users will provide further details regarding the information requests from

agents. At the beginning of a conversation, the agent would like to greet customers

or express gratitude to users before they move on to next steps. Near the end of a

conversation, the user may provide a positive or negative feedback towards answers

from agents, or ask a follow-up question to continue the conversation interactions.

Such user intent patterns can be helpful for conversation models to select good

responses due to the following reasons:

(1) The intent sequence in conversation context utterances can provide additional

signals to promote correct responses. Intent sequence patterns can promote response

candidates with correct intent and demote response candidates with wrong intent. It

can help prevent conversation models from producing responses with wrong intent.

For example, in Table 5.1, given the intent sequence [OQ] → [IR/ PA] → [PA/ FQ]

→ [FD], we know that the user is still expecting an answer to solve her question. Al-

though both Response-1 and Response-2 show some lexical and semantic similarities

with context utterances, only Response-1 is with the intent “Potential Answers” (PA).

In this case, the model should have the capability to promote the rank of Response-1

and demote Response-2 with wrong intent “Greetings/ Gratitude” (GG).

(2) Intent information can help the model to derive an importance weighting

scheme over context utterances with attention mechanisms. In the given example

dialog in Table 5.1, the model should learn to assign larger weights to utterances

on question descriptions (OQ and FQ) and further details (FD) in order to address

the information need of the user. In other cases, the model may also assign larger

attention weights on utterances with intent related to questions/ answers instead
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Table 5.1: An example dialog to illustrate user intent transition patterns in
information-seeking conversations from the Microsoft Answers Community. We define
different user intent types following previous research (Qu et al., 2018, 2019). We show
a conversation context with 4 utterances and two response candidates where there is
one correct candidate and one wrong candidate. The user intent of utterances and
response candidates are labeled. “OQ”, “IR”, “PA”, “FQ”, “FD”, “GG” denote “Original
Question”, “Information Request”, “Potential Answer”, “Follow-up Question”, “Further
Details”, “Greetings/ Gratitude” respectively. We also highlight some lexical match
between utterances and response candidates using colorful underlines. This table can
be more readable with color print.

ID Role Utterances Intent

Utterance-1 User Windows downloaded this update “2018-02 Cumu-
lative Update for Windows 10 ......” But during the
restart it says “we couldn’t complete the update,
undoing changes”. So what can I do to stop this?
Thanks

OQ

Utterance-2 Agent Is there any other pending updates? Try Download
troubleshooter for Win 10.

IR/ PA

Utterance-3 User Yes, pending updates the same one. I already used
the built in troubleshooter, it did fix some 3 is-
sues, but doing a restart the problem persists. Can
I stop updates from installing this particular one?
Thanks.

PA/ FQ

Utterance-4 User Not sure if related but I just saw that Malicious
Software Removal of March did not install ......

FD

Response-1
(Correct)

Agent Try run troubleshooter and then restart your PC. If
problem persist, open start and search for Feedback
and open Feedback Hub app and report this issue.

PA

Response-2
(Wrong)

Agent Glad to know that you fixed the issue, and as I
said downloading the “Show or hide updates” trou-
bleshooter and restarting the PC will help you.
Thank you for asking questions and providing feed-
back here!

GG

80



of greetings/ gratitude. Most existing neural conversation models do not explicitly

model user intent to weight context utterances.

More research needs to be done to understand the role of user intent in re-

sponse retrieval and to develop effective models for intent-aware response ranking

in information-seeking conversations, which is exactly the goal of this chapter. There

are some existing related works from the Dialog System Technology Challenge (for-

merly the Dialog State Tracking Challenge, DSTC)2. Many DSTC tasks focus on goal

oriented conversations like restaurant reservation. These tasks are typically tackled

with slot filling (Zhang and Wang, 2016; Hori et al., 2019), which is not applicable

to information-seeking conversations because of the diversity of information needs.

Recently in DSTC7 of 2018,3 an end-to-end response selection challenge has been

introduced, which shared similar motivation with our work. However, the evaluation

treated response selection as a classification task and there was no explicit modeling

of user intent in conversations.

In this chapter, we analyze user intent in information-seeking conversations and

propose neural ranking models with the integration of user intent modeling. Differ-

ent user intent types are defined and characterized following previous research (Qu

et al., 2018, 2019). Then we propose an intent-aware neural ranking model for re-

sponse retrieval, which is built on the top of the recent breakthroughs with natural

language representation learning with the Transformers (Vaswani et al., 2017; De-

vlin et al., 2018). Transformers are model architectures which are based entirely

on multi-head self-attention mechanisms instead of recurrent neural nets for mod-

eling the global dependencies between the input and output, in order to speed up

model training with parallel computing. They have achieved state-of-the-art results

on several tasks like machine translation. We referred to the proposed model as

2https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/

3http://workshop.colips.org/dstc7/
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“IART”, which is “Intent-Aware Ranking with Transformers”. IART incorporates

intent-aware utterance attention to derive the importance weighting scheme of ut-

terances in conversation context towards better conversation history understanding.

Given input conversation context utterances and response candidates, IART firstly

generates representations from two different perspectives: user intent representations

with a trained neural classifier and semantic information encoded with Transformers.

Then self-attention matching and cross-attention matching will be performed over

encoded representations from Transformers to extract important matching features,

which will be weighted by the intent-aware attention mechanism and aggregated into

a matching tensor. Finally a two-layer 3D convolutional neural network will distill

features over the matching tensor to generate the final ranking score.

We conduct extensive experiments with three information-seeking conversation

data sets: MSDialog (Qu et al., 2018) which contains crawled customer service

dialogs on Microsoft products from Microsoft Answers community, a popular open

benchmark data Ubuntu Dialog Corpus (UDC) (Lowe et al., 2015), and another

commercial customer service data from a large eCommerce company (AliMe). We

compare our methods with various neural ranking models and the state-of-the-art

baselines on response selection in multi-turn conversations including Deep Atten-

tion Matching Network (DAM) (Zhou et al., 2018b). Experimental results show our

methods outperform all baselines. We also perform visualization and deep analysis

of learned user intent in information-seeking conversations to provide insights.

To sum up, our contributions can be summarized as follows:

(1) We analyze user intent in information-seeking conversations for intent-aware

response ranking. To the best of our knowledge, our work is the first one to explicitly

define and model user intent for response retrieval in information-seeking conversa-

tions.
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(2) We propose an intent-aware response ranking model with Transformers (Vaswani

et al., 2017): IART. IART derives the importance weighting scheme of utterances in

conversation context with user intent signals for better conversation history modeling.

(3) Experimental results with three different information-seeking conversation

data sets show that our methods outperform various baselines including the state-of-

the-art method. We also perform analysis on learned user intent and ranking examples

to provide insights.

5.2 Intent-aware Response Ranking

5.2.1 Problem Formulation

The research problem of response ranking in information-seeking conversations is

defined as follows. We are given an information-seeking conversation data set D =

{(Ui,Ri,Yi)}Ni=1, where Ui = {u1
i , u

2
i , . . . , u

t−1
i , ut

i} in which ut
i is the utterance in the t-

th turn of the i-th dialog. Ri and Yi are a set of response candidates {r1i , r2i , . . . , rki }Mk=1

and the corresponding labels {y1i , y2i , . . . , yki }, where yki = 1 denotes rki is a true

response for Ui. Otherwise yki = 0. For user intent information, there are sequence

level user intent labels for both dialog context utterances and response candidates

E = {(Iu
i , Ir

i )}Ni=1, where Iu
i and Ir

i are user intent labels for context utterances and

response candidates for the i-th dialog respectively. Our task is to learn a ranking

model f(·) with D and E . For any given Ui, the model should be able to generate

a ranking list for the candidate responses Ri with f(·). Note that in practice, E

can come from predicted results of user intent classifiers to reduce human annotation

costs. In this chapter, E are the predicted results of the user intent classifier from a

previous work (Qu et al., 2019) for MSDialog and Ubuntu Dialog Corpus. For AliMe

data, there is an intention classifier in an eCommerce assistant bot to identify the

intention of each customer question (Li et al., 2017). E is the output of the intention

classifier which is a probabilistic distribution over 40 intention scenarios.
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Table 5.2: A summary of key notations in this chapter. Note that all vectors are
denoted with bold cases.

D The conversation data set used for training/validation/testing
E The user intent labels from prediction results of intent classifiers
ut
i,Ui,U The t-th utterance of the i-th dialog, all utterances of the i-th dialog and the

set of all dialog utterances
rki ,Ri,R The k-th response candidate for the i-th dialog, all response candidates of the

i-th dialog and the set of all candidate responses
yki ,Y The label for the k-th response candidate for the i-th dialog and the set of all

labels
Itu, I

k
r The user intent representation for ut

i and rki
f(·) The ranking model learned with D and E
f(Ui, r

k
i ) The predicted matching score between Ui and rki

N The total number of dialogs in D
M The total number of response candidates for Ui

lr, lu The length of a response candidate and the length of a context utterance
lt The number of dimensions of user intent vectors, which is also the number of

different user intent labels
lc The window size for the utterances in dialog context, which is the maximal

number of utterance turns in context modeled
L The number of stacked layers in the Transformer encoder
d The number of dimensions of word embedding vectors
Ms,Mc Interaction matrices between dialog utterance ut

i and candidate response rki
based on self-attention and cross-attention matching

B The matching tensor which stacks the self-attention matching matrices and
cross-attention matching matrices

5.2.2 Method Overview

In following sections, we describe the proposed neural ranking models with user in-

tent modeling for intent-aware response ranking in information-seeking conversations.

A summary of key notations in this chapter in presented in Table 5.2. IART incor-

porates intent-aware utterance attention to derive the importance weighting scheme

of different context utterances. Given input context utterances and response candi-

dates, we firstly generate representations from two different perspectives: user intent

representations with a trained neural classifier and semantic information encoding

with Transformers. Then self-attention matching and cross-attention matching will

be performed over encoded representations from Transformers to extract important

matching features. These matching features will be weighted by the intent-aware

attention mechanism and aggregated into a matching tensor. Finally a two-layer 3D
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convolutional neural network will distill final representations over the matching tensor

and generate the ranking score for the conversation context/ response candidate pair.

We will present details of different components of IART in following sections.

5.2.3 User Intent Taxonomy

We use the MSDialog dataset4 that consists of technical support dialogs for Mi-

crosoft products developed by Qu et al. (2018). The dataset contains two sets, a

complete set that consists of all the crawled dialogs and a labeled subset that con-

tains dialogs with user intent annotation. The complete set consists of 35, 000 multi-

turn QA dialogs in the technical support domain. Over 2, 000 dialogs with 10, 020

utterances were sampled for user intent annotation on Amazon Mechanical Turk.5

A taxonomy of 12 labels presented in Table 5.3 were developed in Qu et al. (2018)

to characterize the user intent in information-seeking conversations. The user intent

labels include question related labels (e.g. Original Questions, Clarifying Quesiton,

Follow-up Question, etc.), answer related labels (e.g. Potential Answer, Further De-

tails, etc.), feedback related labels (e.g. Positive Feedback, Negative Feedback) and

greeting related labels (e.g. Greetings/ Gratitude), which cover most of user intent

types in information-seeking conversations. Inter-rater agreement score was used to

ensure the annotation quality. Intent annotations with low agreement scores were

filtered. In addition to MSDialog, we also consider another open benchmark data

Ubuntu Dialog Corpus (UDC) (Lowe et al., 2015), which consists of almost one mil-

lion two-person technical support conversations about Ubuntu. User intent annota-

tion is also performed for randomly sampled 4, 063 UDC utterances in the dialogs

adopting the same user intent taxonomy.

