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nut-shell, a Markov random field is an undirected graph,
where nodes represent random variables. Edges between
nodes represents conditional dependencies between ran-
dom variables. Based on the Markov property, it is assumed
that certain random variables are independent of all others.
Dependencies are therefore defined between certain groups
of random variables. These groups are called “cliques”. For
each type of clique c in the graph, a non-negative potential
function φc;Λ is defined. These functions are parameterized
by Λ (capital lambda symbol) and they are used for estimat-
ing joint probabilities.

The ultimate aim is to calculate the posterior probability
PΛ(I|Q) for all word images in the collection and then rank
them based on their relevance to the query. We follow the
derivation in [31] to estimate the joint probability P (Q, I):

P (Q, I) =
1

ZΛ

∏

c∈C(G)

φ(c; Λ) (1)

where ZΛ is:
ZΛ =

∑

Q,I

∏

c∈C(G)

φ(c; Λ) (2)

It is computationally expensive to compute ZΛ. In our case,
the problem is to rank word images based on their posterior
probabilities PΛ(I|Q), so we can ignore the constant ZΛ.

Once the normalizing constant is ignored, estimating
posterior probabilities becomes much easier. According to
[31], [32], posterior probabilities may be estimated as fol-
lows:

P (I|Q) =
PΛ(Q, I)

PΛ(Q)
rank
= logPΛ(Q, I)− logPΛ(Q)

rank
=

∑

c∈C(G)

log φ(c; Λ)
(3)

where
rank
= indicates rank equivalence. The resulting

formula is a sum of logarithm of potential functions over
all cliques. The potential function is often assumed to have
the following form:

φ(c; Λ) = exp[λcf(c)] (4)

where f(c) is some feature function over clique c, and λc

is the weight of this particular feature function. Then the
ranking function simplifies to:

PΛ(I|Q)
rank
=

∑

c∈C(G)

λcf(c) (5)

which is a linear function over feature functions and may be
computed efficiently. λc is a weight factor and it is defined
for each clique in the MRF model.

4.1 The proposed framework

Both letter bigrams and their order are important to qualify
a word image for being a match. Here we devise an MRF
model so that both conditions are satisfied. We assume that
all visual terms vi are independent of each other given the
query word Q. We do not use higher order dependencies
because training is impractical given the dimensionality of
all bigram letter classes (4K for English) and the visterm
vocabulary size (4K in our experiments). Two types of
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Fig. 4. The configuration of our MRF model for searching arbitrary
text in document images. Red nodes (top) represents the visual terms
v1, v2, ..., v9 extracted from the test image. Blue nodes (bottom) denotes
the letter bigrams q1, q2, ..., q(n+1)=7 of the example query word “mat-
ter” with n characters. The dependencies between random variables are
shown with straight lines.

cliques are defined in our model. The first type vq consists
of all pairs between visterms vi of the word image I and
letter bigrams qj of Q. Q includes (n + 1) character letter
bigrams including the space characters at the beginning and
the end of the word. The second set of cliques qq include all
letter bigram pairs in Q.

The final MRF score based on combining clique poten-
tials for different types of cliques is:

PΛ(I|Q) = λMNMRFvq + (1− λM )MRFqq (6)

where λM is a parameter whose range of values is defined to
be [0,1]. NMRFvq stands for normalized MRF score for the
sum of clique potentials of type vq. Similarly MRFqq stands
for the sum of clique potentials of type qq. The estimation
procedure for these scores is explained in the following
subsections. The configuration of our discrete MRF model
is depicted in Figure 4.

