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ABSTRACT
Corpus-based set expansion refers to mining “sibling” entities of
some given seed entities from a corpus. Previous works are limited
to using either textual context matching or semantic matching
to fulfill this task. Neither matching method takes full advantage
of the rich information in free text. We present CaSE, an efficient
unsupervised corpus-based set expansion framework that leverages
lexical features as well as distributed representations of entities for
the set expansion task. Experiments show that CaSE outperforms
state-of-the-art set expansion algorithms in terms of expansion
accuracy.
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1 INTRODUCTION
Corpus-based set expansion – i.e., finding in a given corpus the
complete set of entities that belong to the same semantic class
of a few seed entities – is a critical task in information retrieval
and knowledge discovery. For example, given the input seed set
{Massachusetts, Virginia, Washington}, a set expansion method is ex-
pected to output all other states in the United States. Set expansion
is broadly useful for a number of downstream applications, such as
question answering [14, 23], taxonomy construction [19], relation
extraction [9], and query suggestion [1].

Most corpus-based approaches [5, 12, 15–18] are based on the
assumption of distributional similarity [6], which, in the context of
set expansion, can be understood on two levels: (1) contexts are in
textual form so that expanded sets can be explained by reversing
the process; and, (2) contexts are features of a latent model (e.g.,
Word2Vec [13] and BERT [4]) to generate distributed representa-
tions of entities. Each dimension of an embedding vector represents
an unknown latent concept. Either perspective can be adopted to
fulfill the task, though they both have limits. The former transforms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331359

the task of finding sibling entities to finding optimal textual pat-
terns. For an entity to be considered a candidate, it has to meet the
“hard match” condition: sharing at least one textual pattern with at
least one seed. Thus, many target entities end up with low relevance
scores especially on smaller corpora. On the other side, distributed
representations of entities do not require exact matching of textual
patterns because they are calculated according to terms within a
certain window, regardless of term arrangement. Therefore, not
only sibling entities, but also other semantically related entities,
such as twin or parent entities, are included in the final result.

Different from prior methods which explored either side of
the distributional hypothesis, we propose CaSE (Corpus-based Set
Expansion) framework that combines the two distributional simi-
larity approaches. CaSE constructs a pool of candidate entities with
lexical features and improves the ranking scores of target entities
using the similarity of distributed representations with regard to
user input. Among the two major approaches in corpus-based set
expansion, CaSE is categorized as a one-time entity ranking method.
Compared to iterative pattern-based bootstrapping, it is much more
efficient at query time and is capable of avoiding semantic drift. In
addition, unlike many other corpus-based set expansion techniques
[7, 16, 18], CaSE does not rely on prior knowledge of relations
among entities (e.g., web lists, knowledge bases) to work well. This
is crucial because such external resources might not be available
for certain languages or domains.

The major contributions of this paper are: (1) we propose the
CaSE framework, which combines lexical context matching and
distributed representations for set expansion; and, (2) our analy-
sis discovers that inclusion relation between the entity sets and
discrimination power of entity contexts can affect set expansion
performance. The implementation and evaluation dataset described
here are publicly available1.

2 RELATEDWORK
Web-based Set Expansion:Web-basedmethods – includingGoogle
Sets [22], SEAL [23] and Lyretail [2] – submit queries consisting of
seed entities to search engines and analyze the retrieved documents.
The assumption that top-ranked webpages cover other entities in
the same semantic class is not always true. Also, extracting data
from online platforms can be time-consuming at query time. There-
fore, most recent studies are proposed in an offline setting.

Corpus-based Set Expansion: Thelen and Riloff [21] described
using certain contextual patterns to tag words with limited coarse-
grained types. Roark and Charniak [15] first introduced a general
set expansion solution based on co-occurrence of entities. Later,

1https://github.com/PxYu/entity-expansion
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methods that definemembership functions based on co-occurrences
of entities with contexts were proposed [5, 17]. Instead of text
corpora, SEISA [7] uses offline query logs and web lists, and does
set expansion with an iterative similarity aggregation function.
EgoSet [16] constructs clusters of entities using textual patterns
and user-generated ontology respectively, and outputs clusters after
refinement.

