On-line New Event Detection and Tracking

James Allan, Ron Papka, and Victor Lavrenko

Center for Intelligent Information Retrieval
Computer Science Department
University of Massachusetts
Ambherst, MA 01003

Abstract We define and describe the related problems
of new event detection and event tracking within a stream
of broadcast news stories. We focus on a strict on-line
setting—i.e., the system must make decisions about one
story before looking at any subsequent stories. Our ap-
proach to detection uses a single pass clustering algo-
rithm and a novel thresholding model that incorporates
the properties of events as a major component. Our ap-
proach to tracking is similar to typical information filter-
ing methods. We discuss the value of “surprising” fea-
tures that have unusual occurrence characteristics, and
briefly explore on-line adaptive filtering to handle evolv-
ing events in the news.

New event detection and event tracking are part of
the Topic Detection and Tracking (TDT) initiative.

1 Introduction

The problems discussed in this study are new event de-
tection and event tracking. The goal of those tasks is to
monitor a stream of broadcast news stories so as to deter-
mine the relationships between the stories based on the
real-world events that they describe. New event detec-
tion requires identifying those news stories that discuss
an event that has not already been reported in earlier
stories. Event tracking means starting from a few sam-
ple stories and finding all subsequent stories that discuss
the same event.

Typical Information Retrieval problems rely upon a
user-defined query to specify what is “interesting.” A
retrieval system finds documents that help the user sat-
isfy an information request. A filtering system uses a
long-lived profile of a user’s request to identify relevant
material in a stream of arriving documents. In contrast,
new event detection has no knowledge of what events
will happen in the news, so must operate without a pre-
specified query. A detection algorithm might look for
clues in the news reporting and/or maintain a “memory”
of past events so that it can determine that a new event
is being mentioned. The event tracking task does include
an implicit query in the sample stories, but the “query”
is given by example and is meant to capture the under-
lying event, slightly different from the typical IR concern

To appear in Proceedings of the 21st ACM-SIGIR International
Conference on Research and Development in Information Re-
trieval, Melbourne, Australia, August 1998.

with “aboutness.”

In Section 2 we discuss the TDT initiative, its basic
ideas, and some related work. Section 3 discusses the cor-
pus and evaluation measures that are used in this study.
Section 4 covers our work on new event detection and is
followed by Section 5 which discusses our tracking ap-
proaches and results. We conclude by briefly discussing
directions of this research in Section 6.

We stress that this work was carried out as part
of a pilot study with a relatively small corpus (by the
standards of Information Retrieval). The results should
therefore be taken as suggestive and not conclusive.

2 History and Definition

The Event Detection and Tracking problems are part of
a broader initiative called Topic Detection and Track-
ing (TDT). The domain of TDT’s interest is all broad-
cast news—i.e., written and spoken news stories in mul-
tiple languages. As such, the problem is substantially
broader than the work reported in this study, encompass-
ing automatic speech-to-text efforts, finding the bound-
aries between news stories for archival and presentation
purposes, locating new events within the stream, track-
ing located events, and doing all of that in a multi-lingual
environment with degraded information. As its name im-
plies, TDT is also ultimately concerned with ways of or-
ganizing information that are broader than “events,” but
the initial work has focused on the more limited setting.

The TDT tasks and evaluation approaches were devel-
oped by a joint effort between DARPA, the University of
Massachusetts, Carnegie Mellon, and Dragon Systems. A
year-long pilot study was undertaken to define the prob-
lem clearly, develop a test bed for research, and evaluate
the ability of current technologies to address the problem.
The groups involved in the tasks found that the “state
of the art” is capable of providing adequate performance
for detection and tracking of events, but that there is a
high enough failure rate to warrant significant research
into how algorithms can be advanced. As the research
is broadened to the larger TDT scope, the unresolved
questions become more troublesome. Detailed results of
that study are reported elsewhere[3]; this paper presents
advances in our understanding of the problem after the
end of the pilot study.

We wish to make it clear that the corpus and evalu-
ation methodology that were devised in the TDT study
were a joint effort by four groups. The research results
reported in this study are our own; the framework for the
work is only partly ours.



2.1 What is an event?

A possible definition of event is something that happens
at a particular time and place. A goal of the TDT pi-
lot study was to test that definition for reasonableness.
The specific location and time of an event differentiate it
from broader classes of events: for example, “The Erup-
tion of Mt. Pinatubo on June 15th, 1991” is an event
whereas “volcanic eruptions” is the more general class of
events containing it. There are problems with this defi-
nition, however: many would consider “the O.J. Simpson
saga” an event, though it occurs over several years and in
many places. One hope of the TDT initiative is that an
iterative process of partial definition, evaluation, better
definition, evaluation, and so on, will eventually result in
a satisfactory understanding of “event.”

Though it is hard to define event, it is easier to de-
fine parts of event identity, the properties that make two
events the same. A system that can represent properties
of event identity is trivially capable of performing new
event detection: the system determines for the current
story whether it contains an event identical to one occur-
ring in an already seen story. If so, the system does not
detect a new event; otherwise it does. These properties
are clearly important for an event detection and tracking
system to model, so part of the TDT problem becomes
deciding what properties of news stories can be used to
detect event identity.

2.2 Previous work

The tasks defined within TDT appear to be new within
the research community. Some efforts have been made to
classify news stories or other documents into broad sub-
ject areas automatically using nearest neighbor matching
[16], pattern matching[9], or other algorithms based on
supervised training[4, 13, 17]. For the most part, those
techniques are intended to match stories or documents
against a set of category labels that are known a priori, a
method that is helpful for event tracking but inappropri-
ate for detection. Event detection (and to some extent
tracking) requires finding stories that discuss an event
that may not match any already known class of events.

