


Existing search effectiveness measures cannot explain such vari-

ability. For example, DCG and RBP’s discount factors only depend

on the rank of a result—following these models, SERPs with differ-

ent “quality” should not vary in examination probability. Another

popular measure, expected reciprocal rank (ERR) [9], sets the dis-

count for a result adaptively according to the results at higher ranks.

But it assumes that a�er examining a relevant result, users are less

likely to continue to examine the next one due to the satisfaction of

their information needs. Following ERR’s model, searchers should

have a higher chance to examine lower-ranked results on the low

“quality” SERPs compared with on the high and medium “quality”

ones, because the low “quality” SERPs have fewer relevant results

at the top ranks—this is contradictory to our observations. Readers

may refer to Figure 2 (plots labeled with “static”) to the examination

probability of existing measures on SERPs with different quality,

where none of the plots fits with the observation in Figure 1.

In this paper, we adapt users’ persistence based on the relevance

and ranking of results on the SERPs (ranked lists) being evaluated

(such that the evaluation measures and their browsing models are

also adaptive to the SERPs). When evaluating different ranked lists,

we compute different persistence values adaptively according to

the results of the SERPs. Experimental results show that:

• Our approach helps existing evaluation measures, includ-

ing DCG, RBP, ERR, TBG, and U-measure [37], to be�er fit

with users’ search behavior, including both the observed

browsing behavior in an eye-tracking user study’s log, and

the clicking behavior in a commercial search engine’s log.

• With more accurate user models, our approach also helps

existing measures to be�er correlate with users’ ratings on

their search performance.

2 RELATED WORK

Ever since DCG [27], many search effectiveness measures included

models for how users examine the ranked list (examination mod-

els). Our work is closely related to previous studies on this topic.

Chapelle et al. [9] categorized the examination models in search

effectiveness measures into position-based models (such as DCG

and RBP [35]) and cascade models (such as ERR [9] and expected

browsing utility [44]). We discuss both types of models and also a

third type—cost-based models, including time-biased gain (TBG)

[40] and U-measure [37]. Both measures consider users’ examina-

tion behavior as dependent on the cost of examining results, which

is usually measured by time spent or texts read by users. Another

example of cost-based models is the Twist measure [20]. Section 3

analyzed current search effective measures in a deeper detail.

Our work adjusts the browsing models of search effectiveness

measures according to the SERP being evaluated, which is closely

related to many previous studies. For example, Kra� and Lee [31]

introduced two stopping rules to the expected search length (ESL)

measure: the satiation rule assumes persistent examination until

enough relevant results have been found, while the disgust rule

assumes users would stop a�er examining too many irrelevant

results. de Vries, Kazai, and Lalmas [16] modeled that continuous

examination of low quality (non-relevant) content leads to aban-

donment. Dupret and Piwowarski [17] modeled the chances of

abandonment in click models based on both the rank of the result

and its distance to the last clicked results. Effectiveness measures

using cascade browsing models (such as ERR [10] and EBU [44])

all believe that examining a relevant result reduces the chances

to examine the follow-up results. �e INSQ family of measures

[3, 33, 34] adapt the stopping probability based on user expectation

and the current unmet information needs. Ferrante, Ferro, and

Maistro [19] modeled users’ stopping criteria based on the whole

history of visited documents.

However, our work also differs from previous adaptive evalu-

ation measures from two aspects. First, previous measures (such

as ESL, ERR, UBM, INSQ and so on) only adapt browsing models

based on the examined search results, while our method further

adjusts the overall persistence level of users based on the whole

SERP. �is helps to model many observed search behavior, espe-

cially user abandonment when browsing a low-quality SERP (as

shown in Figure 1). Second, our method learns adaptive models

from observed user behavioral data (such as clicks or eye fixations)

rather than relying on any particular assumptions on how brows-

ing behaviors are adapted. Section 4.4 discusses the differences

between our method and previous measures in be�er detail.

�e way we train parameters for our adaptive persistence model

is also similar to much previous work that calibrates parameters

of search effectiveness measures based on click log or other user

behavior data [7, 40, 45]. Another approach to help search effec-

tiveness measures to be�er fit with users is the click model-based

metrics [14]. In contrast to these work, our approach is different in

that, 1) we model the adaptiveness of the browsing behavior, and

2) we focus on the persistence parameters in evaluation measures.

3 EXISTING BROWSING MODELS

Most current search effectiveness measures, either implicitly or

explicitly, included a browsing model for how users interact with a

ranked list of results [5]. �is section reviews some typical models

and their persistence factors.

When discussing a measure M , we focus on PM (k ), the proba-

bility of examining the kth result, as determined byM’s browsing

model. Here to examine a result means to look at its snippet on the

SERP and to click on its link and read details if the user believes it

is worthwhile. We use the following notations: rk is the relevance

grade for the kth result, and bk is the binary version (bk = 1 if

relevant, otherwise 0); rmax is the highest relevance grade.