The most recent and comparable methods to our approach are
SetExpan [18] and SetExpander [12]. Besides selecting contexts
based on distributional similarity, SetExpan also leverages coarse-
grained types fromWikipedia as features. SetExpan proposed reset-
ting the context pool before each iteration to address the “semantic
drift” problem, which turned out to be unsolved since false entities
persist in later iterations. In addition, SetExpan takes hundreds of
seconds per issued query, making it difficult to use with applica-
tions which involve user interaction. SetExpander takes the second
perspective of distributional similarity, and generates variants of
distributed representations from different patterns. Similarity scores
of each candidate computed per representation with seed entities
are treated as features, based on which an MLP binary classifier
decides whether a candidate should be in the expanded set. Besides
the limitation of solely using distributed representations, patterns
such as explicit lists [17] cover only a small portion of entities.

3 METHODOLOGY
Intuitively, CaSE expands input seed entities by semantically related
entities that frequently share important contexts with seeds. The
first step is to extract features from the contexts of seed entities in
the corpus. Different features can be extracted from contexts of en-
tities. Potential features for entity e0 in sentence “w−2w−1e0w1w2”
include unigrams (w1), n-grams (w1w2), and skip-grams (w−1_w1).
Skip-grams impose strong positional constraints [16], reducing the
risk of finding relevant concepts rather than true sibling entities.
The other alternative is to directly use predefined patterns, e.g.,
“such as e0, e1 and e2”, for set expansion. However, Shi et al. [20]
showed that for large corpora, the construction of syntactic con-
texts has better accuracy and introduces less noise compared to
pattern based methods. Therefore, we extract skip-gram features
from entity contexts.

Some preprocessing steps are performed on the text corpus to
improve run-time efficiency. First, we extract the set of entities
E = {ei | i = 1, 2, · · · ,N } in the given text corpus. We then con-
sider a window of size 4 around each entity mention in the corpus
and extract four skip-grams [−3, 0], [−2, 1], [−1, 2], and [0, 3]where
[−x ,y] means keeping x words before and y words after the en-
tity mention. This setting allows more matchings and thus creates
candidate pool with higher recall. Let Σi = {σi j | j = 1, 2, · · · ,Mi }
denote the extracted skip-grams for ei . Then, the set of all skip-
grams in the corpus is Σ =

⋃N
i=1 Σi . Based on these, we create a

frequency matrix ΦN×M = {ϕi j | i = 1, 2, . . . ,N ; j = 1, 2, . . . ,M},
where N = |E |, M = |Σ |, and cell value ϕi j is the number of co-
occurrences of entity i with skip-gram j.

We also acquire a distributed representation for each entity either
by training on the local corpus or using pre-trained representations.
Each entity ei is thus represented as a D dimensional embedding
ψi · in matrix ΨN×D = {ψik | i = 1, 2, . . . ,N ; k = 1, 2, . . . ,D}.

3.1 Context Feature Selection
At query time, we first build the set of candidate entities. Suppose
the set of seeds S = {sq | q = 1, 2, . . . ,L} is a subset of E, then the
union of the skip-grams of seed entities, Σs , is a subset of Σ. For
a particular query, we derive a sub-matrix Φs from Φ by column
projection; columns of Φs are the context features of seeds, Σs , and
the rows represent all entities that share at least one context with
at least one seed. These entities are considered as candidate entities
for expansion.

We use Φs to quantitatively measure the correlation between
seeds and skip-grams. First, we compute cqj as the co-occurrences
of seed entity sq with skip-gram σj over the total occurrences of
σj in the corpus. Then, the c-weight for skip-gram σj given the
current query is defined as:

c j =
L∑

q=1
cqj =

L∑
q=1

ϕqj∑N
i=1 ϕi j

. (1)

This weight shows the quality of skip-grams, in that the higher the
c-weight, the more relevant the skip-gram is to the seeds. Since
candidate entities are obtained by selecting entities that share skip-
grams with seed entities, weighting skip-grams of seed entities can
be used to rank candidate entities.

3.2 Entity Search via Semantic Representation
We use semantic similarity between seed and candidate entities to
further evaluate candidate entities. In preprocessing steps, we ac-
quire a D dimensional word embedding matrix Ψ. The comparison
between a seed entity and a candidate entity is equivalent to com-
puting the cosine similarity of two corresponding rows. Denoting
the cosine similarity of seed entity sq and candidate entity ei as
cos(ei , sq ), the relatedness of ei to all seeds is

ϵi =
1
L

L∑
q=1

h(cos(ei , sq )), (2)

where L is the length of the query and h(·) is an increasing and
strictly positive function. The intuition behind h(·) is that the math-
ematical difference between cos(a,x) = 0.9 and cos(a,y) = 0.8 is
not a sufficient description of the semantic difference between x
and y. Finally, The score of entity ei with skip-gram σj , denoted
by ρi j , comprises three parts: the c-weight of σj , the semantic
similarity with seeds of ei , and the smoothed frequency of entity
skip-gram co-occurrences. Formally, ρi j = c j · ϵi · д(ϕi j ), where
д(·) is a concave function. Because an entity could associate with
multiple skip-grams, the final score of ei is the summation over all
possible skip-grams.

