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ABSTRACT
As an alternative to question answering methods based on fea-

ture engineering, deep learning approaches such as convolutional
neural networks (CNNs) and Long Short-Term Memory Models
(LSTMs) have recently been proposed for semantic matching of
questions and answers. To achieve good results, however, these
models have been combined with additional features such as word
overlap or BM25 scores. Without this combination, these mod-
els perform significantly worse than methods based on linguistic
feature engineering. In this paper, we propose an attention based
neural matching model for ranking short answer text. We adopt
value-shared weighting scheme instead of position-shared weight-
ing scheme for combining different matching signals and incorpo-
rate question term importance learning using question attention net-
work. Using the popular benchmark TREC QA data, we show that
the relatively simple aNMM model can significantly outperform
other neural network models that have been used for the question
answering task, and is competitive with models that are combined
with additional features. When aNMM is combined with additional
features, it outperforms all baselines.

CCS Concepts
•Information systems→Retrieval models and ranking; Ques-

tion answering;

Keywords
Question Answering; Deep Learning; Value-shared Weights; Term

Importance Learning

1. INTRODUCTION
Question answering (QA), which returns exact answers as either

short facts or long passages to natural language questions issued by
users, is a challenging task and plays a central role in the next gen-
eration of advanced web search [2, 21]. Many of current QA sys-
tems use a learning to rank approach that encodes question/answer
pairs with complex linguistic features including lexical, syntactic
and semantic features [18, 22]. For instance, Surdeanu et al. [22,
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23] investigated a wide range of feature types including similarity
features, translation features, density/frequency features and web
correlation features for learning to rank answers and show improve-
ments in accuracy. However, such methods rely on manual feature
engineering, which is often time-consuming and requires domain
dependent expertise and experience. Moreover, they may need ad-
ditional NLP parsers or external knowledge sources that may not
be available for some languages.

Recently, researchers have been studying deep learning approaches
to automatically learn semantic match between questions and an-
swers. Such methods are built on the top of neural network models
such as convolutional neural networks (CNNs) [34, 18, 16] and
Long Short-Term Memory Models (LSTMs) [25]. The proposed
models have the benefit of not requiring hand-crafted linguistic fea-
tures and external resources. Some of them [18] achieve state-of-
the art performance for the answer sentence selection task bench-
marked by the TREC QA track. However, the weakness of the
existing studies is that the proposed deep models, either based on
CNNs or LSTMs, need to be combined with additional features
such as word overlap features and BM25 to perform well. Without
combining these additional features, their performance is signifi-
cantly worse than the results obtained by the state-of-the-art meth-
ods based on linguistic feature engineering [32]. This led us to
propose the following research questions:

RQ1 Without combining additional features, could we build
deep learning models that can achieve comparable or even better
performance than methods using feature engineering ?

RQ2 By combining additional features, could our model out-
perform state-of-the-art models for question answering ?

To address these research questions, we analyze the existing cur-
rent deep learning architectures for answer ranking and make the
following two key observations:

1. Architectures not specifically designed for question/answer
matching: Some methods employ CNNs for question/answer
matching. However, CNNs are originally designed for com-
puter vision (CV), which uses position-shared weights with
local perceptive filters, to learn spatial regularities in many
CV tasks. However, such spatial regularities may not exist in
semantic matching between questions and answers, since im-
portant similarity signals between question and answer terms
could appear in any position due to the complex linguistic
property of natural languages. Meanwhile, models based on
LSTMs view the question/answer matching problem in a se-
quential way. Without direct interactions between question
and answer terms, the model may not be able to capture suf-
ficiently detailed matching signals between them.

2. Lack of modeling question focus: Understanding the focus
of questions, e.g., important terms in a question, is helpful for
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ranking the answers correctly . For example, given a ques-
tion like “Where was the first burger king restaurant opened
?”, it is critical for the answer to talk about “burger”, “king”,
“open”, etc. Most existing text matching models do not ex-
plicitly model question focus. For example, models based on
CNNs treat all the question terms as equally important when
matching to answer terms. Models based on LSTMs usually
model question terms closer to the end to be more important.

To handle these issues in the existing deep learning architectures
for ranking answers, we propose an attention based neural match-
ing model (aNMM). The novel properties of the proposed model
and our contributions can be summarized as follows:

1. Deep neural network with value-shared weights: We in-
troduce a novel value-shared weighting scheme in deep neu-
ral networks as a counterpart of the position-shared weight-
ing scheme in CNNs, based on the idea that semantic match-
ing between a question and answer is mainly about the (se-
mantic similarity) value regularities rather than spatial regu-
larities.

2. Incorporate attention scheme over question terms: We in-
corporate the attention scheme over the question terms using
a gating function, so that we can explicitly discriminate the
question term importance.

3. Extensive experimental evaluation and promising results.
We perform a thorough experimental study based on the TREC
QA dataset from TREC QA tracks 8-13, which appears to
be one of the most widely used benchmarks for answer re-
ranking. Unlike previous methods using CNNs [34, 18] and
LSTMs [25], which showed inferior results without combin-
ing additional features, our model can achieve better perfor-
mance than a state-of-art method using linguistic feature en-
gineering and comparable performance with previous deep
learning models with combined additional features. If we
combine our model with a simple additional feature like QL,
our method can achieve the state-of-the-art performance among
current existing methods for ranking answers under multiple
metrics.