4.1.1 Modeling visterm-letter bigram dependencies

The posterior probability of a word image I given a query
word is formulated as follows:

MRFvq = PΛ(I|Q) = PΛ(v1, v2, . . . , vm|q1, q2, . . . , qn) (7)

where vi and qj correspond to visterm i and letter bigram j

respectively in the query word. Using Eq.5, Eq.7 becomes:

MRFvq =
∑

c∈{vi,qj}

λcfvq(c) (8)

where c stands for a clique formed by a visterm vi in I and a
letter bigram qj in Q. The feature function f(c) is defined to
be the posterior probability of qj given vi and reformulated
using Bayes’ rule as:

fvq(c) = Pr(qj |vi) =
Pr(vi|qj) Pr(qj)

Pr(vi)
(9)

where Pr denotes probability distributions.
We slide a Gaussian window as shown in Figure 5 to

determine the location of each letter bigram in the word
image - this makes it easier to handle varying text font
widths. It is possible to incorporate a Gaussian window into
our MRF model by varying the values of λc as follows:

λc = Gµ,σ(xi) (10)
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Fig. 7. The learning models illustrated for learning the probability distri-
butions of visterms for the letter bigram class qj from three training word
images C1, C2 and C3. The visterm distribution of visterms for each
training sample are shown in a), b) and c). The horizontal and vertical
axes represent the visterm IDs vi and the corresponding probability
respectively. Estimated visterm distributions for the letter bigram class
qj are shown using d) the Union and e) the Intersection learning models.

desirable to differentiate the visterms which are particular
to letter bigram class qj and use only them for estimating
posterior probabilities.

Another method referred to as the Intersection Model is
introduced for estimating P (vi|qj). It gives less importance
(weights) to visterms which belong to letter bigram classes
other than qj . The idea is to intersect visterms of word image
pairs which are known to contain letter bigram class qj .
Visterms in the intersection are meant to be specific to qj and
therefore it is safe to use them for probability estimations.
Formally, P (vi|qj) is estimated by marginalizing vi over all
pairs of word images containing qj :

P (vi|qj) =
∑

k

∑

l 6=k

P (vi|Ck, Cl, qj)P (Ck, Cl|qj) (19)

Assuming that training images Ck and Cl in C are indepen-
dent of each other, Eq.19 becomes:

P (vi|qj) =
∑

k

∑

l 6=k

P (vi|Ck, qj)P (vi|Cl, qj)P (Ck|qj)P (Cl|qj)

(20)
P (Ck|qj)P (Cl|qj) is equal to one if qj occurs in both

images Ck and Cl, zero otherwise. The Intersection method
discards visterms which occur only once among all in-
stances of word images containing qj . This is desirable since
such visterms are very likely to be products of document
noise and/or discretization errors.

Figure 7 is an illustration of the idea of the proposed
learning models for training the visterm distribution of

the query letter bigram qj =“th”. Assume that there are
only three training instances of word images C1, C2 and
C3 containing the letter bigram “th” corresponding to the
words “their”, “another” and “without” respectively. Each
training image is also associated with a number of visual
terms denoted by vi. The training images contain visual
features for not only the letter bigram class “th” but also
others such as “he” and “an”. In this example, each letter
bigram is assumed to be directly related to only one visual
term and the size of the visual vocabulary is set to 25 for
illustration purposes. If a visual term appears in the training
image, then the corresponding value P (vi|Ck, qj) in the
visterm distribution is set to one in the bar graphs shown
in Figure 7 a), b) and c). Otherwise the value is set to zero.
The first training image C1 contains six visterms whereas
the other two images contain eight visterms each.

Figure 7d) shows the distribution of visterms estimated
by the Union model. Assuming that each training instance
is equally likely, the Union model simply averages the corre-
sponding probabilities for each visterm to learn the visterm
distribution for the letter bigram class “th”. Visual term v13
appears in all training images and therefore the estimated
value for P (v13|qj) is equal to one. Some visual terms
appear only in a subset of the training samples and their
probability values are directly proportional to the number of
training instances that contain the corresponding visterms.

Figure 7e) shows the visterm distribution estimated by
the Intersection model. The Intersection model simply iter-
ates over all distinct pairs of training examples and inter-
sects the visterm distributions to eliminate visual features
which are not particular to the letter bigram class qj . Once
the training instances are assumed to be equally likely, the
resulting distribution is simply the average of the visterm
distributions of each intersection. As seen in Figure 7 e),
the Intersection model successfully eliminates the visual
terms which are not related to the letter bigram class “th”
in most cases. In this particular example, the only visual
term which is related to the letter bigram class “th” is the
visterm v13. Visual terms v3 and v17 obtained non-zero
values since those visual terms appear in more than one
example in the training images. More precisely, visual terms
v3 and v17 correspond to visual features which represent
letter bigrams “he” and “r-” which are both common in the
training samples “their” and “another”.

