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Abstract—The main goal of existing word spotting approaches for searching document images has been the identification of visually
similar word images in the absence of high quality text recognition output. Searching for a piece of arbitrary text is not possible unless
the user identifies a sample word image from the document collection or generates the query word image synthetically. To address this

problem, a Markov Random Field {MRF) framework is proposed for searching document images and shown to be effective for
searching arbitrary text in real time for books printed in English {Latin script), Telugu and Cttoman scripts. The English experiments
demonstrate that the dependencies between the visual terms and letter bigrams can be automatically learned using noisy OCR output.
It is also shown that OCR text search accuracy can be significantly improved if it is combined with the proposed approach. No
commercial OCR engine is available for Telugu or Ottoman script. In these cases the dependencies are trained using manually
annotated document images. It is demonstrated that the trained model can be directly used to resolve arbitrary text queries across
books despite font type and size differences. The proposed approach outperforms a state-of-the-art BLSTM baseline in these contexts.

Index Terms—Markov Random Fields, document image search, image retrieval, word spotting

1 INTRODUCTION

Ne way to search printed document images is to
Orecognize characters and perform text queries. This
approach is feasible as long as the document is not noisy
and recognition accuracy is high enough for searching text.
For noisy documents, Optical Character Recognition (OCR)
accuracy can be very low and recognized text becomes
unusable. One remedy is to use error correction schemes
[1]. [2]. [3]- Another option is to compensate for OCR errors
in the query resolution stage [4]. For example searching for
n-grams of letters is shown to improve retrieval accuracy [3],
[6]. One can also use both of these approaches to improve
text search. However, these methods have limited capability
in the sense that they cannot retrieve information which is
not captured by the OCR engine. In such cases, the informa-
tion is permanently lost and there is no way to recover it.
Figure 1 shows an example page image where recognition
errors are severe and they cannot be fixed using OCR error
correction schemes. The proposed image match framework
addresses this problem by using image based features for
searching text in document images. The proposed approach
is able to efficiently resolve arbitrary text (i.e., unlimited
vocabulary) in document images even if there is no OCR
engine available for the script or OCR fails due to document
noise. Combining n-gram based OCR text search with the
proposed image search framework further improves text
search due to their complementary strengths.

Image search based word spotting approaches make use
of image features directly in the search process. Various
approaches have been proposed for text search on noisy
printed or handwritten documents [8], [9], [10], [11] but they
have limitations. One important limitation is that it is not
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Fig. 1. a) a page image from the book “Tremendous Toronto” from the
Internet Archive [7], b) their provided ABBYY OCR output. Crossing out
text leads to segmentation and therefore OCR errors.

possible to perform arbitrary queries. Users have to find an
example word image from the same document collection
and use it for querying {(query by example, QBE). Query
words which are out of vocabulary are therefore problem-
atic. Scalability is yet another issue since computationally
intensive operations are performed over high dimensional
feature vectors for each query. Efficient indexing and re-
trieval schemes for large document collections are needed.

Here, an efficient image search framework is proposed
for searching arbitrary query words in the document im-
ages. The proposed approach has two main components:
i) efficient processing and matching of visual features and
ii) a discrete Markov Random Field (MRF) retrieval model
to rank relevant word images given a text query. The first
stage is to extract visual features from the word images
in the document collection. This is achieved by placing a
square shaped image patch on each corner point located in



the word image. Visual features extracted from each local
image patch are quantized into visterms or visual words
for efficiency. The visterms along with their positions on
the image plane are used by the retrieval model to resolve
arbitrary text queries.

In the query resolution stage, the task is to rank the
word images in the document collection according to their
relevance to the query word. A discrete MRF model (also
referred to as a “dependence” model) is proposed for de-
termining the relevance of each test image to the query
word by looking at the dependencies between the visual
terms and the query letter bigrams. More specifically, the
query word is decomposed into its letter bigrams and each
letter bigram is regarded as a random variable in the de-
pendence graph along with the visual terms in the word
image. Following the Markov assumption, two types of
dependencies are defined between the random variables in
the dependence graph: (i) between all query letter bigrams
and visual term pairs in the test image, (i) between all
distinct pairs of query letter bigrams. The first set of de-
pendencies are learned offline from labeled data and used
for determining the existence of the letter bigram in the
test image. For this task, the “union” and the “intersection”
probability estimation models are proposed. The second set
of dependencies account for the order of the letter bigrams
in the word image and require no training. Given a text
query, all the word images in the collection are ranked
according to the final MRF score which accounts for all types
of dependencies defined in the graph.

The proposed dependence model is shown to be effective
for searching text in books printed in English, Telugu and
Ottoman scripts. For searching English books, the depen-
dencies between the visual terms and letter bigrams are
automatically learned using noisy OCR output. OCR text
search accuracy is significantly improved by combining
with the proposed approach. The proposed approach out-
performs a state-of-the-art Bidirectional Long-Short Term
Memory (BLSTM) baseline model when both of them are
combined with OCR text search. Since there are no com-
mercial OCR engine available for Telugu and Ottoman
scripts, the dependencies are trained using manually an-
notated document images. For these scripts, the trained
model is directly used to resolve arbitrary text queries in
other scanned books despite font type and size differences.
The BLSTM baseline provides poor results for Telugu and
Ottoman scripts. The proposed framework has a real time
performance for searching an entire book containing hun-
dreds of pages with a speed of under 5 ms/query on a single
core.

To our best knowledge, the proposed framework is also
the first image search approach which resolves arbitrary
text queries in document collections without any search
ambiguity. This is discussed further in the related work
section. Figure 2 shows example word images for a number
of query words on a book “Wuthering Heights” by Emily
Bronté. The proposed combined text search approach (OCR
text baseline + image search) retrieves all six word images
correctly along with other true positive instances at the top
of the ranked list.

The rest of the paper is organized as follows: a literature
overview is provided in Section 2. Section 3 describes the
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Fig. 2. Word image examples: a), c), &) correctly retrieved by the
proposed framework but missed by the OCR text search baseline due
to OCR errors as shown. b}, d), f) corectly recognized by ABBYY
OCR engine and retrieved by OCR text search baseline but missed by
the proposed approach. The combined approach (image + OCR text
search) correctly retrieved all these word images.

visual features used. Section 4 elaborates on the proposed
dependence model for searching arbitrary text in document
images. Experimental results and future research directions
are discussed in Sections 5 and 6, respectively.

2 LITERATURE OVERVIEW

Searching text in document images without explicit charac-
ter or word recognition is referred to as “word spotting”
in the literature [12]. More specifically, a query word image
is given and the task is to search for other instances of the
same word in other documents using raw image features.
Several word spotting approaches have been proposed for
printed [13], [14] and handwritten documents [8], [9], [10],
[11], [15], [16], [17]. These approaches have been shown
to be effective especially for searching text in degraded
historical documents. The most important drawback for
word spotting systems is that a query image is required
for each query word. Therefore a user cannot search for
arbitrary text unless the word image is available.