ρi =
∑
j
ρi j =

(
1
L

∑
q

h(cos(ei , sq ))
)∑

j

(∑
q

cqj

)
д(ϕi j ) (3)

We compute ρi for each entity in the candidate pool. The set ex-
pansion result is the set of entities with top x highest scores, where
x is a predefined cutoff.
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4 EXPERIMENTS
4.1 Compared Methods
• Word2Vec [13]: We trained word embedding on our corpus using
skip-gram Word2Vec model, where window size and number of
iterations are set to 6 and 15, respectively.We then use embedding
vectors of entities to retrieve the K nearest neighbors of seed
entities as the expansion result.

• BERT [4]: BERT is an empirically powerful embedding model for
several NLP tasks. We use a pre-trained BERT model (uncased,
Large, 1,024 dimensions) to generate embeddings for all entities
and perform KNN ranker similar to Word2Vec baseline.

• SetExpander [12]: We perform preprocessing, training and infer-
ence in the default setting on evaluation corpora. Implementation
is distributed under Intel’s NLP Architect Framework 2.

• SetExpan [18]: We run SetExpan in its default settings with pre-
processing steps identical to CaSE.

• CaSE: The unsupervised set expansion framework we proposed.
Functionsh(·) andд(·) in ourmodel are set to power and root func-
tions as h(cos(ei , sq )) = cos(ei , sq )7, and д(ϕi j ) =

√
ϕi j . There

are three variations of CaSE:
– CaSE-mdr: A simpler version of CaSE without distributional
embeddings of entities, i.e., ρi j = c j · д(ϕi j ).

– CaSE-BERT: CaSEmodel where distributed representations are
acquired from a pre-trained BERT model.

– CaSE-W2V: CaSE model where distributed representations are
acquired from a locally trained Word2Vec model.

4.2 Experimental Setup
Datasets and Preprocessing: We use three corpora to evaluate
CaSE. (1) AP89 is a collection of 84,678 news reports published by
Associated Press in 1989. (2)WaPo is the TREC Washington Post
Corpus which contains 608,180 news articles and blog posts from
Jan. 2012 to Aug. 2017. (3)Wiki is a subset of EnglishWikipedia data
dump from Oct. 2013, containing 463,819 Wikipedia entries. Con-
sistent with prior work [18], we primarily use a data-driven phrase
mining tool AutoPhrase [11] to obtain entity mentions. We adopt
the entity mention list fromWord2Phrase (part of theWord2Vec [13]
Toolkit) as a trivial filter to improve precision. To reduce noise in
the larger WaPo and Wiki corpora, four or fewer occurrences of
entities in skip-grams are ignored, i.e., cells inΦwith values ϕi j < 5
are set to 0.

Constructing queries:We build a collection of 62 semantic sets
for evaluating set expansion algorithms as the selected combination
of MRSCs [16], INEX-XER sets [3], SemSearch sets [10], and 12
additional sets from web resources [8]. To evaluate the sensitivity
of our algorithm to the number of seed entities, we build queries
with length ranging from 2 to 5. For each set consisting of n entities,
we build min

(
100, nCm

)
queries withm random seeds.

EvaluationMetrics: Set expansion algorithms retrieve a ranked
list of entities in response to a query. We evaluate the top 100 re-
trieved entities for each query by all methods described in Sec-
tion 4.1, except the SetExpan method where all retrieved entities
after 10 iterations are evaluated. Mean Average Precision (MAP)
is calculated for different queries with the same length across all

2http://nlp_architect.nervanasys.com/term_set_expansion.html
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Figure 1: Set-wise MAP of SetExpander, SetExpan and
CaSE-W2V running 2-seed queries on Wiki corpus. Sets are
ordered by MAP of CaSE-W2V decreasing.

Figure 2: MAP of all compared methods on Wiki.

evaluation sets. Statistical significant tests are performed using the
two-tailed paired t-test at the 0.05 level.