Roadmap. The rest of our paper is organized as follows. We
will review related work in Section 2. In Section 3, we will present
the proposed aNMM model with two components: value-shared
weights and question attention network with gating functions. Two
different architectures will be presented and analyzed. Section 4 is
a systematic experimental analysis using the TREC QA benchmark
dataset. Finally, we conclude our paper and discuss future work in
Section 5.

2. RELATED WORK
Our work is related to several research areas, including deep

learning models for text matching, factoid question answering, an-
swer ranking in CQA and answer passage / sentence retrieval.

Deep Learning Models for Text Matching. Recently there
have been many deep learning models proposed for text match-
ing and ranking. Such deep learning models include DSSM [7],
CDSSM [4, 19], ARC-I/ARC-II[6] , DCNN [10], DeepMatch [13],
MultiGranCNN [33] and MatchPyramid [15]. DSSM performs a
non-linear projection to map the query and the documents to a
common semantic space. The neural network models are trained
using clickthrough data such that the conditional likelihood of the
clicked document given the query is maximized. DeepMatch uses

a topic model to construct the interactions between two texts and
then makes different levels of abstractions with a deep architecture
to model the relationships between topics. ARC-I and ARC-II are
two different architectures proposed by Hu et. al. [6] for matching
natural language sentences. ARC-I firstly finds the representation
of each sentence and then compares the representations of the two
sentences with a multi-layer perceptron (MLP). The drawback of
ARC-I is that it defers the interaction between two sentences until
their individual representation matures in the convolution model,
and therefore has the risk of losing details, which could be impor-
tant for the matching task. On the other hand, ARC-II is built di-
rectly on the interaction space between two sentences. Thus ARC-
II makes two sentences meet before their own high-level represen-
tations mature, while still retaining the space for individual devel-
opment of abstraction of each sentence. Our aNMM architecture
adopts a similar design with ARC-II in the QA matching matrix
where we build neural networks directly on the interaction of sen-
tence term pairs. However, we adopt value-shared weights instead
of position-shared weights as in the CNN used by ARC-II. We also
add attention scheme to learn question term importance.

Factoid Question Answering. There have been many previ-
ous studies on factoid question answering, most of which use the
benchmark data from TREC QA track [32, 25, 31, 34, 18]. Yih
et. al. [32] formulated answer sentence selection as a seman-
tic matching problem with a latent word-alignment structure and
conducted a series of experimental studies on leveraging proposed
lexical semantic models. Iyyer et. al. [8] introduced a recursive
neural network (RNN) model that can reason over text that con-
tains very few individual words by modeling textual composition-
ality. Yu et al. [34] proposed an approach for answer sentence se-
lection via distributed representations, and learned to match ques-
tions with answers by considering their semantic encoding. They
combined the learning results of their model with word overlap fea-
tures by training a logistic regression classifier. Wang and Nyberg
[25] proposed a method which uses a stacked bidirectional Long-
Short Term Memory (BLSTM) network to sequentially read words
from question and answer sentences, and then output their rele-
vance scores. Their system needs to combine the stacked BLSTM
relevance model with a BM25 score to achieve good performance.
Severyn and Moschitti [18] presented a convolutional neural net-
work architecture for re-ranking pairs of short texts, where they
learned the optimal representation of text pairs and a similarity
function to relate them in a supervised way from the available train-
ing data. They also need to combine additional features into their
model to outperform previous methods. Unlike the previous re-
search, our method can outperform previous methods using feature
engineering without combining any additional features. With an
additional simple feature like QL, our model is significantly better
than the previous state-of-the-art methods including deep learning
methods.

Answer Ranking in CQA. There is also previous research on
ranking answers from community question answering (CQA) sites.
Surdeanu et al. [22, 23] investigated a wide range of feature types
such as similarity features, translation features, density / frequency
features for ranking answers to non-factoid questions in Yahoo!
Answers. Jansen et al. [9] presented an answer re-ranking model
for non-factoid questions that integrate lexical semantics with dis-
course information driven by two representations of discourse. Xue
et al. [29] proposed a retrieval model that combines a translation-
based language model for the question part with a query likelihood
approach for the answer part. Questions from CQA sites are mostly
non-factoid questions. Our research is closer to factoid questions
such as questions in TREC QA data.
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Figure 1: The proposed architecture of attention-based neural matching model (aNMM-2) for ranking answers.

Answer Passage / Sentence Retrieval. Our work is also re-
lated to previous research on answer passage / sentence retrieval.
Tymoshenko and Moschitti [24] studied the use of syntactic and se-
mantic structures obtained with shallow and deeper syntactic parsers
in the answer passage re-ranking task. Keikha et al. [12, 11] devel-
oped an annotated data set for non-factoid answer finding using
TREC GOV2 collections and topics. They annotated passage-level
answers, revisited several passage retrieval models with this data,
and came to the conclusion that the current methods are not effec-
tive for this task. Yang et al. [30] developed effective methods for
answer sentence retrieval using this annotated data by combining
semantic features, context features and basic text matching features
with a learning to rank approach. Our model is built on attention-
based neural matching model with value-shared weighting schema.
Unlike learning to rank approaches with feature engineering, our
model can achieve good performance for ranking answers without
any additional manual feature engineering, preprocessing of NLP
parsers and external resources like knowledge bases.

