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ABSTRACT

Despite the impressive improvements achieved by unsupervised

deep neural networks in computer vision and NLP tasks, such im-
provements have not yet been observed in ranking for information
retrieval. �e reason may be the complexity of the ranking problem,
as it is not obvious how to learn from queries and documents when
no supervised signal is available. Hence, in this paper, we propose
to train a neural ranking model usingweak supervision, where labels
are obtained automatically without human annotators or any exter-
nal resources (e.g., click data). To this aim, we use the output of an
unsupervised ranking model, such as BM25, as a weak supervision
signal. We further train a set of simple yet effective ranking models
based on feed-forwardneural networks. We study their effectiveness
under various learning scenarios (point-wise and pair-wise models)
and using different input representations (i.e., from encoding query-
document pairs into dense/sparse vectors to using word embedding
representation). We train our networks using tens of millions of
training instances and evaluate it on two standard collections: a ho-
mogeneousnewscollection (Robust) andaheterogeneous large-scale
web collection (ClueWeb). Our experiments indicate that employing
proper objective functions and le�ing thenetworks to learn the input
representation based on weakly supervised data leads to impressive
performance, with over 13% and 35%MAP improvements over the
BM25 model on the Robust and the ClueWeb collections. Our find-
ings also suggest that supervised neural ranking models can greatly
benefit from pre-training on large amounts of weakly labeled data
that can be easily obtained from unsupervised IR models.

KEYWORDS Ranking model, weak supervision, deep neural net-
work, deep learning, ad-hoc retrieval
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1 INTRODUCTION

Learning state-of-the-art deep neural network models requires a
large amounts of labeled data, which is not always readily available
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and can be expensive to obtain. To circumvent the lack of human-
labeled training examples, unsupervised learning methods aim to
model the underlying data distribution, thus learning powerful fea-
ture representations of the input data, which can be helpful for
building more accurate discriminative models especially when li�le
or even no supervised data is available.

A large group of unsupervised neural models seeks to exploit the
implicit internal structure of the input data, which in turn requires
customized formulation of the training objective (loss function), tar-
geted network architectures and o�en non-trivial training setups.
For example in NLP, various methods for learning distributed word
representations, e.g., word2vec [27], GloVe [31], and sentence repre-
sentations, e.g., paragraph vectors [23] and skip-thought [22] have
been shown very useful to pre-train word embeddings that are then
used for other tasks such as sentence classification, sentiment anal-
ysis, etc. Other generative approaches such as language modeling
in NLP, and, more recently, various flavors of auto-encoders [2] and
generative adversarial networks [13] in computer vision have shown
a promise in building more accurate models.

Despite the advances in computer vision, speech recognition, and
NLP tasks using unsupervised deep neural networks, such advances
have not been observed in core information retrieval (IR) problems,
such as ranking. A plausible explanation is the complexity of the
ranking problem in IR, in the sense that it is not obvious how to
learn a ranking model from queries and documents when no super-
vision in form of the relevance information is available. To overcome
this issue, in this paper, we propose to leverage large amounts of
unsupervised data to infer “noisy” or “weak” labels and use that
signal for learning supervised models as if we had the ground truth
labels. In particular, we use classic unsupervised IRmodels as aweak
supervision signal for training deep neural ranking models. Weak
supervision here refers to a learning approach that creates its own
training data by heuristically retrieving documents for a large query
set. �is training data is created automatically, and thus it is possi-
ble to generate billions of training instances with almost no cost.1

As training deep neural networks is an exceptionally data hungry
process, the idea of pre-training on massive amount of weakly su-
pervised data and then fine-tuning the model using a small amount
of supervised data could improve the performance [11].

�e main aim of this paper is to study the impact of weak su-

pervision on neural ranking models, which we break down into the
following concrete research questions:

1Although weak supervision may refer to using noisy data, in this paper, we assume
that no external information, e.g., click-through data, is available.
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RQ1 Can labels from an unsupervised IR model such as BM25 be

used as weak supervision signal to train an effective neural

ranker?

RQ2 What input representationand learningobjective ismost suit-

able for learning in such a se�ing?

