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ABSTRACT
Intelligent assistants change the way people interact with comput-
ers and make it possible for people to search for products through
conversations when they have purchase needs. During the interac-
tions, the system could ask questions on certain aspects of the ideal
products to clarify the users’ needs. For example, previous work
proposed to ask users the exact characteristics of their ideal items
[26, 38] before showing results. However, users may not have clear
ideas about what an ideal item looks like, especially when they have
not seen any item. So it is more feasible to facilitate the conversa-
tional search by showing example items and asking for feedback
instead. In addition, when the users provide negative feedback for
the presented items, it is easier to collect their detailed feedback
on certain properties (aspect-value pairs) of the non-relevant items.
By breaking down the item-level negative feedback to fine-grained
feedback on aspect-value pairs, more information is available to
help clarify users’ intents. So in this paper, we propose a conversa-
tional paradigm for product search driven by non-relevant items,
based on which fine-grained feedback is collected and utilized to
show better results in the next iteration. We then propose an aspect-
value likelihood model to incorporate both positive and negative
feedback on fine-grained aspect-value pairs of the non-relevant
items. Experimental results show that our model is significantly
better than state-of-the-art product search baselines without using
feedback and those baselines using item-level negative feedback.

KEYWORDS
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1 INTRODUCTION
People search and browse the products in E-commerce platforms
such as Amazon when they have purchase needs. Conventional
product search engines return items to users according to their ini-
tial queries and do not dynamically interact with users to learnmore
about their preferences. As a result, users need to browse many
products, rewrite their queries to specify their needs, or use filters
on facets to narrow down results. Intelligent assistants such as
Google Now, Apple Siri or Microsoft Cortana provide new interac-
tionmodes between human and systems, i.e., through conversations.
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In this way, it becomes possible for an intelligent shopping assistant
to actively communicate with users to clarify their intents, dynam-
ically refine the ranking, and guide the users to find the items they
like. An effective intelligent shopping assistant will improve users’
search experience substantially and save users much effort spent
browsing and filtering to find the ideal items. Thus, in this paper,
we focus on the essential part of building an intelligent shopping
assistant, constructing an effective conversational product search
system.

To clarify users’ shopping intents during interactions, the search
system could explicitly ask the users what characteristics they
would like the items to have, as proposed in Sun and Zhang [26],
Zhang et al. [38]. For example, when a user expresses the purchase
need “a mobile phone”, the assistant asks the user what brand she
likes or what kind of screen she prefers. With the collected user
responses on some aspects of the items, the assistant knows the
explicit preferences of the user and refines the ranking to promote
relevant items to the top.

However, previous work has limitations since users do not al-
ways know their exact ideal products when they are shopping,
especially before they have seen some examples. In contrast, when
they are shown an item, they usually know whether they like the
item or not. If the item is not good for them, they can tell which
aspects they are not satisfied with. For instance, when a user who
aims to find a mobile phone but do not have preferences on the
brand, it is easier for her to answer “Do you want a curved screen?”
after showing her a phone with curved screen than “Which kind of
screen do you like?” at the very beginning. So we propose a new
paradigm for conversational product search motivated by negative
feedback. To be specific, after the user’s initial request, several items
are shown to the user. If she is not satisfied with the items, her de-
tailed preferences on aspect-value pairs (such as “brand-Samsung”,
“screen-curved” and“battery-removable”) of the items are gathered.
Then based on the fine-grained feedback on the non-relevant re-
sults, the remaining items are re-ranked in the next iteration. This
process proceeds until the user finally find the “right” product
(shown in Figure 1).

Compared with positive feedback, negative feedback is more
challenging since relevant results usually have similar characteris-
tics while the reason for a result to be non-relevant could be varied.
Previous work on negative feedback [10, 31, 32] mainly focuses on
document retrieval. They extract negative topic models from the
non-relevant documents and demote the results with high simi-
larities to the negative topic models during re-ranking. However,
result-level negative feedback is not very informative especially
when there are only a few non-relevant results available. In con-
trast, by collecting fine-grained positive or negative feedback on
aspect-value pairs of the non-relevant results, more information can
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Figure 1: A workflow of conversational search system based
on negative feedback.

be used as the basis for re-ranking and lead to better performance.
Thus, the primary focus of this paper is to effectively incorporate
feedback on aspect-value pairs with the ranking model.

Inspired by the idea of the query likelihood model [19] which
predicts the probability of a query given the document, we pro-
pose an aspect-value likelihood model for negative feedback, which
predicts the probability of an aspect-value pair being positive or
negative and combines it with the original ranking model without
using feedback. Specifically, the aspect-value generation model is
decomposed to an aspect generation model given an item and a
value generation model given the item and aspect. Then a multivari-
ate Bernoulli (MB) distribution is assumed for the aspect generation
model, and two independent MB distributions are assumed to model
the probabilities of positive and negative values respectively given
the associated items and aspects. In this way, the negative feedback
on an aspect-value pair can be incorporated similarly to positive
feedback with a second group of embeddings learned for its mul-
tivariate Bernoulli model. Our model shows significantly better
performance compared with baselines of both item-level negative
feedback methods and state-of-the-art neural ranking models for
product search without using feedback. We also show the effective-
ness of each part of our model through ablation study in 5.2.

2 RELATEDWORK
Three lines of research are related to our work: conversational
search and recommendation, product search, and negative feedback
in information retrieval.

Conversational Search & Recommendation. The concepts
of conversational search were proposed in some earliest work in in-
formation retrieval. Croft and Thompson [5] designed an intelligent
intermediary for information retrieval, named as I3R, which com-
municates with users during a search session and reacts based on
the goals stated by users and their evaluation of the system output.
Belkin et al. [2] built an interactive information retrieval system,
MERIT, that used script-based information-seeking dialogues as
interaction for effective search.