It is clear that the selection of training instances plays
an important role for estimating the probabilities in the
proposed dependence model. Ideally, the training instances
contain word images which are distinct from each other. In
the best scenario, they should not have any common letter
bigram other than the letter bigram being trained. For ex-
ample, one should not include the training examples “there”
and “the” in the same training set since they have four letter
bigrams in common including the space character. This is
not desirable since these training instances alone do not
help distinguish the visual terms specific to the letter bigram
class “th”. If there is not a sufficient number of training word
images for a given letter bigram class, these pre-conditions
might be relaxed in the implementation.

Assuming that the training instances are equally likely
and independent from each other, the probability estimate
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for the Intersection model can be simplified as:

P (vi|qj) =

(

fi

2

)

/

(

nj

2

)

(21)

where fi is the total number of images containing the
visterm vi and letter bigram qj , and, nj corresponds to the
total number of training images containing letter bigram qj .
This implies that there is no need to intersect the visterm
distributions for all pairs of training images explicitly if
the training images are assumed to be independent and
identically distributed. The simplified Intersection model
has O(n) time complexity, the same as the Union model,
since the frequency values fi can be computed by iterating
over the set of training images at once.

One last problem is that there may not be enough
training instances to train visterm distributions for some
letter bigram classes. It is desirable to estimate those prob-
abilities using a smoothing technique. More specifically, the
estimated probabilities are first normalized,

Pr(vi|qj) =
P (vi|qj)
∑

i P (vi|qj)
(22)

Pr(vi) =
∑

j

P (vi|qj)P (qj) (23)

and smoothed,

P̃r(vi|qj) = λS Pr(vi|qj) + (1− λS) Pr(vi) (24)

where λS is a parameter whose range is [0,1] and P̃r(vi|qj)
denotes smoothed probabilities. Query terms often corre-
spond to words which appear rarely in the context such
as names and places. It is quite likely that the query terms
includes letter bigrams which are also rare in the text. It
is not desirable to give a lower weight to the features
belonging to rare letter bigrams in probability estimations
because of their lower prior probabilities. To avoid this,
P (qj) is assumed to be uniformly distributed in Equation
23.

4.3 Indexing letter bigrams

The final MRF score PΛ(I|Q) uses the likelihood of the
query letter bigrams and their respective positions in the
corresponding word image. For computational efficiency,
our approach is to calculate those values only once for all
letter bigrams along with their positions in all test images
and use these values for resolving the queries instantly.
Given a text query, the letter bigram likelihood values are
simply looked up for calculating the final MRF score for
each test image. Query resolution takes 5 ms for searching
an entire book.

4.4 Fusing word image rankings

In this section we propose a general framework which
combines the image based match scores with the noisy OCR
text search scores to improve retrieval results. Ukkonen’s
well-known q-gram distance measure [34] is adopted for
this purpose. It has been previously shown to be effective
for searching OCR degraded texts [35]. In a nut-shell, the q-
gram distance approach uses the letter bigrams to represent

the input strings in the vector space. The distance between
the two words are defined by the Manhattan distance be-
tween the q-gram vectors. The resulting score is a discrete
number with a range [0, n + m], where n and m are the
number of letter bigrams in the input and test words, respec-
tively. In our case, each word bounding box is associated
with its OCR text output. The OCR output is used to rank
all the word images according to the q-gram distance score
to the query word. In this work, the “normalized q-gram
similarity score” is introduced:

Sq(x, y) = 1−
Dq(x, y)

|x|+ |y|
(25)

where |x| and |y| corresponds to the total number of letter
bigrams in the two input words respectively. The normal-
ized q-gram similarity score has a range [0, 1] and it pro-
duces a higher score if the two words are similar. It is equal
to one if the input words are identical. The normalized q-
gram similarity score is linearly combined with the image
search score:

Comb(I,Q) = λk · PΛ(I|Q) + (1− λk) · Sq(IOCR, Q) (26)

where Q is the text query, IOCR corresponds to the OCR
output for the word image I and λk is a parameter in
the range [0, 1] determined using the training and used for
combining the normalized q-gram similarity and the word
image relevance scores. The word images are finally sorted
in descending order of their combined scores Comb(I,Q).