RQ3 Can a supervised learning model benefit from a weak super-

vision step, especially in cases when labeled data is limited?

Weexamine various neural rankingmodelswith different ranking
architectures and objectives, i.e., point-wise and pair-wise, as well
as different input representations, from encoding query-document
pairs into dense/sparse vectors to learning query/document embed-
ding representations. �emodels are trained on billions of training
examples that are annotatedbyBM25, as theweak supervision signal.
Interestingly, we observe that using just training data that are anno-
tated by BM25 as theweak annotator, we can outperformBM25 itself
on the test data. Based on our analysis, the achieved performance is
generally indebted to three main factors: First, defining an objective
function that aims to learn the ranking instead of calibrated scoring
to relax the network from fi�ing to the imperfections in the weakly
supervised training data. Second, le�ing the neural networks learn
optimal query/document representations instead of feeding them
with a representation based on predefined features. �is is a key
requirement to maximize the benefits from deep learning models
with weak supervision as it enables them to generalize be�er. �ird
and last, the weak supervision se�ing makes it possible to train the
network on a massive amount of training data.

We further thoroughly analyse the behavior of models to un-
derstand what they learn, what is the relationship among different
models, and how much training data is needed to go beyond the
weak supervision signal. We also study if employing deep neural
networks may help in different situations. Finally, we examine the
scenario of using the network trained on a weak supervision signal
as a pre-training step. We demonstrate that, in the ranking prob-
lem, the performance of deep neural networks trained on a limited
amount of supervised data significantly improves when they are
initialized from a model pre-trained on weakly labeled data.

Our results have broad impact as the proposal to use unsuper-
vised traditional methods as weak supervision signals is applicable
to variety of IR tasks, such as filtering or classification, without the
need for supervised data. More generally, our approach unifies the
classic IR models with currently emerging data-driven approaches
in an elegant way.

2 RELATEDWORK

Deep neural networks have shown impressive performance inmany
computer vision, natural language processing, and speech recogni-
tion tasks [24]. Recently, several a�empts have been made to study
deep neural networks in IR applications, which can be generally
partitioned into two categories [29, 46]. �e first category includes
approaches that use the results of trained (deep) neural networks
in order to improve the performance in IR applications. Among
these, distributed word representations or embeddings [27, 31] have
a�racted a lot of a�ention. Word embedding vectors have been
applied to term re-weighting in IR models [32, 47], query expan-
sion [10, 33, 43], query classification [25, 44], etc. �e main short-
comingofmostof theapproaches in this category is that theobjective
of the trainedneural network differs from the objective of these tasks.
For instance, the word embedding vectors proposed in [27, 31] are

trained based on term proximity in a large corpus, which is different
from the objective in most IR tasks. To overcome this issue, some ap-
proaches try to learn representations in an end-to-end neural model
for learning a specific task like entity ranking for expert finding [39]
or product search [38]. Zamani and Cro� [45] recently proposed
relevance-based word embedding models for learning word repre-
sentations based on the objectives that ma�er for IR applications.

�e second category, which this paper belongs to, consists of
the approaches that design and train a (deep) neural network for
a specific task, e.g., question answering [6, 41], click models [4],
context-aware ranking [42], etc. A number of the approaches in this
category have been proposed for ranking documents in response to
a given query. �ese approaches can be generally divided into two
groups: late combination models and early combination models (or
representation-focused and interaction-focused models according
to [14]). �e late combination models, following the idea of Siamese
networks [5], independently learn a representation for each query
and candidate document and then calculate the similarity between
the two estimated representations via a similarity function. For ex-
ample, Huang et al. [18] proposed DSSM, which is a feed forward
neural networkwith awordhashingphase as thefirst layer to predict
the click probability given a query string and a document title. �e
DSSMmodel was further improved by incorporating convolutional
neural networks [35].

