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ABSTRACT

Conversational assistants are being progressively adopted by the

general population. However, they are not capable of handling com-

plicated information-seeking tasks that involve multiple turns of in-

formation exchange. Due to the limited communication bandwidth

in conversational search, it is important for conversational assis-

tants to accurately detect and predict user intent in information-

seeking conversations. In this paper, we investigate two aspects

of user intent prediction in an information-seeking setting. First,

we extract features based on the content, structural, and sentiment

characteristics of a given utterance, and use classic machine learn-

ing methods to perform user intent prediction. We then conduct an

in-depth feature importance analysis to identify key features in this

prediction task. We find that structural features contribute most

to the prediction performance. Given this finding, we construct

neural classifiers to incorporate context information and achieve

better performance without feature engineering. Our findings can

provide insights into the important factors and effective methods

of user intent prediction in information-seeking conversations.
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1 INTRODUCTION

Many companies have launched conversational assistants (CA)

such as Amazon Echo, Google Home, Microsoft Cortana, etc. These

devices allow users to issue voice commands to the CA for goal

oriented tasks or to conduct simple question answering (QA) tasks,

such as adding calendar events or asking for news. This trend has
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led many researchers in the information retrieval (IR) and natu-

ral language processing (NLP) community to pay more attention

to conversational search. For examples, SIGIR’18, ICTIR’17, and

EMNLP’18 all have workshops1,2,3 on conversational search.

However, most CAs are not yet capable of handling multi-turn

information-seeking conversations, where users havemultiple rounds

of information exchange with CAs to retrieve or specify answers.

One reason is the difficulty to model the conversation about the

information need both before and after an answer has been given.

Thus an important step in modeling conversational interactions

is to accurately detect and predict user intent in this interactive

information-seeking process. More specifically, CAs should be ca-

pable of improving previous answers if they can correctly process

critical information provided by the users, such as relevance judg-

ments (feedback) and clarifications of the information need. Thus,

CAs need to elicit more information proactively when they are not

confident, before providing an answer [24].

The Learn-IR workshop4 at WSDM’18 highlighted the signifi-

cant research need for user intent analysis and prediction in an

interactive information-seeking process. To address this research

demand, we conducted experiments on user intent prediction using

the MSDialog [19] data. This data collection consists of multi-turn

information-seeking dialogs in the technical support domain. The

dialogs are typically initiated by an information seeker who asks

technical issues about Microsoft products, such as łHow do I down-

grade from Windows 10 to Windows 7?ž. This kind of question is

non-factoid and often requires multiple rounds of conversational

interactions. The answers are provided by Microsoft staff and other

experienced product users such as łMicrosoft Most Valuable Profes-

sionalsž (MVPs). These human agents (information providers) also

explicitly ask for feedback on their provided answers and thus keep

the users engaged. The MSDialog data is annotated with a set of

12 user intent types [2, 19]. There are different definitions of łuser

intentž in our field. In this paper, user intent refers to a taxonomy

of utterances in information-seeking conversations (Table 1). Each

utterance of the MSDialog was annotated with the user intent types

using Amazon Mechanical Turk (MTurk)5. MSDialog provides a

high-quality resource to show how information-seeking conver-

sations are structured between humans. In addition to MSDialog,

we also used a portion of Ubuntu Dialog Corpus (UDC) [14] which

was annotated with the same user intent types in [19] to further

validate our findings.

1 https://sites.google.com/view/cair-ws/cair-2018
2 http://sigir.org/ictir2017/sessions/search-oriented-conversational-ai-scai/
3 https://scai.info/ 4 https://task-ir.github.io/wsdm2018-learnIR-workshop/
5 https://www.mturk.com/



The purposes of user intent prediction are threefold. First, it is

necessary for CAs to accurately identify user intent in information-

seeking conversations. Only in this way can CAs process the in-

formation accordingly and use it to provide answers and adjust

previous answers. Similar to customer service over phones, rout-

ing user questions to different sub-modules in a conversational

retrieval system is only possible if the user intent is correctly iden-

tified. Second, the CAs need to learn and imitate the behavior of

human agents. By identifying user intent in information-seeking

conversations, we expect the CA to learn the use of different in-

tent and when to issue requests for more information or details

spontaneously. Finally, user intent prediction models can be used

to automatically annotate more dialog utterances for data analysis

and other tasks such as conversational answer finding.