One study that is close in spirit to the TDT work
was done by DeJong using frame-based objects called
“sketchy scripts”[8]. Frames associated with 50 general
events were constructed by hand. The goal of his system
was to predict which frame needed to be populated, and
then to produce a short summary of the event. DeJong’s
system was primarily a natural language parser that de-
tected when a story contained an event. It chose the cor-
rect script with a classification accuracy of 38% for the
stories for which it had a sketchy script. We believe this
frame-based approach will be difficult to use outside of
specific domains: the number of frames and the details of
their contents would quickly become difficult to maintain
as new types of events emerge and existing events evolve
in a news environment. We believe a better approach to
new event detection is to use general word co-occurrence
retrieval in a process that specifically models event-level
features in addition to event-class-level features.

Some recent work that associates news photographs
with stories about the picture[6] is very similar in spirit to
Event Tracking. Their stated interest is in linking stories
that discuss the same event, though they work solely on
the problem of linking photographs and stories. As we
will do in our work, they represented stories and photo
captions by sets of features. Proper names turned out to

be useful for their linking task.

The other research organizations involved in the TDT
pilot study also worked on new event detection and
event tracking. They used different approaches to ad-
dress each of the issues discussed below, although there
are some common themes that are the natural results
of a collaborative study. For example, the notion of a
time penalty (Section 4.2) and the use of forms of doc-
ument clustering (Section 4) were threads picked up by
all sites. The details of early work by Dragon Systems
and Carnegie Mellon is published in the pilot study’s
final report.[3] Carnegie Mellon has also published addi-
tional work on detection, including the “retrospective”
detection task that allows story clustering considering
the entire corpus.[24]

3 Evaluation corpus

An important task of the TDT pilot study was the cre-
ation of an appropriate test corpus and a useful approach
to evaluation of the problem. The goals of creating the
corpus and evaluation methodology were two-fold: (1) to
make strides toward a solid definition of “event” as out-
lined in Section 2.1, and (2) to evaluate how well “state
of the art” approaches could address the TDT tasks.

To simplify the problem slightly for the pilot study,
we generally ignored issues of degraded text coming from
speech recordings, and used written newswire sources and
human-transcribed stories from broadcast news. The re-
sulting TDT corpus includes 15,863 news stories span-
ning July 1, 1994, through June 30, 1995. Half of the
stories are randomly chosen Reuters news articles from
that period; the other half are transcripts of several CNN
broadcast news shows during the same period. The sto-
ries are assigned an ordering that represents the order
that they appeared in the news. The average story con-
tains 460 (210 unique) single-word features after stem-
ming and removing stopwords.

The corpus also includes relevance judgments for a
set of 25 events. Some events (e.g., the Oklahoma City
bombing or the earthquake in Kobe, Japan) were disas-
ters or crimes that occurred in the news and were unex-
pected. Others are stories that build up to an anticipated
event (e.g., the collision of a comet into Jupiter, the ap-
pointment of U. S. Supreme Court Justice Breyer). The
events were chosen to represent a range of events that
seemed “interesting,” to ensure that there would be a
fair number of stories on each event in the corpus, and
also to cover a range of event classes that are generally
recognized as “events.”

To provide a high-quality evaluation setting, every
story in the corpus was judged with respect to every
event. The judgments were made by two sets of assessors
and any conflicts were reconciled by a third. For each of
the 25 events, each of the stories was assigned a judg-
ment on a ternary scale: about the event, not about the
event, or mentioning the event but only briefly in a story
that is generally not about the event. The exhaustive
judgments of this corpus are in contrast to more com-
mon pooled strategies.[22] An unfortunate side-effect of
requiring exhaustive judgments is that the cost of creat-
ing them limits the size of the corpus.

In all, 1132 stories were judged relevant, 250 stories
were judged to contain brief mentions, and 10 stories
overlapped between the set of relevant stories and the
set of brief mentions. Overlaps and brief mentions were
removed from the corpus before processing, leaving 1124



relevant stories for evaluation.

The TDT corpus and relevance judgments are de-
scribed in more detail in the pilot study’s final report[3]
and are available from the Linguistic Data Consortium.
The LDC is currently creating a second and larger TDT
corpus (TDT2) that includes a broader range of sources,
at least four times the number of stories, a larger number
of judged events, as well as the audio stream and closed
captioning for all broadcast sources.

3.1 Evaluation measures

Information Retrieval systems are generally evaluated on
the basis of ranked recall and precision,[10, 18] though
numerous other measures have been proposed.[20] Infor-
mation Filtering systems are evaluated on a wider range
of measures, including set-based measures and various
utility measures, though no particular measure has set-
tled out as preferred.[14]

In the TDT setting, we have chosen to measure a
system’s effectiveness primarily by the miss (false nega-
tive) and false alarm (false positive or fallout) rates. The
major reason for choosing these is a perception of the
problem as being a detection task rather than a rank-
ing task: a system needs to indicate whether or not a
story is new or is on the event being tracked, not pro-
vide a ranked list of stories that might discuss the event.
Unfortunately, although it is fairly straightforward for
systems to generate ranked lists of stories and to provide
a score that creates that ranking, it is more difficult to
determine a good score that can be used as a threshold.
An ideal system might output a score that corresponds to
the probability that the story discusses the event; ideal
systems do not yet exist.