3.1 Position-based Models

Position-based models determine the probability to examine a result

only based on its position (rank) on the SERP. Discounted cumulated

gain (DCG) [27] and rank-biased precision (RBP) [35] are typical

examples of position-based models.

A popular version of DCG [4] applies a discounting factor 1
log

b
(b+k−1)

to the kth result in the ranked list, as in Equation 1. Most studies

set b = 2, and in such a case the discount is 1
log2 (k+1)

. DCG did not

introduce any explicit model for how users browse the list of results,

but we can consider the discounting factor as examination probabil-

ity (as its value ranges from 0 to 1 when b > 1). b is the persistence

parameter in DCG. A smaller value of b penalizes lower-ranked



results by a greater extent.

DCG =

n∑

k=1

2rk − 1

logb (b + k − 1)
, PDCG (k ) =

1

logb (b + k − 1)
(1)

RBP [35] explicitly introduced a browsing model. It assumes that

users examine results on the SERP sequentially from top to bo�om.

Users always examine the first result. A�er examining each result,

users have the chance p to examine the next one, and 1 − p to stop.

Following this model, users have the probability pk−1 to examine

the kth result, as in Equation 2. p controls users’ persistence in

browsing. A smaller p yields a greater discount effect.

RBP = (1 − p) ·

n∑

k=1

bk · p
k−1 , PRBP (k ) = p

k−1 (2)

In Equation 2, bk is the gain of the kth result, which was set to a

binary function in the original RBPmeasure [35]. In our experiment,

we set bk = 2rk − 1 to consider graded relevance. �is improves the

measure’s correlation with users’ ratings on search performance.

3.2 Cascade Models

Cascade models in search effectiveness measures were motivated by

the cascade click models [10, 15]. �ey model the chances of exam-

ining a result as dependent on previously examined results. More

specifically, all existing cascade models [9, 44] believe that a�er

examining a relevant result, users are more likely to stop browsing

due to the satisfaction of their information needs, compared with

the case of examining a non-relevant result.

Expected reciprocal rank (ERR) [9] uses a typical cascade model.

ERR’s browsing model is similar to RBP, but it models that a�er

examining the kth result, users have the probability sk =
2rk −1
2rmax

to stop browsing due to the satisfaction of their information need.

�e chance of continuing to examine the next result is 1−sk , which

depends on the relevance of the examined result. Results with a

higher level of relevance are more likely to satisfy users (a greater

sk ), and thus penalize follow-up results by a greater extent.

�e most popular form of ERR does not include a persistence

factor, but Chapelle et al. [9] introduced an extended version of

ERR that takes into account a similar factor: users stop examining

(abandon) due to dissatisfaction. Equation 3 describes this variant1.

γ is the chance to continue, and 1−γ is the chance to abandon a�er

examining a result. To examine the kth result, users should have

neither stopped due to satisfaction nor abandoned at higher ranks.

We consider γ as the persistence parameter in ERR. A smaller value

of γ penalizes lower-ranked results by a greater extent.

ERR =

n∑

k=1

1

k
· sk · γ

k−1
·

k−1∏

m=1

(1 − sm ) (3)

PERR (k ) = γ
k−1
·

k−1∏

m=1

(1 − sm )

1 Chapelle et al. [9] did not include 1/k into this variant; we include 1/k in Equation
3 because this yields a be�er correlation with user experience ratings in our dataset.

3.3 Cost-based Models

Cost-based models discount a result by the expected cost spent by

the users. �e cost is usually measured in terms of time [40] or the

length of examined texts [37]. �ese models penalize a result by a

greater extent if the user has spent more effort when examining the

result. Time-biased gain (TBG) [40] and U-measure [37] are typical

examples of cost-based models.

TBG [40] penalizes a result based on the expected time spent

to arrive at the result (before examining the result). �e longer it

takes to reach a result, the less likely users are persistent enough

to examine it. Equation 4 computes TBG. дk is the gain of the kth

result. tk is the expected time spent before examining the kth result.

We can consider h as a persistence parameter. A greater h penalizes

lower-ranked results by a smaller extent.

TBG =

n∑

k=1

дk · e
−tk ·

log 2
h , PTBG (k ) = e−tk ·

log 2
h (4)

U-measure [37] discounts a result based on the total length of

texts users need to read to finish examining the result (including the

texts for both the result itself and those at higher ranks). �e more

texts it takes to read to finish examining a result, the less likely

users are persistent enough to examine it. Equation 5 computes

U-measure. lk is the cumulative length of examined texts starting

from the first result to the kth result (inclusive). дk is the gain of

the kth result. We consider L as a persistence parameter. A greater

L penalizes lower ranked results by a smaller extent.

U =

n∑

k=1

дk ·max(0, 1 −
lk
L
) , PU (k ) = max(0, 1 −

lk
L
) (5)

4 ADAPTIVE PERSISTENCE MODELS

4.1 Adaptive Persistence

As the last section summarized, many existing measures included

parameters for users’ persistence in SERP browsing, such as b in

DCG, p in RBP, γ in ERR, h in TBG, and L in U-measure. Most

existing methods use the same parameter to evaluate different

SERPs during an experiment. In contrast, we set these parameters

adaptively according to the ranking and relevance of results on

the SERPs being evaluated. �is is to model that users may have

different persistence and browsing behavior on various SERPs.