With the emerging of various intelligent conversational assis-
tants in recent years, task-based conversations based on natural
dialogues have drawn much attention. Radlinski and Craswell [21]
proposed a theoretical framework with some basic philosophies
for conversational information retrieval. Kenter and de Rijke [12]

considered building the representation of conversations as the pro-
cess of machine reading, based on which answers are retrieved.
Information-seeking conversations have been collected in [20, 27]
and user studies on the collected conversations are conducted to in-
form the design of a conversational search system [20, 27, 28]. Yang
et al. [34] studied next question prediction [35] and incorporated
external knowledge for response ranking in information-seeking
conversations. Mcginty and Smyth [15] leveraged preference and
rating based feedback in a conversational recommender system
and emphasize product diversity rather than similarity to conduct
effective recommendation. Christakopoulou et al. [4] developed a
framework to identify which questions to ask in order to quickly
learn user preferences and refine the recommendations during the
conversations. Zhang et al. [38] proposed a paradigm for conversa-
tional product search, where the system asks users their preferred
values of an aspect, shows results when it is confident, and adopts
a memory network to ask questions and retrieving results. Sun and
Zhang [26] proposed a recommendation system based on a simi-
lar paradigm, which also collects users’ preferred values for given
aspects and uses a reinforcement learning framework to choose
actions from asking for the values or making recommendations by
optimizing a per-session utility function.

Our research is different from previous work in that 1) instead
of retrieving answers, we focus on product-seeking conversations;
2) in the work where the system also asks users their preferences,
they either ask for result-level preference or the explicit values the
users prefer for an aspect. In contrast, our system just asks for the
users’ fine-grained relevance feedback on a given aspect-value pair,
which is much easier for users to answer.

Product Search. Compared with text retrieval, product search
has different characteristics, e.g., product information is more struc-
tured and user purchases can be used as labeled data for training and
testing. Considerable work has been done based on facets such as
brands and categories [13, 30]. However, free-form user queries are
difficult to structure. To support search based on keyword queries,
Duan et al. [7, 8] extended the query likelihood [19] method by as-
suming that queries are generated from a mixture of two language
models, one of the background corpus, the other of products condi-
tioned on their specifications. This approach still cannot solve the
vocabulary mismatch problem between user queries and product
descriptions or reviews. Van Gysel et al. [29] introduce a latent vec-
tor space model to alleviate this problem, which learns the vectors
of words and products by predicting the products with n-grams in
their descriptions and reviews and then matches queries and prod-
ucts in the semantic space. Later, Ai et al. [1] noticed that product
search can be personalized and proposed a hierarchical embedding
model based on product reviews for personalized product search.

There is also research on other factors such as visual preferences,
diversity, and labels for training in product search. Di et al. [6]
and Guo et al. [9] showed the effectiveness of utilizing images for
product search. Parikh and Sundaresan [17], Yu et al. [36] tried to
improve product diversity in order to satisfy different user intents
behind the same query. Wu et al. [33] jointly modeled clicks and
purchases in a learning-to-rank framework in order to optimize the
gross merchandise volume. Karmaker Santu et al. [11] compared
the performance of leveraging click-rate, add-to-cart ratios, order
rates as labels for training.
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Most work in this line treats product search as a static process,
where one-shot ranking is performed based on a user query. In
contrast, we focus on a dynamic ranking problem where ranking
in the next iteration of the conversation will be refined based on
users’ fine-grained feedback on the non-relevant items.

Negative Feedback. Next, we review methods that retrieve
relevant results based only on known non-relevant ones. It is not our
focus to use non-relevant results as a complement to relevant ones
for identifying extra relevant results. Previous studies on negative
feedback alone mainly focused on document retrieval for difficult
queries. Wang et al. [31] proposed to extract a negative topic model
from non-relevant documents by assuming that they are generated
from the mixture of the topic model of the background corpus and
the negative topic model. Rocchio [23] is a feedback method that
considers both positive and negative feedback in the framework
of the vector space model. It can also be used in the scenarios
where only negative feedback is available. Wang et al. [32] studied
negative feedback methods based on the language model and vector
space model. Later, Karimzadehgan and Zhai [10] further improved
the performance of negative feedback by building a more general
negative topic model. Peltonen et al. [18] introduced a novel search
interface, where keyword features of the non-relevant results are
provided to users, and they are asked for feedback on the keywords.
Then a probabilistic user intent model is estimated to refine re-
ranking. In addition, Zagheli et al. [37] also proposed a language
model based method to avoid suggesting results similar to the
document users dislike for text recommendation.

Most previous work on negative feedback only uses result-level
non-relevant information except [18], which further acquires keyword-
level feedback on non-relevant results. Although we also ask users
for feedback on finer-grained information, we leverage aspect-value
pairs of non-relevant results and focus on product search.

3 ASPECT-VALUE LIKELIHOOD EMBEDDING
MODEL FOR NEGATIVE FEEDBACK

There are two major modules in our system to conduct product
search through conversations with users: selecting aspect-value
pairs to ask for feedback and ranking based on the fine-grained
feedback. For the aspect-value pair selection, we adopt heuristic
strategies, i.e., selecting several random pairs, or pairs mentioned
most in the reviews of the non-relevant items, and leave the investi-
gation of other potentially better methods as future work. Then we
focus on the ranking model that leverages feedback on aspect-value
pairs. We propose an aspect-value likelihood embedding model
(AVLEM) which can rank items both with and without feedback.
The overall structure of AVLEM is shown in Figure 2.

We first introduce the problem formalization for our task in 3.1.
Then we introduce the components of our model in the following
subsections.