3. ATTENTION-BASED NEURAL MATCH-
ING MODEL

In this section we present the proposed model referred as aNMM
(attention-based Neural Matching Model), which is shown in Fig-
ure 1. Before we introduce our model, we firstly define some ter-
minologies.

3.1 Terminology
Short Answer Text: We use Short Answer Text to refer to a short
fact, answer sentences or answer passages that can address users’
information needs in the issued questions. This is the ranking ob-
ject in this paper and includes answers in various lengths. In the
experiments of this paper, we mainly focus on ranking answer sen-
tences that contain correct answer facts as in TREC QA data.
QA Matching Matrix: We use QA Matching Matrix to refer to a
matrix which represents the semantic matching information of term
pairs from a question and answer pair. Given a question q with
length M and an answer a with length N , a QA matching matrix

is an M by N matrix P, where Pj,i denote the semantic similarity
between term qj and term ai measured by the cosine similarity of
the corresponding word embeddings of terms. If qj and ai are the
same term, we assign Pj,i as 1.
QA Matching Vector: We use QA Matching Vector to refer to
a row in the QA matching matrix. As presented before, the j-th
row of the QA matching matrix P contains the semantic similarity
between qj and all terms in answer a .

3.2 Model Overview
Our method contains three steps as follows:

1. We construct QA matching matrix for each question and an-
swer pair with pre-trained word embeddings.

2. We then employ a deep neural network with value-shared
weighting scheme in the first layer, and fully connected lay-
ers in the rest to learn hierarchical abstraction of the semantic
matching between question and answer terms.

3. Finally, we employ a question attention network to learn ques-
tion term importance and produce the final ranking score.

We propose two neural matching model architectures and com-
pare the effectivenesses of them. We firstly describe a basic version
of the architecture, which is referred to as aNMM-1.

In the following sections, we will explain in detail the two major
designs of aNMM-1, i.e., value-shared weights and question atten-
tion network.

3.3 Value-shared Weighting
We first train word embeddings with the Word2Vec tool by Mikolov

et al.[14] with the English Wikipedia dump to construct QA match-
ing matrices. Given a question sentence and an answer sentence,
we compute the dot product of the normalized word embeddings
of all term pairs to construct the QA matching matrix P as de-
fined in Section 3.1. A major problem with the QA matching ma-
trix is the variable size due to the different lengths of answers for
a given question. To solve this problem, one can use CNN with



Figure 2: The comparison of position-shared weight in CNN and value-shared weight in aNMM. In CNN, the weight associated with a node
only depends on its position or relative location as specified by the filters. In aNMM, the weight associated with a node depends on its value.

pooling strategy to handle the variable size. However, as we have
mentioned before, CNNs basically use position-shared weighting
scheme which may not fit semantic matching between questions
and answers. Important question terms and semantically similar an-
swer words could appear anywhere in questions/answers due to the
complex linguistic property of natural languages. Thus we adopt
the following method to handle the various length problem:

Value-shared Weights: For this method, the assumption is that
matching signals in different ranges play different roles in deciding
the final ranking score. Thus we introduce the value-shared weight-
ing scheme to learn the importance of different levels of matching
signals. The comparison between the position-shared weight and
value-shared weight is shown in Figure 2. We can see that for
position-shared weights, the weight associated with a node only
depends on its position or relative location as specified by the fil-
ters in CNN. However in our model, the weight associated with a
node depends on its value. The value of a node denotes the strength
of the matching signal between term pairs of questions and answers
from the QA matching matrix, as explained in Section 3.1. Such a
setting enables us to use the learned weights to encode how to com-
bine different levels of matching signals. After this step, the size
of the hidden representation becomes fixed and we can use normal
fully connected layers to learn higher level representations. We use
the term bin to denote a specific range of matching signals. since
Pj,i ∈ [−1, 1], if we set the size of bins as 0.1, then we have 21
bins where there is a separate bin for Pj,i = 1 to denote exact
match of terms.

Specifically, value-shared weights are adopted in the forward
propagation prediction process from the input layer to the hidden
layer over each question term in aNMM-1 as follows:

Input Layer to Hidden Layer. Let w denote a K + 1 dimen-
sional model parameter from input layer to hidden layer. xjk de-
notes the sum of all matching signals within the k-th value range
or bin. For each QA matching vector of a given query q, the com-
bined score after the activation function of the j-th node in hidden
layer is defined as

hj = δ(

K∑
k=0

wk · xjk) (1)

where j is the index of question words in q. We use the sigmoid
function as the activation function, which is commonly adopted in
many neural network architectures.