Previous work typically focused on dialog act classification for

open-domain conversations [9, 13, 22]. In human-computer chitchat,

the goal of the CA is to generate responses that are as realistic as pos-

sible with the primary purpose of entertaining. In contrast to chat-

ting, users initiate information-seeking conversations for specific

information needs. Human behaviors in chatting and information-

seeking conversations can be very different due to the fundamen-

tally distinct purposes. In addition, the Dialog State Tracking Chal-

lenges (DSTC)6 focus on goal oriented conversations. These tasks

are typically tackledwith slot filling [27, 31]. In information-seeking

conversations, slot filling is not suitable because of the diversity of

information needs. User intent analysis and prediction are needed

for an information-seeking setting.

We conduct experiments using two different approaches to pre-

dict user intent in information-seeking conversations. Firstly, we

extract rich features to capture the content, structural, and senti-

ment characteristics of utterances and learn models with traditional

machine learning (ML) methods. Secondly, we use the implicit rep-

resentation learning in neural architectures to predict user intent

without feature engineering. We then incorporate context informa-

tion into neural models for enhanced performance.

Our contributions can be summarized as follows. (1) We extract

rich features including feature groups related to content, structures,

and sentiment to predict user intent in information-seeking con-

versations. We perform an in-depth feature importance analysis on

both group and individual level to identify the key factors in this

task. (2) We design several variations of neural classifiers to predict

user intent without explicit feature engineering. We show that neu-

ral models can achieve comparable performance compared to fea-

ture engineering based methods. Moreover, neural models achieve

statistically significant improvements over traditional methods after

incorporating context information. (3) Our experiments show that

the trained model achieves good generalization performance on

another open benchmark information-seeking conversation dataset

(UDC). The code of the implemented user intent prediction models

will be released to the research community.7

The rest of our paper is organized as follows. In Section 2, we

present related work regarding utterance type classification, con-

versational search, and multi-turn question answering. In Section 3,

we formulate the research question of user intent prediction in

6 https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/
7 https://github.com/prdwb/UserIntentPrediction

information-seeking conversations. We also describe the data cre-

ation and annotating process. In Section 4, we extract rich features

and learn traditional ML models for user intent prediction. We also

perform feature importance analysis in this section. In Section 5,

we introduce various enhanced neural classifiers for user intent

prediction. Section 6 presents the conclusion and future work.

2 RELATED WORK

Our work is closely related to utterance classification, conversa-

tional search, and multi-turn question answering.

Utterance Classification. Utterance classification is well stud-

ied in the NLP and IR domain. Many different classification tech-

niques such as statistical approaches [22], SVM, or Hidden Markov

Models [23] have been used for different applications including

human-human chatting [22], student’s utterance [17], or forum

post classifications [2]. However, recent advances in deep learning

allow us to use neural architectures for utterance classification both

on the word [10] and character level [32]. These new deep learn-

ing techniques have been applied in medical dialog systems [4].

In this paper, we focus on user intent prediction in information-

seeking conversations. This specific utterance classification task

presents unique challenges because of the complexity and diversity

of human information-seeking conversations.

Conversational Search. Searching via conversational interac-

tions with IR systems is an increasingly popular research topic

in both industry and academia [3, 21, 33]. Oddy [16] introduced

man-machine IR through dialogs without explicitly formulating

queries. Belkin et al. [1] modeled the human-computer interac-

tion in information-seeking as dialogs. Moreover, information-

seeking via conversations is especially important in exploratory

search [15, 25], where users are unfamiliar with the domain they

are searching and would rely on effective interactions with retrieval

systems. More recently, Radlinski and Craswell [20] identified key

properties in conversational IR systems. Trippas et al. [24] con-

ducted lab-based observational studies on conversational search

and identified that it is more interactive than traditional search and

new information-seeking models are needed. In our work, we focus

on an essential study in conversational search, which is to predict

user intent in this information-seeking setting. Our findings can

help build conversational search systems that can provide enhanced

searching experience using predicted user intent.