Let s be a persistence parameter (e.g., s can be b in DCG, p in

RBP, and etc.). We model s as a linear model based on the relevance

of results at different ranks as in Equation 6: w0 is a fixed term;wi j

is the weight for “the ith result has relevance grade j”; [ri = j] is

a binary variable that takes the value 1 if ri = j (the ith result has

relevance grade j), otherwise it is 0.

s = w0 +

n∑

i=1

rmax∑

j=0

wi j · [ri = j] (6)

When evaluating a SERP, we first compute s according to the

results on the SERP and the parametersw0 andwi j . �en, we apply

the calculated SERP-dependent persistence value s to the effective-

ness measure to evaluate the SERP. Different SERPs may yield differ-

ent persistence. �erefore, measures using such a SERP-dependent

persistence are also adapted to the SERPs being evaluated. Note

that s is only meant to be a computational model of persistence—we



do not intend to suggest that users will first scan all results on a

SERP and then determine a persistence level for browsing.

�e full model in Equation 6 has n · rmax + n + 1 parameters in

total. For a regular SERP design (10 results per page) and an evalu-

ation protocol using five levels of relevance, s has 51 parameters.

We can reduce the number of parameters by considering only a

few top-ranked results (assuming that top-ranked results are more

important for users’ persistence). Another option is to consider

only binary relevance rather than all relevance levels—for each rank

k , s only includes two parameters for [rk = 0] and [rk > 0]. �ese

reduced models may help when we only have limited training data.

If we only include a fixed termw0, s is identical to the persistence

parameters in existing measures.

In this paper, we model user’s persistence (s) as only dependent

on the ranking and relevance of results on a SERP.�is simplifies the

problem. Here we do not intend to suggest users’ browsing behavior

and persistence are only dependent on these factors. But such a

model requires nothing more than the ranked list and relevance

labels as input when evaluating a SERP. �is makes it applicable to

the Cranfield-style automatic evaluation approaches. Of course, we

still need observed user interaction data to train parameters of s

(w0 andwi j ). But once the model has been trained, it can be applied

to any unseen ranked lists as long as we have relevance judgments.

4.2 Parameter Estimation

4.2.1 Using Eye Tracking Data. A straightforward option for

parameter estimation is to fit with observed browsing behavior.

For example, when eye-tracking data is available, we can learn

the parameters of s by maximizing the likelihood of the observed

eye fixations on the SERP. Eye fixation refers to users’ stably gaze

at an area of the screen, which is widely used as a surrogate for

users a�ention [30]. Many previous studies equate observing an

eye fixation on a result’s area to that the user examined the result.

Let vk be a binary variable for whether or not we observed the

user’s eye fixation on the kth result. We use Vk for the chances of

observing users’ eye fixation on the kth result, as in Equation 7. nv
is a normalization factor between PM (k ) (examination probability)

and Vk (the chances of observing an eye fixation). �is is to take

into account the fact that we do not always observe users’ eye

fixations on the first result, but most examination models assume

that users always view the first result on the SERP. We estimate nv
as the chances to observe eye fixations on the top ranked result.

Vk = nv · PM (k ) (7)

Equation 8 computes the log likelihood (LL) of the observed

eye fixations for a single SERP. �e LL for multiple SERPs simply

sums up the LLs for each SERP. For simplicity, we use the LL for

an individual SERP in all following discussions.

LLview =

n∑

k=1

log(Vkvk + (1 −Vk ) (1 −vk ))

=

n∑

k=1

log((2vk − 1)Vk −vk + 1)

(8)

Equation 8 is straightforward to maximize using approaches

such as gradient ascent. Equation 9 computes the gradient. One

can further derive
∂Pk
∂w

for a specific measure according to its ex-

amination model. For example, Equation 10 derives the gradient

for RBP. We do not further derive the gradients for other measures

due to limited space.

∂LLview

∂w
=

n∑

k=1

(2vk − 1) · nv
(2vk − 1)Vk −vk + 1

·
∂PM (k )

∂w
(9)

PRBP (k )

∂w0
= (k − 1)pk−2 ,

PRBP (k )

∂wi j
= (k − 1)pk−2 · [ri = j] (10)

4.2.2 Using Click Log. Collecting eye-tracking data is expensive,

which makes it difficult to scale up. �erefore, a more practical

option is to estimate the parameters using click log.

Let ak be the “a�ractiveness” of the kth result (the chances of

clicking on the result a�er examining its snippet). We can predict

the likelihood of clicking on the kth result based on the examination

model, as in Equation 11. �is is o�en referred to as examination

hypothesis [15, 17] in click models—click depends on both exam-

ination and the a�ractiveness of the result. Ck is the chances of

clicking on the kth result, and ck is the binary event that whether

or not we observed any clicks on the kth result.