Word spotting frameworks mainly differ from each
other in three ways: the word image segmentation method,
the image features used, and the word image match-
ing/retrieval approach. Projection profiles [18], scale-space
approaches [19], Hough-based methods [20] and gap met-
rics [21] have been applied for automatically segmenting
text lines and word images. Several image features have
been proposed for representing word images including
variants of projection profiles, DFT features extracted from
projection profiles, ink transitions, gray level variance and
local gradient histograms [18], [22]. Rath and Manmatha
[10] proposed Dynamic Time Warping for matching word
images represented by projection profiles. Other methods
include aligning the word images and computing a simi-
larity based on pixel wise comparisons using XOR, Sum of
Squared Distances and Euclidean Distance Mapping.



{a} Visual terms for a given word image

b} A local image patch
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Fig. 3. Visual features are shown for an example word image. In a) small dots correspond to the local interest points. Local patches extracted from
interest points are quantized into visual terms (v, vz, ...vg) which are represented with large big circles at the bottom. b) and ¢} shows an example
image paich from the word image and the corresponding SIFT features respectively. There are typically around 100 visual terms per word image.

Graves et al [23] proposed the use of a Bidirectional Long
Short Term Memory (BLSTM) model for handwritten recog-
nition. Their approach has two stages. First the probability
of each character is estimated for each location of an input
sequence. Second, this sequence of probabilities for the letter
is used along with a language model and a dictionary as
input to a CTC Token Passing algorithm and the output
is a sequence of words. A modified version of the CTC
algorithm was used in Frinken et al [24] for the handwritten
word spotting problem. The modification was necessary
since the input sequence was an image of an entire text line.
We refer the reader to [23], [24] for a detailed explanation of
the BLSTM networks. In this work, a BLSTM baseline is also
adopted and elaborated further in the experiments section.

The word spotting paradigm has also been extended
to perform holistic word recognition. Given a query word
image whose text content is known, one can propagate
the text label to other visually similar word images in the
document set. Marinai et al. [25] and Pramod et al. [14]
use clustering techniques to group similar word images and
the word images are labeled based on which cluster they
belong to. However, manual labeling of the word image
clusters is not practical for large datasets with diverse fonts
and writing styles. In addition, a major limitation of these
approaches is that they cannot label word images which are
not in the vocabulary of recognizable words.

Lu et al. [26] adopt a word shape coding approach for
searching text in document images given a text query. It
is reported that these shape code collisions happen 28%
of the time for a dictionary of size 50K words [26]. Shape
collisions cause ambiguous search results and are known to
be sensitive to subtle ink deformations.

3 VISUAL FEATURES

OCR engines rely on features extracted from connected
components and tend to make errors in recognizing under-
lined or crossed out word images which are very common
noise types in real/noisy document images. Image search
mechanisms are capable of accounting for partial matches
between the word images for both search and retrieval tasks
by using features which are robust to document noise and
similarity functions which account for partial matches.

In this paper we adopt the local visual features proposed
in [27]. “Keypoints” are identified in the document images
using the Fast-Corner-Detector [28]. SIFT [29] features are

extracted from each local patch placed over the corner
points. The scanned page images do not have significant
page skew so the patch orientation is set to zero degrees. In
the original paper [27], the patch size is set to be equal to
the height of the box for the purpose of holistic matching
of noisy word images. In this work, two other patch scale
estimation approaches are also investigated: a) fixing the
patch size (if the font size is uniform across the documents)
and b} determining the patch size relative to the line height.

Hierarchical K-Means (HIKMEANS) [30] is used for
quantizing SIFT descriptors to visual terms as described
in [27]. Large visual vocabularies provide better results for
instance matching of natural images [30]. However, smaller
vocabularies (4K terms) are observed to provide higher
matching performance for other retrieval tasks and do best
for searching text in document images [27].

After feature extraction, a word image [ is represented
with a set of visterms {wv1,vq, ..., Uy, }. Each visterm v; is
represented by a discrete number and its {z, y) coordinates
in the word image frame I (normalized by box or line
height). The visterms are stored in order according to their
x coordinate (see Figure 3). As shown an image patch
placed over any corner point covers ink from one or more
characters. Partial matches are quite useful for searching text
in noisy document images [27].

4 A DiIscreTE MRF MODEL FOR SEARCHING
ARBITRARY TEXT IN DOCUMENT IMAGES

Our proposed approach adapts the general MRF framework
proposed by Metzler and Croft for text retrieval [31]. This
framework has been widely used and also shown to be
effective for the photographic image retrieval problem [32].

Searching text in document images is different from
text retrieval. An arbitrary text query @ ( such as “Sher-
lock”) and visual features for each word image I in the
book are given. The task is to rank all the word images
according to their relevance to the query word P{I|Q).
In our framework, the query word is decomposed into its
letter bigrams ¢; and the posterior probabilities P(I|g,) are
estimated efficiently for each word image and are later com-
bined to estimate P{I|Q). After elaborating on the general
MRF framework { [31], [32]), the details of the proposed
framework are discussed in the subsections below.

Markov random fields (MRFs) are useful for modeling
the joint distribution of a set of random variables. In a



nut-shell, a Markov random field is an undirected graph,
where nodes represent random variables. Edges between
nodes represents conditional dependencies between ran-
dom variables. Based on the Markov property, it is assumed
that certain random variables are independent of all others.
Dependencies are therefore defined between certain groups
of random variables. These groups are called “cliques”. For
each type of clique c in the graph, a non-negative potential
function ¢ is defined. These functions are parameterized
by A (capital lambda symbol) and they are used for estimat-
ing joint probabilities.

The ultimate aim is to calculate the posterior probability
Pa(I|Q) for all word images in the collection and then rank
them based on their relevance to the query. We follow the
derivation in [31] to estimate the joint probability P(Q, I):

PQ.D=5 I och) o
A cec(o)
where Z, is:
Zyn=>_ 11 o) 2)
Q,I ceC(G)

It is computationally expensive to compute Z,. In our case,
the problem is to rank word images based on their posterior
probabilities Py (IQ), so we can ignore the constant Z,.

Once the normalizing constant is ignored, estimating
posterior probabilities becomes much easier. According to
[31], [32], posterior probabilities may be estimated as fol-
lows:

P(1]Q) = AL rant

log PA(Q, ) —log PA(Q)

PA(Q) 3)
ret > logg(ciA)
ceC(Q)
where "2" indicates rank equivalence. The resulting

formula is a sum of logarithm of potential functions over
all cliques. The potential function is often assumed to have
the following form:

¢(c; A) = exp[Acf(c)] 4)

where f(c) is some feature function over clique ¢, and A,
is the weight of this particular feature function. Then the
ranking function simplifies to:

PAUIIQ) "N NS (o) 5)

ceC(Q@)

which is a linear function over feature functions and may be
computed efficiently. ). is a weight factor and it is defined
for each clique in the MRF model.