On the other hand, the early combination models are designed
based on the interactions between the query and the candidate doc-
ument as the input of network. For instance, DeepMatch [26] maps
each text to a sequence of terms and trains a feed-forward network
for computing the matching score. �e deep relevance matching
model for ad-hoc retrieval [14] is another example of an early combi-
nation model that feeds a neural network with the histogram-based
features representing interactions between the query and document.
Early combining enables themodel tohave anopportunity to capture
various interactions between query and document(s), whilewith late
combination approach, the model has only the chance of isolated
observation of input elements. Recently, Mitra et al. [28] proposed to
simultaneously learn local and distributional representations, which
are early and late combination models respectively, to capture both
exact termmatching and semantic termmatching.

Until now, all the proposed neural models for ranking are trained
on either explicit relevance judgements or clickthrough logs. How-
ever, a massive amount of such training data is not always available.

In this paper, we propose to train neural ranking models using
weak supervision,which is themost naturalway to reuse the existing
supervised learning models where the imperfect labels are treated
as the ground truth. �e basic assumption is that we can cheaply
obtain labels (that are of lower quality than human-provided labels)
by expressing the prior knowledgewe have about the task at hand by
specifying a set of heuristics, adapting existing ground truth data for
a different but related task (this is o�en referred to distant supervi-
sion2), extracting supervision signal from external knowledge-bases
or ontologies, crowd-sourcingpartial annotations that are cheaper to
get, etc. Weak supervision is a natural way to benefit from unsuper-
vised data and it has been applied in NLP for various tasks including
relation extraction [3, 15], knowledge-base completion [17], sen-
timent analysis [34], etc. �ere are also similar a�empts in IR for

2We do not distinguish between weak and distant supervision as the difference is subtle
and both terms are o�en used interchangeably in the literature.
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define our loss function based on cross-entropy as follows:

L (b;θ )=−
1

|b |

|b |∑

i=1

P {q,d1,d2 }i log(R ({q,d1,d2}i ;θ )) (3)

+ (1−P {q,d1,d2 }i )log(1−R ({q,d1,d2}i ;θ ))

where P {q,d1,d2 }i is the probability of document d1 being ranked

higher thand2, basedon the scoresobtained fromtraining instanceτi :

P {q,d1,d2 }i =
s {q,d1 }i

s {q,d1 }i +s {q,d2 }i
(4)

It is notable that at inference time, we need a scalar score for
each document. �erefore, we need to turn the model’s pair-wise
predictions into a score per document. To do so, for each document,
we calculate the average of predictions against all other candidate
documents, which hasO (n2) time complexity and is not practical
in real-world applications. �ere are some approximations could be
applicable to decrease the time complexity at inference time [40].

4.2 Neural Network Architecture

As shown in Figure 1, all the described ranking architectures share a
neural network module. We opted for a simple feed-forward neural
network which is composed of: input layer z0, l−1 hidden layers,
and the output layer zl . �e input layer z0 provides a mapping
ψ to encode the input query and document(s) into a fixed-length
vector. �e exact specification of the input representation feature
functionψ is given in the next subsection. Each hidden layer zi is a
fully-connected layer that computes the following transformation:

zi =α (Wi .zi−1+bi ); 1< i < l−1, (5)

whereWi and bi respectively denote the weight matrix and the bias

term corresponding to the ith hidden layer, andα (.) is the activation
function. We use the rectifier linear unit ReLU(x )=max(0,x ) as the
activation function, which is a common choice in the deep learning
literature [24]. �e output layer zl is a fully-connected layer with
a single continuous output. �e activation function for the output
layer depends on the ranking architecture that we use. For the score
model architecture, we empirically found that a linear activation
function works best, while tanh and the sigmoid functions are used
for the rankmodel and rankprobmodel respectively.

Furthermore, toprevent featureco-adaptation,weusedropout [36]
as the regularization technique in all the models. Dropout sets a
portion of hidden units to zero during the forward phase when
computing the activations which prevents overfi�ing.

4.3 Input Representations

We explore three definitions of the input layer representation z0
captured by a feature functionψ that maps the input into a fixed-
size vector which is further fed into the fully connected layers: (i)
a conventional dense feature vector representation that contains
various statistics describing the input query-document pair, (ii) a
sparse vector containing bag-of-words representation, and (iii) bag-
of-embeddings averaged with learned weights. �ese input rep-
resentations define howmuch capacity is given to the network to
extract discriminative signal from the training data and thus result in
different generalization behavior of the networks. It is noteworthy
that input representation of the networks in the score model and
rankmodel is defined for a pair of the query and the document, while

the network in the rankprobmodel needs to be fed by a triple of the
query, the first document, and the second document.