Ck = ak · PM (k ) (11)

Equation 12 computes the log likelihood of the observed clicks

for an individual SERP. Similarly, Equation 13 derives the gradient,

which is similar to Equation 9.

LLclick =

n∑

k=1

log((2ck − 1)Ck − ck + 1) (12)

∂LLclick
∂w

=

n∑

k=1

(2ck − 1) · ak
(2ck − 1)Ck − ck + 1

·
∂PM (k )

∂w
(13)

Note that although Equation 11 looks similar to click models, our

purpose here is not to achieve be�er click prediction or to compete

with existing click models [10, 12, 17, 21]. Our purpose is only to

set the parameters’ values (w0 andwi j ) appropriately through the

process of click prediction. Also, the se�ing is also very different

from those for training click models—our training process requires

both clicks and relevance labels as input, while click models can be

trained without relevance labels (and one of their primary purposes

is to predict results’ relevance labels).

We set ak (a�ractiveness) only based on result relevance, i.e.,

ak = a(rk ). Based on the assumption that users always view the

first result on a SERP, we estimate a(r ) as the click-through rate of

results with the relevance grade r at the top rank.

4.3 Example

To be�er illustrate the proposed approach, we present an example

of applying the adaptive persistence model to RBP. In the following

example, persistence is modeled by considering graded relevance

(0, 1, or 2) and the top 5 results. �e following table shows the

parameters’ values estimated from a dataset.

We consider three example ranked lists (SERPs) L1, L2, and L3.

�eir relevance vectors are as follows:

L1 = [0, 0, 0, 0, 0]

L2 = [1, 1, 1, 1, 1]

L3 = [2, 2, 2, 2, 2]



w0 = 0.544

wi j j = 0 j = 1 j = 2

i = 1 0.047 0.088 0.059

i = 2 0.049 0.084 0.061

i = 3 0.048 0.096 0.050

i = 4 0.042 0.054 0.098

i = 5 0.052 0.072 0.070

�e evaluation procedure is similar to those using regular RBP,

except that the persistence p in RBP vary for different SERPs. When

evaluating L1, we first compute persistence based on L1’s relevance

vector—p = w0 + w10 + w20 + w30 + w40 + w50 = 0.782. �us

we apply p = 0.782 to evaluate L1. Similarly, for L2, we have

p = w0 + w11 + w21 + w31 + w41 + w51 = 0.938. For L3, the

persistence is p = w0 +w12 +w22 +w32 +w42 +w52 = 0.882.

We apply adaptive persistence to the browsingmodels in existing

measures and call them adaptive persistence browsing models and

measures. Adaptive persistence browsing models and measures

are variants for existing browsing models and measures where

the persistence parameters are replaced with adaptive persistence,

which varies adaptively according to the SERPs being evaluated.

4.4 Relation to Existing Measures

�e measures we examined all discount the contribution of results

at lower ranks. But the discount depends on different factors in

various measures.

�e discount components in position-based models are SERP

independent. Position-based models determine the discount on the

kth result only based on its rank k . For different SERPs, they set

the same discount on the kth result without considering the results

on the SERPs, which is oversimplified.

Cascade models and cost-based models determine the discount

based on the results at higher ranks (e.g., the chances of stopping

a�er examining results at higher ranks in the case of ERR, and the

time to examine results at higher ranks in the case TBG). �ere-

fore, their discount components are SERP dependent—for different

SERPs, the discount for the kth result can be different depending

on the results at higher ranks. But the dependency is local—they

only take into account results at higher ranks than k .

�e adaptive persistence model introduces a global dependency

between SERP results and the browsing models. �e discount fac-

tor depends on all the results on the SERP because we compute

persistence based on all the results’ relevance and their rankings.

Adaptive persistence does not conflict with existing models such

as cascade models and cost-based models but complements them.

A�er applying adaptive persistence, all the three types of models

are SERP dependent. �e cascade models and position-based mod-

els, with the help of adaptive persistence, discount the contribution

of a result based on both previously examined results (local depen-

dency) and all the results on the SERP (global dependency). As later

sections examined, such a global dependency between SERP results

and the browsing models is helpful for evaluation measures.

Again, we note that our method is only a computational model of

persistence—we assume that the persistence level of a user who is

going to browse a SERP can somehow be inferred from the quality

of the SERP. We leave the verification of this assumption and the ex-

planation of the detailed mechanism for future work. Nevertheless,

applying our method does not introduce additional risks because

the parameters will be learned from user behavioral data—if users’

persistence levels do not vary by SERPs, the learned model should

come to similar persistence values for different SERPs.

5 DATASETS

We use two different datasets in our experiments:

• J&A2. �is dataset was released by Jiang and Allan [28]

based on a user study’s search log [29]. It provides eye

tracking data and users’ ratings on their search perfor-

mance in a session. We use the eye tracking data to verify

how well the adaptive persistence models fit with users’

browsing behavior. Also, we also examine how well search

effectiveness measures applying the adaptive persistence

models correlate with users’ ratings on their search perfor-

mance. Figure 1 was plo�ed based on this dataset.