4.1 The proposed framework

Both letter bigrams and their order are important to qualify
a word image for being a match. Here we devise an MRF
model so that both conditions are satisfied. We assume that
all visual terms v; are independent of each other given the
query word (). We do not use higher order dependencies
because training is impractical given the dimensionality of
all bigram letter classes (4K for English) and the visterm
vocabulary size (4K in our experiments). Two types of
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Fig. 4. The configuration of our MRF model for searching arbitrary
text in document images. Red nodes (top) represents the visual terms
v1,v9, ..., vg extracted from the test image. Blue nodes (bottom) denotes
the letter bigrams q1, g2, --., ¢(n+1)=7 Of the example query word “mat-
ter” with n characters. The dependencies between random variables are
shown with straight lines.

cliques are defined in our model. The first type vg consists
of all pairs between visterms v; of the word image I and
letter bigrams ¢; of Q. @ includes (n + 1) character letter
bigrams including the space characters at the beginning and
the end of the word. The second set of cliques gg include all
letter bigram pairs in Q.

The final MRF score based on combining clique poten-
tials for different types of cliques is:

PA(I|Q) = Ay NMRF,, + (1 — Ay )MRF,,  (6)

where A/ is a parameter whose range of values is defined to
be [0,1]. NM RF,, stands for normalized MRF score for the
sum of clique potentials of type vg. Similarly M RF,, stands
for the sum of clique potentials of type gq. The estimation
procedure for these scores is explained in the following
subsections. The configuration of our discrete MRF model
is depicted in Figure 4.

4.1.1

The posterior probability of a word image I given a query
word is formulated as follows:

Modeling visterm-letter bigram dependencies

MRF,q = P\(I|Q) = Pa(v1,v2,.. 2 qn) (7)

where v; and g; correspond to visterm ¢ and letter bigram j
respectively in the query word. Using Eq.5, Eq.7 becomes:

Z Acqu (C) (8)
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MRF,, =

where c stands for a clique formed by a visterm v; in I and a
letter bigram ¢; in Q. The feature function f(c) is defined to
be the posterior probability of ¢; given v; and reformulated
using Bayes’ rule as:

Pr(vi|q;) Pr(q;)

qu(c) = Pr(Qj‘vi) = PI‘(U,;)

©)
where Pr denotes probability distributions.

We slide a Gaussian window as shown in Figure 5 to
determine the location of each letter bigram in the word
image - this makes it easier to handle varying text font
widths. It is possible to incorporate a Gaussian window into
our MRF model by varying the values of \. as follows:

Ao = Gpo(r:) (10)
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Fig. 5. Sliding a Gaussian window along the horizontal axis of the image
plane is illustrated for an example word image.

Fig. 6. Visual terms and their positions are shown for a sample image
containing the letter bigram “Ba®. Circles indicate the groups of visterms
with the same wvisterm |D. The visual terms extracted from nearby
locations have quite similar feature vectors, therefore they end up having
the same visterm D

where z; is the height normalized coordinate of visterm i
on the X axis of the word image. The Gaussian window
is parameterized by u and o. ¢ designates the location of
the letter bigram ¢; and o determines the visual term v;'s
weight given its position along the X-axis. The aim is to find
a value u for each ¢; so that Eq.7 is maximized:

MRF, = Y G o(z:)fulc)
ce{wigs}

(11
and the estimated location of letter bigram ¢; in the word
image is given by:

u%:argmfx Z G o) fugle)
ce{wigs}

(12)

Often visterms with identical visterm IDYs are right next
to each other (see Figure 6). This is an artifact of the keypoint
detectors and they are not desirable. A remedy for this
problem is to account for the existence but not the frequency
of visterms in word images using a Bernoulli Model [33].
We only account for the visterms whose A, weight is the
highest for a given u and a Bernoulli Model is adopted for
estimating probabilities as described in Section 4.2.

Since each visterm class can contribute to the sum at
most once and Pr{g;|v;) is a distribution over query bi-
grams, the upper bound for 3 .c,,. .1 Acfug(c) becomes
Guo{p). As a result, the range of values for MRF,,; be-
comes [0, Q|G «(x)], where o is a parameter. It is not
desirable to have different ranges of values for queries
varying in length. NMRF,,; is the MRF score normalized
by the query length |Q}| and is given by:

Z quj.a(zi)fuq(c)

cefwig;}

NMRF,, = (13)

=
Q|

4.1.2 Modeling the order of letter bigrams

The order of letter bigrams in the word image is constrained
using a clique potential for letter bigram pairs based on Eq.5
as:

MRFq, = Z Actaqle) (14)
ce{gi.q;}
where
foale) = 1l if ¢; and ¢; are in correct arder
EEAREA 0 otherwise
1
A= —— 15
ni{n —1)/2 (15)

and n is the number of letter bigrams in the query word.
Each dique is equally weighted ina way and M RF, score’s
range is set to [0, 1]. Note that the estimated location of letter
bigrams 1, is used to determine the correct order compared
to the original query word.

4.2 Probability estimation

Each word image in the training set (' is represented by a
set of visterms {v1,vg,...,Um} and a set of letter bigrams
{q1,42,--.,4n}-It is assumed that there is at least one char-
acter and one visterm. For a word with n—1 characters, there
are n letter bigrams. A training set may be synthetically
rendered with a large set of word images or individual
letter bigrams in various fonts and sizes. Alternatively, the
recognition output of an OCR engine on sample document
images may be used for automatic training.

Given a training set, the aim is to learn Pr{v;|q;), Pr{w)
and Pr{g;) in Eq.9 for all visterm and letter bigram classes.
In this work, it is assumed that Pr{g,) is uniform, mean-
ing that each letter bigram class is equiprobable. Similarly,
Pr{C%) is also assumed to be uniform. In other words, each
word image in the collection is equiprobable.

A multiple Bernoulli model is adopted for learning
Pr{v;|¢;) and Pr{v;}. According to the model, the existence
of visterms in a word image is important, not their respec-
tive frequencies. In other words, the probability of P{v,|I)
is estimated using a discrete Kronecker delta function:

P{u|Cx) = by, 00 (16)

where d,, ¢, = 1if a visterm v; occurs in the representation
of the word image C'.

Given a training collection ', P{w;) is calculated by
marginalizing v; over the entire collection "

P{u;) = > P{w;|Cx)P(Ch) (17)
k

where C% is a word image in €' Similarly P{w|g;) is calcu-

lated by marginalizing u; over the set of all word images in

¢ which contain letter bigram g;:

Pluilg;) = Y P{ui|Ck, ;) P(Crlg;) (18)
2
This method is referred to as the Union Model. One
problem with the union model is that it simply blends all
the visterms of training images which contain the letter
bigram g; for learning P{vs|g;). However, some visterms
in the training image C% may not be associated with g; in
particular but other letter bigrams in the word image. It is
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Fig. 7. The learning models illustrated for learning the probability distri-
butions of visterms for the letter bigram class q; from three training word
images C1, C2 and Cs. The visterm distribution of visterms for each
training sample are shown in a), b) and c¢). The horizontal and vertical
axes represent the visterm IDs v; and the corresponding probability
respectively. Estimated visterm distributions for the letter bigram class
q; are shown using d) the Union and e) the Intersection learning models.

desirable to differentiate the visterms which are particular
to letter bigram class ¢; and use only them for estimating
posterior probabilities.