4https://ciir.cs.umass.edu/downloads/msdialog/

5https://www.mturk.com/

85



Table 5.3: Descriptions of user intent taxonomy.

Code Label Description

OQ Original Question The first question that initiates a QA dialog
RQ Repeat Question Questions repeating a previous question
CQ Clarifying Question Users or agents ask for clarification
FD Further Details Users or agents provide more details
FQ Follow Up Question Follow-up questions about relevant issues
IR Information Request Agents ask for information from users
PA Potential Answer A potential solution to solve the question
PF Positive Feedback Positive feedback for working solutions
NF Negative Feedback Negative feedback for useless solutions
GG Greetings/Gratitude Greet each other or express gratitude
JK Junk No useful information in the utterance
O Others Utterances that cannot be categorized

5.2.4 Utterance/ Response Input Representations

Given a response candidate rki and an utterance ut
i in the context Ui, the model

firstly looks up a global initial embedding dictionary to represent rki and ut
i as two se-

quences of embedding vectors E(rki ) = [er,1, er,2, · · · , er,lr ] and E(ut
i) = [eu,1, eu,2, · · · , eu,lu ],

where er,i ∈ R
d, eu,i ∈ R

d are the embedding vectors of the i-th word in rki and ut
i

respectively. We then represent the utterance/ response pair from two different per-

spectives to perform intent-aware response ranking: 1) user intent representation

with intent classifiers (Section 5.2.4.1); 2) utterance/ response semantic information

encoding with Transformers (Section 5.2.4.2).

5.2.4.1 User Intent Representation

To represent user intent, we adopt the best setting of the neural classifiers CNN-

Context-Rep proposed by Qu et al. (2019) for user intent classification. Specifically,

given sequences of embedding vectors for context utterances and response candidate

E(ut
i) and E(rki ), convolutional filters with the shape (f, d) are applied to a window of

f words to produce a new feature ci. This operation is applied to every possible win-

dow of words in the utterance ut
i and generates a feature map c = {c1, c2, . . . , cn−f+1}.

Max pooling is applied to select the most salient feature of a window of p features

86





Ikr for context utterances and response candidates, where Itu ∈ R
lt×1, Ikr ∈ R

lt×1.

These intent representation vectors will become the basis of the intent-aware attention

presented in Section 5.2.5. We show the evaluation results of different user intent

classification models on MSDialog from Qu et al. (2018) in Table 5.4. We can find

that CNN-Context-Rep outperforms all baseline methods. The accuracy and F1 are

0.69 and 0.71 respectively. Since we have larger training data with MSDialog, we

firstly train an intent classification model with annotated 10K MSDialog utterances

and predict the user intent for all MSDialog utterances/ response candidates in the

response ranking data. Then we fine-tune the model with the annotated UDC data

to adapt the classifier for UDC. The model after fine-tuning will be used to predict

the user intent of all UDC utterances/ response candidates.

Table 5.4: Evaluation results of different user intent classification models on MSDialog
from Qu et al. (2018). The significance test can only be performed on accuracy. In
a multi-label classification setting, accuracy gives a score for each individual sample,
while other metrics evaluate the performance over all samples. ‡ means statistically
significant difference over the best baseline with p < 10−4 measured by the Student’s
paired t-test.

Method Types Methods Accuracy Precision Recall F1

Feature based
Baselines

Random Forest 0.6268 0.7657 0.5903 0.6667

AdaBoost 0.6399 0.7247 0.6030 0.6583

Neural
Baselines

BiLSTM 0.5515 0.6284 0.5274 0.5735
CNN 0.6364 0.7152 0.6054 0.6558

CNN-MFS 0.6342 0.7308 0.5919 0.6541
Char-CNN 0.5419 0.6350 0.4940 0.5557

Neural
Classifiers

BiLSTM-Context 0.6006 0.6951 0.5640 0.6227
CNN-Feature 0.6509 0.7619 0.6110 0.6781
CNN-Context 0.6555 0.7577 0.6070 0.6740
CNN-Context-Rep 0.6885

‡
0.7883 0.6516 0.7134

5.2.4.2 Utterance/ Response Encoding and Matching with Transformers

Self-attention based models like Transformers (Vaswani et al., 2017) have shown

impressive performances for NLP tasks including machine translation, natural lan-

guage inference and question answering. These models require significantly less time
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to train compared with other neural models like RNN, since the computation of at-

tention mechanism can be parallelized. We also adopt the encoder architecture in

Transformers to encode the semantic dependency information in utterance/ response

pairs. We firstly introduce the Scaled Dot-Product Attention used in Transformers

(Vaswani et al., 2017), which performs transformation from a query and a set of key-

value pairs to an output representation. The output representation is defined as a

weighted sum of the values, where the weight to each value is computed as the inter-

action score between the query and the corresponding key normalized by the softmax

function. Specifically, given the input query embeddings Q, key embeddings K and

value embeddings V , where Q ∈ R
lQ×d, K ∈ R

lK×d, V ∈ R
lV×d, the scaled dot-prod

attention is defined as:

Attention(Q,K,V) = softmax
(QKT

√
d

)
V (5.1)

where lQ, lK, lV are the number of words in each sentence and lK = lV . To avoid

pushing the softmax function into regions with extremely small gradients when d is

large, the dot product between Q and K is scaled by 1√
d
. In practice, we usually

set K = V . The output of the attention function has the same shape with the

query sentence Q. Following the design of Transformers, we also add a feed-forward

network FFN with ReLU activation over the layer normalized (Ba et al., 2016) sum

of the output Attention(Q,K,V) and the query Q, which is defined by:

FFN(x) = max(0, xW1 + b1)W2 + b2 (5.2)

Here x is a tensor in the same shape with the query sentence Q and W1, b1,W2, b2

are model parameters of FFN to be learned. FFN(x) is residually added with x

and is then normalized as the final representations. We refer to this module as

the TransformerEncoder module TransformerEncoder(Q,K,V), which will be used

as a feature extractor for utterances and responses to capture both the dependency
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information within words in the same sequence and interactions between words in

two different sequences.

To encode context utterances and response candidates, we consider two different

types of attention interactions:

• Interaction Matching with Self-attention: for self-attention, we let an utterance

or a response to attend to itself to capture dependency within words in the

same sequence. We achieve this by setting Q,K,V to the same input sentence.

Specifically, the self-attention interaction matching matrix is computed as:

Ml
s = {Sl

ut
i
[p] · Sl

rk
i

[q]T }lu×lr (5.3)

Sl
ut
i
= TransformerEncoder(Ul−1

i,t ,Ul−1
i,t ,Ul−1

i,t ) (5.4)

Sl
rk
i

= TransformerEncoder(Rl−1
i,k ,Rl−1

i,k ,Rl−1
i,k ) (5.5)

where Sl
ut
i

and Sl
rki

is the representation learned in the l-th stacked layer of

Transformers for utterance ut
i and response rki from self-attention. l ranges

from 1 to L. When l = 1, U0
i,t ∈ R

lu×d and R0
i,k ∈ R

lr×d denote the initial word

embedding sequence of utterance ut
i and rki . Each element in the self-attention

interaction matching matrix Ml
s is the dot product of the p-th embedding in

Sl
ut
i
and the q-th embedding in Sl

rki
.

• Interaction Matching with Cross-attention: in order to capture the similar-

ity and alignment information between context utterance/ response candidate

pairs, we also incorporate cross-attention in IART as follows:

Ml
c = {Cl

ut
i
[p] ·Cl

rk
i

[q]T }lu×lr (5.6)

Cl
ut
i
= TransformerEncoder(Ul−1

i,t ,Rl−1
i,k ,Rl−1

i,k ) (5.7)

Cl
rk
i

= TransformerEncoder(Rl−1
i,k ,Ul−1

i,t ,Ul−1
i,t ) (5.8)

where Cl
ut
i

and Cl
rki

is the representation learned in the l-th stacked layer of

Transformers for utterance ut
i and response rki from cross-attention. Each ele-
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ment in the cross-attention interaction matching matrix Ml
c is the dot product

of the p-th embedding in Cl
ut
i

and the q-th embedding in Cl
rki

. Cross-attention

can extract dependency features between utterances and responses since the

value segments with closer embedding representations to the query segment

will be assigned larger attention weights in the scaled dot-product attention of

Transformers.

5.2.5 Intent-aware Attention Mechanism

Given the self-attention/ cross-attention interaction matching matrices for differ-

ent utterances/ response pairs for a dialog, we firstly stack them to aggregate them

as a 4D matching tensor as follows:

B = {Bt,p,q,l}lc×lu×lr×(2L+2) (5.9)

where lc, lu, lr, L are the number of utterance turns in conversation context, number

of words in the context utterance, number of words in the response candidate and

number of stacked layers in TransformerEncoder. t, p, q, l are indexes along these 4

dimensions of the matching tensor.

We propose intent-aware attention mechanism to weight matching representations

of different utterance turns in a conversation context, so that the model can learn

to attend to different utterance turns in context. The motivation is to incorporate

a more flexible way to weight and aggregate matching features of different turns

with intent-aware attention. Specifically, let Itu ∈ R
lt×1, Ikr ∈ R

lt×1 denote the intent

representation vectors defined in Section 5.2.4.1 for context utterances and response

candidates, we design three different types of intent-aware attention as follows:

• Dot Product: we firstly concatenate the two intent representation vectors of the

utterance/ response pair, and then compute the dot product between a model

weight parameter w and the concatenated vector:
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At =
exp(wT [Itu, I

k
r ])∑

t′ exp(w
T [It′u , I

k
r ])

(5.10)

where w ∈ R
2lt×1 is the model parameter to be learned.

• Bilinear: we compute the bilinear interaction between Itu and Ikr and then nor-

malize the result with a softmax function:

At =
exp(Itu

T
wIkr )∑

t′ exp(I
t′
u
T
wIkr )

(5.11)

where w ∈ R
lt×lt is the bilinear interaction matrix to be learned.

• Outer Product: we compute the outer product between Itu and Ikr and then flat

the result matrix to a feature vector. Finally we project this feature vector into

an attention score with a fully connected layer and a softmax function:

At =
exp(wT · flat(Itu ⊗ Ikr

T
))

∑
t′ exp(w

T · flat(It′u ⊗ Ikr
T
))

(5.12)

where flat and ⊗ denote the flatten layer which transforms a matrix with shape

(lt × lt) into a vector with shape (l2t × 1) and out product operation. w ∈ R
l2t×1

is a model parameter to be learned.

Note that the normalization in the softmax function is performed over all utterance

turns within a conversation context. Thus the result At is the attention weight

corresponding to the t-th utterance turn in a conversation context. We also add

masks over the padded utterance turns to avoid introducing noise matching feature

representations. With the computed attention weights over context utterance turns,

we can scale the 4D matching tensor to generate a weighted matching tensor:
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B̂ = {Bt,p,q,l · At}lc×lu×lr×(2L+2) (5.13)

Finally IART adopts a two layer 3D convolution neural network (CNN)7 to extract

important matching features from this weighted matching tensor B̂. 3D CNN requires

5D input and filter tensors, as we can add one more input dimension corresponding

to the batched training examples over the 4D weighted matching tensor. We compute

the final matching score f(Ui, r
k
i ) with a MLP over the flatten output of the 3D CNN.