Dense vector representation (Dense) : In this se�ing, we build
a dense feature vector composed of features used by traditional IR
methods, e.g., BM25. �e goal here is to let the network fit the func-
tion described by the BM25 formula when it receives exactly the
same inputs. In more detail, our input vector is a concatenation
(| |) of the following inputs: total number of documents in the col-
lection (i.e., N ), average length of documents in the collection (i.e.,
avд(ld )D ), document length (i.e., ld ), frequency of each query term
ti in the document (i.e., t f (ti ,d )), and document frequency of each
query term (i.e., d f (ti )). �erefore, for the point-wise se�ing, we
have the following input vector:

ψ (q,d )= [N | |avд(ld )D | |ld | |{d f (ti ) | |t f (ti ,d )}1≤i≤k ], (6)

where k is set to a fixed value (5 in our experiments). We truncate
longer queries and do zero padding for shorter queries. For the net-
works in the rankprobmodel, we consider a similar function with
additional elements: the length of the second document and the
frequency of query terms in the second document.

Sparse vector representation (Sparse) : Next, we move away
from a fully featurized representation that contains only aggregated
statistics and let the network performs feature extraction for us. In
particular, we build a bag-of-words representation by extracting
term frequency vectors of query (t f vq ), document (t f vd ), and the
collection (t f vc ) and feed the network with concatenation of these
three vectors. For the point-wise se�ing, we have the following
input vector:

ψ (q,d )= [t f vc | |t f vq | |t f vd ] (7)

For the network in rankprobmodel, we have a similar input vector
with both t f vd1 and t f vd2 . Hence, the size of the input layer is
3×vocab size in the point-wise se�ing, and 4×vocab size in the
pair-wise se�ing.

Embedding vector representation (Embed) : �e major weak-
ness of the previous input representation is that words are treated
as discrete units, hence prohibiting the network from performing
so� matching between semantically similar words in queries and
documents. In this input representation paradigm, we rely on word
embeddings to obtain more powerful representation of queries and
documents that could bridge the lexical chasm. �e representation
functionψ consists of three components: an embedding function
E : V → Rm (where V denotes the vocabulary set andm is the
embedding dimension), a weighting functionW :V → R, and a
compositionality function ⊙ : (Rm ,R)n→Rm . More formally, the
functionψ for the point-wise se�ing is defined as:

ψ (q,d )= [⊙
|q |
i=1 (E (t

q
i ),W (t

q
i )) | | ⊙

|d |
i=1 (E (t

d
i ),W (tdi ))], (8)

where t
q
i and tdi denote the ith term in query q and document d ,

respectively. For the network of the rankprobmodel, another similar
term is concatenated with the above vector for the second docu-
ment. �e embedding function E transforms each term to a dense
m-dimensional float vector as its representation, which is learned
during the training phase. �e weighting functionW assigns a
weight to each term in the vocabulary set, which is supposed to learn
term global importance for the retrieval task. �e compositionality
function ⊙ projects a set of n embedding and weighting pairs to an
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m-dimensional representation, independent from the value ofn. �e
compositionality function is given by:

⊙ni=1 (E (ti ),W (ti ))=

n∑

i=1

Ŵ (ti ) ·E (ti ), (9)

which is the weighted element-wise sum of the terms’ embedding

vectors. Ŵ is the normalized weight that is learned for each term,
given as follows:

Ŵ (ti )=
exp(W (ti ))∑n
j=1exp(W (tj ))

(10)

All combinations of different ranking architectures and different
input representations presented in this section can be considered
for developing ranking models.

5 EXPERIMENTALDESIGN

In this section, we describe the train and evaluation data, metrics we
report, and detailed experimental setup. �en we discuss the results.