• Yandex. �is dataset is a subset of the Yandex relevance

prediction challenge dataset3. �e original purpose of the

dataset was to evaluate click models regarding predicting

results’ binary relevance labels. We use this dataset to ver-

ify whether or not the adaptive persistence models be�er

fit with observed clicking behavior compared with exist-

ing search effectiveness measures. Training the proposed

adaptive persistence models requires both click and rele-

vance labels. �us we only select a subset of the dataset

where each SERP was fully judged. 1,029,427 SERPs from

1,027,613 different sessions were selected in total.

Note that both datasets have some limitations. However, to the

best of our knowledge, they are the most suitable open, accessi-

ble options for our purpose. �e J&A dataset was collected in a

laboratory user study se�ing. It is small in size (only 388 SERPs

from 80 sessions). Also, the adopted search tasks came from the

TREC session track [6], which included relatively more complex

information needs than regular web search. In contrast, the Yandex

dataset is more realistic because it comes from real commercial

web search engines and is large enough for training robust models.

But it does not offer eye tracking data and user experience ratings.

Also, the log has been anonymized, which makes it impossible to

assess the underlying search scenarios. Later sections discussed

the implications of these limitations to the results. �e following

table shows some basic statistics of the two datasets.

J&A Yandex

# sessions 80 1,027,613

# SERPs 388 1,029,427

# results per SERP 9 10

Relevance levels 0–2 binary

Click Yes Yes

Eye tracking Yes No

User experience ratings Yes No

Experiment se�ing Lab Web search engine

Search system Google Yandex

Search task Complex Unknown
2 h�ps://github.com/jiepujiang/ir metrics
3 h�ps://academy.yandex.ru/events/data analysis/relpred2011/



6 EXPERIMENTS

6.1 Implementation

In the original TBG measure, Smucker and Clarke [40] estimated

the time to examine a result based on the length of the document

because the two correlate with each other in their dataset [41].

However, the Yandex dataset does not include document length.

Besides, we did not find a significant correlation between the two in

the J&A dataset (r = 0.02), but we observed a significant correlation

between result relevance and dwell time (r = 0.27, p < 0.001).

Similarly, in the Yandex dataset, users also spent significantly longer

dwell time on relevant results compared with non-relevant ones

(1104 vs. 774, p < 0.001). �erefore, we estimate the expected time

to examine a result based on result relevance.

Equation 14 computes t (r ), the expected time to examine a result

with the relevance r . It takes into account the time to read a result

snippet (tsnippet), and the possible time spent on the result document

if the user clicks on it. tsnippet is assumed a constant for all results.

Pclick (r ) is the chances of clicking on a result with relevance grade

r , and tclick (r ) is the time spent on a result document a�er clicking.

t (r ) = tsnippet + Pclick (r ) · tclick (r ) (14)

�e following table shows the time estimation in the two datasets

(the Yandex dataset normalized time using an unknown unit). We

estimate tsnippet based on the rank of the first clicked result on a

SERP and the time spent from submi�ing the query to the first

click [40]. tclick (r ) is estimated as the time spent from clicking

on the result to the next recorded action in the search log (either

submi�ing a query or clicking on a result). When computing TBG,

we compute tk based on t (r ), i.e., tk =
∑k−1
i=1 t (ri ) (note that tk

excludes the time to examine the kth result). We set дk = 2rk − 1

in TBG, and we ignore the optional normalization component.

Time estimation in the J&A dataset.

tsummary Pclick (r ) tclick (r ) t (r )

r = 0 3.6 s 0.26 17.2 s 8.1 s

r = 1 3.6 s 0.50 30.7 s 19.0 s

r = 2 3.6 s 0.54 52.2 s 31.8 s

Time estimation in the Yandex dataset.

tsummary Pclick (r ) tclick (r ) t (r )

r = 0 74 0.51 774 471

r = 1 74 0.63 1104 765

Similarly, we compute a time-based variant for U-measure due

to the lack of document length information in the Yandex dataset.

Equation 15 computes this variant. Here tk+1 stands for the ex-

pected total time to reach the (k + 1)th result (to be consistent with

the tk in TBG), which is computationally equivalent to the expected

total time spent until the user finishes examining the kth result.

�e parameter T is similar to L in the original U-measure, except

that it is measured in time. T is the persistence parameter in this

variant. We set д(k ) = 2rk −1
2rmax as Sakai [37] did, and we also ignore

the optional normalization factor in U-measure.

U =

n∑

k=1

дk ·max(0, 1 −
tk+1
T

) (15)

Note that for all the five measures we examined, their persistence

parameters’ values should stay within certain “reasonable” range,

e.g., b > 1 in the case of DCG. But Equation 6 cannot guarantee

this property. �us, when computing persistence, we normalize

the computed value to the closest valid value if it is not within the

reasonable range. For DCG, we set b = 1.01 if the computed value

≤ 1. For RBP, we set p = 0 if the computed p < 0, and set p = 1 if

the computed p > 1. For TBG and U-measure, we set h and T to 1

if the computed values < 1. For ERR, we set γ = 0 if the computed

γ < 0. One exception is that we allow γ > 1 in ERR. �is conflicts

with the original notation of γ (the probability of continuing to

examine the next result when the user was not satisfied), but yields

be�er results. Section 6.3 discussed this issue in detail.