5.2.6 Loss and Model Training

For model training, we consider the cross-entropy loss between the predicted

matching scores f(Ui, r
k
i ) and the ground truth matching labels as follows:

L(D, E ; Θ) =
P∑

i=1

−yki log(f(Ui, r
k
i ))− (1− yki ) log(1− f(Ui, r

k
i )) (5.14)

Where P is the total number of context utterance/ response pairs. yki is the ground

truth matching label. The parameters of IART are optimized using back-propagation

with Adam algorithm (Kingma and Ba, 2014).

5.3 Experiments

5.3.1 Data Set Description

We evaluated our method with three data sets: Ubuntu Dialog Corpus (UDC),

MSDialog, and an internal commercial data AliMe consisting of a set of customer

service conversations in Chinese from a large eCommerce company. They have also

been used for the response ranking experiments in Chapter 4. The data statistics is

shown in Table 4.4. UDC contains multi-turn technical support conversation data

collected from the chat logs of the Freenode Internet Relay Chat (IRC) network. It

7https://www.tensorflow.org/api_docs/python/tf/nn/conv3d
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consists of 1 million context-response pairs for training, 0.5 million pairs for valida-

tion and 0.5 million pairs for testing. MSDilaog is released by Qu et al. (2018). It

contains QA dialogs on various Microsoft products crawled from the Microsoft An-

swer community. Yang et al. (2018) processed the data and created a version which

is suitable for response ranking experiments. We use the same data version for the

experiments in this Chapter. The ground truth responses returned by the real agents

are the positive response candidates. Negative sampling has been adopted to create

negative response candidates. For the AliMe data, they are the chat logs between

customers and a chatbot from “2017-10-01” to “2017-10-20” in a large eCommerce

company. Detailed descriptions and statistics of these three data sets can be found

in Chapter 4. We skip these detailed descriptions here to avoid duplicated content.

Note that we have included human evaluation in AliMe data.

5.3.2 Experimental Setup

5.3.2.1 Baselines

We consider different types of baselines for comparison, including traditional re-

trieval models, neural ranking models and the state-of-the-art multi-turn conversation

response ranking method as follows8:

• Traditional retrieval models: these methods treat the dialog context as the

query to retrieve response candidates for response selection. We consider BM25

model (Robertson and Walker, 1994) as the retrieval model. We also consider

BM25-PRF (Yang et al., 2018), which matches conversation context with the

expanded responses using BM25 model.

8We did not compare with (Tao et al., 2019) since the code of the proposed MRFN model is not
available until this submission, although the authors presented that they would release the code of
the MRFN model in the paper.
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• Neural ranking models: in recent years there are some neural ranking models

(Guo et al., 2019) proposed for ad-hoc retrieval and question answering. We

consider several representative methods in this category: ARC-II (Hu et al.,

2014), MV-LSTM (Wan et al., 2016), DRMM (Guo et al., 2016) and Duet

(Mitra et al., 2017). MV-LSTM is a representation focused model and ARC-

II, DRMM are interaction focused models. Duet is a hybrid method of both

representation focused and interaction-focused models.

• Deep Matching Network (DMN) with External Knowledge (Yang et al., 2018):

these models incorporate external knowledge into deep neural ranking models

with pseudo-relevance feedback (DMN-PRF) and QA correspondence knowl-

edge distillation (DMN-KD) for response ranking in multi-turn conversations.

DMN is the version of model without the integration of external knowledge

information.

• Deep Attention Matching Network (DAM) (Zhou et al., 2018b): DAM is the

state-of-the-art model for response ranking in multi-turn conversations with

open source code released9 until this submission. DAM also represents and

matches a response with its multi-turn context using dependency information

learned by Transformers. But it does not explicitly model user intent informa-

tion in information-seeking conversations.

5.3.2.2 Evaluation Methodology

For evaluation metrics, we adopted mean average precision (MAP) and Rn@k

which is the recall at top k ranked responses from n available candidates for a given

conversation context following previous related works (Zhou et al., 2018b; Yang et al.,

2018; Wu et al., 2017; Lowe et al., 2015). We reported R10@1, R10@2, and R10@5.

9https://github.com/baidu/Dialogue/tree/master/DAM
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5.3.2.3 Parameter Settings and Implementation Details

All models are implemented with TensorFlow10 and MatchZoo11 toolkit. Hyper-

parameters are tuned with the validation data. For the hyper-parameter settings of

IART, we set the size of the convolution and pooling kernels as (3, 3, 3). The number

of stacked Transformer layers is set as 5 for UDC and 4 for MSDialog. The batch size

is 128 for UDC and 32 for MSDialog. All models are trained on a single Nvidia Titan

X GPU. Learning rate is initialized as 1e-3 with exponential decay during training

process. The decay steps and decay rate are set as 400 and 0.9 respectively. The

maximum utterance length is 50 for UDC and 200 for MSDialog. The maximum

number context utterance turns is set as 9 for UDC and 6 for MSDialog. We padded

zeros if the number of utterance turns in a context is less than the maximum number

of utterance turns. For user intent labels, there are 12 different types for UDC/

MSDialog, and 40 different types for AliMe data. For the word embeddings, we

trained word embeddings with the Word2Vec tool with the CBOW model using our

training data following previous work (Wu et al., 2017; Zhou et al., 2018b). The max

skip length between words and the number of negative examples is set as 10 and 25.

The dimension of word embeddings is 200. Word embeddings will be initialized by

these pre-trained word vectors and updated during the training process.

5.3.3 Evaluation Results

5.3.3.1 Performance Comparison on UDC and MSDialog

We present evaluation results over different methods on UDC and MSDialog in

Table 5.5. We summarize our observations as follows: (1) On MSDialog, all three

variations of IART with dot, outer product and bilinear based intent-aware attention

mechanism show significant improvements over all baseline methods including the

10https://www.tensorflow.org/

11https://github.com/NTMC-Community/MatchZoo
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Table 5.5: Comparison of different models over Ubuntu Dialog Corpus (UDC) and
MSDialog. Numbers in bold font mean the result is better compared with the best
baseline DAM. † and ‡ means statistically significant difference over the best baseline
DAM with p < 0.1 and p < 0.05 measured by the Student’s paired t-test respectively.

Data UDC MSDialog

Methods R10@1 R10@2 R10@5 MAP R10@1 R10@2 R10@5 MAP

BM25 0.5138 0.6439 0.8206 0.6504 0.2626 0.3933 0.6329 0.4387

BM25-PRF 0.5289 0.6554 0.8292 0.6620 0.2652 0.3970 0.6423 0.4419

ARC-II 0.5350 0.6959 0.8978 0.6855 0.3189 0.5413 0.8662 0.5398

MV-LSTM 0.4973 0.6733 0.8936 0.6611 0.2768 0.5000 0.8516 0.5059

DRMM 0.5287 0.6773 0.8776 0.6749 0.3507 0.5854 0.9003 0.5704

Duet 0.4756 0.5592 0.8272 0.5692 0.2934 0.5046 0.8481 0.5158

DMN 0.6056 0.7509 0.9196 0.7363 0.4521 0.6673 0.9155 0.6415

DMN-KD 0.6443 0.7841 0.9351 0.7655 0.4908 0.7089 0.9304 0.6728

DMN-PRF 0.6552 0.7893 0.9343 0.7719 0.5021 0.7122 0.9356 0.6792

DAM 0.7686 0.8739 0.9697 0.8527 0.7012 0.8527 0.9715 0.8150

IART-Dot 0.7703 0.8746 0.9688 0.8535 0.7234
‡

0.8650
‡

0.9772
‡

0.8300
‡

IART-Outerprod 0.7717
‡

0.8766
‡ 0.9691 0.8548

‡
0.7212

‡
0.8664

‡
0.9749 0.8289

‡

IART-Bilinear 0.7713
‡

0.8747 0.9688 0.8542
†

0.7317
‡

0.8752
‡

0.9792
‡

0.8364
‡

state-of-the-art method DAM. On UDC, IART with three different intent-aware at-

tention mechanisms also show improvements under all metrics except R10@5. With

the comparison between the results of DAM and IART, we can find that incorporat-

ing user intent modeling and intent-aware attention weighting scheme to combine the

self-attention and cross-attention interaction matching matrices from Transformers

can help improve the response ranking performance. (2) If we compare three varia-

tions of IART, we can find that the bilinear based intent-aware attention mechanism

works better for MSDialog and outer product based intent-aware attention mecha-

nism works better for UDC. The overall performances of these three model variations

are close to each other. (3) For statistical significance testing results, we find that

most improvements of IART over the best baseline DAM on MSDialog are statisti-

cally significant with p < 0.05 measured by the Student’s paired t-test. For UDC, the

difference between IART and outer product based intent-aware attention mechanism

and DAM is statistically significant. In general, our proposed model IART shows

larger performance improvements on MSDialog. One possible reason is that the in-

tent classifier on MSDialog is more accurate due to the larger annotated training data
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Table 5.6: Comparison of different models over the AliMe data. Numbers in bold
font mean the result is better compared with the best baseline DAM. † and ‡ means
statistically significant difference over the best baseline DAM with p < 0.1 and p <
0.05 measured by the Student’s paired t-test respectively.

Data AliMe
Methods R10@1 R10@2 R10@5 MAP
BM25 0.2371 0.4204 0.6407 0.6392
BM25-PRF 0.2454 0.4209 0.6510 0.6412
ARC-II 0.2236 0.3671 0.6595 0.7306
MV-LSTM 0.2480 0.4105 0.7017 0.7734
DRMM 0.2212 0.3616 0.6575 0.7165
Duet 0.2433 0.4088 0.6870 0.7651
DMN 0.3568 0.5012 0.7629 0.7833
DMN-KD 0.3596 0.5122 0.7631 0.8323
DMN-PRF 0.3601 0.5323 0.7701 0.8435
DAM 0.3819 0.5567 0.7717 0.8452
IART-Dot 0.3821 0.5547 0.7802

†
0.8454

IART-Outerprod 0.3901
‡

0.5649
‡

0.7812
†

0.8493
†

IART-Bilinear 0.3892
†

0.5592
†

0.7801
†

0.8471

of MSDialog for user intent prediction and more formal language used in MSDialog,

as shown in evaluation results by Qu et al. (2019).

5.3.3.2 Performance Comparison on AliMe Data

We further compare our models with the competing methods on AliMe data in

Table 5.6. We have similar findings with the experiments on UDC and MSDialog

datasets. (1) On AliMe dataset, all three variations of IART show comparable or

better results than all baseline methods including the state-of-the-art method DAM.

This further demonstrates the effectiveness of our proposed methods. (2) If we com-

pare three variations of IART, we can find that the outer product based intent-aware

attention mechanism work better than the other two variations. But still, the overall

performances of these three model variations are close to each other.