3.1 Problem Formalization
A conversation is initiated with a queryQ0 issued by a useru. In the
k-th iteration, a batch of results Dk are retrieved and shown to the
user. When Dk does not satisfy the user need, from all the shown
non-relevant results, D1 ∪D2 · · · ∪Dk , denoted as D1:k , the system
extracts a set of aspect-value pairs, namely, AV (D1:k ). Then the

system selectsm aspect-value pairs {(ak, j ,vk, j ) |1 ≤ j ≤ m} from
AV (D1:k ) and asksm corresponding questions {Q (ak, j ,vk, j ) |1 ≤
j ≤ m} to the user about whether she likes the aspect-value pairs
of the non-relevant results. After collecting the user’s feedback to
Q (ak, j ,vk, j ), denoted as I (ak, j ,vk, j ), in the k+1-th iteration, the
goal of the system is to show a list of results Dk+1, which ranks the
finally purchased item i on the top. The sequence of actions in the
conversation can be represented with

u → Q0; D1,Q1,1, I1,1, · · · ,Q1,m , I1,m ; · · · ;
Dk ,Qk,1, Ik,1, · · · ,Qk,m , Ik,m → i

where Qk, j and Ik, j denote Q (ak, j ,vk, j ) and I (ak, j ,vk, j ) respec-
tively. Qk, j is a yes-no question and Ik, j can be 1 or −1 to indicate
that the answer is yes or no to the question. In addition, reviews of
u and i are available to facilitate the ranking, denoted as Ru and Ri
respectively.

In this paper, we focus on the scenario where only one result
is retrieved during each iteration, namely |Dk | = 1. However, the
method we propose can cope with general cases with more than
one result retrieved in each iteration.

3.2 Item Generation Model
We construct an item generation model to capture the purchase
relationship between items and their associated users and queries.
Similar to [1], an item i is generated from a user u and her initial
request queryQ0. The probability can be computedwith the softmax
function on their embeddings:

P (i |u,Q0) =
exp
(
i ·
(
λQ0 + (1 − λ)u

))
∑
i′∈Si exp

(
i′ ·
(
λQ0 + (1 − λ)u

)) (1)

where Si is the set of all the items in the collection, λ is the weight
of the query in the linear combination. The representations of Q0,
u and i will be introduced next.

3.3 Query Representation
In order to generalize the representations to unseen queries, we
use the embedding of query words as input and adopt a non-linear
projection of the average word embeddings as the representation
of a query:

Q0 = f ({wq |wq ∈ Q0}) = tanh(W ·
∑
wq ∈Q0 wq

|Q0 |
+ b) (2)

whereW ∈ Rd×d andb ∈ Rd when the size of embeddings isd , |Q0 |
is the length of query Q0. This method has been shown to be more
effective in [1] compared with using average embeddings of words
and a recurrent neural network to encode the word embedding
sequence in the query for product search.

3.4 User/Item Language Model
To alleviate the potential vocabulary mismatch between queries and
items, we also adopt the user/item language model in [1] to learn
the representation of users and items by constructing language
models from their associated reviews. Words in the reviews are
assumed to be generated from a multinomial distribution of a user
or an item. Take useru for example, given its embedding u (u ∈ Rd )
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Figure 2: Our aspect-value likelihood embedding model
(AVLEM). The solid and dotted arrows represent the genera-
tion from amultinomial and amultivariate Bernoulli distri-
bution respectively. The shaded and blank background rep-
resent occurrence and nonoccurrence of the target. v+ and
v− denote positive and negative values.

and the embedding of a word w, w(w ∈ Rd ), the probability ofw
being generated from the language model of u is defined with a
softmax function on w and u:

P (w |u) =
exp(w · u)∑

w ′∈Sw exp(w′ · u) (3)

where Sw is the vocabulary of words in the reviews from the corpus.
Similarly, the language model for item i is represented with p (w |i ),
which is the softmax over w and i. Words are assumed to be gener-
ated from the language models of user and items independently.

3.5 Aspect-Value Generation Model
We propose an aspect-value generation model, which can be fur-
ther decomposed to aspect generation given an item and value
generation given an aspect and an item. Both positive and negative
feedback on aspect-value pairs are incorporated into the model. We
first show the assumptions of multivariate Bernoulli distributions
for generating aspects and values. Then we show how we con-
struct aspect-value embeddings and learn them in the aspect-value
generation model.

Multivariate Bernoulli (MB) Assumption for Aspects. We
propose a multivariate Bernoulli model for aspect generation. Given
a purchased item, aspects of the item are assumed to be generated
from na independent Bernoulli trials of na aspects, where na is
the total number of available aspects and each aspect may have a
different probability of appearing in the item’s associated aspects.
The associated aspects can be any reasonable aspect of the item,
e.g., aspects collected from the item’s meta-data or reviews. An-
other possible assumption is the multinomial distribution, which
is commonly used to model the documents being generated from
words in the vocabulary, such as in the query likelihood model [19].
However, this assumption is not appropriate for aspect generation
because aspects are not exclusive and the probabilities of all the
aspects generated from one item are not necessarily summed to 1.
For example, for an item, “style”, “appearance”, and “material” are
not mutually exclusive. The higher probability of “style” should
not lead to the lower probability of “appearance” or “material”. So
the MB model is more reasonable by considering these aspects
generated independently during their own Bernoulli trial.

Multivariate Bernoulli Assumption for Values. Similar to
aspect generation, the values of an item’s aspect are also assumed
to be generated from a MB distribution instead of a multinomial
distribution. The property that probabilities of all the values given
an item’s aspect are summed to 1 is not suitable, especially for values
with negative feedback. For example, the aspect, “battery life”, of
an item can be “short” or “terrible”, and a user shows that she does
not want the battery life to be short. Minimizing the probability of
her ideal item’s “battery life” to be “short” in a multinomial model
may lead to a higher probability of “terrible”.

Instead of modeling the generation of values with one MB distri-
bution, we propose two independent MB models for the generation
of values in positive and negative feedback respectively. Positive
values are assumed to be generated from nv independent trials of
nv values and each value has its own probability of appearing in
positive values. Negative values are assumed to be generated from
a similar process based on its own MB model. This approach is
more reasonable because values without positive feedback are not
necessarily disliked by a user and values on which the user has
not provided negative feedback are not necessarily liked. A value
could be valid for the item’s aspect but does not receive positive or
negative feedback since the system has not asked for feedback on
this value, or the user has vague opinions towards the value. Our
experiments also show better performance of having a separate MB
model for negative values compared with using one MB model for
both positive and negative values in Section 5.2.

Aspect and Value Embeddings. Words contained in the as-
pects and values are also in the vocabulary of words in reviews.
Since these words represent the characteristics of items, different
from words in the reviews that are generated from the item lan-
guage model, we keep separate embedding lookup tables for the
words in the vocabulary of aspects and values to differentiate the
properties of same words in the aspect-value pairs or item reviews.