3.4 Question Attention Network
In addition to value-shared weighting, another model component

of aNMM-1 is the question attention network. In a committee of

neural networks which consists of multiple networks, we need to
combine the output of these networks to output a final decision vec-
tor. The question attention network uses the gating function [20] to
control the output of each network in this process. Specifically, in
aNMM-1 we use the softmax gate function to combine the output
of multiple networks where each network corresponds to a ques-
tion term as shown in Figure 1. We feed the dot product of query
word embedding and model parameter to the softmax function to
represent the query term importance. In this setting, we can di-
rectly compare the relative term importance of query words within
the same query with softmax function. We also tried sigmoid gate
function, but this did not perform as well as softmax gate function.

Softmax gate function is used in the forward propagation process
from the hidden layer to the output layer as follows:

Hidden Layer to Output Layer. From the hidden layer to the
output layer, we add a softmax gate function to learn question at-
tention. Let v denote a P dimensional vector which is a model
parameter. We feed the dot product of query word embedding qj

and v to the softmax function to represent the query term impor-
tance as shown in Equation 2. Note that we normalize the query
word embedding before computing the dot product.

y =

M∑
j=1

gj · hj =

M∑
j=1

exp(v · qj)∑L
l=1 exp(v · ql)

· δ(
K∑

k=0

wk · xjk) (2)

Unlike previous models like CNNs [18] and BLSTM [25], which
learn the semantic match score between questions and answers through
representation learning from matching matrix or question / answer
pair sequences, aNMM achieves this by combining semantic match-
ing signals of term pairs in questions and answers weighted by
the output of question attention network, where softmax gate func-
tions help discriminate the term importance or attention on different
question terms.

3.5 Model Training
For aNMM-1, the model parameters contain two sets: 1) The

value-shared weights wk for combining matching signals from the
input layer to the hidden layer. 2) The parameters vp in the gating
function from the hidden layer to the output layer.

To learn the model parameters from the training data, we adopt a
pair-wise learning strategy with a large margin objective. Firstly
we construct triples (q, a+,a−) from the training data, with q
matched with a+ better than with a−. We have the ranking-based
loss as the objective function as following:

e(q,a+,a−;w,v) = max(0, 1− S(q, a+) + S(q, a−)) (3)



where S(q,a) denote the predicted matching score for QA pair
(q, a). During training stage, we will scan all the triples in train-
ing data. Given a triple (q, a+,a−), we will compute ∆S =
1 − S(q, a+) + S(q, a−). If ∆S ≤ 0, we will skip this triple.
Otherwise, we need to update model parameters with back propa-
gation algorithm to minimize the objective function.

Under softmax gate function setting, the gradients of e w.r.t. v
from hidden layer to the output layer is shown in Equation 4

∂e

∂vp
=

M∑
j=1

∂gj
∂vp
· (−δ(u+) + δ(u−)) (4)

where

u+ =

K∑
k=0

wk · x+jk, u
− =

K∑
k=0

wk · x−jk

∂gj
∂vp

can be derived as

exp(v · qj) · qjp
∑M

l=1 exp(v · ql) − exp(v · qj)
∑M

l=1 exp(v · ql) · qlp
(
∑M

l=1 exp(v · ql))2

The gradient of e w.r.t. w from input layer to hidden layer is
shown in Equation 5.

∂e

wk
=

M∑
j=1

exp(v · qj)∑L
l=1 exp(v · ql)

· (−δ(u+)(1− δ(u+))x+jk

+δ(u−)(1− δ(u−))x−jk) (5)

With the formulas of gradients, we can perform stochastic gra-
dient descent to learn model parameters. We use mini-batch gra-
dient descent to achieve more robust performance on the ranking
task. For the learning rate, we adopt adaptive learning rate: η =
η0(1 − ε), where ε will approach 1 with more iterations. Such a
setting has better guarantee for convergence.

3.6 Extension to Deep Neural Networks with
Multiple Sets of Value-shared Weights

In aNMM-1, we can only use one set of value-shared weights
for each QA matching vector. We further propose a more flexible
neural network architecture which could enable us to use multiple
sets of value-shared weights for each QA matching vector, leading
to multiple intermediate nodes in the first hidden layer, as shown
in Figure 1 by the yellow color. We refer to this extended model
as aNMM-2. The model architecture shown in Figure 1 is corre-
sponding to aNMM-2.

3.6.1 Forward Propagation Prediction
For aNMM-2, we add a hidden layer in the neural network where

we learn multiple combined scores from the input layer. With this
hidden layer, we define multiple weight vectors as w. Thus w
becomes a two dimensional matrix. The formula for the forward
propagation prediction is as follows:

y =

M∑
j=1

τ(v · qj) · δ(
T∑

t=0

rt · δ(
K∑

k=0

wktxjk)) (6)

where τ(v ·qj) =
exp(v·qj)∑L
l=1

exp(v·ql)
and τ denote the softmax gate

function. T is the number of nodes in hidden layer 1. rt is the

model parameter from hidden layer 1 to hidden layer 2, where we
feed the linear combination of outputs of nodes in hidden layer 1 to
an extra activation function comparing with Equation 2. Then from
hidden layer 2 to output layer, we sum over all outputs of nodes in
hidden layer 2 weighted by the outputs of softmax gate functions,
which also form the question attention network.