In this work, we skirt the threshold issue by using
a Detection Error Tradeoff curve[l5] to show how false
alarm and miss rates vary with respect to each other at
various threshold values. Figure 4 presents examples of
DET plots showing curves for several different runs. The
curves are plotted such that if the errors exhibit a normal
distribution, they will result in a straight line. A perfect
system would have zero misses and zero false alarms, and
would have a “curve” at the origin; curves closer to the
origin are generally better, though there may be appli-
cations that require good performance at particular false
alarm or miss rates. For most applications, the left-hand
side of the DET curve (low false alarm rate) is probably
the most interesting. For the event tracking task, a false
alarm rate of 1% means that as many as 158 stories per
event would have been incorrectly tracked.

The DET graph is analogous to a recall/precision
graph, except that “good” is in the opposite direction.
Both graphs provide a means for comparing system per-
formance across a wide range of error tradeoffs. Both
allow a user to understand the tradeoff between improv-
ing one measure and worsening the other.

4 New Event Detection

New event detection operates in a strict on-line set-
ting, processing stories from a news stream one at a
time as they arrive. Our approach to the problem is
a modification of the well-known single pass clustering
algorithm([21]. Our algorithm processes each new story
on the stream sequentially, as follows:

1. Use feature extraction and selection techniques to
build a query representation for the story’s content.

2. Determine the query’s initial threshold by evaluat-
ing the new story with the query.

3. Compare the new story against earlier queries in
memory.

4. If the story does not trigger any previous query by
exceeding its threshold, flag the story as containing
a new event.

5. If the story triggers an existing query, flag the story
as not containing a new event.

6. (Optional) Add the story to the agglomeration list
of queries it triggered.

7. (Optional) Rebuild existing queries using the story.
8. Add new query to memory.

We represent the content of each story (which we assume
discusses some event) as a query. If a new story triggers
an existing query, the story is assumed to discuss the
event represented in the query, otherwise it contains a
new event.

4.1 Detection Experiments

The new event detection algorithm was implemented by
combining the ranked-retrieval mechanisms of Inquery,
a feature extraction and selection process based on rele-
vance feedback[2], and InRoute’s routing architecture[5].
For comparing document d to query g we used the
evaluation function of Inquery’s #WSUM operator:

Eﬁil w; - di
Zf:l w;

where w; is the relative weight of a query feature g;, and
d; is the belief that the feature’s appearance in the doc-
ument indicates relevance to the query.

The document representation used in the system is a
set of belief values corresponding to each feature specified
in a query. Belief values are produced by Inquery’s belief
function, which is composed of a term frequency compo-
nent, tf, and an inverse document frequency component,
idf. For any instance of document d and collection c:

d; = belief(qi,d,c) =0.4+ 0.6 x tf * idf (2)

eval(q,d) = (1)

el +.5
where tf = t/(t+0.5+ 1.5 % 4r), idf = T ) tis
the number of times feature g; occurs in the document, df
is the number of documents in which the feature appears
in the collection, dl is the document’s length, avg_dl is
the average document length in the collection, and || is
the number of documents in the collection.

In our system, c¢ is an auxiliary collection, indepen-
dent of the stream. Since future feature occurrences
are unknown in the strict on-line case, the number of
times a feature appears in the collection cannot be de-
termined. Therefore, one could estimate idf using ret-
rospective statistics from the current stream or from an
auxiliary corpus with a similar domain. The 4df compo-
nent in this detection work comes from a collection built
of TREC volumes 1-3 and the TREC-4 routing volume.

A feature selection process was used to build and re-
build queries. In the experiments that follow, a query
was built using the n most frequent single word features
found in the stories. The query feature weight was the av-
erage value using the ¢f component calculation described
above.




4.2 Detection Thresholding

One of our hypotheses regarding new event detection is
that exploiting time will lead to improved detection. A
side-effect of broadcast news is that stories closer together
on the stream are more likely to discuss related events
than stories further apart on the stream. When a signif-
icant new event occurs there are usually several stories
per day pertaining to it; over time, coverage of old events
is displaced by more recent events.

One place to incorporate time is in the thresholding
model. Our thresholding technique uses an initial thresh-
old for each query based on the evaluation of the query
against the story from which it was created using Equa-
tions 1 and 2 above. The final threshold 8 for a query
is calculated as a constant percentage p of the initial
threshold from the default evaluation value of 0.4 used
by Inquery.

A second factor of the model is a time penalty tp, that
increases the threshold for a query based on the amount
of time between a query and a story. If the jth story is
compared to the query resulting from the ith story, for
i < j we have:

6(gi,d;) = 0.4+ p = (eval(gi,di) — 0.4) +tp = (j — 1)

We used this model with different values for p to deter-
mine a similarity threshold indicating the lowest evalua-
tion score that could trigger a query, as well as a consol-
idation threshold that determined whether a story was
included when rebuilding an existing query.

Our general approach to new event detection is to
build successive event classifiers from the contents of the
stories from the stream. The classifiers in our implemen-
tation are queries and their thresholds.

4.3 Detection Evaluation Methodology

The standard evaluation measures in TDT are miss and
false alarm rates. For the detection task, a miss occurs
when the system fails to detect a new event, and a false
alarms occur when the system indicates a story contains
a new event when it does not.

Since only 25 events in the corpus were judged, an
evaluation methodology developed for the TDT study
was used to expand the number of trials. The method-
ology uses 11 passes through the stream. The goal of
the first pass is to detect a new event in the 25 stories
in which one of the 25 known events first occurs. The
second pass excluded these stories, and the goal was to
detect the second story for each of the 25 known events:
the second story artificially becomes the first story in the
stream. The process iterates to skip up to 10 stories for
each event. If an event contained fewer stories than the
number of stories to be skipped in the pass, the event
was excluded from evaluation in that pass.