5.1 Data

Collections. In our experiments,weused two standardTRECcollec-
tions: �efirst collection (calledRobust04) consists of over 500knews
articles from different news agencies, that is available in TRECDisks
4 and 5 (excluding Congressional Records). �is collection, which
was used in TREC Robust Track 2004, is considered as a homoge-
neous collection, because of the nature and the quality of documents.
�e second collection (called ClueWeb) that we used is ClueWeb09
Category B, a large-scaleweb collectionwith over 50million English
documents, which is considered as a heterogeneous collection. �is
collectionhas beenused inTRECWebTrack, for several years. In our
experimentswith this collection,wefiltered out the spamdocuments
using theWaterloo spam scorer3 [7] with the default threshold 70%.
�e statistics of these collections are reported in Table 1.

Training query set. To train our neural ranking models, we used
the unique queries (only the query string) appearing in the AOL
query logs [30]. �is query set contains web queries initiated by
real users in the AOL search engine that were sampled from a three-
month period fromMarch 1, 2006 to May 31, 2006. We filtered out
a large volume of navigational queries containing URL substrings
(“h�p”, “www.”, “.com”, “.net”, “.org”, “.edu”). We also removed all
non-alphanumeric characters from the queries. We made sure that
no queries from the training set appear in our evaluation sets. For
each dataset, we took queries that have at least ten hits in the tar-
get corpus using the pseudo-labeler method. Applying all these
processes, we ended up with 6.15 million queries for the Robust04
dataset and 6.87 million queries for the ClueWeb dataset. In our
experiments, we randomly selected 80% of the training queries as
training set and the remaining 20% of the queries were chosen as
validation set for hyper-parameter tuning. As the “pseudo-labeler”
in our training data, we have used BM25 to score/rank documents
in the collections given the queries in the training query set.

Evaluation query sets.We use the following query sets for eval-
uation that contain human-labeled judgements: a set of 250 queries
(TREC topics 301–450 and 601–700) for the Robust04 collection that
werepreviouslyused inTRECRobustTrack2004. A set of 200queries

3h�p://plg.uwaterloo.ca/∼gvcormac/clueweb09spam/

Table 1: Collections statistics.

Collection Genre �eries # docs length

Robust04 news 301-450,601-700 528k 254

ClueWeb webpages 1-200 50m 1,506

(topics 1-200) were used for the experiments on the ClueWeb collec-
tion. �ese queries were used in TRECWeb Track 2009–2012. We
only used the title of topics as queries.

5.2 EvaluationMetrics.

To evaluate retrieval effectiveness, we report three standard evalua-
tion metrics: mean average precision (MAP) of the top-ranked 1000
documents, precision of the top 20 retrieved documents (P@20), and
normalized discounted cumulative gain (nDCG) [19] calculated for
the top 20 retrieved documents (nDCG@20). Statistically significant
differences of MAP, P@20, and nDCG@20 values are determined us-
ing the two-tailed paired t-test with p value <0.05, with Bonferroni
correction.

5.3 Experimental Setup

All models described in Section 4 are implemented using Tensor-
Flow [12, 37]. In all experiments, the parameters of the network
are optimized employing the Adam optimizer [21] by using the
back-propagation algorithm to compute gradients. All model hyper-
parameters were tuned on the respective validation set (see Sec-
tion 5.1 for more detail) using batched GP bandits with an expected
improvement acquisition function [8]. For each model, the size of
hidden layers and the number of hidden layers were selected from
[16,32,64,128,256,512,1024] and [1,2,3,4], respectively. �e ini-
tial learning rate and the dropout parameter were selected from
[1E−3,5E−4,1E−4,5E−5,1E−5] and [0.0,0.1,0.2,0.5], respectively.
For models with embedding vector representation, we considered
embedding sizes of [100,300,500,1000]. As the training data, we
take the top 1000 retrieved documents for each query from training
query setQ , to prepare the training data. In total, we have |Q |×1000
(∼6E10 examples in our data) point-wise example and ∼ |Q |×10002

(∼6E13 examples in our data) pair-wise examples. �e batch size in
our experiments was selected from [128,256,512]. At inference time,
for eachquery,we take the top 2000 retrieveddocuments usingBM25
as candidate documents and re-rank them by the trained models. In
our experiments, we use the Indri4 implementation of BM25 with
the default parameters (i.e., k1=1.2, b=0.75, and k3=1000).