Multi-turn Question Answering. Early research on multi-

turn question answering dates back to AutoTutor [6], which can

simulate human tutors to assist college students to learn computer

science. Recent work has focused on single turn QA on factoid ques-

tions [30] and other open-domain questions (e.g. WikiQA [29]). The

Ubuntu Dialog Corpus [14] and MSDialog [19] provide large scale

multi-turn QA dialogs in the technical support domain. Wu et al.

[26] and Yang et al. [28] used these datasets to perform conversation

response ranking for non-factoid questions. Our work focuses on a

specific research need for multi-turn QA in the information-seeking

setting. The performance of multi-turn QA could be improved if

the user intent is correctly identified.



3 TASK DEFINITION AND DATASET

3.1 Task Definition

The research problem of user intent prediction in information-

seeking conversations is defined as follows. The input of the sys-

tem is an information-seeking dialog dataset D = {(Ui ,Yi )}
N
i=1

and a set of user intent labels L = {l1, l2, . . . , lc }. A dialog Ui =

{u1i ,u
2
i , . . . ,u

k
i } contains multiple turns of utterances. uki is the ut-

terance at the k-th turn of the i-th dialog. Yi consists of annotated

user intent labels {y1i , y
2
i , . . . , y

k
i }, where y

k
i = {y

k (1)
i ,y

k (2)
i , . . . ,y

k (c)
i }.

Here y
k (m)
i , . . . ,y

k (n)
i = 1 denotes that the utterance uki in dialog

Ui is labeled with user intent {lm , . . . , ln }. Given an utterance uki
and other utterances in dialog Ui , the goal is to predict the user

intentYi of this utterance. The challenge of this task lies in the com-

plexity and diversity of human information-seeking conversations,

where one utterance often expresses multiple user intent [24].

3.2 Dataset

We use the MSDialog dataset that consists of technical support

dialogs for Microsoft products. The data was crawled from the

well-moderated Microsoft Community forum8 which contains high-

quality technical support dialogs between users and agents. The

agents include Microsoft staff, community moderators, MVPs, or

other experienced product users. Very rich structured data were

collectedwith the dialogs, including the question popularity, answer

vote, affiliation of information providers, etc. We choose this dataset

because of its information-seeking nature and the well annotated

user intent. Although MSDialog has limitations such as a narrow

subject domain and forum-style language, no other openly available

dialog datasets with the same detailed annotation exist. We believe

this should be a first step to predict user intent in an information-

seeking setting.

The dataset contains two sets, a complete set that consists of all

the crawled dialogs and a labeled subset that contains only dialogs

with user intent annotation. A taxonomy of 12 labels presented in

Table 1 were developed in Qu et al. [19] based on work by Bhatia

et al. [2] to characterize the user intent in information-seeking

conversations.We also present the user intent distribution in Table 1.

The complete set consists of 35,000 multi-turn QA dialogs in the

technical support domain. Over 2,000 dialogs were selected for user

intent annotation on MTurk with the following criteria: (1) With

3 to 10 turns. (2) With 2 to 4 participants. (3) With at least one

correct answer selected by the community. (4) Falls into one of

the categories of following major Microsoft products: Windows,

Office, Bing, and Skype. The inter-rater agreement score was used

to ensure the annotation quality. One utterance can be labeled with

more than one user intent. A comparison of statistics between the

complete set and the labeled subset is presented in Table 2.