Separate training and testing phases were not per-
formed due to the unavailability of more judged events.
In order to avoid over-fitting our threshold parameters
p and tp, we selected parameters based on k-fold cross-
validation [11]. The general algorithm is to randomly
partition the data into k sets, and to leave one set out
while finding parameters that best fit the remaining k—1
sets. The process repeats for k iterations. The param-
eters that give rise to the smallest overall performance
error are used. Because the TDT data contains only 25
instances, we chose k = 25, effectively performing leave-
one-out cross-validation.

Performance
w
o

20 ~

5 10 25 50 75 100 150 200 400
Dimensionality

Figure 1: (Performance = 100 — Distance from Origin)
vs. maximum number of query features.

# of Miss F/A

skip | Docs Rate  Rate Recall Prec F1
0] 1124 36% 1.46% 64% 50% 0.56
111099 36% 1.40% 64% 52% 0.57

2| 1074 39% 1.24% 61% 52% 0.56

3| 1051 48% 1.56% 52% 43% 0.47

41 1028 36% 1.49% 64% 48% 0.55

5| 1006 45% 1.63% 55% 43% 0.48

6 984 41% 1.66% 59% 45% 0.51

7 962 40% 1.59% 60% 44% 0.51

8 942  53% 1.41% 4% 41% 0.44

9 923 63% 1.33% 3% 3% 0.37

10 904 8% 1.35% 22% 25% 0.24
Avg | 1008 46% 1.46% 54% 45% 0.49

Table 1: New Event Detection with n = 400 features.

Once the threshold parameters are obtained, we in-
fer their expected performance using a simple bootstrap
process [7]. The process randomly selects 25 instances
(with replacement) from the data to form a bootstrap
sample. Performance is calculated on the sample. The
process repeats for many iterations, effectively produc-
ing a distribution of performance based on the threshold
parameters obtained from the cross-validation procedure.

4.4 Results

The results for the new event detection system using
queries containing between 5 and 400 single-word fea-
tures are listed in Figure 1. Performance in this graph
is based on the Euclidean distance average miss rate and
false alarm rate are from the origin (recall that, in gen-
eral, points closer to the origin are “better”). In general,
detection performance increases by using more single-
word features in the event representation; however, the
gains afforded by greater dimensionality (more single-
word features) were offset by much slower running times
in our system. The best parameters found across dimen-
sionality were similar, and identical for more than 75 fea-
tures. The parameters of p = 0.225 and ¢p = 0.000008
were determined by leave-one-out cross-validation, and
yielded the best performance for high dimensionality.
Performance at 400 features represents processing at
full dimensionality, in that each query contains almost



100 -
90
80

\

70

60 :\
b3
b

Q
I 5 |8 + 0<1tp <.000032
[}
@ e = 1tp=0
S 40 '\

30 e

20 =

.
10 SoBa
0 ' ' ‘
0 10 20 30

False Alarm Rate

Figure 2: Effects of varying threshold parameters p and
tp. (Axes have different scales.)

all the single-word features available in its correspond-
ing story. Table 1 lists the results at 400 single-word
features across the 11 passes through the corpus as de-
scribed above. In these experiments, a skip value of n
implies that stories 1 through n of each event were re-
moved from the stream, and the goal was to detect the
story number (1 + n) for each event. A skip value of 1
implies that the second story was the goal, and so on. Av-
erages are based on pooling all system responses across
the 25 events. Performance is stable for the first few skip
values, but becomes worse at higher values because fewer
events are included in the pass.

The effects of the time penalty in the threshold model
are illustrated in Figure 2. Each point represents average
performance at a particular combination of p and tp from
our parameter optimization process. The points in the
graph that are connected by a line represent performance
for various values of p using no time penalty (i.e., tp =
0). The data suggest that better overall performance is
realized by using time penalties. On average, for any
value of p, performance is better when tp > 0.

We ran the bootstrap process for 10,000 iterations to
yield samples having a mean miss rate of 40.5% with a
standard deviation of £7.6%, and a mean false alarm
rate of 7.8% with a standard deviation of £4.0% . Initial
experiments on the first month of data from the TDT2
corpus yielded a miss rate of 38% and false alarm rate of
10% using the same parameters from the cross validation
process applied to TDT1 (this study). These results are
within one standard deviation of the expected values.

The consolidation threshold was used to build lists of
stories that were assumed to be related to each query.
We tested various methods of combining stories that ex-
ceeded this threshold into one query. One of the meth-
ods for agglomerating queries used average link cluster-
ing [23, 18]. We found that agglomerating using low val-
ues for p had worse performance than agglomerating at
higher values, but in general, agglomeration with good
parameters had no effect on detection performance.

Our system processed 1300 stories per hour (sequen-
tially) while agglomerating 10% of the incoming queries
into previously created queries. It was tested on a 300
MHz DEC-Alpha running Unix.

ql04 = #WSUM( 1.0

1.125646 crash
0.935901 cause
0.935901 look
0.852374 aircraft
0.752039 usair );

1.175688 accident
1.070033 plane
0.935901 investigate
0.852374 air
0.852374 survivor

Figure 3: General “US Air plane crash” query.