5.3.4 Impact of Different Context Utterance Number and Utterance Length

We further analyze the impact of different hyper-parameter settings on the per-

formances of our proposed models. Figure 5.2 shows the performances of IART with
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different choices of maximum context utterance number and maximum utterance

length over the validation partition of UDC and MSDialog data. We find that when

the maximum context utterance number is small (e.g. 3 for UDC and 2 for MS-

Dialog), increasing this number will lead to better response ranking performances.

Since larger value means the model can be potentially trained with longer conversa-

tion context. Thus more semantic encoding information and intent-aware attention

weights of conversation context turns can be learned. However, when this value is

larger than some threshold (e.g. 9 for UDC and 6 for MSDialog), continuing increas-

ing this number won’t add benefits to response ranking performances. One possible

reason is that too large maximum context utterance number will be more likely to

introduce noisy irrelevant historical conversation turns into the context. For maxi-

mum utterance length on UDC, the ranking metrics will increase if we increase the

maximum utterance length from 20 to 50. Then the performance will not change if we

continue increasing the maximum utterance length. For MSDialog, the performances

are not as stable as those with UDC. The reason could be that, the validation data

of MSDialog (37K context/ response pairs) is much smaller than that of UDC (500K

context/ response pairs). So we can see some fluctuation of the ranking performance

when we increase the maximum utterance length over MSDialog. For the choice of

this model hyper-parameter, we find that the double of the average length of context

utterances/ response candidates in the training data is usually a good setting.12

5.3.5 Case Study and User Intent Visualization

We perform a case study in Table 5.7 on the top ranked responses by different

methods including the best baseline DAM and our proposed model IART with bilinear

based intent-aware attention mechanism. We show the conversation context utter-

12For example, the average context utterance lengths in the training data of UDC and MSDialog
are 22 and 106. We set the maximum utterance length as 50 for UDC and 200 for MSDialog.
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Table 5.7: A case study and examples of Top-1 ranked responses by different methods.
yki means the label of a response candidate. The predicted user intent and user roles
are highlighted by bold font.

Context [User] Hi, I have the new Outlook which updated a few days
ago. I cannot find how to add senders to my blocked senders
list manually. I’d like to block a domain which is spamming me.
How do I do this on the new Outlook? Thanks [Agent] Hi,
There are different ways to block senders on Outlook depending
on the version of Outlook that you are using. May we know what
version of Outlook are you using? We’ll be looking forward for your
reply. Regards. [User] Hi, I’m using the desktop website beta
version. Thanks. [Agent] Desktop Website beta version? Are
you referring to the Outlook Web App or the Windows mail? We’ll
look forward for your response. [User] I go to Outlook.com
and sign in on there.

Context Intent [OQ] → [IR] → [PA] → [IR] → [FD/ OQ]

Method yki Top-1 Ranked Response

DAM 0 Thanks for the reply. Some email domain needs to be man-
ually added to Outlook. However, it’s good to know that
the issue is resolved from your end. Should you need further
assistance in the future, please do let us know. [PF]

IART 1 In Outlook Web App, moving an email from your Inbox to
the Junk folder by clicking Junk button on the toolbar after
viewing or selecting the said email will automatically redirect
incoming emails from that sender to the Junk folder. And
to manually block an email address, follow these steps: Let
us know how things go. [PA]
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process. The DAM model, without user intent modeling, failed in such cases and

selected a response candidate with “Positive Feedback (PF)” intent. The response

returned by DAM assumed that “the issue is resolved”, but actually the user was

expecting an answer to her unsolved technical problem. On the other hand, both the

returned response by DAM and IART show some lexical and semantic similarities

with the conversation context. It is difficult to decide which one is better without

the modeling of user intent information in the utterances. This gives an example

and interpretation of why user intent modeling can be helpful for response ranking in

conversations.

5.4 Summary

In this chapter, we analyze user intent in information-seeking conversations and

propose an intent-aware neural ranking model with Transformers. Different user in-

tent types are defined and characterized following previous research on user intent in

information-seeking conversations. Then we propose an intent-aware neural ranking

model for response retrieval, which is built on the top of the recent breakthrough of

natural language representation learning with Transformers. Our proposed model

incorporates intent-aware utterance attention to derive the importance weighting

scheme of different utterances in conversation context towards better conversation

history understanding. We conduct extensive experiments with three information-

seeking conversation data sets including both standard benchmarks and commercial

data. Our proposed methods outperform all baseline methods regrading a variety of

metrics. We also perform case studies and analysis of learned user intent with their

impact on response ranking in information-seeking conversations to provide insights

and interpretation of experimental results.
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CHAPTER 6

HYBRID RETRIEVAL-GENERATION NEURAL

CONVERSATION MODELS

6.1 Introduction

Typical conversation systems are modularized systems with a natural language

understanding module, a dialog state tracker, a dialog policy learning module, and a

natural language generation module (Henderson, 2015). In recent years, fully data-

driven end-to-end conversation models have been proposed to reduce hand-crafted

features, rules or templates. These methods could be grouped into two different cat-

egories: generation-based approaches (Ritter et al., 2011; Shang et al., 2015; Sordoni

et al., 2015; Vinyals and Le, 2015; Li et al., 2016b; Bordes et al., 2017) and retrieval-

based approaches (Ji et al., 2014; Yan et al., 2016a,b, 2017; Yang et al., 2018).

Given some conversation context, retrieval-based models try to find the most rel-

evant context-response pairs in a pre-constructed conversational history repository.

Some of these methods achieve this in two steps: 1) retrieve a candidate response

set with basic retrieval models such as BM25 (Robertson and Walker, 1994) or QL

(Ponte and Croft, 1998); and 2) re-rank the candidate response set with neural rank-

ing models to find the best matching response (Yan et al., 2016a,b, 2017; Wu et al.,

2017; Yang et al., 2018). These methods can return natural human utterances in the

conversational history repository, which is controllable and explainable. Retrieved

responses often come with better diversity and richer information compared to gen-

erated responses (Song et al., 2018). However, the performance of retrieval-based

methods is limited by the size of the conversational history repository, especially for
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Table 6.1: A comparison of retrieval-based methods and generation-based methods
for data driven conversation models.

Item Retrieval-based methods Generation-based methods

Main techniques Retrieval models; Neural rank-
ing models

Seq2Seq models

Diversity Usually good if similar con-
texts have diverse responses in
the repository

Easy to generate bland or uni-
versal responses

Response length Can be very long Usually short
Context property Easy for similar context in the

repository; Hard for unseen
context

Easy to generalize to unseen
context

Efficiency Building index takes long time;
Retrieval is fast

Training takes long time; De-
coding is fast

Flexibility Fixed response set once the
repository is constructed

Can generate new responses
not covered in history

Fluency Natural human utterances Sometimes bad or contain
grammar errors

Bottleneck Size and coverage of the repos-
itory

Specific responses; Long text;
Sparse data

Informativeness Easy to retrieve informative
content

Hard to integrate external fac-
tual knowledge

Controllability Easy to control and explain Difficult to control the actual
generated content

long tail contexts that are not covered in the history. Retrieval-based models lack the

flexibility of generation-based models, since the set of responses of a retrieval system

is fixed once the historical context/response repository is constructed.

On the other hand, the generation-based methods could generate highly coherent

new responses given the conversation context. Much previous research along this line

was based on the Seq2Seq model (Shang et al., 2015; Sordoni et al., 2015; Vinyals and

Le, 2015), where there is an encoder to learn the representation of conversation context

as a contextual vector, and a decoder to generate a response sequence conditioning

on the contextual vector as well as the generated part of the sequence. The encoder/

decoder could be implemented by an RNN with long short term memory (LSTM)

(Hochreiter and Schmidhuber, 1997) or gated recurrent units (GRU) (Chung et al.,
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2014) hidden units. Although generation-based models can generate new responses

for a conversation context, a common problem with generation-based methods is that

they are likely to generate very general or universal responses with insufficient infor-

mation such as “I don’t know”, “I have no idea”, “Me too”, “Yes please”. The generated

responses may also contain grammar errors. Ghazvininejad et al. (2018) proposed a

knowledge-grounded neural conversation model in order to infuse the generated re-

sponses with more factual information relevant to the conversation context without

slot filling. Although they show that the generated responses from the knowledge-

grounded neural conversation model are more informative compared with responses

from the vanilla Seq2Seq model, their model is still generation-based, and it is not

clear how well this model will perform compared to retrieval-based methods. A com-

parison of retrieval-based methods and generation-based methods for end-to-end data

driven conversation models is shown in Table 6.1. Clearly these two types of methods

have their own advantages and disadvantages, it is thus necessary to integrate the

merits of these two methods.

To this end, in this chapter we study the integration of retrieval-based and generation-

based conversation models in an unified framework. The closest prior research to our

work is the study on the ensemble of retrieval-based and generation-based conversa-

tion models by Song et al. (2018). Their proposed system uses a multi-seq2seq model

to generate a response and then adopts a Gradient Boosting Decision Tree (GBDT)

ranker to re-rank the generated responses and retrieved responses. However, their

method still required heavy feature engineering to encode the context/ response can-

didate pairs in order to train the GBDT ranker. They constructed the training data

by negative sampling, which may lead to sub-optimal performance, since the sampled

negative response candidates could be easily discriminated from the positive response

candidates by simple term-matching-based features.
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We address these issues by proposing a hybrid neural conversational model with a

generation module, a retrieval module and a hybrid ranking module. The generation

module generates a response candidate given a conversation context, using a Seq2Seq

model consisting of a conversation context encoder, a facts encoder and a response

decoder. The retrieval module adopts a “context-context match” approach to recall

a set of response candidates from the historical context/ response repository. The

hybrid ranking module is built on top of neural ranking models to select the best

response candidate among retrieved/ generated response candidates. The integra-

tion of neural ranking models, which can learn representations and matching features

for conversation context/ response candidate pairs, enables us to minimize feature

engineering costs during model development. To construct the training data of the

neural ranker for response selection, we propose a distant supervision approach to

automatically infer labels for retrieved/ generated response candidates. We evaluate

our proposed approach with experiments on Twitter and Foursquare (Ghazvininejad

et al., 2018) data. Experimental results show that the proposed model can outperform

both retrieval-based models and generation-based models (including a recently pro-

posed knowledge-grounded neural conversation model (Ghazvininejad et al., 2018))

on both automatic evaluation and human evaluation.1

In all, our contributions can be summarized as follows:

• We perform a comparative study of retrieval-based models and generation-based

models for the conversational response generation task.

• We propose a hybrid neural conversational model to combine response gen-

eration and response retrieval with a neural ranking model to reduce feature

engineering costs.

1Code will be released on Github.
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• For model training, we propose a distant supervision approach to automatically

infer labels for retrieved/ generated response candidates. We evaluate the ef-

fectiveness of different kinds of distant supervision signals and settings for the

hybrid ranking of response candidates.

• We run extensive experimental evaluation on retrieval-based, generation-based

and hybrid models using the Twitter and Foursquare data. Experimental re-

sults show that the proposed hybrid neural conversation model can outperform

both retrieval-based and generation-based models on both automatic evaluation

and human evaluation. We also perform qualitative analysis on top responses

selected by the neural re-ranker and response generation examples to provide

insights.

Roadmap. The rest of this chapter is organized as follows. Section 6.2 will

present the details of the generation module, retrieval module and hybrid ranking

module in the proposed model. Section 6.3 contains the experiments and results

analysis. We will conclude in Section 6.4.