Another method referred to as the Intersection Model is
introduced for estimating P(v;|g;). It gives less importance
(weights) to visterms which belong to letter bigram classes
other than g;. The idea is to intersect visterms of word image
pairs which are known to contain letter bigram class g;.
Visterms in the intersection are meant to be specific to g; and
therefore it is safe to use them for probability estimations.
Formally, P(v;|q;) is estimated by marginalizing v; over all
pairs of word images containing g;:

=Y > P(vilCk, C1,4;) P(Cy, Cilgy)
k I£k

P(v; |QJ (19)

Assuming that training images C}, and C; in C are indepen-
dent of each other, Eq.19 becomes:

= > P(vi|Cx, ¢;) P(vi|C1, ¢;) P(Chlg;) P(Cil ;)

k £k

(20)
P(Cylq;)P(Cilg;) is equal to one if g; occurs in both
images Cy and Cj, zero otherwise. The Intersection method
discards visterms which occur only once among all in-
stances of word images containing ¢;. This is desirable since
such visterms are very likely to be products of document

noise and/or discretization errors.
Figure 7 is an illustration of the idea of the proposed
learning models for training the visterm distribution of

U1|qj

6

the query letter bigram ¢q; ="th”. Assume that there are
only three training instances of word images C, C; and
(5 containing the letter bigram “th” corresponding to the
words “their”, “another” and “without” respectively. Each
training image is also associated with a number of visual
terms denoted by v;. The training images contain visual
features for not only the letter bigram class “th” but also
others such as “he” and “an”. In this example, each letter
bigram is assumed to be directly related to only one visual
term and the size of the visual vocabulary is set to 25 for
illustration purposes. If a visual term appears in the training
image, then the corresponding value P(v;|Cy,q;) in the
visterm distribution is set to one in the bar graphs shown
in Figure 7 a), b) and c). Otherwise the value is set to zero.
The first training image C'; contains six visterms whereas
the other two images contain eight visterms each.

Figure 7d) shows the distribution of visterms estimated
by the Union model. Assuming that each training instance
is equally likely, the Union model simply averages the corre-
sponding probabilities for each visterm to learn the visterm
distribution for the letter bigram class “th”. Visual term vy3
appears in all training images and therefore the estimated
value for P(v13]gj) is equal to one. Some visual terms
appear only in a subset of the training samples and their
probability values are directly proportional to the number of
training instances that contain the corresponding visterms.

Figure 7e) shows the visterm distribution estimated by
the Intersection model. The Intersection model simply iter-
ates over all distinct pairs of training examples and inter-
sects the visterm distributions to eliminate visual features
which are not particular to the letter bigram class g;. Once
the training instances are assumed to be equally likely, the
resulting distribution is simply the average of the visterm
distributions of each intersection. As seen in Figure 7 e),
the Intersection model successfully eliminates the visual
terms which are not related to the letter bigram class “th”
in most cases. In this particular example, the only visual
term which is related to the letter bigram class “th” is the
visterm wvy3. Visual terms vz and w7 obtained non-zero
values since those visual terms appear in more than one
example in the training images. More precisely, visual terms
vg and vy correspond to visual features which represent
letter bigrams “he” and “r-” which are both common in the
training samples “their” and “another”.

It is clear that the selection of training instances plays
an important role for estimating the probabilities in the
proposed dependence model. Ideally, the training instances
contain word images which are distinct from each other. In
the best scenario, they should not have any common letter
bigram other than the letter bigram being trained. For ex-
ample, one should not include the training examples “there”
and “the” in the same training set since they have four letter
bigrams in common including the space character. This is
not desirable since these training instances alone do not
help distinguish the visual terms specific to the letter bigram
class “th”. If there is not a sufficient number of training word
images for a given letter bigram class, these pre-conditions
might be relaxed in the implementation.

Assuming that the training instances are equally likely
and independent from each other, the probability estimate



for the Intersection model can be simplified as:

P(vilg;) = (é)/ (T;j>

where f; is the total number of images containing the
visterm v; and letter bigram ¢;, and, n; corresponds to the
total number of training images containing letter bigram g;.
This implies that there is no need to intersect the visterm
distributions for all pairs of training images explicitly if
the training images are assumed to be independent and
identically distributed. The simplified Intersection model
has O(n) time complexity, the same as the Union model,
since the frequency values f; can be computed by iterating
over the set of training images at once.

One last problem is that there may not be enough
training instances to train visterm distributions for some
letter bigram classes. It is desirable to estimate those prob-
abilities using a smoothing technique. More specifically, the
estimated probabilities are first normalized,

21)

P(”i|<1j)
Pr(v;lq;) = =——— 22
Pr(v;) = > _ P(vilg;)P(q)) (23)
J
and smoothed,
P~r(vi\qj) = Ag Pr(vi|g;) + (1 — Ag) Pr(v;) (24)

where \g is a parameter whose range is [0,1] and Pr(v;|g;)
denotes smoothed probabilities. Query terms often corre-
spond to words which appear rarely in the context such
as names and places. It is quite likely that the query terms
includes letter bigrams which are also rare in the text. It
is not desirable to give a lower weight to the features
belonging to rare letter bigrams in probability estimations
because of their lower prior probabilities. To avoid this,
P(g;) is assumed to be uniformly distributed in Equation
23.

4.3 Indexing letter bigrams

The final MRF score P, (I|Q) uses the likelihood of the
query letter bigrams and their respective positions in the
corresponding word image. For computational efficiency,
our approach is to calculate those values only once for all
letter bigrams along with their positions in all test images
and use these values for resolving the queries instantly.
Given a text query, the letter bigram likelihood values are
simply looked up for calculating the final MRF score for
each test image. Query resolution takes 5 ms for searching
an entire book.

4.4 Fusing word image rankings

In this section we propose a general framework which
combines the image based match scores with the noisy OCR
text search scores to improve retrieval results. Ukkonen’s
well-known g-gram distance measure [34] is adopted for
this purpose. It has been previously shown to be effective
for searching OCR degraded texts [35]. In a nut-shell, the g-
gram distance approach uses the letter bigrams to represent

7

the input strings in the vector space. The distance between
the two words are defined by the Manhattan distance be-
tween the g-gram vectors. The resulting score is a discrete
number with a range [0,n + m], where n and m are the
number of letter bigrams in the input and test words, respec-
tively. In our case, each word bounding box is associated
with its OCR text output. The OCR output is used to rank
all the word images according to the g-gram distance score
to the query word. In this work, the “normalized g-gram
similarity score” is introduced:

_ Dq(x7y)
[ + [yl

where |z| and |y| corresponds to the total number of letter
bigrams in the two input words respectively. The normal-
ized gq-gram similarity score has a range [0,1] and it pro-
duces a higher score if the two words are similar. It is equal
to one if the input words are identical. The normalized g-
gram similarity score is linearly combined with the image
search score:

Comb(I,Q) = A\, - PA(I1Q) + (1 = A\x) - Sq({ocr, Q) (26)

where (@ is the text query, Iocr corresponds to the OCR
output for the word image I and )\; is a parameter in
the range [0, 1| determined using the training and used for
combining the normalized q-gram similarity and the word
image relevance scores. The word images are finally sorted
in descending order of their combined scores Comb(I, Q).