Aspects of an item can be of multiple words, such as“battery life”
and “touch screen”, so we also adopt Equation 2 and compute the
embedding of an aspect a as a = f ({wa |wa ∈ a}). Positive values
and negative values have two separate groups of embeddings, so
that values have different representations in the MB models for
positive and negative values. Since values usually consist of one
word, such as “long”, “big”, “clear”, and “responsive”, the embedding
of a value v is just its word embedding, i.e., v+ for v in the positive
values, and v− for v in the negative values. Note that these two
embeddings are different from the representation of v as a word in
the reviews, and values with more than one word were removed
from the corpus.

Aspect-Value Probability Estimation. Next, we show how to
estimate the probabilities in the multivariate Bernoulli models of
aspects and values. Given the embedding representation of items,
aspects and values, the probability of aspect a occurring in the
reviews given an item i is

P (a ∈ A(i ) |i ) = δ (a · i) (4)

where A(i ) is the set of aspects of i , and δ is the sigmoid function
δ (x ) = 1

1+e−x ; the probability that value v occurs in the positive
value set of item i’s aspecta, i.e., {v |I (a,v ) = 1}, denoted byV + (i,a),
is

P (v ∈ V + (i,a) |i,a) = δ (v+ · (i + a)) (5)
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where v+ is the embedding of v as a positive value. Then the prob-
ability that an aspect-value pair (a,v ) appears in users’ positive
feedback given an item i can be computed as:

P (I (a,v ) = 1|i ) = P (v ∈ V + (i,a) |i,a)P (a ∈ A(i ) |i )

= δ (v+ · (i + a)) · δ (a · i)
(6)

Similarly, the probability that (a,v ) occurs in the negative feedback
in a conversation that leads to purchasing item i , i.e., P (I (a,v ) =
−1|i ) can be calculated according to:

P (I (a,v ) = −1|i ) = P (v ∈ V − (i,a) |i,a)P (a ∈ A(i ) |i )

= δ (v− · (i + a)) · δ (a · i)
(7)

where V − (i,a) is the set values with negative feedback given i and
a, and v− is the embedding of v as a negative value.

3.6 Unified AVLEM Framework
With all the components introduced previously, we can learn the em-
beddings of queries, users, items, aspects and values with a unified
framework by maximizing the likelihood of the observed conversa-
tions in the training set. For a conversation which was started by
user u with an initial request Q0 and leading to a purchased item
i , under the assumptions of multivariate Bernoulli distributions
for aspect and values (Section 3.5), we need to consider all the as-
pects both associated with this conversation and not associated. For
each aspect that is associated with the conversation, all the values
should be taken into account in the generation of both positive
and negative values. Let A(i ) = {a |I (a,v ) = 1} ∪ {a |I (a,v ) = −1}
be the aspects that appear in the conversation (same as A(i ) in
Equation 4), and Sa \ A(i ) be the aspects that have not occurred,
where Sa is the set of all the aspects in the collection. Let T+av =
{(a,v, Sv \ {v}) |I (a,v ) = 1} be the observed instances for positive
feedback, and T−av = {(a,v, Sv \ {v}) |I (a,v ) = −1} be the observed
instances for negative feedback, where Sv is the set of all the possi-
ble values in collection and Sv \{v} represents all the values that did
not co-occur with the corresponding aspect a. The log likelihood
of observing the conversation with the reviews of i and u, i.e., Ri
and Ru respectively, can be computed as

L (Ri ,Ru ,u,Q0,Sa \A(i ),T
+
av ,T

−
av , i )

= log P (Ri ,Ru ,u,Q0, Sa \A(i ),T
+
av ,T

−
av , i )

(8)

We assume that the probabilities of Ri , Ru , Sa \A(i ),T+av ,T−av given
u, Q0, i are independent. Words in Ru and Ri are supposed to be
generated from the language model of u and i respectively. So Ru
is independent from i and Q0, and Ri is independent from u and
Q0. We also assume that the positive and negative aspect-value
instances,T+av andT−av , only depend on the purchased item i . Initial
query intentQ0 is considered independent from the user preference

u. Then Equation 8 can be rewritten as:
L (Ri ,Ru ,u,Q0, Sa \A(i ),T

+
av ,T

−
av , i )

= log P (Ri ,Ru , Sa \A(i ),T+av ,T−av |u,Q0, i )P (u,Q0, i )

= log
(
P (Ru |u)P (Ri |i )

P (Sa \A(i ) |i )P (T
+
av |i )P (T

−
av |i )P (i |u,Q0)P (u)P (Q0)

)
≃ log P (i |u,Q0) +

∑
w ∈Ri

log P (w |i ) +
∑

w ∈Ru

log P (w |u)

+
∑

a∈Sa\A(i )

log
(
1 − P (a ∈ A(i ) |i )

)
+ log P (T+av |i ) + log P (T−av |i )

(9)

P (u) and P (Q0) are predefined as uniform distributions, and thus
ignored in the equation. P (T+av |i ) and P (T−av |i ) can be computed in
a similar way. Take log P (T+av |i ) for instance, we can compute it as:

log P (T+av |i ) =
∑

(a,v,V )∈T +av

(
log P (v,V|a, i ) + log P (a ∈ A(i ) |i )

)
=
∑

(a,v,V )∈T +av

(
log P (a ∈ A(i ) |i ) + log P (v ∈ V + (a, i ) |a, i )

+
∑
v ′∈V

(
1 − P (v ′ ∈ V + (a, i ) |a, i )

)) (10)

whereV =Sv \{v} and V + (a, i ) is the set of positive values associ-
ated with a and i . P (T−av |i ) can be computed withV + (a, i ) replaced
byV − (a, i ), i.e., the set of negative values corresponding to aspect a
of i . From Equation 9 & 10, the overall log likelihood of an observed
conversation is the sum of the log likelihood for the user language
model, item language model, item generation model, aspect gener-
ation model and value generation model.