In order to test the generalization performance of our findings,

we use a small portion of UDC that is annotated with the same user

intent types. This dataset also consists of multi-turn information-

seeking conversations in a technical support domain between an

information seeker and provider. However, UDC is generated from

internet relay chat (IRC) and contains a significant amount of typos,

Internet language, and abbreviations. In addition, UDC contains

8 https://answers.microsoft.com

Table 1: User intent taxonomy and distribution in MSDialog

Code Label Description %
OQ Original Question The first question from the user to initiate the dialog. 13
RQ Repeat Question Other users repeat a previous question. 3
CQ Clarifying Question User or agent asks for clarifications. 4
FD Further Details User or agent provides more details. 14
FQ Follow Up Question User asks for follow up questions about relevant issues. 5
IR Information RequestAgent asks for information from users. 6
PA Potential Answer A potential answer or solution provided by agents. 22
PF Positive Feedback User provides positive feedback for working solutions. 6
NF Negative Feedback User provides negative feedback for useless solutions. 4
GG Greetings/Gratitude Greetings or expressing gratitude. 22
JK Junk No useful information in the utterance. 1
O Others Utterances cannot be categorized using other classes. 1

Table 2: Statistics of MSDialog (complete & labeled subset)

Items Complete set Labeled subset

# Dialogs 35,000 2,199
# Utterances 300,000 10,020
# Words (in total) 24,000,000 653,000
Avg. # Participants 3.18 2.79
Avg. # Turns Per Dialog 8.94 4.56
Avg. # Words Per Utterance 75.91 65.16

shorter utterances and more turns per dialog. This part of experi-

ment is presented in Section 5.3.

3.3 Data Preprocessing

The purpose of this classification task is to identify and predict

user intent so that CAs can process the information accordingly to

satisfy the users’ information needs. However, utterances which

were labeledGreetings/Gratitude, Junk, andOthers do not contribute

to the purpose of providing information about QA related user

intent. Therefore, we remove occurrences of these labels. Note that

we only remove these labels if there are more than one label of

the given utterance. For example, if the annotation for the given

utterance is GG+OQ, we transform the annotation into OQ. If the

annotation is just GG, no transformation is needed. This reduces

the number of unique label combinations from 316 to 152.

In addition, some label combinations of user intent labels are

quite rare in the data. As indicated in Figure 1a, the top frequent

label combinations have hundreds of occurrences in the data (e.g. PA,

OQ, PF, FD+PA, FD), while the least frequent labels only have exactly

one occurrence (e.g. CQ+FD+IR+RQ, CQ+FD+FQ+PF ). These rare

label combinations are very likely due to minor annotation errors

or noise with MTurk. Annotation quality assurance was performed

based on the dialog-level inter-rater agreement [19] to keep the

complete dialog intact and thus may result in minor noise on an

utterance level. We also plot the cumulative distribution of label

combinations for better illustration in Figure 1b. The most frequent

32 label combinations constitute 90% of total label combination

occurrences as marked in the figure. All 12 user intent labels are

individually present in these 32 most frequent combinations except

for Others. For the rest of the label combinations, we randomly

sample one of the labels from each combination as the user intent

label for the given utterance. For example, if the annotation for the

given utterance is CQ+FD+IR+RQ, we transform it into a single label

by randomly sampling one of the four labels, such as CQ. Therefore,

the total number of label combinations in the data was reduced to





Table 3: Features extracted for user intent prediction in information-seeking conversations.

Feature Name Group Description Type

Initial Utterance Similarity Content Cosine similarity between the utterance and the first utterance of the dialog Real
Dialog Similarity Content Cosine similarity between the utterance and the entire dialog Real
Question Mark Content Does the utterance contain a question mark Binary
Duplicate Content Does the utterance contain the keywords same, similar Binary
5W1H Content Does the utterance contain the keywords what, where, when, why, who, how One-hot vector
Absolute Position Structural Absolute position of an utterance in the dialog Numerical
Normalized Position Structural Normalized position of an utterance in the dialog (AbsPos divided by # utterances) Real
Utterance Length Structural Total number of words in an utterance after stop words removal Numerical
Utterance Length Unique Structural Unique number of words in an utterance after stop words removal Numerical
Utterance Length Stemmed Unique Structural Unique number of words in an utterance after stop words removal and stemming Numerical
Is Starter Structural Is the utterance made by the dialog starter Binary
Thank Sentiment Does the utterance contain the keyword thank Binary
Exclamation Mark Sentiment Does the utterance contain an exclamation mark Binary
Feedback Sentiment Does the utterance contain the keyword did not, does not Binary
Sentiment Scores Sentiment Sentiment scores of the utterance computed by VADER [8] (positive, neutral, and negative) Real
Opinion Lexicon Sentiment Number of positive and negative words from an opinion lexicon Numerical