6.2 Hybrid Neural Conversation Models

6.2.1 Problem Formulation

We define the task of conversational response generation following the previous

literature (Ghazvininejad et al., 2018). We are given a conversation context ui ∈ U ,

where ui is the i-th context sequence which contains one or multiple utterances.

There are also F factual snippets of text Fi = {f 1
i , f

2
i , ..., f

F
i } that are relevant to

the i-th conversation context ui. Based on the conversation context ui and the set of

external facts Fi, the system outputs an appropriate response which provides useful

information to users. Figure 1 shows an example of the conversational response

generation task. Given an conversation context “Going to Din Tai Fung Dumpling
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Table 6.2: A summary of key notations in this chapter. Note that all vectors or
matrices are denoted with bold cases.

ui,U The context of the i-th conversation and the set of all conversation contexts
fk
i ,Fi,F The k-th factual text relevant to context ui, the factual texts relevant to context ui

and the set of all factual texts
rki ,Ri, R the k-th retrieved response candidate to context ui, the set of all retrieved response

candidates for context ui and the set of all retrieved response candidates
gki ,Gi, G the k-th generated response candidate to context ui, the set of all generated response

candidates for context ui and the set of all generated response candidates
yki ,Yi the k-th response candidate and the union set of all the candidates for the i-th context,

i.e., yki ∈ Y,Yi = Ri ∪ Gi

y∗i ,Y∗ The ground truth response candidate for the i-th context and the set of all ground
truth response candidates

f(·) The neural ranking model learned in the hybrid ranking module
f(ui, y

k
i ) The predicted matching score between ui and yki

the hybrid neural conversation model. In general, there are three modules in our

proposed model:

(1) Generation Module: given the conversation context ui and the relevant facts

Fi, this module is to generate a set of response candidates Gi using a Seq2Seq model

which consists of a conversation context encoder, a facts encoder and a response

decoder.

(2) Retrieval Module: this module adopts a “context-context match” approach

to retrieve a few response candidates R. The “context-context matching” approach

matches the conversation context ui with all historical conversation context. It then

returns the corresponding responses of the top ranked historical conversation context

as a set of the retrieved response candidates Ri.

(3) Hybrid Ranking Module: given the generated and retrieved response candi-

dates, i.e., Yi = Gi ∪ Ri, this module is used to re-rank all the response candidates

with a hybrid neural ranker trained with labels from distant supervision to find the

best response as the final system output.

We will present the details of generating the responses for the i-th context ui by

these modules from Section 6.2.3 to Section 6.2.5. A summary of key notations in
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this work is presented in Table 4.2. We use a bold letter for a vector or a matrix, and

an unbold letter for a word sequence or a set.

6.2.3 Generation Module

We map a sequence of words to a sequence of embeddings by looking up the indices

in an embedding matrix, e.g., u = E(ui) = [u1,u2, · · · ,uLu
] where Lu is the length

of a word sequence ui.

6.2.3.1 Context Encoder

Inspired by previous works on response generation with Seq2Seq models (Vinyals

and Le, 2015; Shang et al., 2015; Ghazvininejad et al., 2018), we adopt a Seq2Seq

architecture with attention mechanism (Bahdanau et al., 2014; Luong et al., 2015)

in the hybrid neural conversation model. In the Seq2Seq architecture, a context

encoder is used to transform a sequence of context vectors u = [u1,u2, · · · ,uLu
] into

contextual hidden vectors h = [h1,h2, · · · ,hLu
] in Eq. (6.1).

ht = RNN(ut,ht−1), (6.1)

where ht ∈ R
H is the hidden state at time step t. In our implementation, we stack

two layers of LSTM networks as the recurrent neural network. With the context

encoder, we can summarize the conversation context by the last hidden vector hLu

and maintain the detailed information at each time step by each hidden state ht.

6.2.3.2 Facts Encoder

For the facts encoder, we use the same architecture of the stacked LSTM as the

context encoder in Section 6.2.3.1 to generate the hidden representations of relevant

facts. Note that for each conversation context ui, there are F sequences of facts

F = {f 1, f 2, · · · , fF}. We encode these facts into F sequences of hidden vectors
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{f1, f2, · · · , fF} by the stacked LSTM, where f j = [f j1 , f
j
2 , · · · , f jL] and L = |f j|. We

summarize a fact into a fixed-size vector by averaging its hidden vectors, i.e., f̄ j =

mean(f j).

6.2.3.3 Response Decoder

The response decoder is trained to predict the next word gt given the represen-

tations of conversation context hLu
, facts f̄ , and all the previously generated words

g1:t−1 as follows:

p(g|ui,F) =

Lg∏

t=1

p(gt|g1:t−1, ui,F) (6.2)

E = [h1, · · · ,hLu
, f̄1, · · · , f̄F ] ∈ R

H×(Lu+F ) (6.3)

at = softmax
(
ET st−1

)
(6.4)

ct = Eat (6.5)

vt = tanh ([st−1, ct]) (6.6)

st = RNN(vt, st−1) (6.7)

s0 = ϕ

(
tanh

(
hLu

+
1

F

F∑

j=1

f̄ j

))
(6.8)

For the decoder, we stack two layers of LSTM networks with the attention mech-

anism proposed in (Luong et al., 2015). More specifically, we concatenate the hidden

vectors of a context ui and all factual vectors into a matrix E in Eq. (6.3). We then

compute the attention weight at by the dot product between the decoder’s previous

hidden state st−1 and all vectors in E, followed by a softmax function in Eq. (6.4).

The attention context summarizes the conversation context ui and facts F by the

weighted sum of E in Eq. (6.5). For the input to the decoder’s RNN network, we

concatenate the attention context ct and the previous hidden state st−1 that summa-

rizes the partial generated response g1:t−1, and apply a tanh function afterwards in
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Eq. (6.6). The initial hidden vector of the decoder is initialized by the last hidden

state of the context encoder and the average factual vectors in Eq. (6.8). ϕ(·) is a

linear function that maps a vector from the encoder’s hidden space to the decoder’s

hidden space. The conditional probability at the t-th time step can be computed by a

linear function φ(·), which is a fully connected layer, that maps the decoder’s hidden

state st−1 to a distributional vector over the vocabulary, and a softmax function in

Eq. (6.9).

p(gt|g1:t−1, ui,F) = softmax(φ([st−1, ct])) (6.9)

where st is the hidden state of the decoder RNN at time step t.

6.2.3.4 Train and Decode

Given the ground-truth response y∗ to a conversation context ui with facts F , the

training objective is to minimize the negative log-likelihood over all the training data

Lg in Eq. (6.10).

Lg = − 1

|U|
∑

y∗,ui,F
log p(y∗|ui,F) (6.10)

During prediction, we use beam search to generate response candidates and perform

length normalization by dividing the output log-likelihood score with the length of

generated sequences to add penalty on short generated sequences.

6.2.4 Retrieval Module

The retrieval module retrieves a set of response candidates from the historical con-

versation context-response repository. It adopts a “context-context match” approach

to retrieve a few response candidates. We first index all context/ response pairs in
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the training data with Lucene 2. Then for each conversation context ui, we match

it with the “conversation context” text field in the index with BM25. We return the

“response” text field of top K ranked context/ response pairs as the retrieved response

candidates3. We would like to keep the retrieval module simple and efficient. The

re-ranking process of response candidates will be performed in the hybrid ranking

module as presented in Section 6.2.5.

6.2.5 Hybrid Ranking Module

6.2.5.1 Interaction Matching Matrix

We combine a set of generated response candidates Gi and a set of retrieved

response candidates Ri as the set of all response candidates Yi = Gi∪Ri. The hybrid

ranking module re-ranks all candidates in Yi to find the best one as the final system

output. In our implementation, Gi contains one generated response and Ri contains

K retrieved responses. We adopt a neural ranking model following the previous work

(Pang et al., 2016; Yang et al., 2018). Specifically, for each conversation context

ui and response candidate yki ∈ Yi, we first build an interaction matching matrix.

Given yki and ui, the model looks up a global embedding dictionary to represent

yki and ui as two sequences of embedding vectors E(yki ) = [yk
i,1,y

k
i,2, · · · ,yk

i,Ly
] and

E(ui) = [ui,1,ui,2, · · · ,ui,Lu
], where yk

i,j ∈ R
d, ui,j ∈ R

d are the embedding vectors of

the j-th word in the word sequences yki and ui respectively. The model then builds

an interaction matrix M, which computes the pairwise similarity between words in

yki and ui via the dot product similarity between the embedding representations. The

interaction matching matrix is used as the input of a convolutional neural network

(CNN) to learn important matching features, which are aggregated by the final multi-

layer perceptron (MLP) to generate a matching score.

2http://lucene.apache.org/

3We set K = 9 in our experiments.
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6.2.5.2 CNN Layers and MLP

The interaction matrices are fed into a CNN to learn high level matching patterns

as features. CNN alternates convolution and max-pooling operations over these in-

puts. Let z(l,k) denote the output feature map of the l-th layer and k-th kernel, the

model performs convolution operations and max-pooling operations respectively in

Eq. (6.11) and (6.12).

Convolution: let r
(l,k)
w × r

(l,k)
h denote the shape of the k-th convolution kernel in

the l-th layer, the convolution operation can be defined as:

z
(l+1,k)
i,j = σ




Kl−1∑

k′=0

r(l,k)
w −1∑

s=0

r
(l,k)
h

−1∑

t=0

w
(l+1,k)
s,t · z(l,k

′)
i+s,j+t + b(l+1,k)




∀l = 0, 2, 4, 6, · · · ,

(6.11)

where σ is the activation function ReLU, and w
(l+1,k)
s,t and b(l+1,k) are the param-

eters of the k-th kernel on the (l + 1)-th layer to be learned. Kl is the number of

kernels on the l-th layer.

Max Pooling: let p
(l,k)
w × p

(l,k)
h denote the shape of the k-th pooling kernel in the

l-th layer, the max pooling operation can be defined as:

z
(l+1,k)
i,j = max

0≤s<p
l+1,k
w

max
0≤t<p

l+1,k
h

z
(l,k)
i+s,j+t ∀l = 1, 3, 5, 7, · · · , (6.12)

Finally we feed the output feature representation vectors learned by CNN into a

multi-layer perceptron (MLP) to calculate the final matching score f(ui, y
k
i ).

6.2.5.3 Distant Supervision for Model Training

For model training, we consider a pairwise ranking learning setting. The training

data consists of triples (ui, y
k+
i , yk−i ), where yk+i and yk−i denote the positive and the

negative response candidate for dialog context ui. A challenging problem here is that

there is no ground truth ranking for all the candidate responses in Yi given a con-

versation context ui. The costs for annotating all context/ response candidates pairs
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for model training would be very high. Thus, we generate training data to train the

hybrid ranking module with distant supervision inspired by previous work on relation

extraction (Mintz et al., 2009). Specifically we construct Yi by mixing K retrieved

response candidates {r1i , r2i , ..., rKi } and one generated response candidate {g1i }. We

then score these K + 1 response candidates with metrics like BLEU/ ROUGE-L by

comparing them with the ground truth responses in the training data. Finally we

treat the top k′ response candidates ranked by BLEU/ ROUGE-L as positive candi-

dates and other responses as negative candidates. In this way, the training labels of

response candidates can be inferred from distant supervision from the ground truth

responses in the training data 4. We perform experiments to evaluate the effectiveness

of different kinds of distant supervision signals. In practice, there could be multiple

appropriate and diverse responses for a given conversation context. Ideally, we need

multiple reference responses for each conversation context, each for a different and

relevant response. We leave generating multiple references for a conversation context

for distant supervision to the future work. We have to point out that it is difficult to

collect the data where each context is paired with comprehensive reference responses.