5 EXPERIMENTS

The aim is to investigate the effectiveness of our image
search engine given a particular text query. In order to
make the evaluation more fair, we only focus on single-word
search. The OCR text search baseline is also case-sensitive.
Punctuation is ignored at all stages. For simplification pur-
poses, we do not employ any advanced query evaluation
techniques for both text and image search, such as query
expansion, stemming etc.

The proposed approach is evaluated using printed books
written in three different languages and scripts: English
(Latin script), Telugu (an Indian language) and Ottoman (a
mixture of Arabic, Persian and Turkish). English includes
a fixed set of characters which do not change their shape
based on their context in the text and is, therefore, relatively
easy to recognize and there are several high accuracy com-
mercial OCR engines available for this purpose. Telugu and
Ottoman have no commercial OCR engine available due to
their complexities as discussed in the following subsection.
For English we demonstrate that OCR text search accuracy
can be significantly improved if it is combined with the pro-
posed word image search based approach. For Telugu and
Ottoman we show that our approach is effective in searching
text in noisy document images. Detailed information about
the datasets, training the proposed model and evaluations
are given in the following subsections.

5.1 Datasets

5.1.1 The English (Latin Script) Dataset

The English experiments consist of two publicly avail-
able books printed in Latin script.“Adventures of Sherlock
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The ground truth contains locations of each connected
component in the document images along with the associ-
ated letter symbols. There are 48 integer coded ink shapes
used for annotating the connected components. The entire
dataset contains a total of 70K shape-coded characters. Line
and word boundaries are used for word annotations and
they are determined using projection profiles. The best
recognition accuracy reported for this Ottoman dataset is
93% [39]. This dataset is the most challenging one among
the others because the font type, size and document noise
vary across different articles (Figure 8).

5.2 Training

First, the visual vocabulary is trained by selecting a num-
ber of document images at random and clustering their
visual features using the Hierarchical K-means algorithm
(branching factor 64, depth 2), as described in Section 3.
Next, the visual term distributions of the letter bigram
classes are estimated. Including the space character, there
are 63 × 63 = 3969, 49 × 49 = 2401 and 27 × 27 = 729
letter (or character primitive) bigram classes are identified
for English, Ottoman and Telugu datasets, respectively.

One way to estimate the prior P (vi) and posterior
P (vi|qj) probabilities is to use scanned page images with
annotated word bounding boxes. However, it is not possible
to estimate visterm distributions for all letter bigram classes.
Only about 300 of the 4K letter bigram classes have more
than 20 occurrences in a single book. These letter bigrams
are actually sufficient to generate the majority of words
in the English language. In most cases only a few letter
bigrams might be sufficient to resolve a given query. For
example, for a query word “Holmes”, the letter bigrams
(space,H) and (s,space) are sufficient to filter out the ma-
jority of the words in the vocabulary of the whole book for
being a match. However, the more letter bigrams used for
search, the more precise the retrieval.

Another option is to estimate visual distributions using
synthetic word images. However, learning image features
from synthetic images has its own challenges. It is not
easy to model document noise and different fonts [40].
Experiments with synthetic word images using 100 different
fonts performed much worse (MAP 0.47 at best) for English
and are not discussed further.

The hyper parameters of the MRF model (such as λM , λS

and λk) are learned using grid search. In the case of English,
they are learned from another book (Sherlock Holmes, S.H.)
and applied on Wuthering Heights (W. H.). The last 50 pages
of W.H. are used for testing and the visual terms and their
distributions are trained on the rest. The training process
for English is fully automatic - using OCR output as labels.
In the case of Telugu and Ottoman there is no OCR output
available. In these cases, the annotated book is necessary
for training the model parameters, visual vocabulary and
visterm distributions. OTTO-1 and TELUGU-1716 books
are used for training all the parameters of the proposed
model. It should be noted that, the proposed approach can
search for arbitrary text in document images unlike the
word spotting approaches. Therefore all the words in the
vocabulary of the test set are used for evaluation purposes.