3.6.2 Back Propagation for Model Training
For aNMM-2, we have three sets of model parameters: 1) wkt

from input layer to hidden layer 1; 2) rt from hidden layer 1 to
hidden layer 2; 3) vp from hidden layer 2 to output layer. All three
sets of parameters are updated through back propagation. The defi-
nition of the objective function is the same as Equation 3. The back
propagation process for model parameter learning is described as
follows:

From hidden layer 2 to output layer. The gradients of the ob-
jective function w.r.t. v is as following:

∂e

∂vp
=

M∑
j=1

∂gj
∂vp
· (−h+

j + h−j ) (7)

Where
h+
j = δ(

∑T
t=0 rt · δ(

∑K
k=0 wktx

+
jk))

h−j = δ(
∑T

t=0 rt · δ(
∑K

k=0 wktx
−
jk))

From hidden layer 1 to hidden layer 2. The gradients of the
objective function w.r.t. r is as following:

∂e

∂rt
=

M∑
j=1

τ(v · qj)(−h+
j )(1− h+

j )s+t + h−j (1− h−j )s−t )

Where
s+t = δ(

∑K
k=0 wktx

+
jk)

s−t = δ(
∑K

k=0 wktx
−
jk).

From input layer to hidden layer 1.
The gradients of the objective function w.r.t. w is as following:

∂e

∂wkt
=

M∑
j=1

τ(v · qj)(−
∂y+

u
′+
j

· rt · δ(u+
t )(1− δ(u+

t )) · x+jk

+
∂y−

u
′−
j

· rt · δ(u−t )(1− δ(u−t )) · x−jk) (8)

Where
u

′+
j =

∑T
t=0 rt · δ(

∑K
k=0 wktx

+
jk)

u
′−
j =

∑T
t=0 rt · δ(

∑K
k=0 wktx

−
jk)

Initially we will randomly give the values of model parameters.
Then we will use back propagation to update the model parameters.
When the learning process converge, we use the learned model pa-
rameters for prediction to rank short answer texts.

4. EXPERIMENTS

4.1 Data Set and Experiment Settings
We use the TREC QA data set 1 created by Wang et. al. [27]

from TREC QA track 8-13 data, with candidate answers automati-
cally selected from each question’s document pool using a combi-
nation of overlapping non-stop word counts and pattern matching.
This data set is one of the most widely used benchmarks for answer

1https://github.com/aseveryn/deep-qa

https://github.com/aseveryn/deep-qa


Figure 3: Visualization of learned value-shared weigths of aNMM-1. The x-axis is index of bin ranges and the y-axis is the value-shared
weights corresponding to each bin range. The range of match signals is [-1,1] from the left to the right.

Table 1: The statistics of the TREC QA data set.

Data #Questions #QA pairs %Correct #Answers/Q Judgement
TRAIN-ALL 1,229 53,417 12.00% 43.46 automatic
TRAIN 94 4,718 7.40% 50.19 manual
DEV 82 1,148 19.30% 14.00 manual
TEST 100 1,517 18.70% 15.17 manual

re-ranking. Table 1 shows the statistics of this data set. The dataset
contains a set of factoid questions with candidate answers which
are limited to a single sentence. There are two training data sets:
TRAIN and TRAIN-ALL. Answers in TRAIN have manual judg-
ments for the answer correctness. The manual judgment of candi-
date answer sentences is provided for the entire TREC 13 set and
for a part of questions from TREC 8-12. TRAIN-ALL is another
training set with much larger number of questions. The correct-
ness of candidate answer sentences in TRAIN-ALL is identified by
matching answer sentences with answer pattern regular expressions
provided by TREC. This data set is more noisy, however it provides
many more QA pairs for model training. There is a DEV set for
hyper-parameter optimization and TEST set for model testing. We
use the same train/dev/test partition in our experiments to directly
compare our results with previous works. For data preprocess, we
perform tokenization without stemming. We maintain stop words
during the model training stage.

Word Embeddings. We obtain pre-trained word embeddings
with the Word2Vec tool by Mikolov et al.[14] with the English
Wikipedia dump. We use the skip-gram model with window size 5
and filter words with frequency less than 5 following the common
practice in many neural embedding models. For the word vector
dimension, we tune it as a hyper-parameter on the validation data
starting from 200 to 1000. Embeddings for words not present are
randomly initialized with sampled numbers from uniform distribu-
tion U[-0.25,0.25], which follows the same setting as [18].

Model Hyper-parameters. For the setting of hyper-parameters,
we set the number of bins as 600, word embedding dimension as
700 for aNNM-1, the number of bins as 200, word embedding di-
mension as 700 for aNNM-2 after we tune hyper-parameters on the
provided DEV set of TREC QA data.

4.2 Evaluation and Metrics
For evaluation, we rank answer sentences with the predicted score

of each method and compare the rank list with the ground truth to
compute metrics. We choose Mean Average Precision (MAP) and
Mean Reciprocal Rank (MRR), which are commonly used in infor-
mation retrieval and question answering, as the metric to evaluate
our model.