It is impractical to compute the log likelihood directly since it
involves softmax function to compute the probability (Equation
3 and 1), which has the sum of a large number of elements as
the denominator. Same as [1], we adopt the negative sampling
strategy to approximate the estimation of the softmax function.
Specifically, β random samples are randomly selected from the
corpus according to a predefined distribution and used as negative
samples to approximate the denominator of the softmax function.
So the log likelihood of the user language model with negative
sampling is:

log P (w |u) = logδ (u ·w) + β · Ew ′∼Pw [logδ (−u ·w
′)] (11)

where Pw is defined as the word distribution in the reviews of the
corpus, raised to 3

4 power [16]. The log likelihood of the item lan-
guage model can be approximated with u replaced by i in Equation
11. Similarly, the log likelihood of the item generation model is
computed as:

logP (i |u,Q0) = logδ
(
i ·
(
λQ0 + (1 − λ)u

))
+ β · Ei′∼Pi

[
logδ

(
− i′ · (λQ0 + (1 − λ)u)

)] (12)

where Pi is predefined as a uniform distribution for items.
Since the sets of aspects and values, namely Sa and Sv , are usu-

ally large but the number of aspects and values that appear in a
conversation is small, it would be inefficient to consider the whole
set of Sa\A(i ) andV (i.e., Sv\{v}) in Equation 9 and 10. We random
selected β samples from Sa \A(i ) andV to represent the whole set.
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The final objective of our model is to optimize the log likeli-
hood of all the conversations in the training set together with L2
regularization to avoid overfitting, i.e.,

L′ =
∑

u,Q0,i
L (Ri ,Ru ,u,Q0, Sa \A,T

+
av ,T

−
av , i )

+ γ
( ∑
w ∈Sw

w2+
∑
u ∈Su

u2+
∑
i ∈Si

i2 +
∑
a∈Sa

a2+
∑
v ∈Sv

(v+)2+
∑
v ∈Sv

(v−)2
) (13)

where Su is the set of users, γ is the coefficient for L2 regularization,
v+ and v− are the embeddings of v as a positive value and as a
negative value respectively, kept in two different lookup tables. All
the embeddings are trained simultaneously in our model.

3.7 Item Ranking with AVLEM
After we get the embeddings of words, users, items, aspects and
values as positive or negative targets, when a user u issues a new
query Q0, in the first iteration, our system ranks an item i based
on P (i |u,Q0) according to Equation 1. In the k-th iteration (k > 1)
of the conversation, besides u and Q0, the positive and negative
feedback on aspect-value pairs collected in previous k − 1 iterations
also act as the basis for ranking. Let AV + and AV − be the aspect-
value pairs with positive and negative feedback respectively, item i
is ranked according to

logP (u,Q0,AV
+,AV − |i ) = log P (AV +,AV − |u,Q0, i )P (u,Q0, i )

P (i )

= log P (AV + |i )P (AV − |i )P (i |u,Q0)P (u)P (Q0)
P (i )

rank
=

∑
(a,v )∈AV +

log
(
δ
(
v+ · (i + a)

)
· δ (a · i)

)
+
∑

(a,v )∈AV −
log
(
δ
(
v− · (i + a)

)
· δ (a · i)

)
+ i ·
(
λQ0 + (1 − λ)u

)
(14)

The inference process is simple, so we omit it due to space limit. The
time complexity for item ranking isO (md |Si |), wherem is the num-
ber of aspect-value pairs used for re-ranking, d is the embedding
size, and |Si | is total number of items in the corpus.

4 EXPERIMENTAL SETUP
In this section, we introduce our experimental settings for con-
versational product search based on negative feedback. We first
introduce the dataset and evaluation methodology for our experi-
ments. Then we describe the baseline methods and training settings
for our model.

4.1 Datasets
Dataset Description. As in previous research on product search
[1, 29, 38], we also adopt the Amazon product dataset [14] for ex-
periments. There are millions of customers and products as well
as rich meta-data such as reviews, multi-level product categories
and product descriptions in the dataset. We used three categories in
our experiments, which are Movies & TV, Cell Phones & Accessories
and Health & Personal Care. The first one is large-scale while the
rest two are smaller. We experimented on these datasets to see
whether our model is effective on collections of different scales.
The statistics of our datasets are shown in Table 1. Since there are

Table 1: Statistics of Amazon datasets.

Dataset Health & Cell Phones & Movies &
Personal Care Accessories TV

#Users 38,609 27,879 123,960
#Items 18,534 10,429 50,052
#Reivews 346,355 194,439 1,697,524
#Queries 779 165 248
Query length 8.25±2.16 5.93±1.57 5.31±1.61
#Aspects 1,906 738 6,694
#Values 1,988 1,052 6,297
#AV pairs 15,297 7,111 82,060
#User-query pairs
Train 231,186 114,177 241,436
Test 282 665 5,209
#Rel items per user-query pair
Train 1.14±0.48 1.52±1.13 5.40±18.39
Test 1.00±0.00 1.00±0.05 1.10±0.49

no datasets that have the sequence of u → Q0;D1,Q1,1, I1,1, · · · ,
Q1,m , I1,m · · · ,Dk ,Qk,1, Ik,1, · · · ,Qk,m , Ik,m → i as a conversa-
tion during product search, we need to construct such conversations
for the datasets.

Initial Query Construction. To construct initial queriesQ0 in
the conversation, we adopt the three-step paradigm of extracting
queries for each item, same as the previous work [1, 29, 38]. First,
the multi-level category information of each item is extracted from
the meta-data. Then, the terms in the categories are concatenated
to form a topic string. At last, stopwords and duplicate words are
removed. In this way, there can be multiple queries extracted for
each item.When a user purchased an item, all the queries associated
with the item can be considered as the initial query which is issued
by the user that finally leads to purchasing the item. The queries
extracted are general and do not reveal specific information of the
purchased items. Examples queries are “health personal care dietary
supplement vitamin”, “cell phone accessory international charger”,
“tv movies” for each category.