Sqlz,y) =1 (25)

5 EXPERIMENTS

The aim is to investigate the effectiveness of our image
search engine given a particular text query. In order to
make the evaluation more fair, we only focus on single-word
search. The OCR text search baseline is also case-sensitive.
Punctuation is ignored at all stages. For simplification pur-
poses, we do not employ any advanced query evaluation
techniques for both text and image search, such as query
expansion, stemming etc.

The proposed approach is evaluated using printed books
written in three different languages and scripts: English
(Latin script), Telugu (an Indian language) and Ottoman (a
mixture of Arabic, Persian and Turkish). English includes
a fixed set of characters which do not change their shape
based on their context in the text and is, therefore, relatively
easy to recognize and there are several high accuracy com-
mercial OCR engines available for this purpose. Telugu and
Ottoman have no commercial OCR engine available due to
their complexities as discussed in the following subsection.
For English we demonstrate that OCR text search accuracy
can be significantly improved if it is combined with the pro-
posed word image search based approach. For Telugu and
Ottoman we show that our approach is effective in searching
text in noisy document images. Detailed information about
the datasets, training the proposed model and evaluations
are given in the following subsections.

5.1 Datasets
5.1.1 The English (Latin Script) Dataset

The English experiments consist of two publicly avail-
able books printed in Latin script.” Adventures of Sherlock



TABLE 1
Frequency distribution of the words in the English, Telugu and Ottoman
books after ignoring punctuation.

Total# Voe. #wards per frequency

Dataset words size 1 2 3 =4
LAT-S.H. 103375 SOED 4RR2 1406 | 713 | 2407
LAT-W.H. | 119275 | 10530 5125 1701 | @4 | 2900
TEL-1716 21142 12752 | 10656 | 1248 | 356 592
TEL-1718 4294 2951 2812 Bg 14 36
OTTO-1 GE7G AG97 3785 653 205 354
OTTO-2 35348 2498 2064 275 BB 71

Holmes” by Arthur Conan Doyle is used for training the
hyper parameters of the proposed model. The test book (299
pages) is titled “Wuthering Heights” by Emily Bront#. The
ground truth is automatically generated for the 286 pages
by aligning the main text of the book (downloaded from
the Project Gutenberg website) with the Internet Archive’s
provided OCR text output using the Recursive Text Align-
ment Scheme (RETAS) [36]. The text alignment output itself
is used for estimating OCR word and character accuracies
(88.67% and 97.01%, respectively) as described in [36]. The
last 50 pages of the book (89.35% OCR word acc.) are used
for testing purposes and the rest used for training. The
query test set contains all 3898 vocabulary words which
appear in the test pages. Detailed statistics are given in Table
1 after removing the pages which could not be automati-
cally auto-annotated because of missing or duplicate pages.
Roughly half of the words in the vocabulary of each book
appear only once in the context.

Latin characters typically have straight ink pieces
and /or round curves. The corner detector locates relatively
fewer number of corner points. A dense sampling approach
is therefore adopted to address the sparse keypoint problem.
The page images (12 megapixels) are first downsampled
by a scaling factor (0.27). Provided OCR word bounding
boxes are used for evaluation. No other page segmentation
method is used. All the ink (foreground) pixels in the
downscaled image are defined as keypoints. and features
are extracted at each of these keypoints (see Section 3).

5.1.2 The Telugu Script Dataset

Telugu is a widely spoken language in India (>75 million
speakers) and it has its own script. The primary complexity
of the Telugu script is the spatial distribution of the con-
nected components that make up the characters. Although
the individual characters are lined up from left to right,
the connected components of a particular character might
be positioned not only in the horizontal order, but also
they might be above, below or even inside other connected
components. Another complexity is that a word in Telugu
might have a slightly different appearance in different con-
texts although the semantics of the word is the same. Due
to the complexities of this script, the character recognition
accuracies are typically quite low [37], [38]. No commercial
OCR engine is available for recognizing Telugu.

The Telugu experiments consist of two books Telugu-
1716 and Telugu-1718 used for training and testing the
proposed model respectively [27] (see Table 1). Notice that
the majority of the words in these books (82.7% and 95.3%
of the vocabulary words, respectively) appear only once in
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Fig. 8. Example text lines from the Ottoman dataset. The Ottoman script
is quite similar to the Arabic script with some additional letters and
missing diacritics.

their respective context making conventional word spotting
approaches not applicable for searching text in these books.
Traditional word spotting approaches need at least one
word image example to search for other instances of the
query word using visual similarities.

These books were annotated manually using an ASCII
coding scheme {Jower case Latin characters). Each character
is encoded by at least one but typically multiple ASCII
characters. Therefore the mapping between each character
glyph and the ASCII characters are not one to one. This
type of annotation is actually not desirable for training the
proposed model. It violates the assumption of one-to-one
mapping between each character class and their correspond-
ing visuals in the word images. However, the experiments
demonstrate that the proposed model tolerates one-to-many
and many-to-one character mappings as well. Figure 11
shows some example word images written in Telugu along
with their ASCII encodings. All the words in the vocabulary
of the test book are used for evaluation purposes.

5.1.3 The Ottornan Script Dataset

The Ottoman script is quite similar to the Arabic script with
some additional characters and missing diacritics. An exist-
ing Ottoman dataset is used for evaluation purposes [39]. It
consists of 100 document images (300 dpi - binary images)
scanned from two different books teaching Ottoman script.
Each book contains a number of short readings written in
Ottoman language. Each reading published in these books
is originally scanned from different sources and the font
type and/or the size of text therefore varies for each article.
The articles scanned from the first book contain 60 docu-
ment images and they are used for training the proposed
dependence model. The remaining 40 pages scanned from
the second book are used for testing purposes. Table 1 shows
word frequency statistics for both sets.

The training and test sets (OTTO-1 and OTTO-2) consist
of 9879 and 3548 word images respectively. As for Telugu
most words appear only once in the respective context
for both sets 75.7% and 82.6% of the words in the vo-
cabulary appear only once in the training and test sets
respectively. Conventional word spotting techniques which
require whole word images are therefore not applicable for
searching text in these collections as well.



The ground truth contains locations of each connected
component in the document images along with the associ-
ated letter symbols. There are 48 integer coded ink shapes
used for annotating the connected components. The entire
dataset contains a total of 70K shape-coded characters. Line
and word boundaries are used for word annotations and
they are determined using projection profiles. The best
recognition accuracy reported for this Ottoman dataset is
93% [39]. This dataset is the most challenging one among
the others because the font type, size and document noise
vary across different articles (Figure 8).

5.2 Training

First, the visual vocabulary is trained by selecting a num-
ber of document images at random and clustering their
visual features using the Hierarchical K-means algorithm
(branching factor 64, depth 2), as described in Section 3.
Next, the visual term distributions of the letter bigram
classes are estimated. Including the space character, there
are 63 x 63 = 3969, 49 x 49 = 2401 and 27 x 27 = 729
letter (or character primitive) bigram classes are identified
for English, Ottoman and Telugu datasets, respectively.