4.5 Failure Analysis

Misses occur when stories containing new events are la-
beled as “not new”. When the representation used a
small number of features, misses were mostly the result
of failing to weight specific event features more heavily
than features descriptive of a class of events. For exam-
ple, story 3057 is about the “Crash of US Air flight 4277
(event 24). The query in Figure 3 uses 10 words cre-
ated from story 104 and contains many features related
to the broad class of plane crash events. Story 104 is not
related to event 24 (it is about a different plane crash),
but causes the system to miss the start of the event on
90% of the passes. Story 104’s query becomes a general
query for crashes of US Air planes. The classification of
the “Oklahoma City bombing” (Event 18) had a similar
problem because of a query created from a story about
the earlier bombing at the World Trade Center (Event
25). When the representation includes more features,
the two bombing events were separable, but the airline
crashes were not. We expect that the use of phrases—
e.g., “fight 427" —may help with these problems.

At higher dimensionality and using the best param-
eters, the system could not distinguish between stories
from the “O.J. Simpson trial” (Event 9) and stories per-
taining to other court cases. In addition, the corpus
contained a heavy coverage of the events related to the
problems in Bosnia, which caused our system to miss
“Carter’s visit to Bosnia” (Event 3). These examples
indicate that the system was unable to detect certain
events that are discussed in the news at different lev-
els of granularity. However, we hypothesize that several
of the problems revealed in the failure analysis could be
resolved with a different weight assignment strategy for
query features.

5 Event Tracking

The TDT evaluation approach is different than the more
established TREC filtering task. The latter provides
a large amount of training data with queries and rele-
vance judgments, and requires that sites generate filter-
ing queries that will work on a test set provided later. In
the TREC-6 filtering track,[22] the training data includes
anywhere from 6 to 887 relevant documents, with a mean
of 123 (the routing track had between 8 and 2,431 rele-
vant documents with a mean of 576). Although there are
settings where that much training information is possible,
it is difficult to argue that the setting is commonplace.
For the Event Tracking task, on the other hand, we
are interested in substantially smaller numbers of train-
ing stories—in fact, we are interested in how few stories
are needed for successful tracking. However, a more im-
portant problem for this task is that to model a real world
setting, the tracking needs to begin as soon as possible
after the training stories are “presented.” Consider the
case of tracking a bombing event: it is not interesting



to evaluate a tracking system on news that is reported
weeks after the event—the goal of the system is to begin
tracking immediately. Unfortunately, events occur at dif-
ferent times, meaning that it is nearly impossible to use
the same training and test set for each event.

For those reasons, the TDT corpus is split into train-
ing and test information at a different point for each
event. If the system is being evaluated for 4 training
stories, then the training corpus is all stories up to and
including the fourth training story and the test corpus is
the remainder of the corpus. Note that this also means
that different numbers of training stories create different
training and test corpora.

In this study, we let the number of training stories,
Ny, take on values 1, 2, 4, 8, and 16. If an event has fewer
than N; training stories it is neither tracked nor evalu-
ated at that N; value.! To compare system performance
across IV values, the system is trained on NN; stories, but
always evaluated on the Ny = 16 test set—i.e., its per-
formance on the stories between the Nf* and the 16"
training story is ignored. Ten of the 25 events have fewer
than 16 training stories, so cross-/NV; comparisons are done
using only 15 events.

The effect of this per-event, per-N; separation of the
corpus into training and test data is to create a “rolling”
evaluation corpus. A tracking system will be testing some
events while it is simultaneously training others.

5.1 Tracking algorithm

We approach the tracking problem using methods based
primarily on Information Filtering. We represent stories
by vectors of features. The features were found by ap-
plying a shallow tagger (part of Inquery) to the stories
and selecting all nouns, verbs, adjectives, and numbers.
Names of countries, states, and large cities were treated
as single features by the tagger even if they are multi-
word. There was no stopword list, but most common
stopwords do not fall into the parts of speech used. The
features were stemmed.

Queries are represented by a similar vector of tfidf
feature weights. Queries and stories are compared by:

N .
sim(Q,D) = iN p
i=1%
_ _tf ,

where ¢; is the weight of feature ¢ in the query, d; is the
weight in the story, ¢ f is the number of times the feature
occurs in the story, df; is the number of the times the
feature occurs in the collection, and N is the number
of stories in the collection. (This weighting function is a
simplification of the more complex weighting scheme used
for detection; it assumes that all stories are of roughly the
same length, that the collection is never empty, and that
df; is not zero.)

As mentioned in Section 4.1, the statistics for the idf
part of the weighting function are not known for the en-
tire stream. In contrast to our solution for detection,
our implementation for tracking utilized incremental idf
based on the current values for N and df; up to and
including the last training story for each event. Query
weights were held constant, and document weights were

1Note that this means that for larger values of N;, only heavily
reported events will be evaluated. Results for one value of Ny
should not be assumed valid for other values.

recalculated based on incrementally updated values. We
ran experiments on the TDT corpus itself, but seeded
the initial values with those obtained from an auxiliary
corpus (“past”). In the experiments that follow, we used
31,188 CNN news stories from January 1, 1993, through
June 30, 1994, which provided 18 months of data prior
to the start date of the TDT corpus.

A final step in the scoring process normalizes scores
across all events. The comparison function above re-
sults in a ranking of stories where the higher in the rank
the more likely a story is to discuss the event in ques-
tion. However, a score of 0.45 could mean “very likely
to match” for one query and “very unlikely” for another
query. Our goal is to normalize the scores so that 0.45
(and every other score) has roughly the same meaning no
matter what query and story are being compared. This
should result in more “meaningful” scores for stories and
more appropriately matches the assumptions behind the
DET curve discussed above.