The definition of MRR is as follows:

MRR = 1
|Q|

∑
q∈Q

1
rank(fa)

where rank(fa) is the position of the first correct answer in the
rank list for the question q. Thus MRR is only based on the rank
of the first correct answer. It is more suitable for the cases where
the rank of the first correct answer is emphasized or each question
only have one correct answer. On the other hand, MAP looks at the
ranks of all correct answers. It is computed as following:
MAP = 1

|Q|
∑

q∈QAP (q)

where AP (q) is the average precision for each query q ∈ Q.
Thus MAP is the average performance on all correct answers. We
use the official trec_eval2 scripts for computing these metrics.

4.3 Model Learning Results
In this section, we give some qualitative analysis and visualiza-

tion of our model learning results. Specifically, we analyze the
learned value-shard weights and question term importance by aNMM.

4.3.1 Value-shared Weight
We take the learned value-shared weights of aNMM-1 as the ex-

ample. Figure 3 shows the learned value-shared weights by aNMM-
1. In aNMM-1, for each QA matching vector, there is only one bin
node. Thus the learned value-shared weights for aNMM-1 is a one
dimension vector. For aNMM-1, we set the number of bins as 600
as presented in Section 4.1. Note that the x-axis is the index of
bin range and the y-axis is the value-shared weights correspond-
ing to each bin range. The range of match signals is [-1,1] from
the left to the right. We make the following observations: (1) The
exact match signal which is corresponding to 1 in the last bin is
tied with a very large weight, which shows that exact match in-
formation is very important. (2) For positive matching score from
(0, 1), which is corresponding to bin index (300, 600), the learned
value-shared weights are different for matching score range (0.5, 1)
(bin index (450, 600)) and matching score range (0, 0.5) (bin index
(300, 450)) . We can observe many positive value-shared weights
for matching score range(0.5, 1) and negative value-shared weights
for matching score range(0, 0.5). This makes sense since high se-
mantic matching scores are positive indicators on answer correct-
ness, whereas low semantic matching scores indicate that the can-
didate answer sentences contain irrelevant terms. (3) For negative
2http://trec.nist.gov/trec_eval/

http://trec.nist.gov/trec_eval/


Table 2: Examples of learned question term importance by aNMM-1.

test_14 when did the khmer rouge come into power
Term Importance 4.91E-03 7.18E-04 8.97E-04 5.67E-01 2.13E-01 1.81E-02 6.59E-03 1.89E-01
test_66 where was the first burger king restaurant opened
Term Importance 2.16E-04 5.67E-04 1.96E-04 2.57E-03 3.43E-01 4.39E-01 5.35E-03 2.08E-01
train_84 at what age did rossini stop writing opera
Term Importance 5.06E-02 2.54E-03 6.17E-02 2.68E-03 3.89E-01 4.28E-01 9.29E-03 5.64E-02

Figure 4: Visualization of learned question term importance by aNMM-1.

Table 3: The comparision of aNMM-1/aNMM-2 with aNMM-IDF
which is a degenerate version of our model where we use IDF to
directly replace the output of question attention network.

Training Data TRAIN TRAIN-ALL
Method MAP MRR MAP MRR
aNMM-IDF 0.6624 0.7376 0.7225 0.7873
aNMM-2 0.7191 0.7974 0.7407 0.7969
aNMM-1 0.7334 0.8020 0.7385 0.7995

matching scores from (−1, 0), we can see there is not a lot of differ-
ences between value-shared weights for different ranges. A major
reason is that most similarity scores based on word embeddings are
positive. Therefore, we can remove bins corresponding to negative
matching scores to reduce the dimension of value-shared weight
vectors, which can help improve the efficiency of the model train-
ing process. We will show more quantitative results on the compar-
ison between value-shared weights and position-shared weights in
CNN in Section 4.4.

4.3.2 Question Term Importance
Next we analyze the learned question term importance of our

model. Due to the space limit, we also use the learned question
term importance of aNMM-1 as an example. Table 2 shows the
examples of learned question term importance by aNMM-1. We
also visualize the question term importance in Figure 4. Based
on the results in the table and the figure, we can clearly see that
aNMM-1 learns reasonable term importance. For instance, with
the question attention network, aNMM-1 discovers important terms
like “khmer”, “rouge”, “power” as for the question “When did the
khmer rouge come into power ?”. Terms like “age”, “rossinin”,
“stop”, “writing”,“opera” are highlighted for the question “At what
age did rossini stop writing opera ? ”. For the question “Where was
the first burger king restaurant opened ?” mentioned in Section 1,
“burger”, “king”, “opened” are treated as important question terms.

An interesting question is how the learned term importance com-
pare with traditional IR term weighting methods such as IDF. We
design an experiment to compare aNMM-1/aNMM-2 with aNMM-
IDF, which is a degenerate version of our model where we use IDF

to directly replace the output of question attention network. In this
case, τ(v · qj) in Equation 6 is replaced by the IDF of the j-th
question term. Table 3 shows the results. We find that if we replace
the output of question attention network of aNMM with IDF, it will
decrease the answer ranking performance, especially on TRAIN
data. Thus, we can see that with the optimization process in the
back propagation training process, aNMM can learn better ques-
tion term weighting score than heuristic term weighting functions
like IDF.