One way to estimate the prior P(v;) and posterior
P(v;|q;) probabilities is to use scanned page images with
annotated word bounding boxes. However, it is not possible
to estimate visterm distributions for all letter bigram classes.
Only about 300 of the 4K letter bigram classes have more
than 20 occurrences in a single book. These letter bigrams
are actually sufficient to generate the majority of words
in the English language. In most cases only a few letter
bigrams might be sufficient to resolve a given query. For
example, for a query word “Holmes”, the letter bigrams
(space,H) and (s,space) are sufficient to filter out the ma-
jority of the words in the vocabulary of the whole book for
being a match. However, the more letter bigrams used for
search, the more precise the retrieval.

Another option is to estimate visual distributions using
synthetic word images. However, learning image features
from synthetic images has its own challenges. It is not
easy to model document noise and different fonts [40].
Experiments with synthetic word images using 100 different
fonts performed much worse (MAP 0.47 at best) for English
and are not discussed further.

The hyper parameters of the MRF model (such as Ajs, As
and \j) are learned using grid search. In the case of English,
they are learned from another book (Sherlock Holmes, S.H.)
and applied on Wuthering Heights (W. H.). The last 50 pages
of W.H. are used for testing and the visual terms and their
distributions are trained on the rest. The training process
for English is fully automatic - using OCR output as labels.
In the case of Telugu and Ottoman there is no OCR output
available. In these cases, the annotated book is necessary
for training the model parameters, visual vocabulary and
visterm distributions. OTTO-1 and TELUGU-1716 books
are used for training all the parameters of the proposed
model. It should be noted that, the proposed approach can
search for arbitrary text in document images unlike the
word spotting approaches. Therefore all the words in the
vocabulary of the test set are used for evaluation purposes.

The overall effectiveness of the proposed approach is not
quite sensitive to the Gaussian parameter o and therefore it
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is set to 0.5 in all experiments. Yet another parameter is the
sliding interval for the Gaussian window. Smaller intervals
yield better results however processing time may get very
large. The point is to ensure that we do not skip over any
letter while sliding the window. Therefore this value is set to
0.5 times the height of the word bounding box. Assuming
that all the letters have equal width, this corresponds to
2n + 1 window positions for n letters in a word image.

5.3 Baselines

Ukkonen’s g-gram based distance approach described in
Section 4.4 serves as a natural baseline for Latin script ex-
periments since the OCR output is available. The other base-
line is a multi-layer Bidirectional Long Short-term Mem-
ory (BLSTM) network trained with Connectionist Temporal
Classification (CTC) as described in [23], [24]. The BLSTM
baseline produces a text string for the given word images.
The BLSTMg gram baseline uses g-gram similarity scoring
function for ranking word images. The Latin experiments
have also a third baseline (BLSTMy gram+OCRg gram), which
uses BLSTM and OCR text outputs to generate the final
ranked list as described in Section 4.4.

The open source TensorFlow [41] implementation is used
for training BLSTM models. The input images are first
height normalized (32 pixels) and randomly grouped into
batches of 200 images. Three columns of raw gray-scale
pixel values (32x3=96 features) are fed into the network
at each time step. Using a single or two columns of pixel
values performed worse. The momentum and learning rate
parameters are set to be 0.9 and 0.001, respectively. After
each training epoch, the batches are randomly reshuffled
and the learning rate is updated using an exponential decay
function with parameter 0.9.

A number of experiments had to be performed to find
the best network topology and training parameters. Mathew
et. al. [42] uses a BLSTM network with three hidden layers
of size 50 nodes each to recognize a variety of Indic scripts.
Qaralleh et. al. [43] demonstrates that a BLSTM model with
three hidden layers provides the best results for recognizing
Arabic script. In our case, the number of hidden layers (2,
3 and 4) and the total number nodes in each layer (30, 50
and 70) are varied for English, Ottoman and Telugu scripts
independently. The final (best) network uses three layers of
BLSTM layers with 50 units each for all scripts. After 100
training epochs, the best word recognition error rates and
corresponding epoch numbers are (7.1%,65), (84.9%,21) and
(83.8%,50) for English, Telugu and Ottoman, respectively.

It should be noted that there are a large number of shape
occurrences to be learned for Telugu and Ottoman scripts
as compared to Latin. The majority of the input words and
shape occurrences appear only once in the entire training
and test sets. Each connected component or character i) may
have varying size, ii) might be connected and/or positioned
on top of each other and iii) hand coded with an arbitrary
number of ASCII characters. Much larger manually labeled
datasets are therefore desirable for training better models.
In this work, Telugu, Ottoman and Latin training sets con-
tain 21K, 10K and 100K word images, respectively. Trained
BLSTM models performed quite poorly on the Telugu and
Ottoman test sets and are not discussed further.



TABLE 2
MAP scores for the test book titled “Wuthering Heights”. “MRF” stands
for the proposed scoring function. “I” and “U” are short for “Intersection”
and “Union” respectively.

Search Learning | Aps As A MAP
method Model

MRF + OCRg-gram 1 0.19 | 0.01 | 0.50 | 0.958
MRF + OCRy gram U 0.53 | 0.01 | 047 | 0.957
BLSTMg.gram + OCRg.gram - - - 0.50 | 0.952
OCRg-gram - - - - 0.930
BLSTMg-gram - - - - 0.866
MRF I 0.19 | 0.01 - 0.854
MRF U 0.53 | 0.01 - 0.817
MRF I 1.0 0.01 - 0.792
MRF U 1.0 0.01 - 0.497

5.4 Evaluation

The evaluations are performed over all vocabulary words
that appear in the test collection. The query words with
one or two characters are excluded from the query test set.
These words typically correspond to function or stop words
(for ex. “in”, “at”) and are usually ignored for evaluation
purposes as they are unlikely to appear as query words.
The evaluation measure is “Mean Average Precision” (MAP)
which is computed over the entire ranked list.

Image search treats each visually distinct pattern as a
different visual class and performs the search accordingly.
The same character may have visually different forms in
another context (such as ‘A’ and ‘a’). In Arabic, characters
might have up to four different shapes based on their
position in the word. For simplification purposes, the search
task is therefore assumed to be case-sensitive. Advanced
query evaluation techniques may also be used to retrieve
different forms and/or inflections of the query word. They
are not discussed further due to space limitations.

5.4.1 English (Latin Script) Experiments

The ABBYY FineReader OCR text output and correspond-
ing word bounding boxes of the training book “Sherlock
Holmes” are used for training the model’s hyper parameters
Am, Ag and A,. Two hundred query words are randomly
selected from the vocabulary of the training book to deter-
mine the parameters which maximize MAP score. Estimated
model parameters are later used for the test book.

The first 236 pages of the test book “Wuthering heights”
are used for learning the visual vocabulary and visterm
distributions for each letter bigram. The noisy OCR output
(ABBYY) of the test book is used as the ground truth for this
purpose. Estimated OCR letter bigram accuracy is 94.09%
for the test book. All the 3838 words that appear at least
once in the last 50 pages of the book are used for querying.