To normalize scores, we calculate the similarity of the
query against the V; training stories and find the average
of those similarities. That average value is used as a
normalization factor, and all scores (for that event) are
divided by it. As a result, although scores can range from
zero through well above 1.0, a particularly “good” story
(for any event) should score 1.0 or higher. That is, its
unnormalized score will be near those of the Ny training
stories, so dividing by that average score, will result in a
normalized score near 1.0. The interpretation of 1.0 as
“very like the training stories” is more likely to be true
across all events than before normalization.?

5.2 Using common words

The simplest approach to tracking is to select useful
words or phrases from the N; training stories and use
those to form a query and a threshold for matching the
query. As in any filtering task, all subsequent stories are
compared against the query and, if the match is above
the threshold, the story is selected—here, it is assumed
to be about the same event.

We used the top n most commonly occurring features
in the NV training stories, with weight equal to the num-
ber of times the feature occurred in those stories multi-
plied by its incremental idf value (set after the Nf* story).
We found that performance was very similar across all
values of n, though larger queries are generally less ef-
fective; the optimal values appear to be 10-20 features.
We suspect a small number of features is sufficient be-
cause news reporting tends to refer to an event with few
words and phrases, relying on the audience’s having a
context to recognize the event: capturing the one or two
“killer features” is sufficient to track the event with high
accuracy. We have not investigated this issue in depth.

Figure 4 shows 10-feature queries at several values
of N;. The curves show that more training helps the
performance, but that by the time there are four sam-
ple stories, adding more provides little help. This rapid
peaking of effectiveness is similar to that observed in the
TREC routing tasks.[1]

Early efforts found that incremental idf information
from the “past” corpus hurts in both cases when com-
pared to using the less-accurate “tdt” idf statistics. It

2We have not yet performed any statistical analysis of the nor-
malization to know details of its effect. It does improve the detec-
tion error tradeoff as represented by the DET curve, so we believe
that we are achieving something useful for situations where that
sort of measure is important.



Nt=16. ===

Miss Probability (in %)

kY

.0102.09.102051 2 5 10 20 40 60 80 90
False Alarm Probability (in %)

Figure 4: Comparing values of N;. Once NNy reaches 4,
adding more stories for training is only marginally help-
ful.

Figure 5: Number of news stories per day covering the
OK city bombing event.

appears that the lack of retrospective data (in “tdt”)
creates more volatile idf values that drop rapidly and
create a time penalty similar to that used in detection
(section 4.2). When we explicitly model a time penalty
in the tracking task, the incremental idf works equiva-
lently in both corpora. It is not clear that incremental
idf is of greater value than a static retrospective idf such
as that used in the detection task.

5.3 Surprising features

It is a characteristic of news reporting that stories about
the same event often occur in clumps. This effect is par-
ticularly true for unexpected events (e.g., disasters or ma-
jor crimes) where the news media exhibit strong interest
in a story and report in nearly endless detail about it.
As the triggering event fades into the past, the stories
discussing the event similarly fade. For example, Fig-
ure 5 shows how many stories appeared per day in the
TDT corpus for the Oklahoma City bombing event. The
sudden rise and then gradual fall of the stories is charac-
teristic of this type of event.

A second characteristic of news coverage is that the
people, places, and other items of interest in a story are
likely not to have been mentioned very often in the past.
This supposition is obviously not true for all features
(e.g., the name of the President of the U.S. is likely to re-
occur), but there must be something about the story that
makes its appearance worthwhile. We call those features
that have not occurred recently surprising.

An analysis of the events in this corpus shows that
this effect is almost always true. We measure surprise
based on the distance between this occurrence of a word

Feature Surprise rcf rdf Event

Kobe 1.29 19 4 Kobe

427 2.30 5 3  TUSAir 427 crash
cessna 1.09 5 4 Cessna

£-16 013 14 4 F-16

dna 0.11 15 4 0OJ & DNA
lawn 0.06 17 4 Cessna

quake 0.13 13 3 Kobe

OKCity 0.25 12 4 OKCity

Breyer 022 36 4 Breyer

Intel 0.14 35 4 Pentium chip flaw
Rosario Ames inf 14 3 Spy

bosnia 0.00 50 4 F-16

earthquake 0.04 27 4 Kobe

death 0.00 10 2 Salvi

death 0.00 5 3 OKCity

Table 2: Surprise values for a few words/phrases and a
few events. The feature is shown along with its surprise
value, the number of time it occurs in the Ny = 4 training
set, the number of those 4 stories it occurs in, and the
name of the event being considered.

and all past occurrences. For document sequence number
docid, and word number word:
-1

dfword—1 1

Surprise(word,docid) = Zl log(docid — idumrad)

i=

where df; is the number of stories to date containing word
4 and id; is the sequence number of the most recent story
that contained word i. The formula is the inverse of
the sum of the inverses of the log of the distances from
this word to all of its previous occurrences.> Table 2
shows the surprise values of selected words for some of
the events. Of interest are words like kobe that are very
surprising and occur frequently in the N; = 4 training
stories and earthquake which is entirely unsurprising but
still common in those same stories. In general, we find
that words that are common in the training set but that
have little to no surprise value represent “event class” fea-
tures covering broad news areas such as politics, death,
destruction, and warfare. (We expect that event-class-
and event-level features can be combined in a meaning-
ful way, perhaps with the class features providing a form
of “query zone.” [19])

Because many of the “surprising” features appear to
be strong indicators of the event being discussed, we had
expected they could be used to build superior tracking
queries. Unfortunately, the evaluation does not support
that hope. Two problems arise: (1) the surprising words
do not provide a broad enough coverage to capture all
stories on the event (e.g., omitting “bosnia” for an event
in that area of the world because it is not a surprising
word), and (2) many of the words are useless for retrieval,
either because they are misspellings or because they are
surprising by chance (e.g., the name of someone inter-
viewed). For retrospective tasks, where a feature’s occur-
rence characteristics can be measured after its “surpris-
ing” appearance, we expect that a measure of a feature’s

3This particular formula is primarily ad hoc to explore its
value, though it is supported by some data exploration and empir-
ical evidence. An information theoretic or probabilistic measure
may prove more appropriate when we have a better understanding
of the task.