4.3 Results and Discussion
Table 1 summarizes the overall performance of different methods
for queries with different lengths on three corpora. The results
indicate that the best variation of CaSE is CaSE-W2V, which shows
robust improvements upon baselines on all corpora for queries
of different length (Table 1 and Figure 2). In set-wise comparison,
CaSE-W2V outperforms SetExpan and SetExpander with few ex-
ceptions (Figure 1) where entities hardly share skip-grams.

Robustness against input length: Intuitively, one might ex-
pect better performance given longer queries. SetExpan removes
sub-optimal contexts in feature selection, thus showing the ex-
pected trend. Embeddings based methods demonstrate contrary
behaviors, mainly because more seeds introduce more twin entities
at top. CaSE does not remove features but weights them, and further
weights entities with distributed similarity. As Table 1 shows, CaSE
performs well even with few seeds, and improves slowly as the
number of seeds increases.

Gap among evaluation sets: Figure 1 shows that some seman-
tic sets are easier to expand than others. This result partially con-
firms earlier work showing that the performance of set expan-
sion models improves as the frequencies of candidate entities in-
crease [17]. To specifically show the correlation between entity
frequencies and performance of set expansion, we define a compos-
ite property for each setT . For each entity ei inT , we first calculate
the average of number of entities that occur in each skip-gram asso-
ciated with entity ei , which is denoted byki . A higherk valuemeans
the entity occurs in general contexts shared by more entities. Then,



SIGIR ’19, July 21–25, 2019, Paris, France Puxuan Yu, Zhiqi Huang, Razieh Rahimi, and James Allan

Table 1: Retrieval accuracy (MAP) across all evaluation queries of all compared methods on different corpora. ▲: statistically
significant (95% confidence interval) improvement compared to SetExpan, the strongest baseline.

AP89 WaPo Wiki

#seeds 2 3 4 5 2 3 4 5 2 3 4 5

Word2Vec 0.032 0.030 0.027 0.027 0.046 0.041 0.037 0.035 0.082 0.075 0.071 0.066
BERT 0.103 0.094 0.091 0.087 0.078 0.072 0.063 0.061 0.062 0.058 0.055 0.050
SetExpander 0.058 0.067 0.073 0.076 0.046 0.054 0.060 0.065 0.070 0.079 0.082 0.086
SetExpan 0.095 0.103 0.111 0.117 0.083 0.094 0.103 0.111 0.106 0.119 0.126 0.131

CaSE-mdr 0.117▲ 0.117▲ 0.118 0.117 0.095▲ 0.089 0.088 0.089 0.161▲ 0.161▲ 0.158▲ 0.155▲
CaSE-BERT 0.132▲ 0.133▲ 0.136▲ 0.136▲ 0.112▲ 0.109▲ 0.109 0.108 0.179▲ 0.183▲ 0.182▲ 0.180▲
CaSE-W2V 0.161▲ 0.170▲ 0.171▲ 0.173▲ 0.140▲ 0.141▲ 0.143▲ 0.145▲ 0.236▲ 0.249▲ 0.252▲ 0.253▲
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Figure 3: Relations between composite property K and set-
wise MAP of CaSE-W2V on Wiki corpus.

the composite property of the set is defined as K = [ki/
∑M
j=1 ϕi j ],

where
∑M
j=1 ϕi j is the frequency of ei in the corpus. Figure 3 shows

the correlation between the defined metric K and set-wise MAP
performance of different sets using our proposed model. Intuitively,
lower MAP is expected for sets with higher K . Therefore, we fit
an exponentially decreasing function to points in the diagram of
Figure 3. There exists some outlier sets whose MAP performance is
low even with low K values. Investigating outlier sets, we discover
that these sets are conceptually subsets of some supersets, e.g., set
“allies of World War II” is a subset of set “all countries in the world”.
The reason why outliers under-achieve in terms of MAP is that it
is difficult for set expansion models to disambiguate more specific
concepts from contexts unless directed to correct knowledge.

5 CONCLUSION AND FUTURE WORK
We present an unsupervised corpus-based set expansion framework,
CaSE. We show that weighting entities directly with distributed em-
beddings and indirectly via lexical features significantly improves
expansion accuracy of set expansion. In the future, we plan to im-
prove CaSE’s performance on less frequent sets by narrowing the
scope of input, similar to a QA system.
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