4.4 Experimental Results for Ranking Answers

4.4.1 Learning without Combining Additional Fea-
tures

Our first experimental setting is ranking answer sentences di-
rectly by the predicted score from aNMM without combining any
additional features. This will enable us to answer RQ1 proposed in
Section 1. Table 4 shows the results of TREC QA on TRAIN and
TRAIN-ALL without combining additional features. In this table,
we compare the results of aNMM with other previous deep learn-
ing methods including CNN [34, 18] and LSTM [25]. We summa-
rize our observations as follows: (1) Both aNMM-1 and aNMM-
2 show significant improvements for MAP and MRR on TRAIN
and TRAIN-ALL data sets comparing with previous deep learning
methods. Specifically, if we compare the results of aNMM-1 with
the strongest deep learning baseline method by Severyn et al. [18]
based on CNN, we can see aNMM-1 outperform CNN for 14.67%
in MAP on TRAIN, 9.15% in MAP on TRAIN-ALL. For MRR,
we can also observe similar significant improvements of aNMM-
1. These results show that with the value-shared weight scheme
instead of the position-shared weight scheme in CNN and term im-
portance learning with question attention network, aNMM can pre-
dict ranking scores with much higher accuracy comparing with pre-
vious deep learning models for ranking answers. (2) If we compare
the results of aNMM-1 and aNMM-2, we can see their results are
very close. aNMM-1 has slightly better performance than aNMM-
2. This result indicates that adding one more hidden layer to incor-
porate multiple bin nodes does not necessarily increase the perfor-
mance for answer ranking in TREC QA data. From the perspective
of model efficiency, aNMM-1 could be a better choice since it can



Table 4: Results of TREC QA on TRAIN and TRAIN-ALL without
combining additional features (Compare with deep learning meth-
ods).

Training Data TRAIN TRAIN-ALL
Method MAP MRR MAP MRR
Yu et al. (2014) [34] 0.5476 0.6437 0.5693 0.6613
Wang et al.(2015) [25] / / 0.5928 0.6721
Severyn et al. (2015) [18] 0.6258 0.6591 0.6709 0.7280
aNMM-2 0.7191 0.7974 0.7407 0.7969
aNMM-1 0.7334 0.8020 0.7385 0.7995

Table 5: Results of TREC QA on TRAIN-ALL without combining
additional features (Compare with methods using feature engineer-
ing).

Method MAP MRR
Wang et al. (2007) [27] 0.6029 0.6852
Heilman and Smith (2010) [5] 0.6091 0.6917
Wang and Manning (2010) [26] 0.5951 0.6951
Yao et al. (2013) [31] 0.6307 0.7477
Severyn et al. (2013) [17] 0.6781 0.7358
Yih et al. (2013) [32] 0.7092 0.7700
aNMM-2 0.7407 0.7969
aNMM-1 0.7385 0.7995

be trained much faster with good prediction accuracy. However,
for larger training data sets than TREC QA data, aNMM-2 could
have better performance since it has more model parameters and is
suitable for fitting larger training data set. We leave the study of
impact of the number of hidden layers in aNMM to future work.

Table 5 shows the comparison between aNMM with previous
methods using feature engineering on TRAIN-ALL without com-
bining additional features. We find that both aNMM-1 and aNMM-
2 achieve better performance comparing with other methods using
feature engineering. Specifically, comparing the results of aNMM-
1 with the strongest baseline by Yih et al. [32] based on enhanced
lexical semantic models, aNMM-1 achieves 4.13% gain for MAP
and 3.83% gain for MRR. These results show that it is possible to
build a uniform deep learning model such that it can achieve better
performance than methods using feature engineering. To the best
of our knowledge, aNMM is the first deep learning model that can
achieve good performance comparing with previous methods either
based on deep learning models or feature engineering for ranking
answers without any additional features, syntactic parsers and ex-
ternal resources except for pre-trained word embeddings.

4.4.2 Learning with Combining Additional Features
Our second experimental setting is to address RQ2 proposed in

Section 1, where we ask whether our model can outperform the
state-of-the-art performance achieved by CNN [34, 18] and LSTM
[25] for answer ranking when combining additional features. We
combine the predicted score from aNMM-1 and aNMM-2 with the
Query Likelihood (QL) [1] score using LambdaMART [28] fol-
lowing a similar approach to [25]. We use the implementation of
LambdaMART in jforests 3 We compare the results with previous
deep learning models with additional features. Table 6 shows the
results on TRAIN and TRAIN-ALL when combining additional
features. We can see that with combined features, both aNMM-1
and aNMM-2 have better performance. aNMM-1 also outperforms

3https://github.com/yasserg/jforests [3].

Table 6: Results of TREC QA on TRAIN and TRAIN-ALL with
combining additional features.