Our proposed method can also be easily adapted to the scenario where we have mul-

tiple reference responses for a conversation context. Given inferred training labels,

we can compute the pairwise ranking-based hinge loss, which is defined as:

Lh =
I∑

i=1

max(0, ǫ− f(ui, y
k+
i ) + f(ui, y

k−
i )) + λ||Θ||22 (6.13)

where I is the total number of triples in the training data. λ||Θ||22 is the regularization

term where λ denotes the regularization coefficient. ǫ denotes the margin in the hinge

loss.

4Note that we do not have to do such inference during model testing, since we just need to use
the trained ranking model to score response candidates instead of computing training loss during
model testing.
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Table 6.3: Statistics of experimental data used in this paper.

Items Train Valid Test

# Context-response pairs 1,059,370 2,067 2,066
# Facts 43,111,643 79,950 79,915
Avg # facts per context 40.70 38.68 38.68
Avg # words per facts 17.58 17.42 17.47
Avg # words per context 16.66 17.85 17.66
Avg # words per response 11.65 15.58 15.89

6.3 Experiments

6.3.1 Data Set Description

We used the same grounded Twitter conversation data set from the study by

Ghazvininejad et al. (2018). The data contains 1 million two-turn Twitter conversa-

tions. Foursquare tips5 are used as the fact data, which is relevant to the conversation

context in the Twitter data. The Twitter conversations contain entities that tie to

Foursquare. Then the conversation data is associated with the fact data by identi-

fying Twitter conversation pairs in which the first turn contained either a handle of

the entity name or a hashtag that matched a handle appears in the Foursquare tip

data. The validation and test sets (around 4K conversations) are created to contain

responses that are informative and useful, in order to evaluate conversation systems

on their ability to produce contentful responses. The statistics of data are shown in

Table 6.3.

6.3.2 Experimental Setup

6.3.2.1 Competing Methods

We consider different types of methods for comparison including retrieval-based,

generation-based and hybrid retrieval-generation methods as follows6:

5https://foursquare.com/

6We did not compare with (Song et al., 2018) since the code of both the state-of-the-practice IR
system (Yan et al., 2016b) and the multi-seq2seq model, which are the two main components of the
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• Seq2Seq: this is the standard Seq2Seq model with a conversation context en-

coder and a response decoder, which is the method proposed in (Vinyals and

Le, 2015).

• Seq2Seq-Facts: this is the Seq2Seq model with an additional facts encoder,

which is the generation module in the proposed hybrid neural conversational

model.

• KNCM-MTask-R: KNCM-MTask-R is the best setting of the knowledge-grounded

neural conversation model proposed in the research by Ghazvininejad et al.

(2018) with multi-task learning. This system is trained with 23 million general

Twitter conversation data to learn the conversation structure or backbone and

1 million grounded conversation data with associated facts from Foursquare

tips. Since we used the same 1 million grounded Twitter conversation data set

from this work, our experimental results are directly comparable with response

generation results reported by Ghazvininejad et al. (2018).

• Retrieval: this method uses BM25 model (Robertson and Walker, 1994) to

match the conversation context with conversation context/ response pairs in

the historical conversation repository to find the best pair, which is the retrieval

module in the proposed hybrid neural conversational model.

• HybridNCM: this is the method proposed in this paper. It contains two differ-

ent variations: 1) HybridNCM-RS is a hybrid method by mixing generated

response candidates from Seq2Seq and retrieved response candidates from the

retrieval module in HybridNCM; 2) HybridNCM-RSF is a hybrid method

by mixing generated response candidates from Seq2Seq-Facts and retrieved re-

sponse candidates from the retrieval module in HybridNCM.

proposed ensemble model in (Song et al., 2018), is not available. The experimental data used in
(Song et al., 2018) is also not available.
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Table 6.4: The hyper-parameter settings in the generation-based baselines and the
generation module in the proposed hybrid neural conversation model.

Models Seq2Seq Seq2Seq-Facts

Embedding size 512 256
# LSTM layers in encoder 2 2
# LSTM layers in decoder 2 2
LSTM hidden state size 512 256
Learning rate 0.0001 0.001
Learning rate decay 0.5 0.5
# Steps between validation 10000 5000
Patience of early stopping 10 10
Dropout 0.3 0.3

6.3.2.2 Evaluation Methodology

Following previous related work (Sordoni et al., 2015; Li et al., 2016a; Ghazvinine-

jad et al., 2018), we use BLEU and ROUGE-L for the automatic evaluation of the

generated responses. The corpus-level BLEU is known to better correlate with human

judgments including conversation response generation (Galley et al., 2015) comparing

with sentence-level BLEU. We also report lexical diversity as an automatic measure

of informativeness and diversity. The lexical diversity metrics include Distinct-1 and

Distinct-2, which are respectively the number of distinct unigrams and bigrams di-

vided by the total number of generated words in the responses. In additional to

automatic evaluation, we also perform human evaluation of the generated responses

of different systems on the appropriateness and informativeness following previous

works (Ghazvininejad et al., 2018).

6.3.2.3 Parameter Settings

All models are implemented with PyTorch7 and MatchZoo8 toolkit. Hyper-parameters

are tuned with the validation data. The hyper-parameter settings in the generation-

7https://pytorch.org/

8https://github.com/NTMC-Community/MatchZoo
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based baselines and the generation module in the proposed hybrid neural conversation

model is shown in Table 6.4. For the hyper-parameter settings in the hybrid ranking

module, we set the window size of the convolution and pooling kernels as (6, 6). The

number of convolution kernels is 64. The dropout rate is set as 0.5. The margin in

the pairwise-ranking hinge loss is 1.0. All models are trained on a single Nvidia Titan

X GPU by stochastic gradient descent with Adam (Kingma and Ba, 2014) algorithm.

The initial learning rate is 0.0001. The parameters of Adam, β1 and β2 are 0.9 and

0.999 respectively. The batch size is 500. The maximum conversation context/ re-

sponse length is 30. Word embeddings in the neural ranking model will be initialized

by the pre-trained GloVe 9 word vectors and updated during the training process.

6.3.3 Evaluation Results

6.3.3.1 Automatic Evaluation

We present evaluation results over different methods on Twitter/ Foursquare data

in Table 6.5. We summarize our observations as follows: (1) If we compare retrieval-

based methods and HybridNCM with pure generation based methods such as Seq2Seq,

Seq2Seq-Facts and KNCM-MTask-R, we find that retrieval-based methods and Hy-

bridNCM with a retrieval module achieve better performance in terms of all metrics.

This verifies the competitive performance of retrieval-based methods for conversa-

tion response generation reported in previous related works (Song et al., 2018). (2)

Both HybridNCM-RS and HybridHCM-RSF outperforms all the baselines including

KNCM-MTask-R with multi-task learning proposed recently by by Ghazvininejad et

al. (Ghazvininejad et al., 2018) under BLEU and ROUGE-L. The results demon-

strate that combining both retrieved response candidates and generated response

candidates could help produce better responses in conversation systems. For the

two variations of HybridNCM, HybridNCM-RSF achieves better BLEU and worse

9https://nlp.stanford.edu/projects/glove/
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Table 6.5: Comparison of different models over the Twitter/ Foursquare data. Num-
bers in bold font mean the result is the best under the metric corresponding to the
column. ‡ means that the improvement from the model on that metric is statisti-
cally significant over all baseline methods with p < 0.05 measured by the Student’s
paired t-test. Note that we can only do significance test for ROUGE-L since the other
metrics are corpus-level metrics.

Method BLEU ROUGE-L Distinct-1 Distinct-2

Seq2Seq 0.5032 8.4432 2.36% 11.18%
Seq2Seq-Facts 0.5904 8.8291 1.91% 7.85%
KNCM-MTask-R 1.0800 \ 7.08% 21.90%
Retrieval 1.2491 8.6302 14.68% 58.71%

HybridNCM-RS 1.3450 10.4078‡ 11.30% 47.35%
HybridNCM-RSF 1.3695 10.3445‡ 11.10% 46.01%

ROUGE-L. Overall the performances of these two variations of HybridNCM are sim-

ilar to each other. One possible reason is that, the main gain over baselines comes

from the retrieval module and the re-ranking process in hybrid ranking module. So

the differences in the generation module do not change the results too much. (3)

For lexical diversity metrics like 1-gram/ 2-gram diversity, generation-based methods

are far behind retrieval-based methods and HybridNCM, even for KNCM-MTask-R

with external grounded knowledge and multi-task learning. This result shows that

retrieved response candidates have much better diversity comparing with generated

response candidates by Seq2Seq models. Researchers have studied Maximum Mutual

Information (MMI) object functions (Li et al., 2015) in neural models in order to gen-

erate more diverse responses. It would be interesting to compare MMI models with

IR models for conversation response generation. We leave this study to our future

work.

6.3.3.2 Human Evaluation

Automatic evaluation of response generation is still a challenging problem. To

complement the automatic evaluation results, we also perform human evaluation to

compare the performance of different methods following previous related works (Shang
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Table 6.6: Comparison of different models with human evaluation on appropriateness.
‡ means that the improvement from the model on that metric is statistically significant
over all baseline methods with p < 0.05 measured by the Student’s paired t-test. The
agreement score is evaluated by Fleiss’ kappa (Fleiss et al., 1971) which is a statistical
measure of inter-rater consistency. Agreement scores are comparable to previous
results (0.2-0.5) as reported in (Shang et al., 2015; Song et al., 2018). Higher scores
indicate higher agreement degree.

Comparison Appropriateness
Method Mean Bad (0) Neutral (1) Good (2) Agreement

Seq2Seq 0.4733 61.67% 29.33% 9.00% 0.2852
Seq2Seq-Facts 0.4758 62.50% 27.42% 10.08% 0.3057
Retrieval 0.9425 34.42% 36.92% 28.67% 0.2664

HybridNCM-RS 1.1175‡ 27.83% 32.58% 39.58% 0.3010
HybridNCM-RSF 1.0358 31.67% 33.08% 35.25% 0.2909

Table 6.7: Comparison of different models with human evaluation on informativeness.
‡ means that the improvement from the model on that metric is statistically significant
over all baseline methods with p < 0.05 measured by the Student’s paired t-test. The
agreement score is evaluated by Fleiss’ kappa (Fleiss et al., 1971) which is a statistical
measure of inter-rater consistency. Agreement scores are comparable to previous
results (0.2-0.5) as reported in (Shang et al., 2015; Song et al., 2018). Higher scores
indicate higher agreement degree.