The overall effectiveness of the proposed approach is not
quite sensitive to the Gaussian parameter σ and therefore it

is set to 0.5 in all experiments. Yet another parameter is the
sliding interval for the Gaussian window. Smaller intervals
yield better results however processing time may get very
large. The point is to ensure that we do not skip over any
letter while sliding the window. Therefore this value is set to
0.5 times the height of the word bounding box. Assuming
that all the letters have equal width, this corresponds to
2n+ 1 window positions for n letters in a word image.

5.3 Baselines

Ukkonen’s q-gram based distance approach described in
Section 4.4 serves as a natural baseline for Latin script ex-
periments since the OCR output is available. The other base-
line is a multi-layer Bidirectional Long Short-term Mem-
ory (BLSTM) network trained with Connectionist Temporal
Classification (CTC) as described in [23], [24]. The BLSTM
baseline produces a text string for the given word images.
The BLSTMq-gram baseline uses q-gram similarity scoring
function for ranking word images. The Latin experiments
have also a third baseline (BLSTMq-gram+OCRq-gram), which
uses BLSTM and OCR text outputs to generate the final
ranked list as described in Section 4.4.

The open source TensorFlow [41] implementation is used
for training BLSTM models. The input images are first
height normalized (32 pixels) and randomly grouped into
batches of 200 images. Three columns of raw gray-scale
pixel values (32x3=96 features) are fed into the network
at each time step. Using a single or two columns of pixel
values performed worse. The momentum and learning rate
parameters are set to be 0.9 and 0.001, respectively. After
each training epoch, the batches are randomly reshuffled
and the learning rate is updated using an exponential decay
function with parameter 0.9.

A number of experiments had to be performed to find
the best network topology and training parameters. Mathew
et. al. [42] uses a BLSTM network with three hidden layers
of size 50 nodes each to recognize a variety of Indic scripts.
Qaralleh et. al. [43] demonstrates that a BLSTM model with
three hidden layers provides the best results for recognizing
Arabic script. In our case, the number of hidden layers (2,
3 and 4) and the total number nodes in each layer (30, 50
and 70) are varied for English, Ottoman and Telugu scripts
independently. The final (best) network uses three layers of
BLSTM layers with 50 units each for all scripts. After 100
training epochs, the best word recognition error rates and
corresponding epoch numbers are (7.1%,65), (84.9%,21) and
(83.8%,50) for English, Telugu and Ottoman, respectively.

It should be noted that there are a large number of shape
occurrences to be learned for Telugu and Ottoman scripts
as compared to Latin. The majority of the input words and
shape occurrences appear only once in the entire training
and test sets. Each connected component or character i) may
have varying size, ii) might be connected and/or positioned
on top of each other and iii) hand coded with an arbitrary
number of ASCII characters. Much larger manually labeled
datasets are therefore desirable for training better models.
In this work, Telugu, Ottoman and Latin training sets con-
tain 21K, 10K and 100K word images, respectively. Trained
BLSTM models performed quite poorly on the Telugu and
Ottoman test sets and are not discussed further.
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TABLE 2
MAP scores for the test book titled “Wuthering Heights”. “MRF” stands
for the proposed scoring function. “I” and “U” are short for “Intersection”

and “Union” respectively.

Search Learning λM λS λk MAP
method Model
MRF + OCRq-gram I 0.19 0.01 0.50 0.958
MRF + OCRq-gram U 0.53 0.01 0.47 0.957
BLSTMq-gram + OCRq-gram - - - 0.50 0.952
OCRq-gram - - - - 0.930
BLSTMq-gram - - - - 0.866
MRF I 0.19 0.01 - 0.854
MRF U 0.53 0.01 - 0.817
MRF I 1.0 0.01 - 0.792
MRF U 1.0 0.01 - 0.497

5.4 Evaluation

The evaluations are performed over all vocabulary words
that appear in the test collection. The query words with
one or two characters are excluded from the query test set.
These words typically correspond to function or stop words
(for ex. “in”, “at”) and are usually ignored for evaluation
purposes as they are unlikely to appear as query words.
The evaluation measure is “Mean Average Precision” (MAP)
which is computed over the entire ranked list.