Conversation Construction. The essential part to construct
a conversation for a user-query pair is to extract the aspect-value
pairs from the items. We adopt the aspect-value pair extraction
toolkit by Zhang et al. [39, 40] to extract the pairs from the reviews
of the items in each dataset. During training, random items were
selected as non-relevant results for a user-query pair (u,Q0) since
few items are relevant among the entire collection. Then all the
aspect-value pairs extracted from the non-relevant items were used
to form corresponding questions. During test time, the aspect-value
pairs that were mentioned most in the non-relevant items retrieved
in the previous iterations were selected to formulate questions.
Table 2 shows some common aspect-value pairs extracted from
the reviews of an item which corresponds to the example query.
In contrast to facets based on which filtering can be applied [13,
30], our extracted aspects and values are more flexible and not
exclusive, which makes simple filtering not reasonable. During the
conversation, positive or negative feedback on the aspect-value
pairs can be constructed.

Previous works [26, 38] on conversational search and recommen-
dation construct users’ response to the system’s questions according
to their ideal items, which show their hidden intent. In their experi-
ments, the system asks users their preferred values of an aspect and
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Table 2: Examples of extracted aspect-value pairs.
Query Aspect Value

color white, black, pink, red
fit snug, loose

cell phone accessory material plastic, rubbery
waterproof case plastic soft, hard, thin, thick

case flimsy, protective, sturdy
cover dark, clear

answers are constructed according to their purchased items or their
reviewed restaurants. We also simulate user feedback following
the same paradigm. For a question on an aspect-value pair, when
the aspect matches an aspect extracted from the purchased item
i , if their values also match, the aspect-value pair is considered to
have positive feedback, otherwise, the pair is assumed to receive
negative feedback. If the aspect in the question does not match any
aspect associated with i , no answers are collected from users.

4.2 Evaluation Methodology
As in [1], we randomly select 70% of the reviews for each user in
the training set and keep the other 30% in the test set. Each review
indicates that a user purchases a corresponding item. Then 30%
of all the available queries are divided into the test set. If for an
item in a training set, all it associated queries are in the test set, we
randomly move one query back to the training set. This assures
that each item has at least one query in the training data and each
tuple of user, query, purchased item in the test set is not observed
in the training set. Finally, all the available user-query pairs in
the test set are used to test the performance of the corresponding
conversations. Statistics of train/test splits can be found in Table 1.

To evaluate the performance of the models in the first k-th it-
erations in a conversation, we use the freezing ranking paradigm
[3, 24], which is commonly used for evaluating relevance feedback,
to maintain a rank list. Items shown to the user in the previous
k − 1 iterations are frozen, and the remaining items are re-ranked
and appended to the frozen items to form the rank list of all the
items. Note that our system does not need to show a long list to the
user in each iteration; we keep the items which are not shown in
the conversations in the rank lists to avoid that most methods have
nearly zero scores for the evaluation metrics. Besides, whenever
a relevant item is retrieved in the previous iterations, the ranking
of all the items will not be updated in the following iterations. For
models that do not utilize feedback, the evaluation is based on the
rank lists retrieved with u and Q0.

Mean average precision (MAP ) and mean reciprocal rank (MRR)
at cutoff 100, as well as normalized discounted cumulative gain
(NDCG) at 10 are used to evaluate the rank lists in each iteration.
MRR indicates the average iterations the system needs to find a
relevant item.MAP measures the overall performance of a system
in terms of both precision and recall. NDCG@10 focuses on the
performance of the system to retrieve relevant results in the first
10 iterations, especially in earlier iterations.

4.3 Baselines
We compare our aspect-value based embedding model with three
groups of baselines, which are word and embedding based retrieval

models that do not consider feedback, and models using item-level
negative feedback.

BM25. BM25 [22] scores a document according to a function of
the term frequency, inverse document frequency of query terms
and document length.

QL. The query likelihood model (QL) [19] ranks a result accord-
ing to the log-likelihood that the query words are generated from
the unigram language model of the result.

LSE.The latent semantic entity (LSE)model [29] is a non-personalized
product search model, which learns the vectors of words and items
by predicting the items with n-grams in their reviews.

HEM. The hierarchical embedding model (HEM) [1] is a state-
of-art personalized product search model that AVLEM is based on.
It has the item generation model and language models of users and
items. We use the best version reported in [1] which uses non-linear
projected mean for query embeddings and set the query weight
λ = 0.5 (in Equation 1) in both HEM and our own model.

Rocchio. Only the part of moving query model further from
non-relevant results in Rocchio [23] takes effect in our scenario
since only non-relevant results are available. BM25 [22] function is
used for weighting terms.

SingleNeg. SingleNeg [10] extracts a single negative topicmodel
from a batch of non-relevant results by considering they are gener-
ated from the mixture of the language model of the negative topic
and the background corpus. The negative topic model is then used
to adjust the initial relevance score.

MultiNeg.MultiNeg [10] considers that each non-relevant re-
sult is generated from a corresponding negative topic model and
use multiple negative models to adjust the original relevance score.

BM25 and QL are word-based retrieval models. LSE and HEM are
embedding-based models for non-personalized and personalized
product search. Rocchio, SingleNeg, andMultiNeg incorporate item-
level negative feedback collected from previous iterations. For the
initial ranking, we use BM25 for Rocchio, QL for SingleNeg and
MultiNeg respectively. We get the performance of BM25 and QL
using galago1 with default parameter settings. We implemented
Rocchio, SingeNeg and MultiNeg based on galago and tuned the
term count for negative model from {10, 20, 30, 40, 50}, the weight
for negative documents from {0.01, 0.05, 0.1, 0.2, 0.3, 0.4}.