Comparison Informativeness
Method Mean Bad (0) Neutral (1) Good (2) Agreement

Seq2Seq 0.2417 77.58% 20.67% 1.75% 0.4731
Seq2Seq-Facts 0.3142 70.75% 27.08% 2.17% 0.4946
Retrieval 0.8008 35.50% 48.92% 15.58% 0.3196

HybridNCM-RS 1.0650‡ 18.42% 56.67% 24.92% 0.1911
HybridNCM-RSF 1.0292 20.42% 56.25% 23.33% 0.2248
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Table 6.8: Side-by-side human evaluation results. Win/Tie/Loss are the percentages
of conversation contexts a method improves, does not change, or hurts, compared with
the method after “v.s.” on human evaluation scores. HNCM denotes HybridNCM.
Seq2Seq-F denotes Seq2Seq-Facts.

Type Appropriateness Informativeness
Comparision Win/Tie/Loss Win/Tie/Loss

HNCM-RS v.s. Seq2Seq 0.71/0.15/0.14 0.84/0.10/0.06
HNCM-RSF v.s. Seq2Seq 0.68/0.16/0.16 0.82/0.11/0.07
HNCM-RS v.s. Seq2Seq-F 0.70/0.15/0.15 0.80/0.12/0.08
HNCM-RSF v.s. Seq2Seq-F 0.65/0.19/0.17 0.77/0.15/0.09
HNCM-RS v.s. Retrieval 0.43/0.31/0.26 0.50/0.31/0.18
HNCM-RSF v.s. Retrieval 0.41/0.30/0.29 0.50/0.28/0.22

et al., 2015; Ghazvininejad et al., 2018; Song et al., 2018). We ask three educated

annotators to do the human evaluation. We randomly sample 400 conversation con-

texts from the test data, and instruct the annotators to rate the output responses of

different systems.10 We hide the system ids and randomly permute the output re-

sponses to rule out human bias. In the annotation guidelines, we ask the annotators

to evaluate the quality of output responses by different systems from the following 2

dimensions:

• Appropriateness : evaluate whether the output response is appropriate and rel-

evant to the given conversation context.

• Informativeness: evaluate whether the output response can provide useful and

factual information for the users.

Three different labels “0” (bad), “+1” (neural), “+2” (good) are used to evaluate

the quality of system output responses. Table 6.6 and Table 6.7 show the compari-

10We mainly performed human evaluation on our methods and three baselines Seq2Seq, Seq2Seq-
Facts and Retrieval. We didn’t include KNCM-MTask-R into human evaluation since there is no
open source code or official implementation from (Ghazvininejad et al., 2018). The results of KNCM-
MTask-R in Table 6.5 are cited numbers from (Ghazvininejad et al., 2018) since we used the same
experimental data sets.
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son of different models with human evaluation. The table contains the mean score,

ratio of three different categories of labels and the agreement scores among three

annotators. The agreement score is evaluated by Fleiss’ kappa (Fleiss et al., 1971)

which is a statistical measure of inter-rater consistency. Most agreement scores are in

the range from 0.2 to 0.5, which can be interpreted as “fair agreement” or “moderate

agreement” 11. The annotators have relative higher agreement scores for the infor-

mativeness of generation-based methods like Seq2Seq and Seq2Seq-Facts, since these

methods are likely to generate short responses or even responses containing fluency

and grammatical problems.

We summarize our observations on the human evaluation results in Table 6.6

and Table 6.7 as follows: (1) For the mean scores, we can see both HybridNCM-

RS and HybridNCM-RSF achieve higher average rating scores compared with all

baselines, in terms of both appropriateness and informativeness. These results from

human evaluation verify that hybrid models could help improve the response genera-

tion performances of conversation systems. For baselines, the retrieval-based baseline

is stronger than generation-based baselines. For HybridNCM-RS and HybridNCM-

RSF, HybridNCM-RS achieves relatively higher average human rating scores with

a small gap. (2) For the ratios of different categories of labels, we can see more

than 72% of output responses by HybridNCM-RS (68% for HybridNCM-RSF) are

labeled as “good (+2)” or “neural (+1)” for appropriateness, which means that most

output responses of hybrid models are semantically relevant to the conversation con-

texts. Generation-based methods like Seq2Seq and Seq2Seq-Facts perform worse than

both the retrieval-based method and hybrid models. The retrieval-based method, al-

though quite simple, achieves much higher ratios for the categories “good (+2)” and

“neural (+1)” compared with generation-based methods. For informativeness, the

11https://en.wikipedia.org/wiki/Fleiss%27_kappa (as of April 1st, 2019).
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Table 6.9: The number and percentage of top responses selected by the hybrid ranking
module from retrieved/ generated response candidates. #PickedGenRes is the num-
ber of selected responses from generated response candidates. #PickedRetRes is the
number of selected responses from retrieved response candidates. #PickedTop1BM25
is the number of selected responses which is also ranked as top 1 responses by BM25.

Item HybridNCM-RS HybridNCM-RSF

#TestQNum 2066 100.00% 2066 100.00%
#PickedGenRes 179 8.66% 275 13.31%
#PickedRetRes 1887 91.34% 1791 86.69%
#PickedTop1BM25 279 13.50% 253 12.25%

Table 6.10: The response generation performance when we vary the ratios of positive
samples in distant supervision.

Supervision BLEU-1 BLEU-2 ROUGE-L

Model # Positive BLEU ROUGE-L BLEU ROUGE-L BLEU ROUGE-L

HybridNCM-RS

k’=1 0.9022 8.9596 0.7547 8.8351 1.0964 8.9234

k’=2 1.0649 9.7241 1.1099 9.9168 1.1019 9.6216

k’=3 1.3450 10.4078 1.1165 10.1584 1.1435 10.0928

HybridNCM-RSF

k’=1 1.0223 9.2996 1.1027 9.2453 1.0035 9.2812

k’=2 1.3284 9.8637 1.0175 9.8562 1.0999 9.8061

k’=3 1.3695 10.3445 0.8239 9.8575 0.9838 9.7961

hybrid models HybridNCM-RS and HybridNCM-RSF are still the best, beating both

generation-based baselines and retrieval-based baselines. These results show that the

re-ranking process in the hybrid ranking module trained with distant supervision

in hybrid conversation models can further increase the informativeness of results by

promoting response candidates with more factual content. (3) For the statistical sig-

nificance test, both HybridNCM-RS and HybridNCM-RSF outperform all baseline

methods with p < 0.05 measured by the Student’s paired t-test in terms of human

evaluation scores. We also show the side-by-side human evaluation results in Table

6.8. The results clearly confirm that performances of hybrid models are better than or

comparable to the performances of all baselines for most test conversation contexts.

6.3.4 Analysis of Top Responses Selected by Re-ranker

The number and percentage of top responses selected from retrieved/ generated

response candidates by the neural ranking model are shown in Table 6.9. We summa-
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Table 6.11: The response generation performance when we vary different distant
supervision signals. This table shows the results for the setting “k’=3”, where there
are 3 positive response candidates for each conversation context. “SentBLEU” denotes
using sentence-level BLEU scores as distant supervision signals.

Model HybridNCM-RS HybridNCM-RSF
Supervision BLEU ROUGE-L BLEU ROUGE-L

BLEU-1 1.3450 10.4078 1.3695 10.3445
BLEU-2 1.1165 10.1584 0.8239 9.8575
ROUGE-L 1.1435 10.0928 0.9838 9.7961
SentBLEU 0.8326 9.2887 1.0631 9.6338

rize our observation as follows: (1) most picked results (91.34% for HybridNCM-RS

and 86.69% for HybridNCM-RSF) are from the retrieved response candidates. This

is reasonable because we have multiple retrieved response candidates but only one

generated response candidate. In some cases, generated responses are preferred to

retrieved responses. (2) Although the percentage of generated responses is not high,

this does not mean we can just directly use the results returned by the retrieval

method. If we look at the row “PickedTop1BM25”, we can find that only very few

responses ranked as the 1st by BM25 are ranked as the 1st again by HybridNCM.

Thus, HybridNCM changed the order of these responses candidates significantly. In

particular, the hybrid ranking module in HybridNCM did the following two tasks:

a) re-evaluate and re-rank the previous generated/ retrieved responses to promote

the good response; b) try to inject some generated responses by Seq2Seq models

into retrieved results if possible. (3) We notice that response candidates generated

by Seq2Seq-Facts model are more likely to be picked compared to those generated

by Seq2Seq. When a generated response contains rich factual content, the hybrid

ranking module is more likely to pick it, which also helps boost the BLEU metrics.
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6.3.5 Impact of Distant Supervision Signals

We investigate the impact of different distant supervision signals on the response

generation performance in Table 6.11. We find that distant supervision signals like

BLEU-1 is quite effective for training the hybrid ranking module. The sentence-level

BLEU is not a good choice for the distant supervision signal. The reason is that the

sentence-level BLEU is computed only based on the n-gram precision statistics for a

given sentence pair. This score has a larger variance compared with the corpus-level

BLEU. Since sentence-level BLEU scores would become very small smoothed values

if there are no 4-gram or trigram matches between two sentences, which may happen

frequently in short text pairs.

6.3.6 Impact of Ratios of Positive Samples

We further analyze the impact of the ratios of positive/ negative training samples

on the response generation performance. Table 6.10 shows the results. The value of k′

is the number of positive response candidates for each conversation context when we

train the hybrid ranking module. When k′ = 1, we select one positive candidate from

the ground truth responses in the training data, which is equivalent to the negative

sampling technique. As k′ increases and k′ > 1, we construct the positive candidates

by selecting one positive sample from the ground truth responses and k′ − 1 positive

samples from the top ranked candidates by distant supervision. We find that larger k′

can improve the response generation performance. This is reasonable since larger k′

means the model can observe more positive training samples and positive/ negative

response pairs in the pairwise ranking loss minimization process. However, increasing

the value of k′ also adds risks of introducing noisy positive training data. Thus,

there is a trade-off for choices of values of k′ in the practice of training with distant

supervision.
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Table 6.12: Examples of output responses by different methods. r means the response
is retrieved. g means the response is generated. Entities marked with [ENTITY] have
been anonymized to avoid potentially negative publicity. “HNCM” denotes “Hybrid-
NCM”.

Context
Donated to the [ENTITY] last night and now I have to listen to automated
phone calls. It’s enough to make me want to cancel.

Method r/g System Output Response
Ground
Truth

- Ask them to put you on their internal dnc list. They will likely respect
this, because future calls can get them charged.

Seq2Seq g I didn’t get it. I didn’t.
Seq2Seq-
Facts

g I’m sorry to hear that. Please dm us your email address so we can look
into this. Thanks!

Retrieval r It’s a known issue in LA county. I just got an email from my dm and
tech and it should be good in 30 minutes or so.

HNCM-RS r We’re listening and would like to know more and help with your experi-
ence. Please follow us so i can dm you our contact info. [ENTITY]

HNCM-RSF g We’re sorry to hear this. Please dm us if you need assistance. Please dm
us your contact info so we can look into this.

6.3.7 Examples and Case Study

We perform a case study in Table 6.12 on the outputs by different methods. In

this example, we can find that the response produced by Seq2Seq is very general

and it does not provide any useful information for the user. Seq2Seq-Facts generates

a much better response by injecting more factual content into response generation

process. The response returned by the Retrieval method is also relevant to the context.

However, it provides very specific information like “LA county”, “30 minutes”, which

may have negative impact on the appropriateness of this response for some users.