scikit-multilearn9 and scikit-learn10 on the training set. We tune

the hyper-parameters on the validation set based on accuracy and

report the performance on the test set.

Table 4: Statistics of training, validation, and testing sets

Item Train Val Test

# Utterances 8,064 986 970
Min. # Turns Per Dialog 3 3 3
Max. # Turns Per Dialog 10 10 10
Avg. # Turns Per Dialog 4.58 4.48 4.43
Avg. # Words Per Utterance 70.42 67.53 68.64

4.3.2 Baseline Results. The baseline results are presented in Ta-

ble 5. Two ensemble methods, random forest and AdaBoost achieve

the best overall performance of all baseline classifiers. AdaBoost

achieves the best accuracy while random forest achieves the best

F1 score. Surprisingly, ML-kNN performs relatively poorly despite

its nature of an adapted algorithm for multi-label classification.

Table 5: Experiment results for baseline classifiers

Methods Acc Precision Recall F1

ML-kNN 0.4715 0.6322 0.4471 0.5238
NaiveBayes 0.4870 0.5563 0.4988 0.5260
SVM 0.6342 0.7270 0.5847 0.6481
RandForest 0.6268 0.7657 0.5903 0.6667
AdaBoost 0.6399 0.7247 0.6030 0.6583

4.4 Additional Feature Importance Analysis

4.4.1 Feature Group Analysis. We use one of the best baseline

classifiers, random forest, and different combinations of feature

groups to analyze the feature importance on a group level. The

hyper-parameters are set to the best ones tuned on all features .

For using a single feature group, structural features is the most

important feature group as presented in Table 6. Structural features

and content features are significantly more important than sen-

timent features. We expect the sentiment features to capture the

sentiment in user feedback but they might not be able to effectively

discriminate other user intent. Structural features provide better

performance than content features. We believe that this can be

9 http://scikit.ml/ 10 http://scikit-learn.org/stable/

explained by the fact that hand-crafted content features cannot

capture the complex user intent dynamics in human information-

seeking conversations.

Table 6: Experiment results for different feature groups

Group(s) Acc Precision Recall F1

Content 0.5272 0.6097 0.4821 0.5384
Structural 0.5809 0.6871 0.5434 0.6068
Sentiment 0.3306 0.4087 0.3222 0.3603
Con+Str 0.6081 0.7393 0.5640 0.6399
Con+Sen 0.5577 0.6523 0.5179 0.5774
Str+Sent 0.6110 0.7569 0.5672 0.6485
All 0.6268 0.7657 0.5903 0.6667

For combinations of two feature groups, content+structural fea-

tures and structural+sentiment features achieve comparable results.

However, structural+sentiment features achieve slightly higher

results on all metrics. The performance of using two groups of

features is higher than using one of these two feature groups indi-

vidually. Thus, combining structural features with another feature

group boosts the performance of using structural features alone.

Interestingly, content+sentiment features is unable to outperform

the structural features alone. The results of using all features is

the highest among all settings, confirming that all feature groups

contribute to the performance of user intent prediction.

4.4.2 Feature Importance Scores. In the previous section, we

evaluated the feature importance on a group level. In this section

we focus on individual features to provide a more fine-grained

analysis. We use random forest to output individual feature impor-

tance scores.11 As described in Section 4.2, we used classifier chains

to transform this multi-label classification problem. This method

expands the feature space by including previous label predictions

as new features for the current label prediction. This makes it not

appropriate to evaluate original features. Thus, we use the Label

Powerset method as the data transformation strategy for this sec-

tion. The relative feature importance scores are presented in Table 7.