4.4 Model Parameter Settings
We implemented our model and HEM with PyTorch 2 and LSE with
Tensorflow 3. LSE, HEM and our model are all trained with stochas-
tic gradient descent for 20 epochs with batch size 64. Initial learning
rate is set to 0.5 and gradually decrease to 0 during training. The
gradients with global norm larger than 5 were clipped to avoid un-
stable updates. To reduce the effect of common words, as in [1, 16],
we set the sub-sampling rate of words as 10−5 for Cell Phones &
Accessories and Health & Personal Care, and 10−6 for Movies & TV.
L2 regularization strength γ was tuned from 0.0 to 0.005. The em-
bedding size d was scanned from {100, 200, · · · , 500}. The effective
of embedding size will be shown in Section 5.3. Negative samples β

1https://www.lemurproject.org/galago.php
2https://pytorch.org/
3https://www.tensorflow.org/

https://www.lemurproject.org/galago.php
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in Equation 11 & 7 were set to 5. For conversation construction dur-
ing training, 2 random items were sampled as non-relevant results
and all the positive and negative values with matched aspects were
used in the conversation. For testing, the total number of iterations
for retrieval in the conversation was set from 1 to 5. In the first
iteration, there is no feedback collected. During each iteration, the
number of aspect-value pairs, on which the feedback is provided,
namely,m in Section 3.1, is selected from {1, 2, 3}. 4 We only report
the results of the best settings for all the methods in Section 5.

5 RESULTS AND DISCUSSION
In this section, we discuss the results of our experiments. We first
compare the overall retrieval performance of both AVLEM and the
state-of-the-art product search baselines in Section 5.1. Then we
study the effect of different model components, feedback processes,
and embedding sizes on each model in the following subsections.

5.1 Overall Retrieval Performance
Table 3 shows the retrieval performance of all the methods in the
conversational product search on different Amazon sub-datasets
(i.e., Movies & TV, Cell Phones & Accessories and Health & Per-
sonal Care). Specifically, we use BM25 and QL as the initial mod-
els to generate the first-round retrieval results for Rocchio and
SingNeg/MultiNeg, respectively. Also, we refer to the AVLEM with-
out feedback, with positive feedback, with negative feedback, and
with both positive and negative feedback on aspect-value pairs as
AVLEMinit , AVLEMpos , AVLEMneд , and AVLEMall , respectively.

As shown in Table 3, term-based retrieval models perform worse
than neural embedding models. Without feedback information, QL
and BM25 are approximately 50% worse than LSE and HEM on
all datasets in our experiments. As discussed by previous stud-
ies [1, 29], there are no significant correlations between user pur-
chases and the keyword matching between queries and product
reviews. Thus, term-based retrieval models usually produce inferior
results in product search. Among different embedding-based prod-
uct retrieval models, AVLEMinit achieves the best performance and
significantly outperforms HEM and LSE on all the three datasets.
This indicates that incorporating aspect-value information into
search optimizations is generally beneficial for the performance of
product search systems. 5

After a 5-round iterative feedback process, we observe differ-
ent results for different feedback models. For term-based negative
feedback models such as Rocchios, SingleNeg, and MultiNeg, we
observe little performance improvement during the feedback pro-
cess. Comparing to their initial retrieval models in the first iteration
(i.e., BM25 and QL), term-based feedback models only achieve sig-
nificant MRR improvements on Movies & TV. For AVLEM, on the
other hand, we observe consistent and large improvements over
the initial retrieval model (i.e., AVLEMinit ) in all three datasets.
The performance of the best AVLEM is approximately 10% to 20%
better than AVLEMinit in terms of MRR.

Among different variations of AVLEM, AVLEMneд performs the
best on Cell Phones & Accessories and Health & Personal Care, while
4We will release the code when the paper is published.
5MRR and MAP are almost the same for Health & Personal Care and Cell Phones &
Accessories since users purchase only 1 item under each query most of time in these
categories (see Table 1).
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Figure 3: The MRR of AVLEMwith different components re-
moved on Cell Phones & Accessories.

AVLEMall performs the best onMovies & TV. Overall, it seems that
negative aspect-value feedback tends to provide more benefits for
AVLEM than positive aspect-value feedback. In a positive feedback
scenario, feedback information is “inclusive”. In other words, all
aspect-value pairs from relevant items could be used to generate
positive feedback, but this does not mean that all relevant items
should have the same property. For example, a user who tells the
system to find a “red” phone case may also be satisfied with a “pink”
phone case. In contrast, in a negative feedback scenario, feedback
information is “exclusive”. When a user says “I don’t like red”, it
means that any items with color “red” is definitely not relevant to
this user. Thus, negative feedback information could be more useful
for the filtering of irrelevant products.

5.2 Ablation Study
In order to evaluate the importance of different model components,
we conduct ablation experiments by removing the aspect generation
network (i.e., P (a ∈ A(i ) |i ) in Equation 9 & 10), the value geneartion
network (i.e., P (v ∈ V +/− (a, i ) |a, i ) in Equation 10), or the negative
feedback network (i.e., P (T−av |i ) in Equation 9) for AVLEM.We refer
them as AVLEM\a, AVLEM\v, and AVLEM\neg, respectively. Also,
we refer to the AVLEM that uses a single set of value embedding
representations for both v+ and v− in Equation 13 as AVLEM\sep. In
AVLEM\neg and AVLEM\sep, we do not have a separate embedding
representations for v ∈ V − (a, i ) in P (v ∈ V − (a, i ) |a, i ). Instead,
we replace P (v ∈ V − (a, i ) |a, i ) with 1 − P (v ∈ V + (a, i ) |a, i ) in
Equation 13 to train and test these two models.

Figure 3 depicts the performance of AVLEM with different com-
ponents removed on Cell Phones & Accessories. We group the results
here into two categories – the model performance before feedback
(i.e., AVLEMinit ) and the model performance after feedback (i.e.,
AVLEM). As shown in the figure, removing P (v ∈ V +/− (a, i ) |a, i ) in
Equation 10 (i.e., AVLEM\v) results in a significant drop of retrieval
performance for AVLEM before feedback, which means that the
relationships between items and aspect-values are important for
effectively learning item representations in product search. Also,
without the aspect generation model P (a ∈ A(i ) |i ), we observe
almost no performance improvement on AVLEM\a after the in-
corporation of feedback information. This indicates that under-
standing the relationships between items and product aspects are
crucial for the use of aspect-value based feedback signals. Last but
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Table 3: Comparison between baselines and our model AVLEM. Numbers marked with‘∗’ are the best baseline performances.
‘+’ indicates significant differences between the iterative feedback models and their corresponding initial rankers in Fisher
random test [25] with p < 0.05, i.e., Rocchio vs BM25, SingleNeg and MultiNeg vs QL, AVLEMpos , AVLEMneд and AVLEMall vs
AVLEMinit . ‘†’ denotes significant improvements upon the best baseline. Bold numbers all the best performances.