6 RESULTS ANDDISCUSSION

In the following, we evaluate our neural rankers trained with differ-
ent learning approaches (Section 4) and different input representa-
tions (Section 4.3). We a�empt to break down our research questions
to several subquestions, and provide empirical answers along with
the intuition and analysis behind each question:

How do the neural models with different training objectives

and input representations compare?Table 2 presents the perfor-
mance of all model combinations. Interestingly, combinations of the
rankmodel and the rankprobmodelwith embeddingvector represen-
tation outperform BM25 by significant margins in both collections.
For instance, the rankprobmodel with embedding vector represen-
tation that shows the best performance among the other methods,

4h�ps://www.lemurproject.org/indri.php
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Table 2: Performance of the different models on different datasets. Ĳor Źindicates that the improvements or degradations with

respect to BM25 are statistically significant, at the 0.05 level using the paired two-tailed t-test.

Method
Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

BM25 0.2503 0.3569 0.4102 0.1021 0.2418 0.2070

Score + Dense 0.1961Ź 0.2787Ź 0.3260Ź 0.0689Ź 0.1518Ź 0.1430Ź

Score + Sparse 0.2141Ź 0.3180Ź 0.3604Ź 0.0701Ź 0.1889Ź 0.1495Ź

Score + Embed 0.2423Ź 0.3501 0.3999 0.1002 0.2513 0.2130

Rank + Dense 0.1940Ź 0.2830Ź 0.3317Ź 0.0622Ź 0.1516Ź 0.1383Ź

Rank + Sparse 0.2213Ź 0.3216Ź 0.3628Ź 0.0776Ź 0.1989Ź 0.1816Ź

Rank + Embed 0.2811Ĳ 0.3773Ĳ 0.4302Ĳ 0.1306Ĳ 0.2839Ĳ 0.2216Ĳ

RankProb + Dense 0.2192Ź 0.2966Ź 0.3278Ź 0.0702Ź 0.1711Ź 0.1506Ź

RankProb + Sparse 0.2246Ź 0.3250Ź 0.3763Ź 0.0894Ź 0.2109Ź 0.1916

RankProb + Embed 0.2837Ĳ 0.3802Ĳ 0.4389Ĳ 0.1387Ĳ 0.2967Ĳ 0.2330Ĳ

surprisingly, improves BM25 by over 13% and 35% in Robust04 and
ClueWeb collections respectively, in terms of MAP. Similar improve-
ments can be observed for the other evaluation metrics.

Regarding the modeling architecture, in the rankmodel and the
rankprobmodel, compared to the scoremodel, we define objective
functions that target to learn ranking insteadof scoring. �is ispartic-
ularly important inweak supervision, as the scores are imperfect val-
ues—using the ranking objective alleviates this issue by forcing the
model to learn a preference function rather than reproduce absolute
scores. Inotherwords, using therankingobjective insteadof learning
to predict calibrated scores allows the rankmodel and the rankprob
model to learn to distinguish between examples whose scores are
close. �isway, somesmall amountofnoise,which is acommonprob-
lem in weak supervision, would not perturb the ranking as easily.

Regarding the input representations, embedding vector represen-
tation leads to be�er performance compared to the other ones in all
models. Using embedding vector representation not only provides
thenetworkwithmore information, but also lets thenetwork to learn
proper representation capturing the needed elements for the next
layers with be�er understanding of the interactions between query
and documents. Providing the network with already engineered
features would block it from going beyond the weak supervision
signal and limit the ability of the models to learn latent features that
are una�ainable through feature engineering.

Note that although the rankprobmodel ismore precise in terms of
MAP, the rankmodel is much faster in the inference time (O (n) com-
pared toO (n2)), which is a desirable property in real-life applications.