The responses produced by hybrid models achieve a good balance between specificity

and generalization. The response by HybridNCM-RS is from retrieved results and

the response by HybridNCM-RSF is from generated results, which shows that both

retrieval-based methods and generation-based methods have the capacity to produce

good responses for certain context.
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6.4 Summary

In this chapter, we perform a comparative study of retrieval-based methods and

generation-based methods for building conversation systems. We propose a hybrid

neural conversation model with the capability of both response retrieval and genera-

tion in order to combine the merits of these two types of methods. For the training of

the hybrid ranking module, we propose a distant supervision approach to automati-

cally infer labels for retrieved/ generated response candidates. Experimental results

with the Twitter/ Foursquare data show that the proposed model can outperform both

retrieval-based methods and generation-based methods including a recently proposed

knowledge-grounded neural conversation model under both automatic evaluation and

human evaluation. Our research findings provide insights on how to integrate text

retrieval and text generation models for building conversation systems.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Closing Remarks

In this dissertation, we investigated several aspects of single-turn answer retrieval

and multi-turn information-seeking conversations to handle the new challenges of

search on mobile Internet. In order to better satisfy the information needs of mobile

Internet users who usually interact with mobile devices with a touch screen or a con-

versational interface, we studied effective methods to retrieve answers and perform

information-seeking conversations. Many proposed methods in this dissertation are

built on top of the recent advances of deep neural ranking and matching models.

We started from the investigation of single-turn answer retrieval and analyzed the

weaknesses of existing deep learning architectures for answer ranking. Then we pro-

posed an attention based neural matching model with value-shared weighting scheme

and attention mechanism for answer retrieval to improve existing deep neural answer

ranking models. For multi-turn information-seeking conversations, we investigated a

learning framework on top of deep neural matching networks that leverage external

knowledge for response ranking. We also studied how to integrate user intent modeling

into neural ranking models for response retrieval in information-seeking conversations.

Finally, hybrid models of response retrieval and generation are also investigated in

order to combine the merits of these two different paradigms of conversation models.

In Chapter 3, we analyzed existing deep learning approaches to automatically

learn semantic matches between questions and answers. We found that existing deep

models, either based on CNNs or LSTMs, need to be combined with additional fea-
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tures such as word overlap features and BM25 to perform well. Without combining

these additional features, their performance is significantly worse than the results

obtained by the state-of-the-art methods based on linguistic feature engineering (Yih

et al., 2013). This led us to develop a new deep learning model which can achieve com-

parable or even better performance than methods using feature engineering without

additional features. We proposed an attention based neural matching model (aNMM)

for answer retrieval. aNMM introduced a novel value-shared weighting scheme in deep

neural networks as a counterpart of the position-shared weighting scheme in CNNs,

based on the idea that semantic matching between a question and answer is mainly

about the (semantic similarity) value regularities rather than spatial regularities. We

also incorporated the attention scheme over the question terms using a gating func-

tion, so that we can explicitly discriminate question term importance. We evaluated

the proposed model with the TREC QA dataset, which is one of the most widely used

benchmarks for answer re-ranking. Our model can achieve better performance than a

state-of-art method using linguistic feature engineering and comparable performance

with previous deep learning models with combined additional features. If we com-

bine our model with a simple additional feature like QL, our method can achieve the

state-of-the-art performance for answer sentence retrieval.

In Chapter 4, we studied response retrieval in multi-turn information-seeking con-

versations beyond single-turn interactions. Most research on response selection in

conversation systems model the matching patterns between user input (either with

context or not) and response candidates, which ignores external knowledge beyond

the dialog utterances. Similar to Web search, information-seeking conversations can

be associated with massive external data collections that contain rich knowledge. We

proposed a learning framework on top of deep neural matching networks that leverages

external knowledge for response ranking in information-seeking conversation systems.

We studied two different methods on integrating external knowledge into deep neural
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matching networks with pseudo-relevance feedback and QA correspondence knowl-

edge distillation. Inspired by the key idea of PRF, we proposed using the candidate

response as a query to run a retrieval round on a large external collection. Then

we extracted useful information from the (pseudo) relevant feedback documents to

enrich the original candidate response representation. On the other hand, we also

proposed to extract the “correspondence” regularities between question and answer

terms from retrieved external QA pairs, which will be incorporated into deep match-

ing networks as external knowledge to help response selection. Evaluation results

on two benchmark conversation data sets and one commercial customer service data

from Alibaba showed that, our methods outperformed all baseline methods includ-

ing various deep text matching models and the state-of-the-art baseline on response

selection in multi-turn conversations.

In Chapter 5, we investigated response retrieval in information-seeking conversa-

tions from a different perspective by looking at user intent in conversations. User

intent transition patterns can be useful for conversation models to select good re-

sponses given conversation contexts. Different user intent types were defined and

characterized following previous research (Qu et al., 2018, 2019). Then we proposed

an intent-aware neural ranking model for response retrieval, which was built on the

top of the recent breakthroughs with natural language representation learning with

the Transformer (Vaswani et al., 2017; Devlin et al., 2018). We referred to the

proposed model as “IART”, which is “Intent-Aware Ranking with Transformers”.

IART incorporates intent-aware utterance attention to derive the importance weight-

ing scheme of utterances in conversation context towards better conversation history

understanding. We conducted extensive experiments with three information-seeking

conversation data sets. Experimental results showed our methods outperformed all

baselines. We also performed visualization and deep analysis of learned user intent

in information-seeking conversations to provide insights.
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As we have said, there are two main paradigms to produce responses given con-

versation inputs from users: generation-based models and retrieval-based models.

In Chapter 6, we performed a comparative study of retrieval-based models and

generation-based models for building conversation systems. We found that both have

pros and cons. Although retrieval-based models can return natural human utterances

which are controllable and explainable, the performance of retrieval-based methods

is limited by the size of the conversational history repository. On the other hand, the

generation-based models can generate highly coherent new responses given the con-

versation context, but they are likely to generate very general or universal responses

with insufficient information such as “I don’t know”. The generated responses may

also contain grammar errors. Thus it is necessary to integrate the merits of these two

different types of methods to let them complement each other. We proposed a hybrid

neural conversational model with a generation module, a retrieval module and a hy-

brid ranking module. To construct the training data of the neural ranker for response

selection, we proposed a distant supervision approach to automatically infer labels

for retrieved/ generated response candidates. Experimental results showed that the

proposed model can outperform both retrieval-based models and generation-based

models for both automatic evaluation and human evaluation. We also performed

qualitative analysis on top responses selected by the neural re-ranker and response

generation examples to provide insights.

7.2 Future Work

Here we discuss the future directions for our work on single-turn answer retrieval

and multi-turn information-seeking conversations.
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7.2.1 On Single-Turn Answer Retrieval

In Chapter 3, we studied answer retrieval with an attention-based neural matching

model. There are several directions to extend our work : (1) Investigate the effective-

ness of attention-based neural matching models on non-factoid question answering

data sets. Since TREC QA only contains factoid questions with short answers like

noun phrases and named entities, it is interesting to study whether the performance

gains can also be achieved on non-factoid QA data sets like WikiPassageQA (Cohen

et al., 2018) and WebAP (Keikha et al., 2014a). (2) Investigate how to improve the

recall in the first round retrieval. Most existing neural ranking models follow a two

stage approach which includes the first round retrieval to recall answer candidates

and the second round retrieval to re-rank answer candidates. Without correct answer

candidates in the first round, the neural ranking models would also fail in the second

re-ranking phrase. Thus it is interesting to study what the important factors on the

first round retrieval are and how to improve the recall for the retrieval performance

in the first round. (3) Another related direction for extension is machine reading

comprehension (Rajpurkar et al., 2016), which focuses on accurately identifying the

answer span given a question and a passage/ document to search. It is interesting to

explore how to find answers with a “Retriever + Reader” (Chen et al., 2017) frame-

work, which is a promising way to show direct answers given a large unstructured

text collection.

7.2.2 On Response Retrieval with External Knowledge

In Chapter 4, we proposed a deep matching model with the integration of external

knowledge for response ranking in information-seeking conversations. One possible

extension of this work is looking at the user intent in information-seeking conver-

sations and studying how to improve response retrieval with user intent modeling,

which has been done in Chapter 5. Another direction is to study how to incorpo-
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rate both structured and unstructured knowledge into deep matching networks for

response ranking. The models proposed in Chapter 4 rely on extracted knowledge

from unstructured external text collections with pseudo-relevance feedback and QA

correspondence knowledge distillation. However, for some questions like factoid ques-

tions about a specific named entity, it could be easier to find answer responses from

pre-constructed knowledge bases. It is interesting to study how to integrate both

of these two types of external knowledge to produce responses given the diversity of

various conversation contexts.

7.2.3 On User Intent Modeling for Response Retrieval

For intent-aware response ranking models, there are also many interesting direc-

tions to extend our work: (1) Study a more fine-grained user intent taxonomy to cap-

ture user intent in more detail. Currently we defined 12 different types of user intent

in information-seeking conversations, which are related to questions, answers, feed-

back, etc. in conversations. In some applications, more fine-grained classification is

desired. Let’s take customer service chat bots in eCommerce websites as an example.

To learn a better semantic representation of user intent, we can classify the customer

questions by shopping procedures like pre-sale consulting, new orders creation, pay-

ments, shipping, return/refund, etc. We can also group customer intent by different

domains of products like electronics, sports, beauty, food, clothing & shoes, etc. In

some cases, multi-level hierarchical taxonomies are better to be adopted to describe

user intent. How to automatically learn such an optimal user intent taxonomy for dif-

ferent domain is an interesting direction to explore. (2) Study intent-aware response

ranking models with pre-trained language models like BERT (Devlin et al., 2018),

which have shown impressive performances on a variety of tasks including machine

translation, question answering and natural language inference. We are interested in

investigating why such models are better if they work for response retrieval.
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7.2.4 On Hybrid Models of Response Retrieval and Generation

In Chapter 6, we compared retrieval-based methods and generation-based methods

for conversation modeling and studied hybrid retrieval-generation neural conversation

models in order to combine the merits of these two different types of methods. Some

possible extensions following our work are as follows: (1) Study reinforcement learn-

ing methods for response selection in order to directly optimize metrics like BLEU/

ROUGE. Currently the generation module and hybrid ranking module in our pro-

posed model are trained separately. To construct the training data for the hybrid

ranking module, we compared the generated/retrieved response candidates with the

ground truth response candidates and classified positive/negative examples by simi-

larity scores. The loss function of the hybrid ranking module is the pairwise ranking

hinge loss, which may be not strongly correlated with the final evaluation metrics

like BLEU/ ROUGE. By adopting a reinforcement learning framework, we can define

reward functions based on the final evaluation metrics like BLEU/ROUGE to opti-

mize them directly. (2) Propose a better evaluation method for response quality in

conversations with reasonable costs. The evaluation of response quality in conversa-

tions is more challenging than some other tasks like evaluation in machine translation.

The same conversation context can be responded to by multiple diverse responses.

Such response diversity problems make it very hard to collect comprehensive refer-

ence responses given a conversation context (Gao et al., 2018). To mitigate this issue,

current research on conversation response generation relies on human evaluation to

judge response qualities, as we did in Chapter 6. However, fast model development

and iteration only based on human evaluation is not feasible given the high human

annotation costs. Thus the study of a new evaluation method on response quality

with reasonable costs is also an active research area.
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