This analysis can identify key factors in user intent prediction.

We summarize our observations as follows: (1) Structural fea-

tures including łAbsolute Positionž, łNormalized Positionž, łIs Starterž

are ranked in the top-5 in terms of feature importance. Moreover,

11 https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html



Table 7: Individual feature importance froma random forest

classifier with relative importance scores. łStrž, łConž, łSenž

refer to łStructuralž, łContentž, łSentimentž respectively.

Rank Feature Group Impt Rank Feature Group Impt

1 AbsPos Str 1.0 13 Lex(Pos) Sen 0.2814
2 InitSim Con 0.9745 14 Lex(Neg) Sen 0.2337
3 NormPos Str 0.8684 15 Thank Sen 0.1607
4 Starter Str 0.8677 16 How Con 0.08074
5 DlgSim Con 0.6778 17 Dup Con 0.06908
6 SenScr(Neu) Sen 0.6465 18 What Con 0.06576
7 SenScr(Pos) Sen 0.5601 19 ExMark Sen 0.06424
8 Len Str 0.5335 20 When Con 0.05989
9 LenUni Str 0.4381 21 Feedback Sen 0.02859
10 LenStem Str 0.4354 22 Where Con 0.02356
11 SenScr(Neg) Sen 0.3495 23 Why Con 0.0232
12 QuestMark Con 0.3003 24 Who Con 0.01423

other structural features, such as various forms of utterance length

are observed to be relatively informative in general. This confirms

the results in Section 4.4.1 that the structural feature group is the

most important one. (2) łInitial Utterance Similarityž and łDia-

log Similarityž are content features that can be highly informative

for identifying user intent. Both features are indicators of how

closely the utterance connects with the information-seeking pro-

cess. Other content features, such as ł5W1Hž, however, contribute

little to predicting user intent. (3) Some sentiment features are rel-

atively important in identifying user intent, such as positive and

neutral sentiment scores. However, some other sentiment features

contribute little to the task, such as the existence of exclamation

marks and łthankž. (4) We observe that features ranked from the

15th to the last one in Table 7 are all łkeyword featuresž. These

features are based on a simple rule that whether the given utterance

contains pre-defined keywords. For example, the ł5W1Hž feature

looks for łwhat/where/when/why/who/howž in the given utterance

and the łFeedbackž feature looks for łdid not/does notž. The major

drawback of manual feature engineering is amplified in this task

due to the complexity and diversity of human information-seeking

conversations.

5 ENHANCED NEURAL CLASSIFIERS

We expected the content of an utterance to be a good indicator of

user intent types compared to other features. However, as shown in

Section 4.4, the hand-crafted content features are unable to capture

the complex characteristics of human information-seeking con-

versations. Thus, in this section we adopt neural architectures to

automatically learn representations of utterances without feature

engineering.

5.1 Our Approach

5.1.1 Base Models. Given the previous success in modeling text

sequences using CNN and bidirectional LSTM (BiLSTM) [7], we

choose these two architectures as our base models. Although utter-

ances are grouped as dialogs, the base models consider utterances

independently.

Given an utterance uki = {w1,w2, . . . ,wm } (the k-th utterance

in the i-th dialog) that containsm tokens, we first transform the se-

quence of tokens into a sequence of token indices S = {s1, s2, . . . , sm }.

Then we pad the sequence S to a fixed length n (the max sequence

length). Both CNN and BiLSTM start with an embedding layer ini-

tiated with pre-trained word embeddings. Preliminary experiments

indicated that using MSDialog (complete set) to train word em-

beddings is more effective than using GloVe [18] in terms of final

model performance. The embedding layer maps each token in the

utterances to a word embedding vector with a dimension of d .
We focus on the CNN model following previous work [10] here,

because it achieves better performance in our experiments. After
the embedding layer, filters with the shape (f ,d) are applied to a
window of f words. f is also referred to as the filter size. Concretely,
a convolution operation is denoted as

ci = σ (w · ei :i+f −1 + b) (1)

Where ci is the feature generated by the i-th filter with weights w

and biasb. This filter is applied to an embeddingmatrix, which is the

concatenation from the i-th to the (i + f − 1)-th embedding vectors.