Why do dense vector representation and sparse vector repre-

sentationfail to replicate theperformanceofBM25?Although
neural networks are capable of approximating arbitrarily complex
non-linear functions, we observe that the models with dense vector
representation fail to replicate the BM25 performance, while they
are given the same feature inputs as the BM25 components (e.g.,
TF, IDF, average document length, etc). To ensure that the train-
ing converges and there is no overfi�ing, we have looked into the
training and validation loss values of different models during the
training time. Figure 2 illustrates the loss curves for the training and
validation sets (see Section 5.1) per training step for different models.
As shown, in models with dense vector representation, the training

losses dropquickly to values close to zerowhile this is not the case for
the validation losses,which is an indicator of over-fi�ingon the train-
ing data. Althoughwe have tried different regularization techniques,
like l2-regularization and dropout with various parameters, there
is less chance for generalization when the networks are fed with the
fully featurized input. Note that over-fi�ing would lead to poor per-
formance, especially in weak supervision scenarios as the network
learns tomodel imperfections fromweak annotations. �is phenom-
enon is also the case formodelswith the sparse vector representation,
but with less impact. However, in the models with the embedding
vector representation, the networks do not overfit, which helps it
to go beyond the weak supervision signals in the training data.

How are the models related? To be�er understand the relation-
ship of different neural models described above, we compare their
performance across the query dimension following the approach
in [28]. We assume that similar models should perform similarly for
the same queries. Hence, we represent eachmodel by a vector, called
the performance vector, whose elements correspond to per query
performance of the model, in terms of nDCG@20. �e closer the
performance vectors are, the more similar the models are in terms
of query by query performance. For the sake of visualization, we re-
duce the vectors dimension by projecting them to a two-dimensional
space, using t-Distributed Stochastic Neighbor Embedding (t-SNE)5.

Figure 3 illustrates the proximity of different models in the Ro-
bust04 collection. Based on this plot, modelswith similar input repre-
sentations (same color) have quite close performance vectors, which
means that they perform similarly for samequeries. �is is not neces-
sarily thecase formodelswith similar architecture (sameshape). �is
suggests that the amount and the way that we provide information
to the networks are the key factors in the ranking performance.

Wealso observe that the scoremodelwith dense vector representa-
tion is the closest toBM25which is expected. It is also interesting that
models with embedding vector representation are placed far away
from other models which shows they perform differently compared
to the other input representations.

Howmeaningfulare thecompositionalityweights learned in

the embedding vector representation? In this experiment, we

5h�ps://lvdmaaten.github.io/tsne/
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Table 4: Performance of the linear RankSVMwith different features.

Method
Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

RankSVM +Dense 0.1983 0.2841 0.3375 0.0761 0.1840 0.1637

RankSVM + Sparse 0.2307 0.3260 0.3794 0.0862 0.2170 0.1939

RankSVM + (Pretrained (external) + IDFweighting) 0.1539 0.2121 0.1852 0.0633 0.1572 0.1494

Score (one layer with no nonlinearity) + Embed 0.2103 0.3986 0.3160 0.0645 0.1421 0.1322

Table 5: Performanceof the rankprobmodelwith embedding vector representation in fully supervised setting,weak supervised

setting, and weak supervised plus supervision as fine tuning. Ĳindicates that the improvements over all other models are

statistically significant, at the 0.05 level using the paired two-tailed t-test, with Bonferroni correction.

Method
Robust04 ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

Weakly supervised 0.2837 0.3802 0.4389 0.1387 0.2967 0.2330

Fully supervised 0.1790 0.2863 0.3402 0.0680 0.1425 0.1652

Weakly supervised + Fully supervised 0.2912Ĳ 0.4126Ĳ 0.4509Ĳ 0.1520Ĳ 0.3077Ĳ 0.2461Ĳ

We have also examined the score model with a network with a
single linear hidden layer, with the embedding vector representation,
which is equivalent to a linear regression model with the ability of
representation learning. Comparing the results of this experiment
with Score-Embed in Table 2, we can see that with a single-linear
network we are not able to achieve a performance that is as good as
a deep neural network with non-linearity. �is shows that the most
important superiority of deep neural networks over other machine
learning methods is their ability to learn an effective representation
and take all the interactions between query and document(s) into
consideration for approximating an effective ranking/scoring func-
tion. �is can be achieved when we have a deep enough network
with non-linear activations.