Nt=16 ----

Miss Probability (in %)

.0102.09.102051 2 5 10 20 40 60 80 90
False Alarm Probability (in %)

Figure 6: Adaptive filtering and the number of training
instances.

surprise value and its subsequent longevity may provide
more useful information.*

5.4 Adaptive tracking

One of the reasons for a query’s inability to track stories
is that the discussion of an event changes over time. This
effect is particularly well illustrated by the Oklahoma
City bombing event. When the bomb exploded outside
the Murrah building, its origin was a mystery. Six days
later, Timothy McVeigh was arrested and charged with
the crime. Indeed, there is no mention of McVeigh until
the 61st story that is relevant to that event, so using the
approaches of Section 5.1, it is impossible for his name to
appear in a query for any value of IV less than that. Sev-
eral other events exhibit similar reporting characteristics,
and a tracking method that accommodates the shifting
reportage should prove useful. The issue is similar to
drifting queries in information filtering.[1, 12]

We have implemented an adaptive version of the
tracking system that may rebuild the query after it
“tracks” a news story on a given event. This idea is
a form of unsupervised learning and except for its in-
cremental nature, is similar to the notion of “pseudo-
relevance feedback” that has proved highly successful at
TREC workshops.[22]

When a tracking query is first created from the NV
training stories, it is also given a threshold. We used an
initial threshold of 0.8 for all events (recall that scores
range from zero to just over one). During the tracking
phase, if a story S scores over that threshold, we assume
that S is relevant and the query is regenerated as if S
were among the N; training stories—so there are Ny + 1
then N; + 2 and so on training stories.

The adaptive approach is highly successful at generat-
ing superior queries, particularly at low false alarm rates.
The threshold value has a noticeable impact on the effec-
tiveness of the adapting. The higher the threshold, the
less likely a query is to be regenerated. We found that
a threshold of 0.8 improves performance, and one of 1.0
hurts it. Smaller thresholds (e.g., 0.6) cause performance
to get consistently worse because they are adding stories
that are less and less likely to be relevant.

4Preliminary studies in the Retrospective Detection task of the
TDT pilot study[3] support this intuition.

One of the nice features of adaptive tracking is that
when it works well, it allows the system to operate effec-
tively with fewer sample stories. Figure 6 suggests that
two sample stories is sufficient to achieve high-quality
tracking: adding more causes almost no improvement—
that effect is not achieved until N; = 4 without adapting.
Although the IV; = 1 curve is noticeably worse that then
others, a comparison with Figure 4 shows that it still
results in a substantial improvement in effectiveness.

We started off this section by talking about prob-
lems with words such as “McVeigh” and their not ap-
pearing in early stories. The final queries for Ny = 4
show that adaptive tracking successfully captures those
features. [Timothy] McVeigh and [Terry] Nichols (the
two suspects that have since been convicted) are both
added to the Oklahoma City bombing event even though
no mention is made of them until after the 60th stories;
Scott O’Grady’s name appears in the event describing
the downing of F-16 pilot in Serbian territory, though it
is six days and 38 stories later that the name is revealed.

We believe that adaptive event tracking is a neces-
sary approach to this problem, as long as the system
must work without user feedback after the IV; stories. We
hypothesize that “surprise” information will be a useful
indicator of valuable new features in adapting: a feature
that appears suddenly and persists for a few stories is
very likely to be important to the event.

6 Conclusions and future work

New event detection is an abstract document classifica-
tion task that we have shown has reasonable solutions
using a single pass clustering approach. We have pre-
sented an evaluation methodology based on miss and
false alarm rates, measures that are more closely related
to the task than recall and precision. System misses and
false alarms were used to measure detection error in a
cross-validation approach that found stable system pa-
rameters for our implementation. We described overall
system performance using a bootstrap method that pro-
duced performance distributions for the TDT corpus.

New event detection shares some characteristics of on-
line information filtering. The emphasis on time and
“event” rather than general “topic” should eventually
lead to different methods for processing the arriving text.
Which approaches and how well they work remain open
questions. Other questions include: How can we de-
scribe the relationship between two events, or between
an event and a sub-event? Will we need user models
to capture preferred notions of event granularity, or are
there broadly acceptable definitions? Is there a way to
select only “interesting” events from the stream of news
and exclude entirely uninteresting stories? Is this an ap-
plication where natural language processing could help
identify features related to who, what, where, and when?

To illustrate the Event Tracking problem, we con-
structed and evaluated a system that built simple event
queries. We showed that very few training stories are
needed to build a high-quality query with a small number
of features. We discussed the notion of surprising features
and showed how adaptive tracking is a useful method for
capturing those features in story sequences about disaster
or crime events, and for reducing the number of training
stories needed. We also presented an evaluation method-
ology for Event Tracking that uses “rolling” training and
test sets, and a Detection Error Tradeoff (DET) plot to
measure accuracy on the system.



Significant advances in Event Tracking accuracy are
most likely to be obtained using some limited form of
story parsing and “understanding.” It is likely to be use-
ful to capture notions of who, what, where, when, why,
and how—although the well-known past experience from
IR suggests that the gains may not be large.