6.2 Experiment Condition

We apply adaptive persistence to the five measures’ browsing mod-

els and compare with current ones where the persistence param-

eters are constant when evaluating different SERPs. We refer to

the later static persistence models or measures. �e purpose of the

experiments is to examine:

• RQ1: how well the adaptive persistence browsing models

explain observed browsing behavior compared with the

static persistence ones (Section 6.3)

• RQ2: how well the adaptive persistence browsing models

fit with observed clicking behavior compared with the

static persistence ones (Section 6.4)

• RQ3: how well search effectiveness measures applying

the adaptive persistence models correlate with users’ rat-

ings on their search performance compared with the static

persistence ones (Section 6.5)

More specifically, we compare with two baselines:

• Baseline 1 is the measures using “default” static persis-

tence parameters. We set b = 2 in DCG, and γ = 1 in

ERR. We set p = 0.8 and 0.5 in RBP, which were usually

adopted for “patient” and “impatient” users [5, 35]. We

set h to the “half life” of the users when they examine a

SERP [40]. Sakai [37] set L to the largest maximal trail text

length across all possible search sessions in the original

U-measure. Similarly, we setT to the longest examine time

for a SERP.

• Baseline 2 is the browsing models using s = w0 (only

a fixed term). It is essentially the same as using static

persistence parameters, but the values are trained using

observed eye fixations or clicks.

6.3 Fitting Observed Browsing Behavior

To study RQ1, we first examine how well Vk = nv · PM (k ) in-

terpret the observed eye fixations in the J&A dataset. We use a

cross-validation se�ing in experiments. We produce ten random

partitions of the dataset. On each partition, we perform a 10-fold

cross validation, using nine folds for training and one fold for test-

ing. �is produces results on 100 test folds in total. We report the

mean negative log likelihood on these 100 test folds (smaller values

are be�er).

Table 1 reports the results. �e adaptive persistence models

were trained using observed eye fixations. “topk” refers to adap-

tive persistence models considering only the top k results on the

SERP. “Grade Relevance” and “Binary Relevance” stand for whether





Table 2: Static vs. adaptive persistence browsing models in

click prediction, using the Yandex dataset (×105 negative log

likelihood, smaller is better).

Baselines Adaptive Persistence

1 2 top3 top5 top10

DCG 3.660 2.6401 2.54812 2.54512 2.54712

RBP, p = 0.8 3.651 2.8191 2.73812 2.73312 2.72812

RBP, p = 0.5 2.864 2.8191 2.73812 2.73312 2.72812

ERR 3.264 3.0651 2.79912 2.79812 2.92712

TBG 3.214 2.8661 2.69212 2.68112 2.67912

U-measure 4.319 4.2481 4.16712 3.98712 3.87412

1 and 2 indicate statistical significant differences at least at 0.05 level

compared with baseline 1 and 2, respectively.

and low “quality”. Here the se�ing is the same as that in Figure

1—we sort the SERPs by their DCG scores and refer to those in

the first, third, and fi�h bins as high, medium, and low “quality”

SERPs. �is is arbitrary, but we examined and found that using

other measures would also produce similar results to Figure 2.

�e first row shows the predicted examination probabilities by

existing browsing models (using static persistence). None of the

five models explain the differences in observed examination prob-

abilities on SERPs with different “quality” (as in Figure 1). As we

discussed, DCG and RBP have the same examination probabilities

on various SERPs. In contrast, ERR assigns higher examination

probability to lower-ranked results on the low “quality” SERPs com-

pared with on the high and medium “quality” ones. �e variants

of TBG and U-measure are similar to ERR because relevant results

have greater costs (require a longer time to examine) and discount

lower-ranked results by a greater extent. �is conflicts with the

observed examination probabilities in Figure 1, where users are less

likely to examine lower-ranked results on the low “quality” SERPs.

�e second and the third rows show examination probabilities

for browsing models with adaptive persistence trained using click

and eye fixation data. All these figures be�er interpret the differ-

ences in observed examination probabilities on SERPs with different

“quality”. �e adaptive persistence models were learned to correctly

reduce the examination probabilities on the low “quality” SERPs.

�is further confirms that, as we expected, by modeling persistence

based on the results on the SERP, the adaptive persistence mod-

els can help existing browsing models be�er fit with real users’

browsing behavior. �is also explains why the magnitudes of im-

provements are larger for ERR, TBG, and U-measure in the J&A

dataset, because their browsing models diverge from the observed

examination probabilities by greater extents compared with DCG

and RBP in the J&A dataset.

Note that allowing γ > 1 is the key to make the technique work

for ERR. As the first row of Figure 2 shows, the default sk =
2rk −1
2rmax

sets a radical discount to the examination probability, which may

not work well in scenarios other than navigational search. In such

a case, allowing γ > 1 helps the model to be�er fit with the actual

browsing behavior.