Table 2 shows the retrieval scores of the proposed and
baseline approaches for the test book “Wuthering Heights”.
The baseline OCR text search baseline gives a MAP score of
0.930 compared to the scores of 0.854 and 0.817 using the
Intersection and Union models respectively. When the letter
bigram positional dependencies are not used (Ays = 1.0) the
scores are much lower for both the Intersection and Union
models showing that bigram order matters. Combining the
OCR text search baseline with the proposed dependence
model provides the highest retrieval scores - 0.958 and 0.957
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Fig. 9. Distribution of query words as a function of their length is given in
a). MAP score distribution as a function of the query word length is given
for b) the proposed approach (Intersection model), ¢c) OCR text search
baseline, d) Proposed approach + OCR, e) BLSTM baseline, and, f)
(BLSTM+OCR) baselines.

respectively versus the OCR baseline of 0.93. Both the OCR
text search baseline and the combined approach provide the
same AP scores for 3220 out of 3898 test query words in
total. The combined approach provides better AP results for
573 queries out of the remaining 678 queries.

A BLSTM baseline trained with the ground truth text
provides a MAP score of 0.866. Without combining with
OCR text search, BLSTM baseline performs slightly better
than the proposed approach (0.854 MAP), which is trained
with noisy OCR output itself. When combined with OCR
text search, the proposed approach outperforms the BLSTM
baseline and provides the best results (MAP 0.958). Fur-
ther investigation shows that the BLSTM baseline tends
to combine repeating characters (“room” maps to “rom”)
or misrecognize larger individual characters with multiple
letters (“m” maps to “in” or “hn”).

In the case of English, these results demonstrate that the
noisy OCR text output can be effectively used for improving
OCR text search. Given the hyper-parameters, the training
phase is fully automated. The visual term distributions for
each letter bigram are trained from the target book itself. It
automatically captures the font characteristics and adapts to
the specifics document noise inherent in the book.

Figure 9 shows that MAP scores increase as the query
gets longer. This effect is more evident for the image search
approach. The lowest MAP scores are obtained for query
words which include only three letters. In the case of image
search, the query word “the” is commonly confused with
“there” and “therefore” since these words include all the
letter bigrams of the query word exactly in the same order.
The proposed approach only accounts for the existence and



TABLE 3
Experimental results for the Telugu dataset {TELUGU-1716 for training,
TELUGU-1718 for testing).

Training Model | Dataset Ag Aar | MAP

Intersection Training | 0.002 | 0.46 | 0.563

Test 0.002 | 0.46 | D.562

Union Training | 0.016 | 0.65 | 0.488

Test 0.016 | D.65 | D436
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Fig. 10. Intersection model's MAP score distribution on the TELUGU-
1718 test set as a function of the query word length.

the global order of letter bigrams in the word image. A test
image therefore obtains a high matching score if it subsumes
the letter bigrams of the query word and the letter bigrams
also follow the same order.

5.4.2 Telugu Script Experiments

The model parameters, the visual vocabulary and visterm
distributions for each letter bigram are trained on the train-
ing set (TELUGU-1716) and directly applied on the test set.
The MAP scores produced by the proposed approach using
the Union and Intersection training models are shown for
the training and test sets in Table 3. For both test sets the
intersection model does much better than the union model.

In the case of the TELUGU-1718 test set, the relevant
word images are typically found at the top positions in the
rank lists. TOP-K recall rates for the first correct match are
0.46, 0.602, 0.663, 0.728, 0.789, 0.857 when K isset to 1, 3, 5,
10, 20 and 50, respectively. The rank lists contain 4294 word
images in total and 93% of the query words appear only
once in the test book TELUGU-1718 (Table 1). It should be
noted that a significant amount of annotation errors exist in
the provided ground truth of the Telugu books as discussed
later. The MAT scores are expected to be higher than 0.56.

Unlike OCR and conventional word spotting ap-
proaches, the proposed approach is able to find long and
rare query terms effectively without requiring any dictio-
nary or explicit language model. Figure 10 shows word
frequency and MAP scores as a function of word length.

Figure 11 shows results for two example queries (query
at top position). The retrieved word images are listed ac-
cording to their ranks and the ground truth label is given
under each word image. Only a subset of the retrieved (both
relevant and non-relevant) words are shown due to space
considerations. Green (light) and red {dark) circles indicate
relevant and non-relevant word images respectively.

The first example query word is “maalyabhuudharavi-
haara” (Figure 11a) ). All 109 examples of the query word are
retrieved at top ranks without any false positives. The top
five correctly matched word images are identical but their
{(Romanized) groundtruth are sometimes not the same. In-
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Fig. 11. Successfully retrieved Telugu word images.

consistent annotation errors are estimated to have impacted
10% of the words in the dataset. Using the provided ground
truth labels, the AT score for this query is 0.756 while
manual evaluation of the ranked list yields an AP score
of 1.0. Despite the noisy annotations, the proposed model
effectively learns the dependencies between the visual terms
and character letter bigrams.

The second example is a medium length query word:
“narasinha”, for which there are noisy matching instances
{note the lines through several of the images). According to
the ground truth, there are 113 samples of the query word
and the AP score is 0.774. Manual investigation indicates
that there are actually 120 examples of the query word. The
true AT score is 0.85. Notice that the noisy examples of the
query word are successfully retrieved by the proposed ap-
proach. Commercial OCR systems typically fail to recognize
character glyphs which are underlined or connected to other
characters. The false positive examples (word images with
rank 75 and 88) have a number of common characters with
the original query word. These words obtained a high rank
since they are visually quite similar to the query word.

Robustness to font variations and document noise might
co-exist if the word bounding box estimation is successful
within the scale estimation error tolerance of the descriptor
{(in our case SIFT). Fig 11b) shows examples where patch
scale estimation using bounding box height (as explored for
Ottoman script) would not help match the noisy samples. In
the case of Telugu, setting the patch scale according to the
known font size resolved the problem. Another option is to
estimate the font size and used it for each word image and
it is not explored in this work.

The experiments demonstrate the effectiveness of the
proposed approach for searching noisy Telugu documents
for which OCR and word spotting techniques are not appli-
cable. The query response time is 4 ms/query.
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Fig. 12. MAP scores as a function of the patch scale factor for different
configurations of the proposed model on the Ottoman training set.

5.4.3 Ottoman Script Experiments

The Telugu and English (Latin script) experiments used
printed documents in almost entirely the same font type
and size. In these cases, fixing the size and the orientation of
the image patch across the document images is sufficient
to find visual correspondences across the word images.
However, this is not the case for the Ottoman dataset. It
includes several articles scanned from several sources and
the font varies across document images. The visual features
extracted from the same word images printed in different
font type and size do not match especially if the patch size is
fixed. Three different approaches are investigated to address
this problem. The first approach is to use the scale-invariant
SIFT keypoint detector which automatically determines the
coordinate, scale and orientation of each keypoint. The
scale-invariant nature of SIFT helps match visual features
across different scales. However, SIFT features are known
to be sensitive to certain types of document noise such as
text underlining and ink bleeding [27]. The second approach
is to use the fast-corner-detector to find the location of the
visual terms. Each word image is assigned a uniform image
patch scale relative to the height of the line it belongs to. The
patch scale of a word image is its line height multiplied with
a constant called “patch scale factor”. The third approach is
similar to the previous one except that the height of the
word bounding box is used for determining the patch scale.
The second and third approaches assume that the page skew
is corrected and the image patch orientation is set to zero.