Acknowledgments

We thank Charles Wayne, George Doddington, Yiming
Yang, Jaime Carbonell, and Jon Yamron with whom
we worked to define the Topic Detection and Tracking
tasks. George Doddington deserves particular credit for
his guidance in establishing the evaluation methods for
the TDT effort. We are also grateful to David Jenson
and Warren Greiff for their comments on our parameter
estimation technique and Mike Scudder for help with the
evaluation software. A suggestion of Bruce Croft’s about
statistically anomalous features led eventually to the idea
of “surprising” features. Jay Ponte and a total of twelve
anonymous reviewers provided helpful critiques of earlier
drafts of this work.

The TDT initiative is a DARPA-sponsored project
that supported this work. This material is also based on
work supported in part by the National Science Founda-
tion, Library of Congress and Department of Commerce
under cooperative agreement number EEC-9209623. Any
opinions, findings and conclusions or recommendations
expressed in this material are the authors’ and do not
necessarily reflect those of the sponsor.

References

[1] J. Allan. Incremental relevance feedback for infor-
mation filtering. In Proceedings of SIGIR ’96, pages
270278, 1996.

[2

J. Allan, L. Ballesteros, J. Callan, W. Croft, and
Z. Lu. Recent experiments with inquery. In The
Fourth Text REtrieval Conference (TREC-4), pages
49-63, 1995.

[3] J. Allan, J. Carbonell, G. Doddington, J. Yamron,
and Y. Yang. Topic detection and tracking pilot
study: Final report. In Proceedings of the DARPA
Broadcast News Transcription and Understanding
Workshop, 1998. Forthcoming.

[4] C. Buckley and G. Salton. Optimization of relevance
feedback weights. In Proceedings of SIGIR ’95, pages
351-357, 1995.

[5] J. Callan. Document filtering with inference net-
works. In Proceedings of SIGIR 96, pages 262-269,
1996.

[6] C. Carrick and C. Watters. Automatic association of
news items. Information Processing & Management,
33(5):615-632, 1997.

. Cohen. Empirical Methods for Artificial Intelli-

7] P. Coh Empirical Methods for Artificial Intelli
gence. The MIT Press, Cambridge, Massachusetts,
1995.

[8] G. DeJong. Prediction and substantiation: A new
approach to natural language processing. Cognitive
Science, 3:251-273, 1979.

[9] P. Hayes, L. Knecht, and M. Cellio. A News Story
Categorization System, pages 518-526. Morgan
Kaufmann Publishing, San Francisco, 1997. Origi-
nally appeared in Proceedings of the 2nd Conference
on Applied Natural Language Processing, 1988.

[10] K. S. Jones and P. Willett, editors. Readings in In-
formation Retrieval. Morgan Kaufmann Publishing,
San Francisco, 1997. Chapter 4, pages 167-256.

[11] R. Kohavi. A study of cross-validation and boot-
strap for accuracy estimation and model selection.
In Proceedings of International Joint Conference on
Artificial Intelligence, 1995.

[12] W. Lam, S. Mukhopadhyay, J. Mostafa, and
M. Palakal. Detection of shifts in user interests for
personalized information filtering. In Proceedings of
SIGIR ’96, pages 317-325, 1996.

[13] D. Lewis, R. Schapire, J. Callan, and R. Papka.
Training algorithms for linear text classifiers. In Pro-
ceedings of SIGIR ’96, pages 298-306, 1996.

[14] D. D. Lewis. The TREC-5 filtering track. In E. M.
Voorhees and D. K. Harman, editors, The Fifth Text
REtrieval Conference (TREC-5), pages 75-96, Nov.
1997. NIST Special Publication 500-238.

[15] A. Martin, T. K. G. Doddington, M. Ordowski, and
M. Przybocki. The DET curve in assessment of
detection task performance. In Proceedings of Eu-
roSpeech’97, volume 4, pages 1895-1898, 1997.

[16] B. Masland, G. Linoff, and D. Waltz. Classifying
news stories using memory based reasoning. In Pro-
ceedings of SIGIR ’92, pages 59—65, 1992.

[17] R. Papka, J. Callan, and A. Barto. Text-based in-
formation retrieval using exponentiated gradient de-
scent. In Proceedings of the 10th Annual Conference
of Advances in Neural Information Processing Sys-
tems, pages 3-9, 1996.

[18] G. Salton. Automatic Text Processing. Addison-
Wesley Publishing Co, Massachusetts, 1989.

[19] A. Singhal, M. Mitra, and C. Buckley. Learning
routing queries in a query zone. In Proceedings of
SIGIR ’97, pages 25-32, 1997.

[20] J. Tague-Sutcliffe. Measuring the informativeness
of a retrieval process. In Proceedings of SIGIR 92,
pages 23-36, 1992.

[21] C. van Rijsbergen. Information Retrieval, 2ed. But-
terworths, Massachusetts, 1979.

[22] E. M. Voorhees and D. Harman. Overview of the
sixth text retrieval conference. In E. M. Voorhees
and D. K. Harman, editors, The Sizth Text RE-
trieval Conference (TREC-6), 1998. NIST Special
Publication, forthcoming.

[23] P. Willett. Recent trends in hierarchic document
clustering: A critical review. Information Processing
& Management, 24(5):577-597, 1988.

[24] Y. Yang, T. Pierce, and J. Carbonell. A study on
retrospective and on-line event detection. In Pro-
ceedings of SIGIR 98, 1998.