6.4 Fitting Observed Clicking Behavior

To study RQ2, we examine how well Ck = ak · PM (k ) interpret

the observed clicks. We use a similar cross-validation se�ing as

the last section. A limitation of the previous section is that the

experiments are based on a small dataset (J&A), where the included

search tasks may not be representative of typical web searches.

�us, we examine RQ2 using both the J&A and the Yandex datasets.

Note that the purpose of the experiment is not to achieve be�er

click prediction or compete with existing click models. Our goal is

to evaluate the browsing models in search effectiveness measures.

Since we use Ck = ak · PM (k ) to predict clicks for all browsing

models, we expect the performance of click prediction can indicate

the effectiveness of the browsing models.

Table 2 reports the click prediction performance of the browsing

models in the Yandex dataset. Similar to the findings in the last sec-

tion, Table 2 shows that browsing models with adaptive persistence

explain users’ clicking behavior significantly be�er than the two

baselines. �is further verifies the effectiveness of our approach

in a larger, more representative, and robust dataset. �is suggests

that the variability of browsing behavior to SERPs with different

quality is not restricted to the J&A dataset, but is generalizable to

regular web search scenario as well.

Table 3 further reports the click prediction performance of the

models in the J&A dataset. �e findings are similar to Table 2 and

that for predicting eye fixations. �e adaptive persistence models

have significantly be�er click prediction performance than both

baseline 1 and baseline 2 in most cases except RBP. Also, reduced

models help maintain high effectiveness in this small dataset.

Note that here we do not hope to suggest findings such as “DCG

has a be�er browsing model than ERR”. �is is because the results

only suggest the overall effectiveness of the models in predicting

click behavior at all ranks. Practically, a be�er fit with users’ be-

haviors at the top-ranked results may be more valuable due to the

importance of top-ranked results.

6.5 Correlating with Users’ Ratings

A major goal of search effectiveness measures is to serve as indi-

cators for potential users’ experience a�er they interact with the

SERPs. With be�er browsing models, we expect the search effec-

tiveness measures can be�er model and correlate with users’ search

experience. �e J&A dataset offers users’ ratings to their search

performance in a session. A�er finishing a search session, users

answered the question “how well do you think you performed in this

task” using a five-point Likert scale from very well (5) to very badly

(1).

To study RQ3, we examine the correlation between search ef-

fectiveness measures and users’ ratings in a session. Note that the

dataset only provides users’ ratings for a session as a whole, while

all the examined measures are for individual SERPs. �erefore,

when examining a measure, we compute the measure’s values on

different SERPs for a session and use the mean value as an indicator

of the session’s quality. We examine how well the average value of

the measure for different SERPs in a session correlate with user’s

rating for that session.

We generate 25 random partitions of the sessions and perform

a 4-fold cross-validation on each partition. We use three folds

(60 sessions’ SERPs) to train the adaptive persistence models, and

measure the correlation (Pearson’s r ) on the test fold (20 sessions).

�e se�ing is different from previous sections because we noticed

that Pearson’s r becomes less stable for a small number of test



Table 3: Fixed vs. adaptive persistence browsing models in click prediction, using the J & A dataset (negative log likelihood,

smaller values are better).

Baselines
Adaptive Persistence Measures

(Graded Relevance)

Adaptive Persistence Measures

(Binary Relevance)

1 2 top3 top5 top7 top9 top3 top5 top7 top9

DCG 173.6 171.61 171.01 170.712 170.412 171.31 171.11 170.312 170.91 171.31

RBP, p = 0.8 175.0 171.91 172.21 172.812 173.212 174.42 171.81 172.11 172.812 173.312

RBP, p = 0.5 258.1 171.91 172.21 172.812 173.212 174.412 171.81 172.11 172.812 173.312

ERR 269.6 265.01 214.312 194.912 205.512 215.112 223.312 215.012 217.612 224.312

TBG 183.1 175.21 173.512 170.812 177.7 174.01 172.712 170.112 170.212 170.412

U-measure 176.7 177.71 176.8 175.22 173.512 179.0 177.1 175.52 174.012 176.7
1 and 2 indicate statistical significant differences at least at 0.05 level compared with baseline 1 and 2 by two-tail paired t -test.

Table 4: Comparison between baselines and adaptive persistence measures in correlating with users’ ratings on search perfor-

mance (mean values of Pearson’s r over 100 different test folds; greater values are better).