The effectiveness of line and box height based patch scale
estimation approaches are tested on the OTTO-1 training set
by varying the patch scale factor. The model parameters Ag
and A, are trained using the visual features extracted by
the scale-invariant SIFT keypoint detector. The same model
parameters are used for the other settings. The experiments
are repeated for both union and intersection learning mod-
els (Figure 12). On the training set, patch size estimation
using the box height gives the best results for both learning
models. The union model provides a slightly higher MAP
score on the training set with a patch scale factor 0.75.

The best patch scale factor is determined for each config-
uration on the training set using the MAP scores plotted in
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TABLE 4
Experimental results for the Ottoman dataset (training on OTTO-1, test
on OTTO-2) for three different patch size selection approaches.

Patch | Training Scale
Scale Model Dataset | factor As v | MAP
Intersec. Training 0.60 0.002 | 091 | 0.574
Box T.es.t 0.60 [ 0.002 | 0.91 | 0.473
Union Training | 0.75 | 0.005 | 0.99 | 0.590
Test 0.75 [ 0.005 | 0.99 | 0.365
Intersec. Training | 0.40 | 0.002 | 0.91 | 0.539
Line Tpsjc 0.40 [ 0.002 | 091 | 0.392
Union Training 0.35 0.005 | 0.99 | 0.552
Test 0.35 | 0.005 | 0.99 | 0.275
Intersec. Training - 0.002 | 0.91 | 0.579
SIFT T'es.t - 0.002 | 0.91 | 0.385
Union Training - 0.005 | 0.99 | 0.604
Test - 0.005 | 0.99 | 0.363
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Fig. 13. MAP score distribution of the best configuration on the OTTO-2
test set as a function of the query word length.

Figure 12. Estimated patch scale factors are then applied
to the test set for the corresponding configuration and
the obtained MAP scores are given in Table 4. The MRF
model parameters are estimated using the scale-invariant
SIFT features and the same parameters are used for testing
the configurations as well. The best test configuration uses
the box scale approach coupled with the intersection model
and provides a MAP score of 0.473 followed by using the
intersection model with the line scale approach (MAP 0.392).
Note that the union model does better on the training set but
the intersection model does better on the test set.

The results in Table 4 indicate that the best values Ag
is small as in the case of the Telugu experiments. This
implies that smoothing is not of much help even though
the number of training instances is not large (<10K labeled
word images). The estimated values for the Aj; are 0.99
and 0.91 for the union and intersection models respectively.
This indicates that the existence of letter bigrams is more
important than their relative positions. Further analysis
indicate that some of the basic shapes used for annotating
the script are quite small. Some of them simply correspond
to simple loops and pieces of ink which might be a part
of many different characters in the alphabet. The width of a
shape might be as small as 5-10% of the line height. It should
be noted the sliding interval for the Gaussian window is set
to 0.5 times the bounding box height in all experiments for
simplification purposes. Estimation of the exact position of
shape code pairs is therefore not quite reliable compared to
Telugu and English. Smaller values for the sliding window
interval are expected to give better localization performance
with additional computational cost.

Figure 13 shows the distribution of MAP scores as a
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Fig. 14. Two example queries on the OTTO-2 test set.

function of word length. Average word length in the Ot-
toman dataset is not as high as in the Telugu dataset. It is
clear that the MAT scores increase as the total number of
characters increase in the query word. As discussed in the
case of Telugu, it is desirable to have high accuracy for more
complex queries which are typically longer words.

As in the case of Telugu, the relevant word images are
typically found at the top positions in the rank lists. TOP-K
recall for the first correct match are 0.20, 0.356, (.398, 0.528,
0.624, 0.776 for values of K 1, 3, 5, 10, 20 and 30, respectively.
The ranked lists contain 3548 word images in total. 82.6% of
the words in the OTTO-2 query test set appear only once.
97.2% of the vocabulary words appear no more than three
times in the entire test collection.

Figure 14 shows a long (left) and a short (right) query
example for the Ottoman test set. The long query word has
three matching words in the ground truth. The proposed ap-
proach retrieved all of them at the top of the ranked list with
an AP score of 1.0. As in the case of Telugu experiments, the
proposed approach was able to find annotation errors in the
dataset. The word image ranked 3rd is retrieved correctly by
the proposed approach but it has an incorrect label. The 4th
retrieved image is not a match but it is visually quite similar
to the true positive examples. The short query example has
an AP score of (.867 with three relevant word images. The
first two true positives are top ranked, however, the last
one is ranked 5th after two false positives. Notice the word
images in rows 3 and 4 have partial visual similarity with
the query word - the first four letters from the right partially
match the shapes and characters of the query word. Partial
matches might be useful for users especially if the search
term does not appear in the test set. Partially matching
words are typically inflections or morphological variations
of the query word and they might also be considered to be
relevant depending on the search task.

5.4.4 Computational analysis

The off-line processing has three main stages: i) visual
feature extraction, ii} learning visual term distributions for
each letter bigram, and, iii) creating a letter bigram index
for resolving queries. In the case of Latin script, extracting
visual features takes 30 sec/page using a single thread MAT-
LAB CPU implementation on a i% Intel CPU machine with
8GB RAM (with GPU, 1-2 sec/page, less than 10 min for 300
page book). Learning visual term distributions takes less
than 10 seconds for 100K training word images. Creating
the letter bigram index takes about one hour. Each stage is
inherently parallelizable and further speed improvements
are possible. The online query resolution takes about 5
ms for searching an entire book. On the same dataset, the
BLSTM baseline took about a day to train using TensorFlow
implementation (Hardware: i7 Intel CPU, 96GB RAM, 12GB
GTX Titan X GPU). The BLSIM baseline also required an
explicit network construction and parameter tuning. It took
several weeks of computation to find the right parameters
and produce the best results.

6 CONCLUSION

A dependence model is proposed for searching arbitrary
text in noisy document images for which high quality OCR
does not exist. The proposed approach relies on efficient
processing of local visual features to robustly match word
images in real time. The effectiveness of the proposed ap-
proach is demonstrated by improving high quality OCR text
search in the case of English. Experiments on Ottoman and
Telugu documents demonstrate that the proposed frame-
work is effective in searching arbitrary text in noisy docu-
ment images for which OCR is not applicable or available.
The proposed dependence model outperforms a state-of-
the-art BLSTM solution and it does not need to be retrained
for each book separately.

Future work includes (i) speeding up the offline process-
ing stage using more efficient and robust visual features, (ii)
improving the retrieval model by incorporating additional
features and dependencies, (iii} investigating the effects of
document noise in the retrieval accuracy, (iv) investigating
the use of synthetic images to accurately train the depen-
dencies for the letter bigrams, (v) extending the proposed
approach for searching arbitrary texts in handwritten docu-
ments and natural scene images, and, {(vi) generalizing the
proposed approach for searching text large scanned book
collections using a collection-wide letter bigram index with
cligue features.
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