An non-linearity function (ReLU) is also applied. This operation is

applied to every possible window of words and generates a feature

map c = {c1, c2, . . . , cn−f +1}. More filters are applied to extract

features of the utterance content. Max pooling are applied to select

the most salient feature of a window of f ′ features by taking the

maximum value ĉi =max{ci :i+f ′−1}. f
′ denotes the max pooling

kernel size. A dropout layer is applied after the pooling layer for

regularization.

After the last convolutional layer, we perform global max pooling

by taking the maximum value ĉ = max{c} for the feature map c

at this step. This operation reduces the dimension of the tensor to

one. This tensor is further transformed to an output tensor of shape

(1, l), where l is the number of user intent labels (12 for our task).

Sigmoid activation is applied to each value of the output tensor to

squash the value to a confidence level between 0 and 1. A threshold

is chosen to determine whether the given label present in the final

prediction. If the model is not confident of predicting any label, the

label of the highest confidence level is the prediction. We tuned the

threshold with the validation data.

5.1.2 Incorporate Context Information. As shown in the previ-

ous work [19], user intent follows clear flow patterns in information-

seeking conversations. The user intent of a given utterance is closely

related to the utterances around it, which compose the context for

the given utterance. Incorporating context information into neu-

ral models is easier compared to that for traditional ML methods

shown in Section 4. We consider two ways as follows.

Direct Expansion. The most straightforward way to incorpo-

rate context information is to expand the given utterance with

its context. Concretely, the expanded utterance for uki is ûki =

uk−1i ⊕ uki ⊕ uk+1i , where ⊕ is the concatenate operator. ûki is con-

sidered as the given utterance in base models.

Context Representation. Given an expanded utterance ûki as

input, the neural architecture first segments it into three original

utterances of uk−1i , uki , and u
k+1
i . We apply convolution operations

and max pooling to the utterances separately as shown in Figure 2a.

After global pooling following the last convolutional layer, the three

one-dimensional tensors are concatenated for final predictions.

This approach extracts features from the given utterance and its

context separately. Thus, we are able to learn the importance of the

given utterance and its context by tuning context-specific hyper-

parameters, such as the number of filters for context utterances.





holistic sequence dependency and thus performs poorly on handling

these long utterances.

The best result of the feature based baselines is slightly higher

than neural baselines. This can be accounted for by the lack of

information in neural models. Even though we assume that most of

the content and sentiment features can be learned by neural models,

the neural models have no access to most of the structural features.

Thus, we incorporate all the features to neural models to produce

CNN-Feature model. This model outperforms all baseline classifiers.

This confirms that incorporating dialog-level information can be

beneficial to predicting user intent.

Both CNN-Context and CNN-Context-Rep outperform base-

line models and CNN-Feature without explicit feature engineering.

These results demonstrate the effectiveness of the implicit feature

learning of neural architectures. CNN-Context-Rep performs better

than CNN-Context. This indicates that incorporating high-level

features of context information learned by neural architectures is

better than directly capturing the raw context information. In a

multi-label classification setting, accuracy produces a score for each

individual sample, while precision/recall/F1 evaluate the perfor-

mance over all samples. Thus, accuracy is the only metric that is

suitable for significance tests. Our best model, CNN-Context-Rep

achieves statistically significant improvement over the best baseline

with p < 10−4 measured by the Student’s paired t-test.

5.3 Generalization on Ubuntu Dialogs

In this section, we would like to evaluate the generalization perfor-

mances of different methods on other data in addition to MSDialog.

We train different models onMSDialog and test them on the Ubuntu

Dialog Corpus (UDC). We select the two best performing feature

based classifiers (random forest and AdaBoost) and the best neural

model (CNN-Context-Rep) to test the generalization performance.