Baselines
Adaptive Persistence Measures

(Graded Relevance)

Adaptive Persistence Measures

(Binary Relevance)

1 2 top3 top5 top7 top9 top3 top5 top7 top9

DCG 0.381 0.3781 0.3822 0.39212 0.39612 0.39412 0.3842 0.39112 0.39212 0.39212

nDCG 0.340 0.3321 0.33712 0.34612 0.34812 0.3462 0.33612 0.3422 0.3432 0.3432

RBP, p = 0.8 0.393 0.3861 0.41112 0.392 0.36112 0.35412 0.41312 0.4022 0.4002 0.4012

RBP, p = 0.5 0.376 0.386 0.41112 0.392 0.3612 0.3542 0.41312 0.40212 0.40012 0.40112

ERR 0.364 0.3671 0.42012 0.44912 0.41512 0.38912 0.358 0.39112 0.376 0.38512

TBG 0.379 0.375 0.38712 0.40012 0.40912 0.41512 0.38712 0.39712 0.40112 0.40712

U-measure 0.365 0.365 0.362 0.37812 0.37212 0.362 0.35812 0.37712 0.37612 0.37312

1 and 2 indicate statistical significant differences at least at 0.05 level compared with baseline 1 and 2 by two-tail paired t -test.

instances (if we use the same se�ing as previous sections, each

test fold includes only eight sessions). Table 4 reports the results,

where the adaptive persistence models are trained using clicks (this

stands for a more realistic choice compared with eye fixation). We

also apply the approach to normalized DCG (nDCG). �e process

of training the persistence parameters is the same as that for DCG.

However, when computing nDCG, the ideal DCG is computed using

the ideal ranked list’s persistence, which may be different from that

for the ranked list being evaluated.

Table 4 shows that a�er applying adaptive persistence, all the

five search effectiveness measures achieve significantly be�er cor-

relations with users’ ratings on their search performance compared

with both baseline 1 and baseline 2. �is confirms the usefulness

of the proposed approach—with be�er user interaction models,

our approach helps existing search effectiveness measures be�er

correlate with users’ perceptions on their search performance.

In addition, we noticed that, although baseline 2 unsurprisingly

outperformed baseline 1 in interpreting observed user behavior, it

does not necessarily lead to be�er correlations with users’ ratings.

For DCG, nDCG, and RBP (p = 0.8), baseline 2 yields slightly weaker

correlations compared with baseline 1. �is suggests that it requires

further investigations on when and to what extents correlating with

user behavior helps measures to model user experience.

7 DISCUSSION AND CONCLUSION

Accurately measuring the effectiveness of search systems is a key

challenge to ensure consistent improvements of search quality—as

search systems are usually trained to optimize some search quality

indicators, they would fail if the quality indicators fail. However,

many search effectiveness measures do not correlate with actual

search quality well enough [2, 26, 38, 41–43]. �is makes many

search engine companies to rely on online evaluation techniques

such as user experience prediction [1, 11, 18, 22, 23, 32] and in-

terleaved experiments [8, 13, 24, 25, 36, 39] to determine whether

or not to deploy a new ranking algorithm. Despite these issues,

the Cranfield-style evaluation and search effectiveness measures

are still important in IR evaluation and system design due to their

automatic nature, which makes them suitable for automatically

guiding system optimization.

�is paper proposed and examined adaptive persistence model,

a technique to improve many offline search effectiveness measures.

�is model deals with the issue of user behavior variability caused

by SERP results. It adapts the browsing models in existing search

effectiveness measures according to the SERPs being evaluated.

Experiments show our approach is fruitful and helpful, concerning

both fi�ing observed user behavior and correlating with users’

ratings on their search experience. �e technique is also generic,

as it can be applied to different search effectiveness measures as

long as they included such a persistence parameter. Our study also

covers all the main user models in search effectiveness measures,

including position-based, cascade, and cost-based ones.

A key difference between our work and current measures lies

in that we take into account a global dependency between users’

browsing behavior and the SERPs being evaluated. In contrast,

position-based models (such as DCG and RBP) are independent of

the SERPs. Cascade models (e.g., ERR) and cost-based models (e.g.,

TBG and U-measure) are also adaptive to the SERPs being evaluated,

but they only consider a local dependency—where the discount on

the kth result only depends on the previously exampled results

(results at higher ranks). As we showed, our approach does not



conflict with existing measures but helps them be�er simulate user

behavior, and consequently be�er correlate with search quality.

�is indicates that it is necessary to take into account such a global

dependency in browsing models and search effectiveness measures.

It should be noted that, although motivated by the differences

in examination probabilities on SERPs with different “quality”, our

approach is not restricted to the example we observed in the J&A

dataset. �e model does not rely on any specific assumptions about

how different SERPs would differ in examination probabilities. It

learns to adapt to such differences and thus can be generalized to

different cases. As long as users’ browsing behavior exist variability

on various SERPs and such variability is related to the relevance

of results, our model has the chance to learn the dependency. As

the experimental results on the Yandex dataset show, our approach

also explains click behavior significantly be�er in a very different

dataset than the J&A dataset.

However, we also acknowledge the limitation of our work. First,

it remains unclear how to interpret the dependency between brows-

ing behavior and SERP results. A possible interpretation for the low

examination probabilities on the low “quality” SERPs is that users

quickly abandon to avoid wasting time. However, this requires

further verification. It is also unclear whether other reasons exist.

Second, both the two datasets have certain limitations—the J&A

dataset is small, and the Yandex dataset is anonymized and uses

only binary relevance. �erefore, it requires experiments on other

datasets to fully examine the effectiveness of our approach.

Resources related to this study can be accessed online4.
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