Training Data TRAIN TRAIN-ALL
Method MAP MRR MAP MRR
Yu et al. (2014) [34] 0.7058 0.7800 0.7113 0.7846
Wang et al. (2015) [25] / / 0.7134 0.7913
Severyn et al. (2015) [18] 0.7329 0.7962 0.7459 0.8078
aNMM-2 0.7306 0.7968 0.7484 0.8013
aNMM-1 0.7417 0.8102 0.7495 0.8109

Table 7: Overview of previously published systems on the QA an-
swer ranking task. All reported results are from the best setting of
each model trained on TRAIN-ALL data.

Method MAP MRR
Wang et al. (2007) [27] 0.6029 0.6852
Heilman and Smith (2010) [5] 0.6091 0.6917
Wang and Manning (2010) [26] 0.5951 0.6951
Yao et al. (2013) [31] 0.6307 0.7477
Severyn et al. (2013) [17] 0.6781 0.7358
Yih et al. (2013) [32] 0.7092 0.7700
Yu et al. (2014) [34] 0.7113 0.7846
Wang et al. (2015) [25] 0.7134 0.7913
Severyn et al. (2015) [18] 0.7459 0.8078
aNMM 0.7495 0.8109

CNN by Severyn et al. [18] which is the current state-of-the-art
method for ranking answers in terms of both MAP and MRR on
TRAIN and TRAIN-ALL.

We also tried to combine aNMM score with other additional fea-
tures such as word overlap features, IDF weighted word overlap
features and BM25 as in previous research [34, 18, 25]. The results
were either similar or worse than combining aNMM score with QL.
For aNMM, the gains after combining additional features are not
as large as neural network models like CNN in [18] and LSTM
in [25]. We think the reasons for this are two-fold: (1) The QA
matching matrix in aNMM model can capture exact match informa-
tion by assigning 1 to matrix elements if the corresponding answer
term and question term are the same. This exact match informa-
tion includes match between numbers and proper nouns, which are
highlighted in previous research work [18] as especially important
for factoid questions answering, where most of the questions are
of type what, when , who that are looking for answers containing
numbers or proper nouns. Within aNMM architecture, this problem
has already been handled with QA matching matrix. Thus incorpo-
rating word overlap features will not help much for improving the
performance of aNMM. (2) In addition to exact match informa-
tion, aNMM could also learn question term importance like IDF
information through question attention network. Instead of empiri-
cally designing heuristic functions like IDF, aNMM can get learn-
ing based question term importance score. As analyzed in Section
4.3.2, with the optimization process in the back propagation train-
ing process, aNMM can learn similar or even better term weighting
score than IDF. Thus combining aNMM score with features like
IDF weighted word overlap features and BM25 may not increase
the performance of aNMM by a large margin as the case in related
research works [34, 18, 25].

4.4.3 Results Summary
Finally we summarize the results of previously published sys-

tems on the QA answer ranking task in Table 7. We can see aNMM

https://github.com/yasserg/jforests
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Figure 5: Tune hyper-parameters on validation data.

trained with TRAIN-ALL set beats all the previous state-of-the art
systems including both methods using feature engineering and deep
learning models. These results are very promising since aNMM re-
quires no manual feature engineering, no expensive processing by
various NLP parsers and no external results like large scale knowl-
edge base except for pre-trained word embeddings. Furthermore,
even without combining additional features, aNMM still performs
well for answer ranking, showing significant improvements over
previous deep learning model with no additional features and lin-
guistic feature engineering methods.

4.5 Parameter Sensitivity Analysis
We perform parameter sensitivity analysis of our proposed model

aNMM. We focus on aNMM-1 as the example due to the space lim-
itation. For aNMM-1, we fix the number of bins as 600 and change
the dimension of word vectors. Similarly, we fix the dimension of
word vectors as 700 and vary the number of bins. Figure 5 shows
the change of MAP and MRR on the validation data as we vary the
hyper-parameters. We summarize our observations as follows: (1)
For word vector dimension, the range (300, 700) is a good choice
as much lower or higher word vector dimensions will hurt the per-
formance. The choice of word vector dimension also depends on
the size of training corpus. Larger corpus requires higher dimen-
sion of word vectors to embed terms in vocabulary. (2) For the
number of bins, we can see that MAP and MRR will decrease as the
bin number increase. Too many bins will increase the model com-
plexity, which leads aNMM to be more likely to overfit the training
data. Thus choosing suitable number of bins by optimizing hyper-
parameter on validation data can help improve the performance of
aNMM.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose an attention based neural matching

model for ranking short answer text. We adopt value-shared weight-
ing scheme instead of position-shared weighting scheme for comb-
ing different matching signals and incorporate question term im-
portance learning using a question attention network. We perform
a thorough experimental study with the TREC QA dataset from
TREC QA tracks 8-13 and show promising results. Unlike previ-
ous methods including CNN as in [34, 18] and LSTM as in [25],
which only show inferior results without combining additional fea-
tures, our model can achieve better performance than the state-of-

art method using linguistic feature engineering without additional
features. With a simple additional feature, our method can achieve
the new state-of-the-art performance among current existing meth-
ods. For further work, we will study other deep learning archi-
tectures for answer ranking and extend our work to include non-
factoid question answering data sets.
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