Although the number of annotated Ubuntu dialogs is limited, it is

sufficient to demonstrate the predicting performance. We split the

annotated UDC data into validation and test sets with an equal size.

We train the model on MSDialog data only and tune the hyper-

parameters on the UDC validation set. The performance on the

UDC test set is presented in Table 9.

Table 9: Testing performance on UDC of different models

trainedwithMSDialog. The significance test can only be per-

formed on accuracy. ‡ means statistically significant differ-

ence over both strongest feature based baselines with p <

0.01 measured by the Student’s paired t-test.

Methods Accuracy Precision Recall F1

Random Forest 0.4405 0.6781 0.4077 0.5092
AdaBoost 0.4430 0.5913 0.4187 0.4902

CNN-Context-Rep 0.4708‡ 0.5647 0.5129 0.5375

The generalization results on UDC are not as good as MSDi-

alog. Although MSDialog and UDC both consist of multi-turn

information-seeking dialogs from the technical support domain,

the drastically different language style adds difficulty for model

generalization and transferring. In this challenging setting, CNN-

Context-Rep still achieves statistically significant improvement

over both baselines in terms of accuracy with p < 0.01 measured

by the Student’s paired t-test.

5.4 Hyper-parameter Sensitivity Analysis

We further analyze the impact of two hyper-parameters on CNN-

Context-Rep: the number of convolutional filters for the given

utterance and the max sequence length. The choices for number of

convolutional filters are (64, 128, 256, 512, 1024). We tune the max

sequence length in (50, 100, 200, . . . , 1000). As presented in Figure 3,

the performance gradually increases as the number of filters in-

creases. The best performance is at 1,024 filters. This confirms our

expectation that more convolutional filters can extract richer fea-

tures and thus produce better results. In addition, the performance

fluctuates as the max sequence length increases. Performance with

larger (⩾ 800) max sequence length are better in general.

5.5 Case Study

Table 10 gives examples of the predictions that different systems

fail to make. In the first utterance, the agent asks for the user’s

iOS version before providing a potential answer, which is a very

common pattern of agents’ responses. Our CNN-Context-Rep is able

to identify the Information Request in the utterance while AdaBoost

cannot. In the second utterance, both models fail to predict the

Negative Feedback. This might be due to the fact that the feedback

is not explicitly expressed. In addition, it could be relevant that

the number of feedback utterances in the training data is relatively

limited compared to questions and answers, which makes it more

difficult to predict positive/negative feedback.

Table 10: Two utterances with their ground-truth and pre-

dicted user intent labels. Bold font indicates mispredicted

content or labels. łOursž refers to CNN-Context-Rep.

Hello. Welcome to Skype Community! Please provide us the iOS version of
your iPad. The required iOS version for iPad is iOS 8 or higher and for the new
Skype on iOS requires iOS 9 or higher. For more information, click here. Hope
this helps. Let me know if you need further assistance. Thank you!
Ground truth: IR, PA Ours: IR, PA AdaBoost: PA Actor: agent

After modified the Windows entry, value of regedit, the error also happened.
When I use C++ for creating another new Microsoft::Office::Interop::PowerPoint::
Application instance, the COMException is throwed.
Ground truth: FD, NF Ours: FD AdaBoost: FD Actor: user

6 CONCLUSIONS

In this paper, we studied two approaches to predict user intent

in information-seeking conversations. First we use different ML

methods with a rich feature set, including the content, structural,

and sentiment features. We perform thorough feature importance

analysis on both group level and individual level, which shows

that structural features contribute most in this prediction task.

Given findings from feature analysis, we construct enhanced neural

classifiers to incorporate context information for user intent pre-

diction. The enhanced neural model without feature engineering

outperforms the baseline models by a large margin. Our findings

can provide insights in the important factors of user intent pre-

diction in information-seeking conversations. Future work will

consider other methods for user intent prediction. Utilizing the

predicted user intent to rank or generate conversation responses in

an information-seeking setting is also interesting to explore.
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