Howuseful is learningwithweak supervision for supervised

ranking? In this set of experiments, we investigate whether em-
ployingweak supervision as a pre-training step helps to improve the
performance of supervised ranking,when a small amount of training
data is available. Table 5 shows the performance of the rankprob
model with the embedding vector representation in three situations:
(1) when it is only trained on weakly supervised data (similar to the
previous experiments), (2) when it is only trained on supervised data,
i.e., relevance judgments, and (3) when the parameters of the net-
work is pre-trained using the weakly supervised data and then fine
tuned using relevance judgments. In all the supervised scenarios, we
performed 5-fold cross-validation over the queries of each collection
and in each step, we used the TREC relevance judgements of the
training set as supervised signal. For each query withm relevant
documents, we also randomly sampledm non-relevant documents
as negative instances. Binary labels are used in the experiments: 1
for relevant documents and 0 for non-relevant ones.

�e results in Table 5 suggest that pre-training the network with
a weak supervision signal, significantly improves the performance
of supervised ranking. �e reason for the poor performance of the
supervised model compared to the conventional learning to rank
models is that the number of parameters are much larger, hence it
needs much more data for training.

In situationswhen li�le superviseddata is available, it is especially
helpful to use unsupervised pre-training which acts as a network

pre-conditioning that puts the parameter values in the appropri-
ate range that renders the optimization process more effective for
further supervised training [11].

With this experiment, we indicate that the idea of learning from
weak supervision signals for neural ranking models, which is pre-
sented in this paper, not only enables us to learn neural ranking
models when no supervised signal is available, but also has substan-
tial positive effects on the supervised ranking models with limited
amount of training data.

7 CONCLUSIONS

In this paper, we proposed to use traditional IRmodels such as BM25
as a weak supervision signal in order to generate large amounts of
training data to train effective neural ranking models. We examine
various neural ranking models with different ranking architectures
and objectives, and different input representations.

We used over six million queries to train our models and evalu-
ated them on Robust04 and ClueWeb 09-Category B collections, in
an ad-hoc retrieval se�ing. �e experiments showed that our best
performing model significantly outperforms the BM25 model (our
weak supervision signal) by over 13% and 35%MAP improvements in
the Robust04 and ClueWeb collections, respectively. We also demon-
strated that in the case of having a small amount of training data, we
can improve the performance of supervised learning by pre-training
the network on weakly supervised data.

Based on our results, there are three key ingredients in neural
ranking models that lead to good performance with weak super-
vision: �e first is the proper input representation. Providing the
network with raw data and le�ing the network to learn the features
thatma�er, gives the network a chance of learning how to ignore im-
perfection in the training data. �e second ingredient is to target the
right goal and define a proper objective function. In the case of hav-
ingweakly annotated training data, by targeting some explicit labels
fromthedata,wemayendupwith amodel that learned to express the
data very well, but is incapable of going beyond it. �is is especially
thecasewithdeepneuralnetworkswhere therearemanyparameters
and it is easy to learn amodel that overfits the data. �e third ingredi-
ent is providing the network with a considerable amount of training
examples. As an example, during the experiments we noticed that
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using the embedding vector representation, the network needs a lot
of examples to learn embeddings that are more effective for retrieval
compared to pre-trained embeddings. �anks to weak supervision,
wecangenerate asmuch trainingdata asweneedwithalmostnocost.

Several future directions can be pursued. An immediate task
would be to study the performance of more expressive neural net-
work architectures e.g., CNNs and LSTMs, with weak supervision
setup. Other experiment is to leverage multiple weak supervision
signals from different sources. For example, we have other unsuper-
vised ranking signals such as query likelihood and PageRank and
taking them into consideration might benefit the learning process.
Other future work would be to investigate the boosting mechanism
for the method we have in this paper. In other words, it would be
interesting to study if it is possible touse the trainedmodel onweakly
supervised data to annotate data with more quality from original
source of annotation and leverage the new data to train a be�er
model. Finally, we can apply this idea to other information retrieval
tasks, such as query/document classification and clustering.
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