Image search treats each visually distinct pattern as a
different visual class and performs the search accordingly.
The same character may have visually different forms in
another context (such as ‘A’ and ‘a’). In Arabic, characters
might have up to four different shapes based on their
position in the word. For simplification purposes, the search
task is therefore assumed to be case-sensitive. Advanced
query evaluation techniques may also be used to retrieve
different forms and/or inflections of the query word. They
are not discussed further due to space limitations.

5.4.1 English (Latin Script) Experiments

The ABBYY FineReader OCR text output and correspond-
ing word bounding boxes of the training book “Sherlock
Holmes” are used for training the model’s hyper parameters
λM , λS and λk. Two hundred query words are randomly
selected from the vocabulary of the training book to deter-
mine the parameters which maximize MAP score. Estimated
model parameters are later used for the test book.

The first 236 pages of the test book “Wuthering heights”
are used for learning the visual vocabulary and visterm
distributions for each letter bigram. The noisy OCR output
(ABBYY) of the test book is used as the ground truth for this
purpose. Estimated OCR letter bigram accuracy is 94.09%
for the test book. All the 3838 words that appear at least
once in the last 50 pages of the book are used for querying.

Table 2 shows the retrieval scores of the proposed and
baseline approaches for the test book “Wuthering Heights”.
The baseline OCR text search baseline gives a MAP score of
0.930 compared to the scores of 0.854 and 0.817 using the
Intersection and Union models respectively. When the letter
bigram positional dependencies are not used (λM = 1.0) the
scores are much lower for both the Intersection and Union
models showing that bigram order matters. Combining the
OCR text search baseline with the proposed dependence
model provides the highest retrieval scores - 0.958 and 0.957
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Fig. 9. Distribution of query words as a function of their length is given in
a). MAP score distribution as a function of the query word length is given
for b) the proposed approach (Intersection model), c) OCR text search
baseline, d) Proposed approach + OCR, e) BLSTM baseline, and, f)
(BLSTM+OCR) baselines.

respectively versus the OCR baseline of 0.93. Both the OCR
text search baseline and the combined approach provide the
same AP scores for 3220 out of 3898 test query words in
total. The combined approach provides better AP results for
573 queries out of the remaining 678 queries.

A BLSTM baseline trained with the ground truth text
provides a MAP score of 0.866. Without combining with
OCR text search, BLSTM baseline performs slightly better
than the proposed approach (0.854 MAP), which is trained
with noisy OCR output itself. When combined with OCR
text search, the proposed approach outperforms the BLSTM
baseline and provides the best results (MAP 0.958). Fur-
ther investigation shows that the BLSTM baseline tends
to combine repeating characters (“room” maps to “rom”)
or misrecognize larger individual characters with multiple
letters (“m” maps to “in” or “hn”).

In the case of English, these results demonstrate that the
noisy OCR text output can be effectively used for improving
OCR text search. Given the hyper-parameters, the training
phase is fully automated. The visual term distributions for
each letter bigram are trained from the target book itself. It
automatically captures the font characteristics and adapts to
the specifics document noise inherent in the book.

Figure 9 shows that MAP scores increase as the query
gets longer. This effect is more evident for the image search
approach. The lowest MAP scores are obtained for query
words which include only three letters. In the case of image
search, the query word “the” is commonly confused with
“there” and “therefore” since these words include all the
letter bigrams of the query word exactly in the same order.
The proposed approach only accounts for the existence and
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Fig. 12. MAP scores as a function of the patch scale factor for different
configurations of the proposed model on the Ottoman training set.