Dataset Health & Personal Care Cell Phones & Accessories Movies & TV
Model MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG

BM25 0.055 0.055 0.053 0.065 0.065 0.077 0.012 0.009 0.008
Rocchio 0.055 0.055 0.053 0.065 0.065 0.077 0.012 0.009 0.009+

QL 0.046 0.046 0.048 0.063 0.062 0.076 0.016 0.012 0.015
SingleNeg 0.046 0.046 0.048 0.063 0.062 0.076 0.018+ 0.015+ 0.017+
MultiNeg 0.046 0.046 0.048 0.063 0.062 0.076 0.018+ 0.015+ 0.016+

LSE 0.155 0.157 0.195 0.098 0.098 0.084 0.023 0.025 0.027
HEM 0.189∗ 0.189∗ 0.201∗ 0.115∗ 0.115∗ 0.116∗ 0.026∗ 0.030∗ 0.030∗

AVLEMinit 0.227† 0.227† 0.233† 0.126† 0.126† 0.130† 0.028† 0.030 0.031†
AVLEMpos 0.225† 0.225† 0.250+† 0.133+† 0.133+† 0.135+† 0.031+† 0.033+† 0.035+†
AVLEMneд 0.260+† 0.260+† 0.305+† 0.154+† 0.154+† 0.177+† 0.033+† 0.035+† 0.038+†
AVLEMall 0.236+† 0.236+† 0.258+† 0.145+† 0.145+† 0.145+† 0.034+† 0.036+† 0.042+†
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Figure 4: The parameter sensitivity analysis of baselines and AVLEM on Cell Phones&Accessories.

not least, we notice that both the removing of P (T−av |i ) in Equa-
tion 9 (i.e., AVLEM\neg) and the unifying of item embeddings in
positive and negative feedback (i.e., AVLEM\sep) lead to inferior
retrieval performance before and after feedback. As discussed in
Section 3.5, the use of negative aspect-value pairs and the separate
modeling of value embedding in different feedback scenarios are
important for the multivariate Bernoulli assumptions. By replacing
P (v ∈ V − (a, i ) |a, i ) with 1 − P (v ∈ V + (a, i ) |a, i ), we jeopardize the
foundation of AVLEM, which consequentially damages its retrieval
performance in our experiments.

5.3 Parameter Sensitivity
Effect of the Amount of Feedback. There are two important
hyper-parameters that control the simulation of conversational
feedback in our experiments: the number of feedback iterations
and the number of product aspects in each iteration (m). Figure 4a
depicts the performance of different feedback models with respect
to feedback iterations on Cell Phones & Accessories. As shown in
the figure, the performance of Rocchio and SingleNeg does not
show any significant correlations with the increasing of feedback

iterations. In contrast, the performance of AVLEM gradually in-
creases when we provide more feedback information. The MRR of
AVLEM with 1 product aspect per iteration improves from 0.126 to
0.143 after 5 rounds of feedback. Also, AVLEM generally achieves
better performance when we increase the number of feedback as-
pects from 1 to 3. This indicates that our model can effectively
incorporate feedback information in long-term conversations.

To further analyze the effect of multi-iteration feedback, we show
the percentage of queries influenced by AVLEM in each iteration
on Cell Phones & Accessories in Figure 4b. Notice that iteration 1
represents the initial retrieval of the feedback process, and this is
the reason when all queries are affected by AVLEM. As we can see,
the percentages of influenced queries remain roughly unchanged
(from 92% to 96%) after each feedback iteration. This means that
feedback aspects have been effectively generated by our simulation
process inmost cases. Also, during the feedback process, the number
of available test queries (i.e., the queries with no relevant items
retrieved in the previous iterations) gradually decreases from 665
to 531 for the best AVLEM (i.e., AVLEM with 2 product aspects
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per feedback iteration), which means that more and more relevant
items have been retrieved.

Effect of Embedding Size. Figure 4c shows the sensitivity of
both our models and the neural product retrieval baselines (i.e.,
HEM and LSE) in terms of embedding size on Cell Phones & Ac-
cessories. While we observe a slight MRR improvement for LSE
after increasing the embedding sizes from 100 to 500, we do not
see similar patterns for both HEM and AVLEM. Also, the perfor-
mance gains obtained from the feedback process for our model
(AVLEM v.s.AVLEMinit ) are stable with respect to the changes of
embedding sizes.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a paradigm for conversational product
search based on negative feedback, where the system identifies
users’ preferences by showing results and collecting feedback on
the aspect-value pairs of the non-relevant items. To incorporate
the fine-grained feedback, we propose an aspect-value likelihood
model that can copewith both positive and negative feedback on the
aspect-value pairs. It consists of the aspect generation model given
items and value generation model given items and aspects. One
multivariate Bernoulli (MB) distribution is assumed for the aspect
generation model, and two other MB distributions are assumed for
the generation of positive and negative values. Experimental results
show that our model significantly outperforms the state-of-the-art
product search baselines without using feedback and baselines
using item-level negative feedback. Our work has the limitation of
being conducted on simulated data due to the difficulty of obtaining
such data in a real scenario. However, as an initial exploration in
this direction, we show that conversational product search based
on negative feedback as well as fine-grained feedback on aspect-
value pairs is a promising research direction and our method of
incorporating the fine-grained feedback is effective.

There are several directions for future work. When users express
their preferences on the aspects which are not asked by the system,
it is important to extract the information in their conversations and
combine it to refine the re-ranking. Furthermore, it is necessary
to cope with users’ any responses other than what the system
presumes. We are also interested in studying the effect of fine-
grained feedback in general question answering system after the
result-level negative feedback is received.
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