5.4.3 Ottoman Script Experiments

The Telugu and English (Latin script) experiments used
printed documents in almost entirely the same font type
and size. In these cases, fixing the size and the orientation of
the image patch across the document images is sufficient
to find visual correspondences across the word images.
However, this is not the case for the Ottoman dataset. It
includes several articles scanned from several sources and
the font varies across document images. The visual features
extracted from the same word images printed in different
font type and size do not match especially if the patch size is
fixed. Three different approaches are investigated to address
this problem. The first approach is to use the scale-invariant
SIFT keypoint detector which automatically determines the
coordinate, scale and orientation of each keypoint. The
scale-invariant nature of SIFT helps match visual features
across different scales. However, SIFT features are known
to be sensitive to certain types of document noise such as
text underlining and ink bleeding [27]. The second approach
is to use the fast-corner-detector to find the location of the
visual terms. Each word image is assigned a uniform image
patch scale relative to the height of the line it belongs to. The
patch scale of a word image is its line height multiplied with
a constant called “patch scale factor”. The third approach is
similar to the previous one except that the height of the
word bounding box is used for determining the patch scale.
The second and third approaches assume that the page skew
is corrected and the image patch orientation is set to zero.

The effectiveness of line and box height based patch scale
estimation approaches are tested on the OTTO-1 training set
by varying the patch scale factor. The model parameters λS

and λM are trained using the visual features extracted by
the scale-invariant SIFT keypoint detector. The same model
parameters are used for the other settings. The experiments
are repeated for both union and intersection learning mod-
els (Figure 12). On the training set, patch size estimation
using the box height gives the best results for both learning
models. The union model provides a slightly higher MAP
score on the training set with a patch scale factor 0.75.

The best patch scale factor is determined for each config-
uration on the training set using the MAP scores plotted in

TABLE 4
Experimental results for the Ottoman dataset (training on OTTO-1, test

on OTTO-2) for three different patch size selection approaches.

Patch Training Scale
Scale Model Dataset factor λS λM MAP

Box
Intersec.

Training 0.60 0.002 0.91 0.574
Test 0.60 0.002 0.91 0.473

Union
Training 0.75 0.005 0.99 0.590

Test 0.75 0.005 0.99 0.365

Line
Intersec.

Training 0.40 0.002 0.91 0.539
Test 0.40 0.002 0.91 0.392

Union
Training 0.35 0.005 0.99 0.552

Test 0.35 0.005 0.99 0.275

SIFT
Intersec.

Training - 0.002 0.91 0.579
Test - 0.002 0.91 0.385

Union
Training - 0.005 0.99 0.604

Test - 0.005 0.99 0.363
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Fig. 13. MAP score distribution of the best configuration on the OTTO-2
test set as a function of the query word length.

Figure 12. Estimated patch scale factors are then applied
to the test set for the corresponding configuration and
the obtained MAP scores are given in Table 4. The MRF
model parameters are estimated using the scale-invariant
SIFT features and the same parameters are used for testing
the configurations as well. The best test configuration uses
the box scale approach coupled with the intersection model
and provides a MAP score of 0.473 followed by using the
intersection model with the line scale approach (MAP 0.392).
Note that the union model does better on the training set but
the intersection model does better on the test set.

The results in Table 4 indicate that the best values λS

is small as in the case of the Telugu experiments. This
implies that smoothing is not of much help even though
the number of training instances is not large (<10K labeled
word images). The estimated values for the λM are 0.99
and 0.91 for the union and intersection models respectively.
This indicates that the existence of letter bigrams is more
important than their relative positions. Further analysis
indicate that some of the basic shapes used for annotating
the script are quite small. Some of them simply correspond
to simple loops and pieces of ink which might be a part
of many different characters in the alphabet. The width of a
shape might be as small as 5-10% of the line height. It should
be noted the sliding interval for the Gaussian window is set
to 0.5 times the bounding box height in all experiments for
simplification purposes. Estimation of the exact position of
shape code pairs is therefore not quite reliable compared to
Telugu and English. Smaller values for the sliding window
interval are expected to give better localization performance
with additional computational cost.

Figure 13 shows the distribution of MAP scores as a
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